
Response	to	reviewer	comments	
We	would	like	to	thank	both	reviewers	for	reading	the	manuscript	for	the	second	time,	and	
for	their	comments	which	have	certainly	helped	improve	the	manuscript.	In	addition	to	
editing	the	manuscript	in	response	to	the	reviewer	comments	outlined	below,	we	have	
added	a	paragraph	to	the	appendix	on	data	availability	and	dataset	version	in	line	with	the	
GMD	requirements	for	a	model	experiment	description	paper.			
	
Reviewer	#1	
Could	you	include	one	sub-section	as	part	of	an	outlook	which	discusses	how	this	protocol	
could	be	improved	and	what	is	missing	at	this	stage?	This	could	be	used	as	a	guideline	for	
future	experimental	setups.	Since	you	gathered	and	analysed	this	dataset	you	have	a	good	
insight	into	what	was	missing	and	what	kind	of	analysis	you	would	have	liked	to	do	but	
which	you	couldn’t	because	of	the	restrictive	nature	of	this	(and	any	other)	protocol.		
Therefore,	could	you,	as	part	of	a	kind	of	overview/summary/outlook	sub-section,		
-Highlight	the	disadvantages	of	the	current	datasets,	e.g.	number	of	ensemble	members,	
start	dates,	(especially	with	regards	to	minimum,	average	and	maximum	extent/volume	
years),	output	(such	as	tendencies	necessary	for	detailed	analysis),	start	times,	control	setup,	
forcing,	simulation	length	and/or	other	aspects.		
-Describe	changes	to	the	protocol	which	should	be	applied	in	the	future,	e.g.,	clearly	defined	
time	intervals	between	start	years,	number	of	ensemble	members	and	start	dates	necessary	
to	allow	for	robust	and	statistically	significant	diagnostics,	number	of	participating	models	
and	so	on.		
-Discuss	briefly	which	parts	of	the	protocol	are	most	important	in	terms	of	enforcing	a	
common	setup	between	participating	models.	Is	it	number	of	start	dates	rather	than	
members,	integration	length	of	the	ensemble	members,	the	length	of	the	control	simulation	
etc.		
I	know	these	aspects	and	their	importance	differ	depending	on	what	part	of	the	climate	
system	you	are	looking	at	but	that	is	precisely	why	you	should	comment	on	this	from	the	
perspective	of	potential	interannual	sea	ice	predictability.	Do	you	expect	differences	in	these	
aspects	when	looking	at	Antarctic	sea	ice?		
	
We	have	added	a	subsection	(4.1)	discussing	the	protocol.	We	conducted	an	analysis	into	a	
number	of	the	issues	raised	by	the	reviewer	in	Hawkins	et	al.	2016	and	we	summarise	the	
findings	of	this	analysis	in	this	section.			
	
In	this	context	it	would	also	be	good	to	have	a	document	(Supplementary	material?	)	
explaining	the	minimum	experimental	setup	to	take	part	in	APPOSITE,	including	such	
technical	aspects	as	output	variables	and	frequency,	simulation	length,	ensemble	members	
and	so	on.	But	maybe	you	have	already	supplied	this	to	the	British	Atmospheric	Data	Centre.		
	
We	have	uploaded	the	experiment	design,	which	was	distributed	amongst	the	APPOSITE	
participants,	as	supplementary	material.		
	
Other	minor	comments:��
Line	139:	Change	“the	determining”	to	“determining”��
Line	181:	Change	to	“uses”�	
Line	218:	Change	to	“timeseries”��



Line	262:	Move	“CanCM”	to	“simulations”��
Line	263:	Add	“had	been	run	for	a	longer	control	period	in	the	fixed”	or	something	similar		
Lines	291-293:	There	is	something	missing	after	“model	states	of	the”��
Line	293:	Delete	“is”��
Line	297:	Add	“in”��
All	changes	have	been	made.	
	
There	are	two	minor	things	I	mentioned	in	the	last	review	that	you	haven’t	changed:		
Line	371:	Check	for	text	size	and	font	here	and	onwards		
The	text	size	and	font	was	changed	by	the	editorial	staff	prior	to	going	online.	I	assume	this	
was	done	on	purpose.		
Line	368	and	371:	Is	it	“1”	or	“r1”	for	“<run>”	in	the	control	case		
It	should	be	“r1”	similar	to	the	CMIP5	naming	convention.		
	
Figure	6	caption:	Change	“os”	to	“of”�Figure	6	caption:	What	is	the	dashed	line	(average)		
Figure	6:	Maybe	explicitly	mention	in	the	text/caption	that	a	significance	test	with	so	little	
independent	data	points	as	used	for	Figure	6	doesn’t	make	much	sense	and	therefore	this	
result	can	only	be	seen	as	an	indication.		
Both	changed	
Figure	6:	Please	add	the	number	of	start	years	for	each	ensemble	and	each	case	(low,	
medium,	high),	either	in	the	caption,	table	1	or	in	brackets	in	the	figure	legend.		
This	information	is	now	included	in	the	figure	caption		
	
Reviewer	2	
"Review	of	Day	et	al	
I	only	have	one	comment	regarding	the	science.	In	the	new	section	3.4,	you	use	ACC	to	show	
that	the	high	and	low	IC	states	lead	to	higher	predictability	(at	least	as	shown	by	ACC)	than	
the	average	IC	states.	This	is	an	interesting	result,	though	I	wonder	if	it	might	be	a	statistical	
artifact	of	ACC:	
	
In	a	predictability	ensemble	with	IC	at	or	near	climatology,	the	numerator	of	ACC	could	easily	
fluctuate	between	positive	and	negative,	since	xij,	or	xkj	will	begin	close	to	climatology	(and	
on	average,	not	diverge	far	from	it).	So	even	if	the	prediction	is	highly	skilled	in	terms	of	its	
dispersion	(a	very	tight	ensemble),	its	ACC	might	be	quite	low	-	especially	when	compared	to	
ensembles	initialized	from	high	or	low	states,	for	which	the	numerator	in	ACC	is	more	
consistently	the	same	sign	for	xij	-	climo	and	xkj	-	climo	terms?	I	would	encourage	the	
authors	to	calculate	the	NMRSE	too	of	the	different	high/low/medium	ICs	to	check	the	
robustness	of	this	result.	
	
Having	looked	at	other	metrics,	we	agree	with	the	reviewer	that	this	is	indeed	likely	to	be	a	
statistical	artefact	of	the	ACC	measure,	and	thank	them	for	catching	this.	We	have	changed	
the	figure	6	to	include	both	NRMSE	and	ACC	metric	for	volume	only	and	changed	the	text	
accordingly.		
	
Minor	typos:	
L124	'differences.	The	most	sign...'	comma,	no	period	
L139	'	for	determining'	(no	'the')	



L176	What	typical	operational	forecasts	are	you	referring	too?	The	annual	September	Sea	
Ice	Outlook	(admittedly	not	quite	operational)	forecasts	are	usually	initialized	a	bit	later	
(June	onward)	
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Abstract

Recent decades have seen significant developments in climate prediction capabilities at
seasonal-to-interannual timescales. However, until recently the potential of such systems to
predict Arctic climate had rarely been assessed. This paper describes a multi-model pre-
dictability experiment which was run as part of the Arctic Predictability and Prediction On5

Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE
was to quantify the timescales on which Arctic climate is predictable. In order to achieve
this, a coordinated set of idealised initial-value predictability experiments, with seven gen-
eral circulation models, was conducted. This was the first model intercomparison project de-
signed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales.10

Here we present a description of the archived data set (which is available at the British At-
mospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability
estimates in these models, and an investigation into to what extent predictability is depen-
dent on the initial state.

The inclusion of additional models expands the range of sea ice volume and extent pre-15

dictability estimates, demonstrating that there is model diversity in the potential to make
seasonal-to-interannual timescale predictions. We also suggest that

::::::::::
investigate

::::::::
whether

sea ice forecasts started from extreme high and low sea ice initial states exhibit higher lev-
els of potential predictability than forecasts started from close to the models mean state,

:::
and

::::
find

::::
that

::::
the

::::::
result

::::::::
depends

:::
on

::::
the

::::::
metric.20

Although designed to address Arctic predictability, we describe the archived data here so
that others can use this data set to assess the predictability of other regions and modes of
climate variability on these timescales, such as the El Niño Southern Oscillation.

1 Introduction

Unprecedented climate change in the Arctic has opened up opportunities for business in25

diverse sectors such as fossil fuel and mineral extraction, shipping and tourism but has also

2
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put pressure on local communities, who are dependent on the ice for their livelihoods (Em-
merson and Lahn, 2012; Stephenson et al., 2013). The need for these stakeholder groups
to avoid hazardous sea ice and weather conditions has increased demand for Arctic sea ice
forecasts at seasonal-to-interannual time scales (Eicken, 2013; Jung et al., 2016). These
local interests and a growing appreciation of the importance of the Arctic in mid-latitude5

weather phenomena (Jung et al., 2014) have motivated the development of seasonal sea
ice prediction systems (e.g. Sigmond et al., 2013; Chevallier et al., 2013; Wang et al., 2013;
Peterson et al., 2014) which are initialised from observations.

It has previously been shown that these sea ice prediction systems exhibit significant skill
in predicting summer sea ice extent a season ahead (Guemas et al., 2016), but diagnosing10

the source of forecast errors is problematic. Forecast errors may be due to both inadequate
representation of important physical processes in the model (such as melt ponds, Schröder
et al., 2014) or inadequate knowledge of initial-state conditions, such as sea ice thickness
(Day et al., 2014a; Msadek et al., 2014; Massonnet et al., 2015), which is not currently
used to initialise operational forecasts. Sea ice predictability is also inherently limited due to15

chaotic, unpredictable atmospheric variability (Blanchard-Wrigglesworth et al., 2011b; Hol-
land et al., 2010) which will lead to irreducible errors in sea ice predictions at seasonal and
longer timescales, fundamentally limiting the timescale at which sea ice will be predictable
(Tietsche et al., 2016). If the skill of a given forecast system is already close to this funda-
mental limit it will not be possible to further increase the leadtime at which the forecast is20

skilful.
To determine if there is the potential to improve the operational prediction systems, we

consider a more idealised situation. The “perfect-model” approach to estimating predictabil-
ity involves producing initial-value ensemble-predictions with a General Circulation Model
(GCM), which are verified against the model itself rather than against observations of the25

real world (following Griffies and Bryan, 1997b). It is therefore not hampered by changes
to the observational network over time or changes in predictability due to secular climate
change, which hampers this kind of analysis in the real world (Collins, 2002). Such studies
provide an estimate of the predictive skill obtainable in a world with a perfect model and

3
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complete observations. However, such estimates are not necessarily an upper bound for
the limit of predictability in the real world because important predictability mechanisms may
be missing (Eade et al., 2014). There is an ongoing discussion in the literature on this point
(e.g. Shi et al., 2015).

The perfect model approach has previously been used to quantify and understand5

predictability of coupled modes of climate variability, such as the Atlantic Meridional-
Overturning Circulation (AMOC) (e.g. Griffies and Bryan, 1997a; Collins, 2002; Pohlmann
et al., 2004) and the El Niño Southern Oscillation (ENSO) (Collins et al., 2002), lead-
ing to the development of operational seasonal-to-decadal prediction systems based on
atmosphere-ocean climate models (e.g. Smith et al., 2007; Jin et al., 2008).10

Using this approach Collins et al. (2006) demonstrated that the timescale on which the
AMOC is predictable varies from model to model. These inter-model differences in pre-
dictability arise because different GCMs have different representations of the underlying
physical equations and parameters. It is therefore likely that there will be inter-model differ-
ences in predictability for other climate variables so it is important to conduct such analyses15

in multiple GCMs. The APPOSITE model intercomparison was designed to diagnose the
limit of initial-value predictability of Arctic sea ice in multiple GCMs. Previous studies had es-
timated this limit in individual climate models, but with slightly different experiment designs
(such as Blanchard-Wrigglesworth et al., 2011b; Holland et al., 2010; Koenigk and Miko-
lajewicz, 2009; Tietsche et al., 2013). All these experiments demonstrated initial-value sea20

ice predictability on seasonal-to-interannual timescales, however because they focussed on
slightly different variables, averaging periods and because the experimental protocols were
inconsistent between the studies, it was not clear whether the results of these studies were
consistent (Guemas et al., 2016). For the APPOSITE ensemble a consistent protocol was
followed to ensure that it was possible to intercompare models, so that any differences in25

predictability were only the result of differences in the inherent predictability of the models
themselves. The first results of this project were presented in Tietsche et al. (2014).

The primary aim of this manuscript is to provide a detailed description of the APPOSITE
experiment, archived at the British Atmospheric Data Centre (BADC) (Day et al., 2015). We

4
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also present an updated assessment of the limit of Arctic sea ice extent and volume pre-
dictability, initially presented in Tietsche et al. (2014), including more models than available
at the time of this publication. In addition we consider an open question in Arctic prediction:
to what extent is sea ice predictability state dependent? In this study we consider whether
sea ice extent and volume predictability is different when initialised from high and low states5

compared to states close to the model climatology.
The paper is outlined as follows: Sect. 2 describes the experiment in detail as well as

the mean state of the models used, Sect. 3 includes an update of the results of Tietsche
et al. (2014) and the state dependence analysis, followed by the conclusions in Sect. 4.
Additional details of the data set, archived at the BADC, are included as Appendix A.10

2 Description of the simulations

Seven different coupled climate models performed simulations for APPOSITE (see Table 1).
Six of these models followed the same experimental protocol, which is described in Sect. 2.1
and 2.2. For practical reasons one model, CanCM4, followed a slightly different protocol
which is described in Sect. 2.3.15

2.1 Control simulations

Predictability of the climate system changes with mean climate (DelSole et al., 2014) com-
plicating the assessment of predictability in a transient climate. This is likely to be particu-
larly acute in the Arctic where the sea ice climate changes rapidly in transient simulations
(Holland et al., 2010). The APPOSITE experimental protocol therefore asked for both con-20

trol simulations and ensemble predictions to be conducted in GCMs with forcing fixed at
present-day values.

Since the perfect-model approach uses initial conditions generated by the model itself,
present-day control simulations with each model were run under fixed present-day radiative
forcings. For practical reasons the year that the forcings correspond to differ between mod-25

els, either 1990, 2000 or 2005 depending on the model (see Table 1). Apart from MPI-ESM,
5



D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

which was initialised from year 2005 of the CMIP5 historical simulation, all other models
were initialised in a static state from present day ocean temperature and salinity profiles
(e.g. Conkright et al., 2002). The period of spinup varied from model to model but is at
least 100 years. Each model was integrated for at least 100 further years to fully sample
the model’s climate, drift, and the models internal variability. Data from the spinup period of5

each model was not archived. However, it is worth noting that despite more than a century
of spinup, some of these simulations still have significant drifts in the mean sea ice ex-
tent and volume timeseries (see Fig. 1). These drifts are accounted for by the predictability
metrics we use in Section 3 and are not expected to significantly influence the estimate of
predictability.10

All of the models are coupled atmosphere-ocean-sea ice GCMs and each has a fully
prognostic sea ice component. These account for variations in sea ice due to both thermo-
dynamic and advective processes that result from stress internal to the sea ice as well as
through interaction with the atmosphere and ocean. Like all components of the GCMs, the
sea ice models have both structural and conceptual differences. The

:
,
:::
the

:
most significant15

of which are their treatment of sea ice dynamics, such as the local ice thickness distribution,
as well as vertical heat flux through the ice and heat exchange at the ice-ocean interface.
Except for HadGEM1.2, E6F and MIROC5.2 the versions of the models used were those
submitted to the Coupled Model Intercomparison Project Phase 5 (CMIP5). These models
have been well tested and evaluated against observations and their strengths and weak-20

nesses are well-documented (see references in Table 1). However, in order to facilitate
understanding of the differences in sea ice predictability, we present the differences in their
sea ice mean state and variability.

Although not designed to robustly assess the realism of each model’s climate this analy-
sis shows that sea ice mean state and variability in the control runs differ considerably from25

model-to-model and to the observations (see Figs. 2, 3 and 4). Before calculating the stan-
dard deviation, shown in Fig. 4, a linear trend was removed from sea ice extent and volume
timeseries for each model. The wide range of sea ice climates in GCMs is well known (e.g.
Arzel et al., 2006; Flato et al., 2013), however the wide model variety in inter-annual vari-

6
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ability exhibited by the different models is likely to be just as important for the determining
the inherent predictability exhibited by each model. Indeed looking across the models, the
inter-annual variability of summer sea ice extent in each model appears to be negatively
correlated to its mean, in line with previous studies (Goosse et al., 2009; Holland et al.,
2008). This does not appear to be the case for winter. It should also be noted that whilst5

the climate of each model is very well sampled here (over 100 years), the observational
timeseries, at a length of 35 years, is much shorter.

2.2 Ensemble predictions

To diagnose the inherent predictability in each of these models, we performed a suite of
ensemble predictions. The number of start dates selected from the control run differs from10

model to model and ranges between 8 and 18, depending on the resource limitations of
each modelling centre. Whilst participating groups were responsible for choosing their own
start dates, they were encouraged to pick them so that a range of high, low and medium
sea ice extent and volume states were captured, in order that any dependence of sea ice
predictability on the size of the initial state anomaly could be assessed (see Section 3.4).15

They were also encouraged to keep start dates well spaced in time, so that they could be
considered independent (see Fig. 1). The minimum spacing between start dates is 3 years
in the case of GFDL-CM3, and longer in other models.

For each start date an ensemble of between 8 and 16 members was generated, again
depending on the resource limitations of each modelling centre. The initial conditions were20

taken from the control run of each model and each ensemble member differs only by a
perturbation to the sea surface temperature field. The perturbation used to generate the
ensemble takes the form of randomly-generated spatially-uncorrelated noise, applied to
each grid cell. This noise is sampled from a Gaussian distribution with a standard deviation
of 10�4K. Each ensemble member starts with a slightly different realisation of this noise.25

Such a perturbation is so small that it is equivalent to assuming perfect knowledge of the
initial conditions. For a given start date, differences in the evolution of each ensemble mem-
ber are solely determined by the chaotic nature of the simulated climate system. Note that

7
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different initialisation methods, such as lagged atmospheric conditions may lead to slightly
different predictability estimates (see Hawkins et al., 2016). For each start date the ensem-
ble was run for 3 years, with the exception of MIROC5.2, which was run for 3.5 years.

A minimum contribution for models to be included in the APPOSITE experiment was to
submit a control run and predictability experiments started on the 1st July, which allows an5

assessment of seasonal predictions of the late-summer sea ice conditions, when the sea
ice is at its lowest extent, and human activity in the the Arctic Ocean is largest. Although
we restrict our analysis to the simulations started in July, some groups have also submitted
simulations started in January, May and November (see Table 1 for details). Note that oper-
ational predictions

::::::::::
dynamical

:::::::::
seasonal

:::::::::::
predictions,

:::::
such

::
as

:::::::::
GloSea5

::::
and

::::::::::::::::
ECMWF-System10

::
5, are more commonly started in May. We decided to start our simulations later due to the
presence of an early summer predictability barrier, which might lead to a sharply decreased
skill in predicting the late-summer sea ice extent minimum (Blanchard-Wrigglesworth et al.,
2011a; Day et al., 2014b).

2.3 CanCM4 transient experiments15

The set of simulations with the CanCM4 model use
:::::
uses a different protocol, in order to

facilitate direct comparison of these simulations with the CanSIPS operational seasonal
prediction system, which uses the same climate model (Sigmond et al., 2013).

The CanCM4 simulations were different in two key respects. Firstly, they were run under
a transient climate, with observed historical forcing agents prescribed. Secondly, initial-20

value ensembles were generated every year and only run for 1 year. In all other regards,
such as the method of ensemble generation, these simulations are the same as the other
APPOSITE perfect model simulations.

8
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3 Perfect model intercomparison

An intermodel comparison of Arctic sea ice predictability, using four climate models, was
published in Tietsche et al. (2014). Here we present an update of this study, including the
MIROC5.2, E6F and CanCM4 climate models.

3.1 Metrics5

Two predictability metrics, as defined by Collins (2002), were used to quantify predictability
in this study. These make use of the fact that in a perfect model study, such as this, any
ensemble member may be chosen as “the truth” or “the forecast”. Therefore it is possible to
increase the effective sample size by taking each member as “the truth” in turn, and com-
paring it with every other member as “the forecast”. For each model the Normalised Root10

Mean Squared Error (NRMSE) compares forecast RMSE to the climatological variability:

NRMSE =

q
h(xkj �xij)2ii,j,k 6=i

p
2�2

(1)

where h·ii denotes the expectation value, to be calculated by summing over the specified
index with appropriate normalization, xij(t) is the sea ice extent at lead time t for the ith
member of the jth ensemble. The � in the denominator is the standard deviation of the con-15

trol run for the appropriate month, calculated from the whole archived timeseries (shown in
Fig. 1) after the linear trend has been removed (values shown in Fig. 4). The value of the de-
nominator is equivalent to the climatological RMSE between two independent realisations,
which is the limit that the RMSE term in the nominator will approach over time. Therefore
the NRMSE will approach a limit of 1. The model is said to show significant predictabil-20

ity when the NRMSE is significantly lower than 1, as calculated using an F-test, following
Collins (2002).

The second metric is the anomaly correlation coefficient (ACC). This is defined as:

ACC =
h(xij �µj)(xkj �µj)ii,j,k 6=j

h(xij �µj)2ii,j
. (2)

9
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where µj is the climatological mean at the time of the jth ensemble prediction. The anoma-
lies are calculated relative to a time varying climatology to take into account any drifts in the
control run, otherwise ACC values for models with larger drifts would be biased high. For
the jth start date, the climatology µj is the value of the linear fit at the corresponding point
in the control run timeseries at the corresponding point in time. Note that we chose to use5

the whole timeseires
::::::::::
timeseries

:
for each model (after the spinup period), shown in Fig 1, to

estimate the reference climate. For a detailed discussion on the impact of such choices on
the estimate of predictability see Hawkins et al. (2016).

At some lead-time, both of these metrics become insignificantly different from their
asymptotic limit (0 for ACC and 1 for NRMSE), and the lead-time at which this happens can10

be used to define the limit of predictability. For each lead-time, significance is calculated
using an F-test or t-test in the case of the NRMSE and ACC metrics respectively, where for
each model the degrees of freedom used in the test is the number of start dates multiplied
by the number of ensemble members run for that model. It appears that the NRMSE met-
ric is more conservative than the ACC metric and becomes insignificantly different from its15

limit at an earlier lead-time (see Fig. 5). Thus using both metrics gives some spread in the
estimate of the time when the limit of predictability is actually reached.

3.2 Fixed forcing experiments

Although sea ice extent predictability decreases rapidly during the first year, with the excep-
tion of EC-Earth, all models (and both metrics) show significant levels of predictability for20

the first year (see Fig. 5). After the first year of simulation, two of the models, MIROC5.2
and GFDL-CM3, show significant levels of predictability at all later lead times. At the other
end of the predictability spectrum, E6F is only intermittently predictable after the first year.
Predictability in E6F (and to a lesser extent HadGEM1.2) has a strong seasonal cycle with
months surrounding the winter extent maximum significantly predictable until the end of the25

simulation and no significant summer predictability after the first year.
Sea ice volume is much more predictable than sea ice extent in all models. Apart from

E6F all models exhibit significant predictability in all 3 years of the simulations. In a prog-

10
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nostic predictability analysis with decadal simulations, Germe et al. (2014) similarly found
that winter sea ice extent was predictable out to seven years in their model, compared to
three years in summer and found that volume was predictable out to nine years ahead. It
is therefore likely that the winter sea ice extent predictability horizon may be significantly
beyond the 3 years simulated in these experiments.5

3.3 CanCM4 transient experiments

Both the NRMSE and ACC metrics indicate lower levels of predictability in CanCM4 for sea
ice extent and sea ice volume (see Fig. 5). It is possible that the CanCM4 model actually
has inherently lower levels of initial-value predictability than the other models. However,
there are reasons to expect that both metrics will indicate lower levels of predictability not10

because of inherently lower levels of initial-value predictability, but because of using the
shorter control run associated with the transient protocol employed by CanCM4.

In the case of NRMSE, detrending a short timeseries is likely to significantly reduce the
climatological variance, since without multiple ensemble members to estimate the forced
trend, some internal variability is removed in attempting to remove the forced trend (see15

Hawkins et al., 2016).
We believe that the ACC values are lower than the estimates of other models for the

following reason. The reference climate (which is a linear fit to the control run) is a much
better fit to the data, with lower residuals, in the case of the short CanCM4 transient control
run than it is for the long fixed forcing control runs. This is because, in general, the long20

control runs have have large decadal anomalies which are not well approximated by a linear
fit. Therefore the

::::::::
CanCM4 simulations will exhibit lower persistence CanCM4 than would be

found if the same model had been run
::
for

::
a
::::::
longer

:::::::
period in the fixed forcing setup, simply

as a result of differing accuracy of the linear fit in each case.

11
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3.4 State dependence of predictability

As mentioned in Section 2.2, start dates for the ensembles were chosen to sample low,
medium and high sea ice extent and volume states in each model’s control run. In order to
estimate whether starting in different positions of model state space has an impact on skill

::::::::::::
predictability we calculated the anomaly correlation metric

:::
and

::::::::
NRMSE

::::::::
metrics again but5

only selecting start dates according to if they were started from a month of the control run
with a low, medium or high state. This was done for most models by choosing the two lowest
states, two highest states or two states closest to the mean of the control runs. E6F had 3
start dates in each class and CanCM4 had 7 in each, as a result of these models having
more start dates than other models. In general, the high states are larger than 0.8 standard10

deviations above the mean and the low states lower than 0.8 standard deviations below the
mean. To assess the start date dependence of sea ice extent predictability the start dates
were binned by sea ice extent and to assess the dependence of volume predictability they
were binned by volume. The ACC was

::::
and

::::::::
NRMSE

:::::
were

:
recalculated for each of these

bins (see Fig. 6).15

Fig 6. provides a clear indication that there is indeed some start date dependence. In
the case of sea ice extent,

::::::::::
According

::
to

:::::
Fig.

::
6,

:::::::::
whether

:::
the

:::::::::::::
predictability

:::::::::
changes

::::
with

:::
the

::::::::
distance

:::
of

::::
the

:::::
initial

::::::
state

:::::
from

:::
the

::::::
mean

:::::::
extent

::::
and

:::::::
volume

:::::::::
appears

::
to

::::::::
depend

:::
on

:::
the

:::::::
metric.

::::
For

::::::
states

::::::::::
initialised

:::::
close

:::
to

::::
the

::::::
mean

::::
sea

:::
ice

::::::::
volume

:::::::::::
climatology,

:
the ACC

of ensembles started from years close to climatology drops very rapidly during the first 620

months of the simulations, both in the multi-model mean and in individual models (apart
from HadGEM), compared to the high and low cases where ACC values stay higher for
longer. The differences are most apparent in the months immediately following September,
which is when freeze-up begins following the summer minimum. It may be that there are
differences at longer lead times, but with this small sample size the time series of ACC are25

noisy and difficult to interpret.
Sea ice volume also exhibits much less predictability when initialised from states where

the volume is close to the model climatology
::::
ACC

:::::::
metric

::::::::::
decreases

::::::
much

::::::
more

:::::::
rapidly

12
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::::
with

::::
lead

:::::
time

:::::
than

::::
the

:::::
high

::
or

::::
low

:::::::
cases,

::::::::::
appearing

:::
to

::::::::
recover

::::::::
towards

:::
the

:::::
end

::
of

::::
the

::::::::::
simulations. Indeed the multi-model mean ACC falls dramatically in the medium case com-
pared to the low and high years. Skill remains comparatively low during the rest of the
simulation.

We believe the inter-model agreement over the features we highlight provide a strong5

indication that initialising forecasts from extreme model states of the results in more skilful
forecasts of both sea ice extent and volume. Physically, one reason for this might be
is that autumn and winter heat loss acts as a strong negative (stabilising) feedback. If
anomalous atmospheric forcing leads to a large negative anomalyin September ice extent
or thickness one year, there will also be large oceanic heat losses during the following10

freeze-up season areas of open water and thin ice which encourage ice production
(Serreze and Stroeve, 2015). One might expect the evolution from states where this
feedback dictates large heat flux anomalies to be more predictable than others. However,
this behaviour might also be expected from simple arguments based on the positive
auto-correlation

:::::::::
However,

::::::
similar

::::::::
features

::::
are

::::
not

:::::::
present

::::::
when

:::::
using

::::
the

::::::::
NRMSE

:::::::
metric,15

::::
with

:::
the

::::::
mean

::::::::
NRMSE

::::::::::
increasing

:::::
with

::::
lead

:::::
time

::
at

::
a

::::::
similar

:::::
rate

::::::
across

::::
the

:::::
high,

::::::::
medium

:::
and

:::::
low

:::::::
cases.

::::
We

:::::::::
therefore

:::::::
believe

:::::
that

::::
this

::::::::::
behaviour

:::
is

::
a

:::::::::
statistical

::::::::
artefact

:::
of

::::
the

::::
ACC

:::::::
metric,

::::
for

:::
the

:::::::::
following

::::::::
reason.

::::
For

:::::
start

::::::
dates

:::::::::
initialised

::::::
close

:::
to

:::::::::::
climatology,

::::
the

:::::::::
numerator

:::
of

:::
the

:::::
ACC

::::::
metric

:::::
(Eq.

::
2)

::::
will

::::::::
fluctuate

:::::::::
between

:::::::
positive

::::
and

:::::::::
negative

::::::
values

:::
as

:::
the

:::::::::
ensemble

:::::::::
members

::::::::
diverge,

:::::
more

::::::::::
frequently

:::::
than

:::::
when

:::::::::
initialised

:::::
from

:
a
:::::
large

:::::::::
anomaly.20

:::::
When

:::::::
started

:::::
from

::
a

:::::
large

:::::::::
anomaly,

:::
the

:::::::::
ensemble

::::::::::
members

:::
will

::::::
agree

:::::
more

::::::::
strongly

:::
on

:::
the

::::
sign.

:::::
This

::::::
leads

::
to

::::::
lower

:::::
ACC

::
in

::::
the

::::::::
medium

:::::::
cases.

:::::::
Similar

::::::::::
behaviour

::
is

:::::::::
observed

::::::
when

:::::::::::
experiments

::::
are

:::::::
binned

::
by

:::::
high,

::::
low

::::
and

::::::::
medium

:::::
initial

::::
sea

:::
ice

:::::::
extent

::::
(not

::::::::
shown).

::::
With

:::
so

:::
few

:::::
data

::::::
points

:
it
::
is
::::
not

::::::::
possible

::
to

::::::::
robustly

::::
test

:::
the

::::::::::
statistical

:::::::::::
significance

::
of

::::
this

:::::::
finding,

:::
so

:::
this

::::::
result

:::::::
should

::::
only

:::
be

:::::
seen

:::
as

:::
an

:::::::::
indicative.

:
25

::::::::
Although

::::
we

::::::
show

::::
that

::::::
there

::
is

:::::
little

:::::::::
evidence

:
of sea ice on these timescales. Since

the sea ice extent and volume auto-correlation is positive, one might expect large
anomalies to persist, leading to increased predictability when initialising from extreme
states. A more in depth study in this area would be needed to differentiate between

13
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these two hypotheses
:::::::::::
predictability

:::::::::::
depending

::::
on

:::
the

:::::::::
distance

:::
of

::::
the

:::::::::::
prediction’s

::::::
initial

:::::
state

::::
from

::::
the

:::::::::::::
climatological

:::::::
mean,

::::
this

:::::
does

::::
not

::::::
mean

::::
that

::::
the

::::::::::::
predictability

::
is

::::
not

:::::
state

::::::::::
dependent.

::::
For

:::::::::
example,

::::::
years

::::::
where

:::::::::::
anomalous

::::::::::::
atmospheric

::::::::::
circulation

:::::::::
patterns,

::::::
which

:::
are

::::::::
unlikely

::
to

:::
be

:::::::::::
predictable

:::
at

:::::::::
seasonal

:::::::::::
timescales,

:::::
play

:
a
:::::

role
::
in

:::::::
driving

::::::
large

::::
sea

:::
ice

:::::::::
anomalies

:::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. summer 2007; Serreze and Stroeve, 2015) will

:::
be

:::::::
poorly

::::::::::
predicted

:::::
even5

::
in

::
a

:::::::
perfect

::::::::::
prediction

:::::::::
system.

:::::::::::::::::::::::::
Hawkins et al. (2016) also

::::::::::::
demonstrate

:::::
that

::::
the

::::
rate

:::
of

:::::::::
ensemble

:::::::::::
divergence

::::
can

::::
vary

:::::
from

:::::
start

::::
date

:::
to

::::
start

:::::
date

::
in

:::::::
perfect

::::::
model

:::::::::::
simulations.

4 Conclusions

We have presented the experimental protocol for the APPOSITE Arctic sea ice predictabil-
ity multi-model intercomparison, and described the archive of model simulations which con-10

tributed to it. The mean state and variability of Arctic sea ice cover in the models was
presented and compared to observed estimates. We utilise this database to assess the
limit of initial-value Arctic sea ice extent and volume predictability from each of the models,
updating the results of Tietsche et al. (2014) to include three more models.

The results of this analysis of perfect model predictability can be summarised as follows:15

– The winter sea ice extent is predictable at interannual timescales (or possibly longer
timescales) in all models.

– There is significant intermodel spread in the timescale at which summer sea ice extent
is predictable, with some models not showing any interannual or longer timescale
predictability, and others showing significant predictability throughout all months of20

the 3 year simulations.

– Sea ice volume is generally more predictable than sea ice extent.

Further, because prediction ensembles were started from high, medium and low sea ice
states we were able to assess the state dependence of sea ice predictability for the first
time. We found that for both volume and extent, the future evolution of the climate appears25

14
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to be more predictable when started from high or low states compared to those forecasts
started from states close to the model

:::
little

:::::::::
evidence

::
of

::::
sea

::::
ice

::::::::::::
predictability

::::::::::
depending

:::
on

:::
the

::::::::
distance

:::
of

:::
the

:::::::::::
prediction’s

:::::
initial

:::::
state

:::::
from

::::
the

:::::::::::::
climatological mean.

These data are archived at the BADC (Day et al., 2015) and have been used in a number
of sea ice predictability studies. These have: (i) quantified the predictability horizon for Arctic5

sea ice forecasts (Tietsche et al., 2014, and this study), (ii) demonstrated the existence of
a spring “predictability barrier” for sea ice predictions (Day et al., 2014b), (iii) highlighted
the development of sea ice thickness initialisation as a crucial step towards skilful seasonal
predictions (Day et al., 2014a), (iv) quantified the sources of irreducible forecast error in
Arctic predictions (Tietsche et al., 2016), and (v) been used to investigate the initial state10

dependence of sea ice predictability (this study). This dataset has therefore helped fill key
knowledge gaps in sea ice prediction research.

However, important questions on Arctic sea ice predictability still remain. For example, a
clear understanding of why predictability varies from model to model and to what extent it
depends on the models mean climate remains elusive. We feel that it will be necessary to15

expand this set of predictability experiments in order to answer this question robustly. We
hope that by making these data available, other researchers will be able to utilise them to
answer these and other open questions.

As well as enabling the results of the APPOSITE project to be reproduced and allowing
the community to utilise these simulations for Arctic sea ice research, this archive could also20

be further utilised to improve understanding of predictability of other variables on seasonal-
to-interannual timescales, such as Antarctic sea ice cover (e.g. Holland et al., 2013) or even
ENSO (e.g. Collins et al., 2002).

4.1
:::::::::::
Discussion

:::
of

::::::::
protocol

::::::
Having

:::::::::::
presented

::
a

:::::::::
summary

:::
of

::::
the

:::::::
results

:::
of

::::
the

:::::::::::
APPOSITE

:::::::
model

::::::::::::::::
inter-comparison25

:::::::
project,

::
it

::
is

:::::::
natural

:::
to

::::::::
consider

::::
the

:::::::::
suitability

:::
of

::::
the

::::::::
protocol

::::
and

::::::::
suggest

::::::
ways

::
in

::::::
which

:
a
::::::
future

::::::::
protocol

::::::
might

:::
be

:::::::::
improved.

::::::::::
Analyses

::::::::
pertinent

:::
to

::::
this

::::::::
question

:::::
were

::::::::::
described

::
in

::::::::::::::::::::
Hawkins et al. (2016),

::::
and

:::
we

::::
will

::::
use

:::::
these

::::::::::
examples

::
in

::::
this

:::::::::::
discussion.

15
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::
A

:::::::
number

:::
of

:::::::::
methods

:::::
exist

:::
for

:::::::::::
generating

::::::
initial

:::::
value

:::::::::::
ensembles

:::
in

::::::::
coupled

::::::::
models.

::::::
Perfect

::::::::
model

::::::::
studies

:::::
have

::::::::::
generally

::::::
used

::::::::
simple

:::::::::
methods

::::::::::
including:

:::::::
white

::::::
noise

::::::::::::
perturbations

:::
of

:::::
SST

::::
(as

:::::
used

:::
in

::::::::::::
APPOSITE),

:::
or

::::::::::::
atmosphere

:::
or

:::::
state

:::::::
lagged

:::::::::
methods

::::::
(where

::::::
state

:::::::
vectors

:::::
from

:::::::::
adjacent

:::::
days

::::
are

:::::
used

::
to

::::::::
initialise

::::
the

::::::::
model),

:::::::::
although

:::::
more

::::::::
complex

:::::::::
methods

::::::
exist.

::::::::::::::::::::::::::::::
Hawkins et al. (2016) conducted

:::::::::::::
experiments

:::
to

::::::::::
determine

::::
the5

::::::
impact

::
of

::::::
these

:::::::
simple

::::::::
methods

:::
on

::::::::::
ensemble

:::::::
spread

::
in

::
a

:::
set

:::
of

:
6
:::::::
month

::::
long

::::::::::::
experiments

::::
with

:::
the

:::::::::::
MPI-ESM.

:::::
They

::::::
found

:::::
that

::::
the

:::::
state

:::::::
lagged

::::
and

::::::::::::
atmosphere

::::::::
lagged

:::::::::
approach

:::::::::
generated

::::::
more

::::::::::
ensemble

:::::::
spread

:::
in

:::::
both

::::
sea

:::
ice

:::::::
extent

::::
and

::::::::
volume

:::::
than

:::
did

::::
the

:::::
SST

:::::
white

:::::
noise

:::::::::::::
perturbation.

::::
This

:::::::
finding

:::::::::
suggests

::::
that

:::::
using

:::
the

::::::
same

::::::::::::
perturbation

:::::::
method

:::
for

:::::
each

::::::
model,

:::
as

:::::
was

:::::
done

::
in

::::::::::::
APPOSITE,

::
is

:::::::::
important

:::::::::
although

:
it
:::
is

:::
not

:::::
clear

::
a

:::::
priori

:
if
::::
one10

:::::::
method

::
is

::
a

::::::
better

::::
than

::::
the

:::::::
others.

::::::
Given

::::
that

::::
all

::::::::::
modelling

::::::::
centres

:::::
work

:::::
with

::::::
finite

::::::::::
computing

:::::::::::
resources,

:::
a

:::::::::
pertinent

::::::::
question

:::::
both

::::
for

::::::
future

:::::::
perfect

:::::::
model

::::::::
studies

::::
and

::::
for

:::::::::::
operational

::::::::::::
forecasting

::
is

:::::
how

:::::
many

::::::::::
ensemble

::::::::::
members

::::
and

:::::
start

::::::
dates

::::
are

:::::::::
required

::
to

::::::::
robustly

::::::::
assess

::::
the

::::::::
inherent

::::::::::::
predictability

::
of

::
a
:::::::
model.

::::::::::::::::::::::::::::
Hawkins et al. (2016) present

:::
an

:::::::::
analysis

::::
with

::::
the

::::::::::::
HadGEM1.215

::::::::::
APPOSITE

:::::::::::::
simulations,

::::::
where

:::::
they

::::::::::::
subsample

:::::
from

::::
the

:::
16

:::::::::::
ensemble

:::::::::
members

:::::
and

::
10

::::::
start

::::::
dates

:::
to

:::::::::::
investigate

::::
the

::::::::::
sensitivity

:::
of

:::::::::::
September

::::
sea

::::
ice

:::::::
extent

::::
and

::::::::
volume

::::::::::::
predictability

:::::::
metrics

::::::
when

::::::
using

::::::
fewer

:::::
start

:::::::
dates

::::
and

::::::::::
members.

:::::::
RMSE

::::::::
seems

:::::
quite

::::::::::
insensitive

:::
to

::::
the

::::::::
number

::::
of

::::::::::
members

::::
and

::::::
start

:::::::
dates,

:::::::::
certainly

::::
for

:::::::
values

:::::::
above

:::
the

:::
8

:::::
start

:::::::
dates

:::::
and

::
8
:::::::::::

members,
:::::::

which
:::::

was
:::::::::::

suggested
::::

as
:::

a
::::::::::
minimum

:::
in

::::
the20

::::::::::
APPOSITE

::::::::::
protocol.

:::::::::
However,

::::
the

::::::
ACC

::::::::::::::
monotonically

::::::::::
increases

:::::
with

::::::::::
ensemble

:::::
size

::::
and,

:::
as

::::
we

::::::
have

:::::::
shown

::
in

::::::::
Section

:::::
3.4,

::
is
:::::::

highly
:::::::::
sensitive

:::
to

::::::
small

:::::::::
numbers

:::
of

:::::
start

::::::
dates.

:::::::::::::::::::::::::::::
Hawkins et al. (2016) conclude

::::
that

:::::
even

:::::
with

:::
16

:::::::::
members

:::::
(the

:::::
most

::::::::::
submitted

::
to

:::::::::::
APPOSITE)

::::::::::::
probabilistic

:::::::::
measures

:::
of

::::::::::::
predictability

:::::
were

:::
not

::::::::
reliable.

:

::::
The

::::::
choice

:::
of

::::::::::
ensemble

::::
size

::::
also

:::::::::
depends

:::
on

::::
the

:::::::::
particular

::::::::
question

::::
the

:::::::::::
experiment

::
is25

:::::
trying

:::
to

::::::::
address,

:::
for

:::::::::
example

::
if

:::::::::
designing

:::
an

:::::::::::
experiment

:::
to

::::::::::
investigate

:::::
how

::::::::::::
predictability

::::::::
depends

:::
on

::::
the

::::::
initial

::::::
state,

:::::::::::
increasing

::::
the

::::::::
number

:::
of

:::::
start

:::::::
dates,

::
at

::::
the

:::::::::
expense

:::
of

:::::::::
ensemble

::::::::::
members,

:::::
might

:::
be

::
a
:::::::::::
worthwhile

:::::
trade

:::
off.

:

16
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:::
As

:::::::::
discussed

::
in

::::::::
Section

::::
3.4,

::
in

:::::
order

::
to

:::::::::::
investigate

:::
the

::::::::::::
dependence

::
of

::::::::::::
predictability

:::
on

:::
the

:::::
initial

:::::
state,

::::
we

:::::::
decided

:::
to

::::
pick

:::::
high,

::::
low

::::
and

::::::::
medium

::::::
states

::::::
rather

::::
than

:::::::::
randomly

:::::::::
selecting

:::::
them.

::::
Our

::::::::
analysis

:::
in

:::
this

::::::::
section

:::::::::::::
demonstrates

::::
that

:::::
some

::::::::
metrics,

:::::::::::
particularly

::::::
ACC,

:::::
could

::
be

:::::
very

::::::::
sensitive

:::
to

:::
this

:::::::
choice

::::
and

::::
that

:::::::::
manually

:::::::::
choosing

:::::
start

:::::
dates

::
in

::::
this

::::
way

:::::
may

::::
bias

:::
the

::::::
overall

:::::::::
estimate

::
of

::::::
model

:::::::::::::
predictability,

::::::::::
compared

::
to

::
a

:::::::
random

::::::::::
selection.

::::::::::
Therefore,

:::
we5

:::::
would

::::::::::::
recommend

::::
that

:::::::
studies

:::::::::
focussed

::::::
solely

:::
on

:::::::::::::
understanding

:::::::::::
inter-model

:::::::::::
differences

::
in

::::::::::::
predictability

:::
use

::
a
::::::::
random

:::::::::
selection

:::::::::
approach

::
to

:::::::::
choosing

:::::
start

::::::
dates.

:

::
A

::::::
length

::
of

::::::
three

::::::
years

::::
was

::::::::
decided

:::::
upon

:::
for

::::
the

:::::::::::
APPOSITE

::::::::::::
predictability

::::::::::::
simulations.

::::
This

::::
was

:::::::
chosen

:::::
both

:::
for

:::::::::
pragmatic

::::::::::::::
computational

::::::::
resource

::::::::
reasons

::::
and

::::::
based

:::
on

::::::::
previous

:::::::
studies,

::::::
which

:::::::::
indicated

::::
that

:::::
that

:::
the

:::::
limit

::
of

::::
sea

::::
ice

::::::
extent

::::::::::::
predictability

:::::
was

::::::
under

:::::
three10

:::::
years

::::::::::::::::::::::::::::::::::::::::::
(e.g. Blanchard-Wrigglesworth et al., 2011b).

:::::::::
Although

::::
this

:::
is

:::::::::
certainly

:::
the

::::::
case

::
in

:::::
some

::::::::
models,

::
it
:::::::::

appears
:::
to

:::
be

:::::::::::
predictable

:::::
past

::::
this

::::::
point

:::
in

::::::
others

:::::
(see

:::::
Fig.

:::
5).

:::
It

::
is

::::
also

:::::::::
certainly

:::
the

::::::
case

::::
that

::::
sea

::::
ice

::::::
extent

:::
in

::::::
some

::::::::
regions,

:::::
such

:::
as

::::
the

::::::
North

::::::::
Atlantic,

::
is

::::::::::
predictable

:::::
past

:::::
three

::::::
years

::::::::::::::::::
(Day et al., 2014b).

::::::::::
Therefore,

:::::::
similar

::::::
future

:::::::
studies

:::::::
should

::::::::
consider

:::::::::
extending

:::::::::::
simulations

:::
for

::::::
longer

:::
in

:::::
order

::
to

::::::::
capture

:::
the

::::::::::::
predictability

::::::::
horizon

::
for

:::
all15

:::::::
models.

:

::
A

::::::::::
significant

::::::::
problem

:::
we

:::::::::::::
encountered

::::
was

::::::::
dealing

::::
with

::::
drift

:::
in

:::
the

:::::::
control

::::::::::::
simulations.

:::::
Many

:::
of

::::
the

:::::::
control

::::::::::::
simulations

:::::
were

::::
not

:::
in

:::
an

:::::::::::
equilibrium

:::::::
state,

::::
and

:::::
had

::::::::::
significant

:::::
drifts

::
in

:::::
sea

::::
ice

::::::
extent

:::::
and

::::::::
volume

:::::
(Fig.

:::
1).

:::::::::::::
Predictability

:::::::::
metrics,

:::::
such

::::
as

::::
the

:::::
ACC

:::
and

:::::::::
NRMSE

::::
are

::::::::::
dependent

:::
on

::::
the

::::::::
method

:::::
used

:::
for

::::::::::
choosing

:::
the

::::::::::
reference

:::::::::::
climatology20

:::::::::::::::::::::::::
(see Hawkins et al., 2016),

:::::::::
therefore

::::
we

::::::
would

::::::::::::
recommend

::::::::
running

::::
the

:::::::
control

:::::
runs

:::
to

::::::::::
equilibrium

:::
so

::::
that

::
a

:::::
more

::::::
stable

:::::::
model

:::::::
climate

::
is

:::::
used

:::::
both

:::
for

:::::::::
initialising

:::::::::::
ensembles

::::
and

::
as

::
a

::::::::::
reference.

::::
The

:::
set

:::
of

:::::::::::
diagnostics

::::
we

::::::
asked

:::
for

:::::
was

:::::::::
generally

:::::::::
sufficient

:::::::::
sufficient

:::
for

::::
our

::::::::
analysis

::::
goal

::
of

:::::::::::
quantifying

:::::
and

::::::::::::::
understanding

::::::::::::::::::::::
seasonal-to-interannual

::::
sea

::::
ice

:::::::::::::
predictability,

::::
with25

:
a
:::::::
couple

::
of

::::::::::::
exceptions.

::::::
Firstly,

::::::::::::::::::::::::::::
Tietsche et al. (2014) utilised

:::::::
process

:::::::
based

:::::::::::
tendencies

::
to

:::::
relate

::::::
errors

:::
in

::::
sea

:::
ice

::::::::::
thickness

::
to

:::::
their

:::::::::::
mechanical

:::::
and

::::::::::::::::
thermodynamical

:::::::::::
processes

::
in

:::::::::::
HadGEM1.2

:::::
and

::::::::::
MPI-ESM.

:::::::
These

:::::::::::
diagnostics

:::::
were

::::
not

::::::::
available

:::::
from

::::
the

::::::
other

:::::::
models

:::
and

::::
we

::::::
would

::::::::::::
recommend

::::::
saving

:::::
such

:::::::::::
diagnostics

:::
as

:::::
part

::
of

::
a

::::::
future

::::::::::::
predictability

::::::
study.

17
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:::::::::
Secondly,

:::::::::
although

:::
the

::::::
focus

::::
was

:::
on

::::::::::::::::::::::
seasonal-to-interannual

:::::::::::
timescales,

:::::::
saving

:::::
daily

::::
sea

:::
ice

:::::
data

:::::
have

::::::
been

:::::
very

:::::::
useful

::
in

:::::::::
studying

::::
the

:::::::::::::
predictability

::
of

:::::
user

:::::::::
relevant

::::::::
metrics,

::::
such

::::
as

:::
the

:::::::::
position

::
of

::::
the

:::::
sea

:::
ice

::::::
edge

:::
on

::::::
these

:::::::::::
timescales

:::::::::::::::::::::::
(Goessling et al., 2016).

::::::::
Recently,

:::::::::::::::::::::::::
Notz et al. (2016) present

::
a
::::::::::::::
recommended

::::
set

:::
of

:::::::::::
diagnostics

:::
for

::::::::
CMIP6,

:::::
with

::::::::::
diagnostics

:::::::::
designed

:::
to

:::::
close

::::
the

:::
sea

::::
ice

:::::
heat,

:::::::::::
momentum

::::
and

:::::
mass

:::::::::
budgets.

:::::::::::
Diagnostics5

:::
are

:::::::
binned

::::
into

::::::
three

::::
tiers

::::::::::
indicating

::::
the

:::::::
relative

:::::::
priority

:::
of

:::::
each

:::::::::::
diagnostic.

::
A

::::::
future

::::
sea

:::
ice

::::::::::::
predictability

:::::
MIP

:::::
could

::::
use

:::::
their

::::
list

:::
as

::
a

:::::::
starting

::::::
point

::::
(see

:::::::::::::::
supplementary

::::::::
material

::
for

::
a
:::
full

:::
list

:::
of

::::::::::::::
recommended

:::::::::::
diagnostics

::
as

:::::
well

::
as

::::
the

:::::::::::
experiment

:::::::::::
description,

::::::
which

::::
was

::::::::::
distributed

::
to

:::
the

:::::::::::
APPOSITE

:::::::
project

:::::::::::::
participants).

Appendix A: Database description10

::::
The

::::::::::
APPOSITE

::::::::
version

:
1
:::::::
dataset

::::::::::
described

::
in

::::
this

:::::
paper

::
is
:::::::
openly

::::::::
available

:::::
from

:::
the

:::::::
BADC,

::::::
where

::::
data

:::::
from

::
all

::::::::
models

:::
can

:::
be

::::::::::::
downloaded

::
in

:::::::
netCDF

:::::::
format

::::
(via

:::
the

::::::::
following

:::::
link: http:

//catalogue.ceda.ac.uk/uuid/d330c7873c3f4880893bdedb547bea20
:
)
::::
and

::::
has

:::::
been

:::::::
issued

:
a
::::::
digital

::::::
object

:::::::::
identifier

:::::::::::::::::
(Day et al., 2015).

APPOSITE requested a specific set of variables from participants focused on sea ice15

analysis, but many other variables have been archived besides. The file and directory nam-
ing convention, followed by the archived data set, is very similar to that followed by CMIP5
(http://cmip-pcmdi.llnl.gov/cmip5/output_req.html).

APPOSITE required participants to prepare their data files so that they meet the following
constraints.20

– Data files are in netCDF file format and ideally conform to the climate and fore-
cast (CF) metadata convention (outlined on the website http://cf-pcmdi.llnl.gov). In
instances where it was not possible to produce fully CF compliant netCDF files, par-
ticipants were required to follow the CMOR variable naming convention.

– There must be only one output variable per file.25

– The file names have to follow the file naming convention outlined below.
18

http://catalogue.ceda.ac.uk/uuid/d330c7873c3f4880893bdedb547bea20
http://catalogue.ceda.ac.uk/uuid/d330c7873c3f4880893bdedb547bea20
http://catalogue.ceda.ac.uk/uuid/d330c7873c3f4880893bdedb547bea20
http://cmip-pcmdi.llnl.gov/cmip5/output_req.html
http://cf-pcmdi.llnl.gov
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Each variable is contained in a single directory of a directory tree with the following struc-
ture:

<model>/<runtype>/<submodel&frequency>/<variable>

Where runtype is “ctrl” or “pred” for the control run or ensemble predictions respectively,
model is the name of the climate model (e.g. hadgem1_2, mpiesm, . . . ), variable is the5

CMOR name for a given climate variable and submodel&frequency indicates the model
sub-component and frequency (e.g. Amon, Aday, Omon and Oday).

Files are named using the following convention:
<variable>_<submode&frequency>_<model>_<runtype>_<run>_<time>.nc

Where run is a concatenated string including the start year, prediction start month and10

ensemble member number for ensemble predictions (e.g. 2005Jul3); or simply contains “1”
for a control run.

For example,
tas_Amon_hadgem1_2_ctrl_r1_200501-200512.nc for control runs,

or15

tas_Amon_hadgem1_2_pred_2005Jul3_200507-200806.nc for the 3rd en-
semble member of an ensemble started on the 1 July 2005.

Acknowledgements.

:::
We

:::::
would

:::
like

::
to
::::::
thank

::::
both

::::::::
reviewers

:::
for

::::
their

::::::::
thorough

::::
and

:::::
useful

::::::::::
comments,

:::::
which

:::::
have

::::::
helped

:::::::
improve

::::
the

::::::::::
manuscript.

:
This work was supported by the Natural Environment

Research Council (grant NE/I029447/1). Helge Goessling was supported by a fellowship of the20

German Research Foundation (DFG grant GO 2464/1-1). Data storage and processing capacity was
kindly provided by the British Atmospheric Data Centre (BADC). Thanks to Yanjun Jiao (CCCma)
for his assistance with the CanCM4 simulations and to Bill Merryfield for his comments on a draft of
the paper.

References25

Arzel, O. and Fichefet, T. and Goosse, H.: Sea ice evolution over the 20th and
21st centuries as simulated by current AOGCMs, Ocean Modelling, 12, 3-4, 401–415,
doi:10.1016/j.ocemod.2005.08.002, 2006.

19

http://dx.doi.org/10.1016/j.ocemod.2005.08.002


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and In-
herent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations, J. Climate, 24,
231–250, doi:10.1175/2010JCLI3775.1, 2011a.

Blanchard-Wrigglesworth, E., Bitz, C., and Holland, M.: Influence of initial conditions and climate
forcing on predicting Arctic sea ice, Geophys. Res. Lett, 38, L18503, doi:10.1029/2011GL048807,5

2011b.
Chevallier, M., Salas y Mélia, D., Voldoire, A., Déqué, M., and Garric, G.: Seasonal Forecasts of

the Pan-Arctic Sea Ice Extent Using a GCM-Based Seasonal Prediction System, J. Climate, 26,
6092–6104, doi:10.1175/JCLI-D-12-00612.1, 2013.

Collins, M.: Climate predictability on interannual to decadal time scales: the initial value problem,10

Clim. Dynam., 19, 671–692, doi:10.1007/s00382-002-0254-8, 2002.
Collins, M., Frame, D., Sinha, B., and Wilson, C.: How far ahead could we predict El Niño?, Geophys.

Res. Lett., 29, 130-1–130-4, doi:10.1029/2001GL013919, 2002.
Collins, M., Botzet, M., Carril, A. F., Drange, H., Jouzeau, A., Latif, M., Masina, S., Otteraa, O. H.,

Pohlmann, H., Sorteberg, A., Sutton, R., and Terray, L.: Interannual to decadal climate predictabil-15

ity in the North Atlantic: a multimodel-ensemble study, J. Climate, 19, 1195–1203, 2006.
Conkright, M. E., Locarnini, R. A., Garcia, H. E., O’Brien, T. D., Boyer, T. P., Stephens, C., and

Antonov, J. I.: World Ocean Atlas 2001: Objective analyses, data statistics, and figures: CD-ROM
documentation, US Department of Commerce, National Oceanic and Atmospheric Administra-
tion, National Oceanographic Data Center, Ocean Climate Laboratory, NODC Internal Report 17,20

Silver Spring MD, 17 p., 2002.
Day, J. J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness initialization improve seasonal

forecast skill?, Geophys. Res. Lett., 41, 7566–7575, doi:10.1002/2014GL061694, 2014a.
Day, J. J., Tietsche, S., and Hawkins, E.: Pan-Arctic and Regional Sea Ice Predictability: Initialization

Month Dependence, J. Climate, 27, 4371–4390, doi:10.1175/JCLI-D-13-00614.1, 2014b.25

Day, J., Hawkins, E., and Tietsche, S.: Collection of Multi-model Data from the Arctic Predictabil-
ity and Prediction On Seasonal-to-Interannual Time-scales (APPOSITE) Project, NCAS British
Atmospheric Data Centre, doi:10.5285/45814db8-56cd-44f2-b3a4-92e41eaaff3f, 2015.

DelSole, T., Yan, X., Dirmeyer, P. A., Fennessy, M., and Altshuler, E.: Changes in seasonal pre-
dictability due to global warming, J. Climate, 27, 300–311, 2014.30

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Gi-
noux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Frei-
denreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson,

20

http://dx.doi.org/10.1175/2010JCLI3775.1
http://dx.doi.org/10.1029/2011GL048807
http://dx.doi.org/10.1175/JCLI-D-12-00612.1
http://dx.doi.org/10.1007/s00382-002-0254-8
http://dx.doi.org/10.1029/2001GL013919
http://dx.doi.org/10.1002/2014GL061694
http://dx.doi.org/10.1175/JCLI-D-13-00614.1
http://dx.doi.org/10.5285/45814db8-56cd-44f2-b3a4-92e41eaaff3f


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

T. R., Langenhorst, A. R., Lee, H.-C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C. D., Naik,
V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis,
J. J., Stern, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F.: The
Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmo-
spheric Component AM3 of the GFDL Global Coupled Model CM3, J. Climate, 24, 3484–3519,5

doi:10.1175/2011JCLI3955.1, 2011.
Eade, R., Smith, D., Scaife, A., Wallace, E., Dunstone, N., Hermanson, L., and Robinson, N.: Do

seasonal to decadal climate predictions underestimate the predictability of the real world?, Geo-
phys. Res. Lett., 41, 5620–5628, doi:10.1002/2014GL061146, 2014.

Eicken, H.: Ocean science: Arctic sea ice needs better forecasts, Nature, 497, 431–433,10

doi:10.1038/497431a, 2013.
Emmerson, C. and Lahn, G.: Arctic Opening: Opportunity and Risk in the High North, Tech. rep.,

Lloyds, Chattham House, 2012.
Flato, G. and Marotzke, Jochem and Abiodun, B. and Braconnot, P. and Chou, S. Chan and Collins,

W. and Cox, P. and Driouech, F. and Emori, S. and Eyring, V. and others: in Climate Change 2013:15

The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, Cambridge University Press, 741–866, 2013.

Germe, A., Chevallier, M., Salas y Mélia, D., Sanchez-Gomez, E., and Cassou, C.: Interannual
predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution,
Clim. Dynam., 43, 2519–2538, doi:10.1007/s00382-014-2071-2, 2014.20

:::::::::
Goessling,

::
H.

:::
F.,

::::::::
Tietsche,

:::
S.,

::::
Day,

::
J.
:::

J.,
::::::::
Hawkins,

:::
E.,

::::
and

:::::
Jung,

:::
T.:

:::::::::::
Predictability

:::
of

:::
the

:::::
Arctic

::::
sea

::
ice

::::::
edge,

::::::::
Geophys.

:::::
Res.

::::
Lett.,

::::
43,

::::::::::
1642–1650,

:
doi:10.1002/2015GL067232

:
,
:::::
2016.

:

Goosse, H., Arzel, O., Bitz, C. M., de Montety, A., and Vancoppenolle, M.: Increased variabil-
ity of the Arctic summer ice extent in a warmer climate, Geophys. Res. Lett., 36, L23702,
doi:10.1029/2009GL040546, 2009.25

Griffies, S. and Bryan, K.: A predictability study of simulated North Atlantic multidecadal variability,
Clim. Dynam., 13, 459–487, 1997a.

Griffies, S. M. and Bryan, K.: Predictability of North Atlantic Multidecadal Climate Variability, Science,
275, 181–184, doi:10.1126/science.275.5297.181, 1997b.

Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., Gnanadesikan,30

A., Hurlin, W. J., Lee, H.-C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L.,
Yin, J., and Zadeh, N.: The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and
Sea Ice Simulations, J. Climate, 24, 3520–3544, doi:10.1175/2011JCLI3964.1, 2011.

21

http://dx.doi.org/10.1175/2011JCLI3955.1
http://dx.doi.org/10.1002/2014GL061146
http://dx.doi.org/10.1038/497431a
http://dx.doi.org/10.1007/s00382-014-2071-2
http://dx.doi.org/10.1002/2015GL067232
http://dx.doi.org/10.1029/2009GL040546
http://dx.doi.org/10.1126/science.275.5297.181
http://dx.doi.org/10.1175/2011JCLI3964.1


D
i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|
D

i
s
c
u
s
s
i
o
n

P
a
p
e
r

|

Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J.,
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Table 1. Details of simulations submitted to the APPOSITE database.

Model CTRL length Forcing year Start dates Start months Ensemble size References

HadGEM1.2 249 1990 10 Jan, May, Jul 16 Johns et al. (2006)
Shaffrey et al. (2009)

MPI-ESM 200 2005 12 (Jul), 16 (Nov) Jul, Nov 9 (Jul), 16 (Nov) Notz et al. (2013)
Jungclaus et al. (2013)

GFDL-CM3 200 1990 8 Jan, Jul 16 Donner et al. (2011)
Griffies et al. (2011)

EC-Earth2.2 200 2005 9 Jul 8 Hazeleger et al. (2012)
MIROC5.2 100 2000 8 Jan, Jul 8 updated from Watanabe et al. (2010)
E6F 200 1990 18 Jan, Jul 9 Sidorenko et al. (2014)
CanCM4 45 transient (1970–2014) 32 Jan, Jul, 10 Sigmond et al. (2013)

Merryfield et al. (2013)
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Figure 1.
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Figure 1. Timeseries of monthly mean September sea ice extent (sie, left column) and sea ice
volume (siv, right column) in each model’s control simulation (blue) with the line of best fit to data
(black). Vertical grey lines indicate start years used to initialise simulations. Values on the time axis
are model clock times, and do not correspond to the actual run-length of the simulation.
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Figure 2. Average sea-ice concentration in present-day model control simulations and from
HadISST (1983–2012) (Rayner et al., 2003).
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Figure 3. Average sea-ice thickness in present-day model control simulations and from PIOMAS
(1983–2012) (Schweiger et al., 2011).
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Figure 4. Seasonal cycle of monthly mean sea-ice extent (a), volume (b) and standard deviation of
sea ice extent (c) and volume (d) in present-day model control simulations. The HadISST observa-
tions of sea ice extent and PIOMAS reconstruction of ice volume are included as a reference. These
data were linearly detrended prior to calculating the variance.
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Figure 5. (a) and (b) Lead-time dependence of SIE NRMSE and SIV NRMSE for all models. (c)
and (d) Lead-time dependence of SIE ACC and SIV ACC for all models. September and March
are marked by thin gray vertical lines. Dashed lines represent the averages across models. Circles
indicate where metrics do not indicate significant predictability (at 95 %). Updated from Tietsche
et al. (2014).
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Figure 6. Top row: Anomaly correlation os
:::::::
NRMSE

::
of

:
sea ice extent, but calculated only for start

dates with anomalously low, medium or high sea ice extent
::::::
volume, relative to the control run

climate
::::::::::
climatology. Bottom row, :

:
as top row but for sea ice volume

::
the

:::::
ACC

::::::
metric.

::::
The

::::
black

:::::::
dashed

:::
line

::::::
shows

:::
the

:::::::::::
multi-model

:::::::
average

::
of

:::::
each

::::::
metric

:::
and

:::::::::
grouping.

::::
The

:::::::
number

::
of

::::
start

::::::
dates

::
in

:::
the

:::
low, binned by volume

::::::
medium

::::
and

::::
high

::::
bins

::
is

::
2

::
for

:::
all

:::::::
models

::::::
except

::::
E6F

::
(3)

::::
and

::::::::
CanCM4

:::
(7).
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