
J	Day	et	al.	Response	to	reviewers	comments	on	“The	Arctic	Predictability	and	Prediction	on	
Seasonal-to-Interannual	TimEscales	(APPOSITE)	data	set”	

We	would	like	to	thank	the	reviewers	for	taking	the	time	to	carefully	read	this	paper	and	for	some	
very	useful	suggestions.	Whilst	we	agree	that	this	dataset	is	ideal	for	some	of	the	additional	analyses	
suggested	by	the	reviewers	and	that	these	would	be	very	informative.	As	the	APPOSITE	project	has	
come	to	an	end,	we	would	like	to	point	out	that	the	primary	role	of	this	manuscript	is	to	provide	a	
descriptive	reference	for	this	dataset,	so	that	it	is	well	described	for	future	use.	Therefore	our	primary	
action	in	response	to	the	comments	has	been	to	clarify	and	expand	on	the	description	of	the	
experiment	and	archived	data,	where	suggested	by	each	reviewer.	That	said,	we	have	taken	the	time	
to	follow	a	suggestion	by	both	reviewers	to	examine	the	initial	state	dependence	of	sea	ice	
predictability	and	have	included	a	new	subsection	and	additional	figure	on	this	point.						

Reviewer	1:	

In	this	paper	a	multi-model	protocol	for	analysing	potential	model	predictability	is	introduced,	
focusing	on	the	potential	predictability	of	the	Arctic	sea	ice	conditions	on	the	seasonal	to	interannual	
timescale.	The	setup	of	the	ensemble	simulations	is	explained	as	well	as	the	diagnostics	used	to	
analyse	potential	predictability	of	Arctic	sea	ice	extent	and	volume.	Seven	different	models	have	
contributed	to	create	a	dataset	following	the	basic	guidelines	of	this	protocol,	with	some	difference	
in	the	more	specific	details	such	as	ensemble	size	and	number	of	ensemble	start	dates.	The	results	
for	the	ensembles	of	four	of	these	models	regarding	potential	Arctic	sea	ice	predictability	have	
previously	been	discussed	in	a	paper	by	Tietsche	et	al.	(2014),	while	the	results	for	the	remaining	
three	models	are	added	to	the	discussion	for	this	paper.	

In	general	I	appreciate	the	effort	of	the	authors	to	make	the	data	available	to	the	broader	scientific	
community	and	to	use	this	publication	as	a	reference	for	the	setup	of	the	experiment	protocol.	
Analysing	potential	predictability	and	the	differences	therein	between	GCMs	is	certainly	an	
important	area	of	research,	especially	as	a	tool	to	inform	seasonal	prediction	systems	of	the	
feasibility	of	future	improvements.	The	paper	is	generally	well	written	and	the	structure	is	straight	
forward.	While	I	appreciate	the	authors’	choice	to	keep	this	publication	short	and	concise,	I	do	have	
some	comments	that	might	increase	the	length	of	the	paper	quite	a	bit.	My	main	point	of	critique	is	
that	the	paper	is	very	close	to	the	previous	publication	by	Tietsche	et	al.	(2014)	without	presenting	a	
more	detailed	description	of	the	experimental	setup,	and	without	discussing	the	new	results	equally	
detailed	as	the	previous	study.	Since	both	aspects	are	the	main	points	of	this	paper,	they	should	be	
extended,	still	keeping	them	as	separate	aspects	of	the	same	publication,	i.e.	first	the	discussion	of	
the	protocol,	then	the	application	to	the	newly	contributed	models,	highlighting	the	importance	of	
both.	
	
General	comments	
As	a	first	comment	and	to	repeat	my	question	of	the	summary,	could	the	authors	be	more	specific	
regarding	the	focus	of	this	paper	and	how	it	differs	from	the	Tietsche	et	al.	(2014)	publication.	I	
assume	you	want	to	equally	focus	on	the	results	for	the	additional	three	models	as	well	as	on	the	
general	setup	of	the	protocol.	But	at	the	moment	I	would	claim	that	both	parts	are	a	bit	too	short	
and	not	very	detailed.	



In	the	Abstract	and	Introduction,	we	have	been	more	specific	about	the	goals	of	the	analysis,	which	is	
to	provide	an	updated	estimate	the	predictability	forecast	horizon	for	sea-ice	extent	and	volume	also	
mentioning	the	additional	work	on	sea	ice	extent	and	volume	predictability	initial	state	dependence.		
	
Some	more	specific	examples	regarding	the	experimental	setup:		
When	you	write	about	the	high,	low	and	medium	sea	ice	states	used	for	initialisation,	how	is	that	
reflected	in	the	actual	ensemble	start	dates?	Does	this	relate	to	the	sea	ice	volume,	the	sea	ice	area	
or	average	sea	ice	thickness?	Are	they	separated	in	some	way	in	the	archiving	structure?	Are	you	
trying	to	estimate	the	impacts	of	different	initial	conditions	by	this	approach,	even	though	some	
models	only	have	8	different	start	dates,	which	would	make	it	difficult	to	actually	assess	differences	
in	the	predictability	caused	by	the	initial	state?	
Choosing	the	start	dates	was	essentially	left	up	to	the	participating	group,	but	we	encouraged	them	
to	sample	a	range	of		initial	states	based	on	pan-arctic	extent	and	volume.	The	aim	was	to	
investigate	state	dependence	of	sea	ice	predictability.	These	points	are	made	explicit	in	Sec	2.2.				
	
When	you	say	“well	spaced”	(page	8815,	line	18)	how	is	this	defined?	Was	there	a	minimum	spacing	
between	successive	start	dates	that	you	have	generally	defined	for	all	models	to	insure	
independence	of	the	initial	state?	
As	the	modelling	centres	chose	their	own	start	dates	there	is	a	bit	of	a	range,	the	minimum	spacing	is	
3	years	for	GFDL,	but	longer	for	other	models.			
	
How	was	the	length	of	the	control	run	defined?	Different	models	have	different	spin	up	times	and	
might	take	longer	to	equilibrate.	After	only	100	years	I	wouldn’t	think	any	model	has	really	
equilibrated,	as	can	be	seen	by	the	strong	drift	of	most	of	the	models.	
Could	you	comment	on	some	of	these	details,	stating	advantages	and	disadvantages	of	the	choices	
you	had	to	make	to	generate	this	dataset.	Also,	in	this	context,	the	time	axis	for	the	panels	in	Figure	
1	doesn’t	make	much	sense	to	me.	The	start	date	of	each	model	control	seems	more	or	less	random,	
even	though	the	text	reads	they	started	from	(the	same?)	static	state	oceanic	depth	profile.	
Again,	the	particulars	of	initialisation,	spinup	and	length	of	control	were	dependant	on	the	modelling	
groups.	Some	groups	had	a	1990/Present	day	simulation	with	their	model,	but	many	did	not.	As	this	
is	not	part	of	the	CMIP5	DECK	so	groups	either	had	to	create	the	necessary	boundary	conditions	and	
start	a	fresh	simulation.	As	no	groups	outside	Reading	were	funded	to	do	these	simulations	it	was	
difficult	to	standardise	this	approach.	However,	since	every	model	has	been	spunup	for	at	least	100	
years,	intermodal	differences	in	climatology	are	unlikely	to	be	affected	significantly	by	these	
differences.	Since	we	are	looking	at	initial	value	predictability	only	over	the	first	three	years,	it	is	
unlikely	that	issues	such	as	drift	play	a	large	role	in	the	assessment	of	predictability.	We	have	
expanded	the	text	in	this	section	to	make	this	more	apparent.	
	
It’s	worth	noting	that	even	after	1000s	of	years,	many	climate	models	still	drift,	so	this	is	something	
we	have	to	live	with.	In	practice,	even	with	200	years	of	model	time	series,	models	with	pronounced	
low-frequency	variability	can	exhibit	apparent	drifts	even	when	they	are	in	“equilibrium”	purely	due	
to	the	particular	phases	of	variability	captured	in	the	window	used	for	trend	analysis.		
	
Effectively	the	times	in	Figure	1	are	random	since	this	is	just	the	model	clock	year	in	the	control	run.	
We	only	show	the	period	of	the	model	that	was	used	to	calculate	the	reference	climate	mean	and	



standard	deviation.	The	spinup	period	of	the	models	was	not	collected	from	the	centres	or	archived.	
We	have	made	these	points	explicit	in	the	Figure	1	caption	and	Section	2.1	text.									
	
Were	the	SST	perturbations	applied	globally,	also	in	areas	of	sea	ice	cover?	
Yes,	we	make	it	explicit	that	they	were	applied	at	all	ocean	cells.	
	
Regarding	the	two	metrics,	were	they	applied	to	detrended	monthly	means?	If	so,	was	the	
detrending	based	on	the	control	or	all	ensemble	members?	It	would	simplify	the	explanations	for	
the	metrics	if	you	would	actually	expand	the	expectation	value	as	was	done	in	Collins	(2002),	also	to	
show	which	normalization	you	chose	(what	is	sigma?).	
This	is	the	standard	deviation	of	the	model	climate,	as	shown	in	Figure	4.	We	have	made	this	clearer	
in	the	text.	
	
What	kind	of	significance	test	was	applied	to	the	ACC?	
We	used	a	T-test,	details	are	now	given	in	the	text.		
	
Are	there	any	specific	plans	to	extend	this	dataset,	i.e.	to	include	more	models?	Or	to	use	this	
dataset	for	other	predictability	studies?	
There	are	plans	for	this,	but	they	are	dependent	on	the	outcome	of	funding	proposals.	We	think	these	
plans	are	too	tentative	to	be	worth	mentioning	in	the	text.		
	
Some	more	specific	examples	regarding	the	results:	
	
The	sea	ice	models	in	this	study	differ	in	many	aspects.	Could	you	comment	a	bit	on	how	this	affects	
the	results?	For	example,	do	models	with	similar	albedo	and	melt	pond	parametrizations	produce	
similar	results,	or	do	models	with	similar	sea	ice	dynamics	(number	of	sea	ice	classes	and	so	on)	
produce	similar	mean	states	and	climate	variability?	I	know	this	is	a	difficult	questions,	since	the	
other	model	components	show	significant	differences	as	well.	However,	it	would	be	interesting	to	
know	whether	some	systematic	differences	can	be	identified.	
As	the	reviewer	states,	this	is	a	difficult	question	to	answer.	All	we	can	say	is	that	we	have	not	
identified	any	such	links	between	sea	ice	model	formulation	and	other	properties.	We	believe	a	more	
targeted	experiment	would	be	required	to	say	more	about	this.					
	

Could	you	please	expand	the	paragraph	about	the	mean	state	and	climate	variability.	For	one,	it	is	
not	surprising	that	the	mean	states	of	the	models	are	different	compared	to	the	mean	state	of	the	
observations,	which	have	been	recorded	over	a	shorter	period	of	time	and	under	transient	forcing	
conditions.		

We	have	added	to	the	discussion	here.	However,	because	this	is	simply	designed	to	highlight	the	
variety	in	model	climate	states	rather	than	robustly	assess	the	realism	of	each	model,	we	do	not	
present	a	detailed	assessment	of	model	climate.	This	aim	is	also	made	explicit	in	the	text.		

Furthermore,	could	you	comment	on	how	model	variability	and	mean	state	affect	the	predictability	
metrics.	



This	is	an	important	question,	however	with	the	number	of	models	available	we	only	have	7	data	
points	to	derive	any	relationships,	which	we	believe	is	too	few	to	do	anything	robustly.	We	are	
planning	to	extend	this	dataset	as	part	of	a	later	proposal	and	come	back	to	this	point.	We	also	
include	this	as	an	open	question	in	the	conclusions	section.	

What	are	the	consequences	of	the	different	drifts	in	the	models?	Do	you	expect	a	more	equilibrated	
model	to	provide	a	more	accurate	estimate	of	potential	predictability?	

We	have	taken	account	of	this	in	the	metrics	used	by	using	a	time	varying	climatology	in	the	case	of	
ACC.	This	is	explained	in	more	detail	in	the	text.	

Why	didn’t	you	apply	any	of	the	spatial	predictability	metrics	which	were	used	by	Tietsche	et	al.	
(2014)?	What	about	the	other	start	dates	provided,	especially	January?	Since	the	extended	results	of	
this	paper	are	mentioned	as	one	of	the	two	major	contributions	of	this	study,	it	would	be	nice	if	the	
paragraphs	about	the	model	results	(page	8818)	could	be	expanded,	providing	more	details	on	the	
differences	and	similarities	in	predictability	between	the	models	and	possible	reasons	for	that.	

We	have	added	a	paragraph	to	the	end	of	Section	3.2	to	discuss	some	of	the	open	questions	relating	
the	predictability	to	climate	and	some	potential	next	steps.	We	have	also	clarified	that	we	are	
extending	the	analysis	of	Tietsche	et	al.	in	particular	to	assess	the	limit	of	extent	and	volume	
predictability	from	July.	Hence	we	do	not	utilise	the	Jan	predictions,	or	the	spatial	measures.			

Page	8818,	lines	12-15:	How	does	this	relate	to	the	results	of	the	current	study?	

Have	added	‘Indicating	that	the	winter	sea	ice	extent	predictability	horizon	may	be	significantly	
beyond	the	3	years	simulated	in	these	experiments’	to	the	end	of	this	sentence.		

Page	8818,	line	23:	There	is	always	a	chance	that	you	remove	internal	variability	by	detrending,	also	
for	a	longer	timeseries.	It	is	just	less	likely.	

Have	added	“is	likely	to	significantly”,	the	point	being	that	it	will	be	enough	to	significantly	affect	the	
predictability	metric.”	

Page	8818,	lines	26-27,	and	page	8819,	lines	1-3:	This	paragraph	is	difficult	to	read.	Maybe	you	could	
break	up	the	sentences.	

This	paragraph	has	been	rewritten.	

Page	8819,	lines	6-7:	The	differences	of	the	mean	state	and	variability	between	models	and	
observations	wasn’t	discussed	in	any	detail.	

I	have	changed	this	to	say	we	have	presented	the	mean	state	and	variability.	

Page	8819,	line	17:	Not	really	true	for	E6F	(early	loss	of	predictability	for	sea	ice	volume;	no	re-
emergence	of	predictability	for	NRMSE).	

This	statement	is	less	true	for	E6F,	we	have	changed	this	“Sea	ice	volume	is	generally	more	
predictable	than	sea	ice	extent”	

Minor	comments:	



Page	8811,	line	16:	Change	to	“Unprecedented”,	“opportunities”,	“businesses”.	

Page	8811,	line	17:	Change	to	“but	has	also”.	

Page	8811,	line	23:	“appreciation”.	

All	above	changed	

Page	8812,	line	1:	What	do	you	mean	by	“significantly	skillful”?	Could	you	also	give	a	reference	here?	

Changed	to	“have	statistically	significant	skill”	

Page	8812,	lines	9-11:	Please	rephrase	this	sentence.	Be	more	specific	about	this	“fundamental	
limit”,	which	has	different	timescales	for	the	atmosphere	and	the	sea	ice.	

Done	

Page	8812,	lines	20-21:	Please	expand	this.	What	are	the	disadvantaged	of	potential	predictability	
studies?	How	does	model	uncertainty	affect	predictability	estimates?	

We	have	added	some	additional	discussion	here.	

Page	8813,	line	5:	Change	to	“:	:	:	climate	variables	as	well.	In	order:	:	:”.	

Changed	as	suggested	

Page	8813,	line	10:	Differences	in	design	such	as?	

Page	8813,	line	12:	Differences	in	the	results	such	as?	

Have	rewritten	this	section	on	motivations.	

Page	8813,	lines	13-16:	Again,	could	you	name	some	of	the	differences,	either	here	or	before?	

OK	

Page	8814,	line	22:	Change	to	“sea	ice”.	

Done	

Page	8815,	line	1:	Change	to	“distribution,	as	well	as”.	

Done	

Page	8815,	lines	11-13:	Can	you	quantify	this/be	more	specific?	Does	this	have	consequences	for	
summer	sea	ice	predictability	when	it	comes	to	different	model	mean	states?	

Added	as	stated	above	

Page	8815,	line	20:	Change	to	“depending	on”.	

Done	

Page	8816,	line	8:	Remove	comma	at	the	end.	



Done	

Page	8816,	line	21:	Change	to	“inter-model”.	

Done	

Page	8818:	Mention	Figure	5	again,	after	first	sentence	of	3.2	and	3.3.	
Page	8819,	line	14:	Change	to	“interannual”.	
Page	8820,	line	7:	Change	to	“constraints:”.	
Page	8820,	lines	8-11:	Could	you	give	a	reference	here?	
Page	8820,	line	23:	Change	to	“submodel&frequency”.	
Page	8820,	line	23	onwards:	Check	for	text	size	and	font	here	and	on	the	next	page.	
Page	8820,	line	25:	Is	it	“1”	(this	line)	or	“r1”	(next	page,	line	1).	
Figure	2	and	3:	Is	the	average	taken	over	the	entire	simulation	length	or	only	for	the	years	after	the	
spin-up?	
Figure	4:	Mention	detrending	in	caption.	

All	Done	as	suggested.	

Anonymous	Referee	#2	

The	manuscript	presents	an	updated	version	of	the	APPOSITE	dataset	that	is	originally	presented	
and	discussed	in	Tietsche	et	al	2014	and	Day	et	al	2014.	In	its	current	version,	the	manuscript	adds	
unfortunately	little	new	information	or	insights	into	sea	ice	predictability	to	these	two	papers,	and	I	
feel	it	is,	as	it	stands,	a	missed	chance	to	use	the	dataset	to	explore	issues	that	are	at	present	topical	
in	the	field.	I	would	encourage	the	authors	to	extend	their	analysis.		

Since	publication	of	Tietsche	et	al.	(2014),	the	APPOSITE	protocol	was	followed	by	a	number	of	
additional	models	and	this	database	has	been	made	openly	available	as	a	community	resource.	This	
is	why	we	believe	that	it	is	useful	to	publish	an	extend	the	description	of	the	dataset	and	update	the	
results	of	Tietsche	et	al.		We	agree	that	there	are	still	many	open	questions	in	this	area,	which	is	why	
we	have	made	the	effort	to	make	this	data	openly	available.	It	provides	a	unique	resource	to	
investigate	initial	value	predictability	in	multiple	models.				

I	suggest	below	a	few	ideas	to	explore.	How	does	predictability	depend	on	mean	state?	The	
APPOSITE	dataset,	with	its	start	dates	split	between	high,medium,	and	low	initial	conditions	(p8815	
L18),	is	currently	the	best	opportunity	to	explore	this	question.	If	you	find	that	the	number	of	
ensembles/runs	is	still	not	large	enough	to	yield	statistically	robust	results,	this	finding	would	still	be	
useful	for	the	community	-	I	suspect	the	answer	will	depend	on	whether	in	fact	there	are	
(meaningful)	inherent	differences	in	predictability	with	mean	state.	Given	current	trends	in	sea	ice	in	
observations,	exploring	this	issue	is	key.	
	
How	can	we	understand	the	inter-model	differences	in	predictability?	While	the	patterns	in	change	
of	predictability	with	time	are	similar	across	models	(e.g.,	predictability	barrier	in	SIV	in	early	
summer,	winter>summer	SIE	predictability	in	years	2,3),	there	is	a	considerable	spread	in	
predictability	across	models	as	you	point	out	in	the	conclusions	(as	an	aside,	I	would	guess	given	
your	ensemble	size	that	the	inter-model	differences	are	significant,	but	it	would	be	good	to	calculate	
and	show	this).	This	is	a	significant	result.	I	note	that	in	Day	et	al	2014	(Jclim),	you	explore	links	
between	predictability	and	persistence,	and	persistence	and	mean	state.	It	would	be	good	to	do	this	
with	the	current	larger	dataset.	Are	models	with	higher	predictability	more	’persistent’	(Figure	



1	shows	models	have	varying	degrees	of	persistence	in	their	control	runs)?	It	has	been	shown	(B-W	
and	Bitz,	2014)	that	models	with	thicker	sea	ice	tend	to	have	longer	thickness	persistence	timescales	
-	does	this	help	explain	inter-model	differences?	By	looking	at	Figure	4	and	5,	it’s	hard	to	figure	out	if	
there’s	a	link	between	total	volume	and	predictability.	Perhaps	a	scatter	plot	of	e.g.,	mean	NRMSE	
over	year	1	against	mean	SIV	would	help.	(You	could	even	split	each	model	into	its	3	
high/medium/low	ICs	and	obtain	6*3	datapoints).	
We	agree	that	the	question	of	how	predictability	depends	on	model	mean	state,	or	other	properties	
of	model	climate	is	a	crucial	one.	However,	we	feel	that	given	the	limited	set	of	models	it	will	be	
difficult	to	infer	any	robust	relationships.	However	as	part	of	a	follow-up	proposal	we	intend	to	
extend	these	runs	to	other	models	so	that	such	an	analysis	will	be	possible.	
	
We	have	however	extended	our	analysis	in	this	work	to	investigate	how	initial	value	predictability	
depends	on	whether	the	model	is	in	a	high,	medium	or	low	state	at	its	initial	state.	This	is	in	a	
separate	section	of	Section	3	(3.4).				
	
Can	you	extend	the	dynamic	v	thermodynamic	analysis	of	Tietsche	et	al	2014	(see	their	
section	3.3,	Fig3)	to	more	models?	Discerning	which	physical	process	leads	to	loss	
of	predictability,	particularly	at	seasonal	timescales,	would	be	an	important	result.	Additionally,	
considering	if	the	relative	importance	of	different	processes	varies	between	
different	initialization	seasons	(January	vs	July)	would	be	equally	insightful.	
	
Unfortunately	the	diagnostics	required	to	perform	this	analysis	were	not	available	for	models	other	
than	MPI	and	HadGEM.	
	
Minor:	
	
There	are	several	spelling	mistakes	-	please	proof	read	cautiously	

We	have	thoroughly	proofread	the	document	and	removed	a	number	of	spelling	mistakes.		
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Abstract

Recent decades have seen significant developments in seasonal-to-interannual timescale
climate prediction capabilities

::
at

::::::::::::::::::::::
seasonal-to-interannual

::::::::::
timescales. However, until recently

the potential of such systems to predict Arctic climate had not
:::::
rarely

:
been assessed. This

paper describes a multi-model predictability experiment which was run as part of the Arctic
Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project.
The main goal of APPOSITE was to quantify the timescales on which Arctic climate is pre-
dictable. In order to achieve this, a coordinated set of idealised initial-value predictability ex-
periments, with seven general circulation models, was conducted. This was the first model
intercomparison project designed to quantify the predictability of Arctic climate on seasonal
to inter-annual timescales. Here we present a description of the archived data set (which is
available at the British Atmospheric Data Centre)and an update of the project’s results. ,

:::
an

:::::::::::
assessment

:::
of

::::::
Arctic

::::
sea

:::
ice

::::::
extent

:::::
and

:::::::
volume

::::::::::::
predictability

::::::::::
estimates

::
in

::::::
these

::::::::
models,

:::
and

:::
an

::::::::::::
investigation

::::
into

:::
to

:::::
what

::::::
extent

::::::::::::
predictability

::
is

::::::::::
dependent

:::
on

::::
the

:::::
initial

::::::
state.

::::
The

:::::::::
inclusion

:::
of

:::::::::
additional

::::::::
models

:::::::::
expands

::::
the

::::::
range

:::
of

::::
sea

:::
ice

::::::::
volume

:::::
and

::::::
extent

::::::::::::
predictability

::::::::::
estimates,

::::::::::::::
demonstrating

:::::
that

::::::
there

::
is

:::::::
model

:::::::::
diversity

::
in

::::
the

:::::::::
potential

:::
to

:::::
make

::::::::::::::::::::::
seasonal-to-interannual

::::::::::
timescale

:::::::::::
predictions.

:::
We

::::
also

::::::::
suggest

::::
that

::::
sea

:::
ice

:::::::::
forecasts

::::::
started

:::::
from

:::::::::
extreme

::::
high

:::::
and

::::
low

::::
sea

:::
ice

::::::
initial

::::::
states

:::::::
exhibit

:::::::
higher

::::::
levels

::
of

:::::::::
potential

::::::::::::
predictability

::::
than

:::::::::
forecasts

:::::::
started

:::::
from

:::::
close

:::
to

:::
the

:::::::
models

::::::
mean

::::::
state.

Although designed to address Arctic predictability,
::
we

:::::::::
describe

::::
the

::::::::
archived

:::::
data

:::::
here

::
so

::::
that

:::::::
others

::::
can

::::
use this data set could also be used to assess the predictability of other

regions and modes of climate variability on these timescales, such as the El Niño Southern
Oscillation.

1 Introduction

Unprecedneted
::::::::::::::
Unprecedented

:
climate change in the Arctic has opened up oportunities

for buniness
::::::::::::
opportunities

:::
for

:::::::::
business

:
in diverse sectors such as fossil fuel and mineral
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extraction, shipping and tourism but
:::
has

:::::
also put pressure on local communities, who are

dependent on the ice for their livelihoods (Emmerson and Lahn, 2012; Stephenson et al.,
2013). The need for these stakeholder groups to avoid hazardous sea ice and weather con-
ditions has increased demand for Arctic sea ice forecasts at seasonal-to-interannual time
scales (Eicken, 2013)

::::::::::::::::::::::::::::::
(Eicken, 2013; Jung et al., 2016). These local interests and a growing

apreciation
:::::::::::
appreciation

:
of the importance of the Arctic in mid-latitude weather phenomena

(Jung et al., 2014) have motivated the development of seasonal sea ice prediction systems
(e.g. Sigmond et al., 2013; Chevallier et al., 2013; Wang et al., 2013; Peterson et al., 2014)
which are initialised from observations.

It has previously been shown that these sea ice prediction systems are
significantly skillful at

::::::
exhibit

:::::::::::
significant

::::::
skill

::::
in

::
predicting summer sea ice

cover
::::::
extent

::
a
:::::::::

season
:::::::

ahead
::::::::::::::::::::::

(Guemas et al., 2014), but diagnosing the source of
forecast errors is problematic(Guemas et al., 2014). Forecast errors may be due
to both inadequate representation of important physical processes in the model
(e.g. melt ponds, Schröder et al., 2014)

::::::::::::::::::::::::::::::::::::::::
(such as melt ponds, Schröder et al., 2014) or

inadequate knowledge of initial-state vector variables
:::::::::
conditions, such as sea ice thickness

(Day et al., 2014a; Msadek et al., 2014; Massonnet et al., 2015), which is not currently
used to initialise operational forecasts. Sea ice predictability is also inherently limited
due to chaotic

:
,
:::::::::::::
unpredictable

::
atmospheric variability (Blanchard-Wrigglesworth et al.,

2011b; Holland et al., 2010)
:::::
which

::::
will

:::::
lead

::
to

:::::::::::
irreducible

::::::
errors

::
in

::::
sea

::::
ice

:::::::::::
predictions

::
at

::::::::
seasonal

::::
and

:::::::
longer

:::::::::::
timescales,

::::::::::::::
fundamentally

:::::::
limiting

:::
the

::::::::::
timescale

::
at

::::::
which

::::
sea

::::
ice

:::
will

::
be

:::::::::::
predictable

:::::::::::::::::::::
(Tietsche et al., 2016). If the skill of a given forecast system is already close

to this fundamental limit it will not be possible to further increase the leadtime at which the
forecast is skillful

:::::
skilful.

To determine if there is the potential to improve the operational prediction systems,
we consider a more idealized

::::::::
idealised

:
situation. The “perfect-model” approach to es-

timating predictability involves producing initial-value ensemble-predictions with a Gen-
eral Circulation Model (GCM), which are verified against the model itself rather than
against observations of the real world (following Griffies and Bryan, 1997b). It is there-
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fore not hampered by changes to the observational network over time or changes in pre-
dictability due to secular climate change, which hampers this kind of analysis in the real
world . It therefore provides an upper bound for

::::::::::::::
(Collins, 2002).

::::::
Such

:::::::
studies

::::::::
provide

::
an

:::::::::
estimate

:::
of

:
the predictive skill obtainable in a world governed by the same physical

equations as the model (Hawkins et al., 2015), though may not necessarily be
::::
with

:
a
:::::::
perfect

::::::
model

::::
and

:::::::::
complete

::::::::::::::
observations.

:::::::::
However,

:::::
such

::::::::::
estimates

::::
are

::::
not

:::::::::::
necessarily

:
an up-

per bound for the limit of predictability in the real world (Eade et al., 2014; Shi et al., 2015).

::::::::
because

:::::::::
important

::::::::::::
predictability

:::::::::::::
mechanisms

::::
may

:::
be

::::::::
missing

::::::::::::::::::
(Eade et al., 2014).

::::::
There

::
is

::
an

::::::::
ongoing

:::::::::::
discussion

::
in

:::
the

:::::::::
literature

:::
on

::::
this

:::::
point

::::::::::::::::::::
(e.g. Shi et al., 2015).

:

The perfect model approach has previously been used to quantify and understand
predictability of coupled modes of climate variability, such as the Atlantic Meridional-
Overturning Circulation (AMOC) (e.g. Griffies and Bryan, 1997a; Collins, 2002; Pohlmann
et al., 2004) and the El Niño Southern Oscillation (ENSO) (Collins et al., 2002), lead-
ing to the development of operational seasonal-to-decadal prediction systems based on
atmosphere-ocean climate models (e.g. Smith et al., 2007; Jin et al., 2008).

Using this approach Collins et al. (2006) demonstrated that the timescale on which
the AMOC is predictable varies from model to model. These inter-model differences
in predictability arise because different GCMs have different representations of the
underlying physical equations and parameters. It is therefore likely that there will
be inter-model differences in predictability for other climate variables , so in order
to assess uncertainty in model based estimates of the limit of predictability

::
so

:
it is

important to conduct such analyses in multiple GCMs. The APPOSITE model inter-
comparison was designed to diagnose the limit of initial-value predictability of Arctic
sea ice in multiple GCMs. Previous studies had estimated this limit in individual cli-
mate models, but with different experiment design

::::::
slightly

:::::::::
different

:::::::::::
experiment

::::::::
designs

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(such as Blanchard-Wrigglesworth et al., 2011b; Holland et al., 2010; Koenigk and Mikolajewicz, 2009; Tietsche et al., 2013).
All these experiments demonstrated initial-value

::::
sea

:::::
ice

:::
predictability on

seasonal-to-interannual timescalesbut with significant differences in the details
(Blanchard-Wrigglesworth et al., 2011b; Holland et al., 2010; Koenigk and Mikolajewicz, 2009; Tietsche et al., 2013; Guemas et al., 2014).
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However, because the experimental protocol was ,
:::::::::

however
:::::::::
because

:::::
they

:::::::::
focussed

:::
on

::::::
slightly

::::::::
different

::::::::::
variables,

:::::::::
averaging

::::::::
periods

::::
and

::::::::
because

::::
the

::::::::::::
experimental

:::::::::
protocols

:::::
were

inconsistent between the studies, it was not clear whether differences in predictability were
inherent in the models themselves or due to differences in the experimental set-up

:::
the

::::::
results

::
of

::::::
these

:::::::
studies

:::::
were

::::::::::
consistent

:::::::::::::::::::::
(Guemas et al., 2014). For the APPOSITE ensem-

ble a consistent protocol was followed so that
:
to

:::::::
ensure

::::
that

::
it
::::
was

::::::::
possible

::
to

:::::::::::::
intercompare

:::::::
models,

:::
so

::::
that

:::::
any differences in predictability were only the result of differences in the

::::::::
inherent

::::::::::::
predictability

:::
of

::::
the

:
models themselves. The first results of this project were

presented in Tietsche et al. (2014).
Here we present

:::
The

::::::::
primary

::::
aim

::
of

::::
this

::::::::::
manuscript

::
is
:::
to

:::::::
provide a detailed description of

the APPOSITE experiment,
:
archived at the British Atmospheric Data Centre (BADC) (Day

et al., 2015)and an update on the results of
:
.
:::
We

:::::
also

:::::::
present

:::
an

::::::::
updated

::::::::::::
assessment

::
of

:::
the

::::
limit

::
of

::::::
Arctic

::::
sea

:::
ice

:::::::
extent

::::
and

:::::::
volume

:::::::::::::
predictability,

:::::::
initially

::::::::::
presented

::
in

:
Tietsche et al.

(2014), including more models than available at the time of publication.
:::
this

:::::::::::
publication.

::
In

::::::::
addition

:::
we

:::::::::
consider

:::
an

::::::
open

:::::::::
question

::
in

::::::
Arctic

:::::::::::
prediction:

::
to

:::::
what

:::::::
extent

::
is
:::::

sea
:::
ice

::::::::::::
predictability

:::::
state

:::::::::::
dependent?

::
In

::::
this

:::::
study

::::
we

::::::::
consider

::::::::
whether

::::
sea

:::
ice

::::::
extent

::::
and

:::::::
volume

::::::::::::
predictability

::
is

::::::::
different

:::::
when

:::::::::
initialised

:::::
from

:::::
high

::::
and

:::
low

::::::
states

::::::::::
compared

:::
to

::::::
states

:::::
close

::
to

:::
the

::::::
model

::::::::::::
climatology.

The paper is outlined as follows: Sect. 2 describes the experiment in detail as well as
the mean state of the models used, Sect. 3 includes an update of the results of Tietsche
et al. (2014)

::::
and

::::
the

:::::
state

::::::::::::
dependence

:::::::::
analysis,

:
followed by the conclusions in Sect. 4.

Additional details of the data set, archived at the BADC, are included as Appendix A.

2 Description of the simulations

Seven different coupled climate models performed simulations for APPOSITE (see Table 1).
Six of these models followed the same experimental protocol, which is described in Sect. 2.1
and 2.2. One

:::
For

::::::::
practical

::::::::
reasons

::::
one

:
model, CanCM4, followed a slightly different proto-

col which is described in Sect. 2.3.
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2.1 Control simulations

Predictability of the climate system changes with mean climate
(DelSole et al., 2014; Holland et al., 2010)

::::::::::::::::::::
(DelSole et al., 2014) complicating the as-

sessment of predictability in a transient climate. The
::::
This

:::
is

:::::
likely

:::
to

::::
be

:::::::::::
particularly

:::::
acute

:::
in

::::
the

::::::
Arctic

:::::::
where

:::
the

:::::
sea

:::
ice

::::::::
climate

:::::::::
changes

:::::::
rapidly

:::
in

:::::::::
transient

:::::::::::
simulations

::::::::::::::::::::
(Holland et al., 2010).

:::::
The

:::::::::::
APPOSITE

::
experimental protocol therefore asked for both

control simulations and ensemble predictions to be conducted in GCMs with forcing fixed
at present-day values.

Since the perfect-model approach uses initial conditions generated by the model itself,
present-day control simulations with each model were run under fixed present-day radia-
tive forcings. For practical reasons the year that the forcings correspond to differ

::::::::
between

:::::::
models,

::::::
either

::::::
1990, but by no more than a decade or two

::::
2000

:::
or

:::::
2005

:::::::::::
depending

:::
on

:::
the

::::::
model

:
(see Table 1). Appart

:::::
Apart from MPI-ESM, which was initialised from year 2005

of the CMIP5 historical simulation, all other models were initialised in a static state from
present day ocean temperature and salinity profiles (e.g. Conkright et al., 2002). After a
spin-up period of about

:::
The

:::::::
period

:::
of

::::::
spinup

:::::::
varied

:::::
from

::::::
model

:::
to

::::::
model

::::
but

::
is
:::
at

:::::
least

100 years, each model is
:::::
years.

::::::
Each

::::::
model

::::
was

:
integrated for at least 100 more

::::::
further

years to fully sample the model’s mean state, the remaining climate
:::::::
climate,

:
drift, and the

models internal variability. It
:::::
Data

:::::
from

:::
the

:::::::
spinup

::::::
period

:::
of

:::::
each

::::::
model

:::::
was

:::
not

:::::::::
archived.

:::::::::
However,

:
it
:
is worth noting that

:::::::
despite

:::::
more

:::::
than

::
a

:::::::
century

:::
of

:::::::
spinup, some of these sim-

ulations
:::
still

:
have significant drifts in the mean sea ice climatology (see Figs

::::::
extent

::::
and

:::::::
volume

::::::::::
timeseries

:::::
(see

:::
Fig. 1and 2).

:
).

::::::
These

::::::
drifts

:::
are

::::::::::
accounted

::::
for

::
by

::::
the

::::::::::::
predictability

:::::::
metrics

:::
we

::::
use

::
in

::::::::
Section

::
3

::::
and

:::
are

::::
not

:::::::::
expected

::
to

::::::::::::
significantly

:::::::::
influence

:::
the

:::::::::
estimate

::
of

::::::::::::
predictability.

:

All of the models are full atmosphere-ocean-seaice
::::::::
coupled

::::::::::::::::::::::
atmosphere-ocean-sea

:::
ice

GCMs and each has a fully prognostic sea ice component. These account for changes

:::::::::
variations

:
in sea ice due to both thermodynamic and advective processes that result from

stress internal to the sea ice as well as through interaction with the atmosphere and ocean.
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Like all components of the GCMs, the sea ice models have both structural and concep-
tual differences. The most significant of which are their treatment of sea ice dynamics, like

::::
such

:::
as

:
the local ice thickness distribution,

::
as

:::::
well

:::
as vertical heat flux through the ice ,

and heat exchange at the ice-ocean interface. Except for HadGEM1.2, E6F and MIROC5.2
the versions of the models used were those submitted to the Coupled Model Intercompari-
son Project Phase 5 (CMIP5). These models have been well tested and evaluated against
observations and their strengths and weaknesses are well-documented (see references
in Table 1). However, in order to understand

::::::::
facilitate

::::::::::::::
understanding

::
of

::::
the

:
differences in

sea ice predictability, we focus on
:::::::
present

::::
the differences in their sea ice mean state and

variability.
The

::::::::
Although

:::
not

::::::::::
designed

::
to

::::::::
robustly

:::::::
assess

::::
the

:::::::
realism

:::
of

:::::
each

::::::::
model’s

:::::::
climate

::::
this

::::::::
analysis

::::::
shows

::::
that sea ice mean state and variability in the control runs differ considerably

from model-to-model and to the observations (see Figs. 2, 3 and 4). Before calculating
the standard deviation, shown in Fig. 4, a linear trend was removed from sea ice extent and
volume timeseries for each model. Interannual variability

:::
The

:::::
wide

::::::
range

::
of

::::
sea

:::
ice

::::::::
climates

::
in

::::::
GCMs

::
is

:::::
well

::::::
known

:::::::::::::::::::::::::::::::::::::::
(e.g. Arzel et al., 2006; Flato et al., 2013),

::::::::
however

::::
the

:::::
wide

::::::
model

::::::
variety

:::
in

::::::::::::
inter-annual

:::::::::
variability

:::::::::
exhibited

:::
by

::::
the

::::::::
different

::::::::
models

::
is
::::::

likely
:::
to

:::
be

::::
just

:::
as

:::::::::
important

:::
for

::::
the

:::::::::::
determining

::::
the

::::::::
inherent

:::::::::::::
predictability

:::::::::
exhibited

:::
by

:::::
each

:::::::
model.

:::::::
Indeed

:::::::
looking

:::::::
across

:::
the

::::::::
models,

::::
the

::::::::::::
inter-annual

:::::::::
variability

:
of summer sea ice extent

::
in

:::::
each

::::::
model appears to be negatively correlated to its mean, in line with previous studies (Goosse
et al., 2009; Holland et al., 2008). This does not appear to be the case for winter.

:
It
:::::::
should

::::
also

:::
be

::::::
noted

::::
that

::::::
whilst

::::
the

:::::::
climate

:::
of

:::::
each

::::::
model

:::
is

::::
very

:::::
well

::::::::
sampled

:::::
here

::::::
(over

::::
100

::::::
years),

::::
the

:::::::::::::
observational

::::::::::
timeseries,

:::
at

:
a
:::::::
length

::
of

:::
35

::::::
years,

::
is

::::::
much

:::::::
shorter.

:

2.2 Ensemble predictions

To diagnose the inherent predictability in each of these models, we performed a suite
of ensemble predictions. The number of start dates selected from the control run differs
from model to model and ranges between 8 and 18. These were chosen to sample

:::
18,

::::::::::
depending

:::
on

:::
the

:::::::::
resource

:::::::::
limitations

:::
of

:::::
each

:::::::::
modelling

:::::::
centre.

::::::
Whilst

::::::::::::
participating

:::::::
groups

7
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::::
were

::::::::::::
responsible

:::
for

:::::::::
choosing

:::::
their

:::::
own

:::::
start

::::::
dates,

:::::
they

:::::
were

::::::::::::
encouraged

::
to

:::::
pick

:::::
them

::
so

::::
that

:
a range of high, low and medium sea ice states, while keeping

::::::
extent

::::
and

:::::::
volume

::::::
states

:::::
were

:::::::::
captured,

::
in

::::::
order

::::
that

::::
any

::::::::::::
dependence

::
of

::::
sea

::::
ice

::::::::::::
predictability

:::
on

:::
the

:::::
size

::
of

:::
the

:::::
initial

:::::
state

:::::::::
anomaly

:::::
could

:::
be

::::::::::
assessed

::::
(see

::::::::
Section

:::::
3.4).

:::::
They

:::::
were

:::::
also

:::::::::::
encouraged

::
to

:::::
keep start dates well spaced in timeto consider them ,

:::
so

::::
that

:::::
they

:::::
could

:::
be

:::::::::::
considered

independent (see Fig. 1).
:::
The

:::::::::
minimum

::::::::
spacing

:::::::::
between

::::
start

::::::
dates

::
is

::
3

:::::
years

:::
in

:::
the

:::::
case

::
of

::::::::::::
GFDL-CM3,

::::
and

::::::
longer

::
in

:::::
other

::::::::
models.

:

For each start date an ensemble of between 8 and 16 members was generated,
dependingon the model

:::::
again

::::::::::
depending

::::
on

::::
the

:::::::::
resource

::::::::::
limitations

:::
of

:::::
each

::::::::::
modelling

::::::
centre. The initial conditions were taken from the control run and each

::
of

:::::
each

:::::::
model

:::
and

::::::
each

::::::::::
ensemble

:
member differs only by a perturbation to the sea surface tempera-

ture field. This perturbation
::::
The

::::::::::::
perturbation

:::::
used

::
to

:::::::::
generate

:::
the

::::::::::
ensemble takes the form

of randomly-generated spatially-uncorrelated Gaussian noise,
::::::
noise,

:::::::
applied

:::
to

:::::
each

::::
grid

::::
cell.

::::
This

::::::
noise

::
is

::::::::
sampled

:::::
from

:
a
::::::::::
Gaussian

::::::::::
distribution

:
with a standard deviation of 10−4K.

:::::
Each

:::::::::
ensemble

:::::::::
member

:::::
starts

:::::
with

:
a
:::::::
slightly

::::::::
different

::::::::::
realisation

:::
of

::::
this

::::::
noise. Such a per-

turbation is so small that it is equivalent to assuming perfect knowledge of the initial con-
ditions. For a given start date, differences in the evolution of each ensemble member are
solely determined by the chaotic nature of the simulated climate system. Each

:::::
Note

::::
that

:::::::
different

::::::::::::
initialisation

:::::::::
methods,

:::::
such

:::
as

:::::::
lagged

::::::::::::
atmospheric

::::::::::
conditions

::::
may

:::::
lead

::
to

:::::::
slightly

:::::::
different

:::::::::::::
predictability

:::::::::
estimates

:::::::::::::::::::::::::
(see Hawkins et al., 2015).

::::
For

:::::
each

:::::
start

::::
date

::::
the ensem-

ble was run for 3 years, with the exception of MIROC5.2, which was run for 3.5 years.
A minimum contribution for models to be included in the APPOSITE experiment was to

submit a control run and predictability experiments started on the 1st July, which allows
an assessment of seasonal predictions of the late-summer sea ice conditions, when the
sea ice is at it’s

::
its

:
lowest extent, and human activity in the the Arctic Ocean is largest.

Although we restrict our analysis to the simulations started in July, some groups have also
submitted simulations started in January, May and November (see Table 1 for details). Note
that operational predictions are more commonly started in May. We decided to start our
simulations later due to the presence of an early summer , predictability barrier, which might
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lead to a sharply decreased skill in predicting the late-summer
::::
sea

:::
ice

:::::::
extent

:
minimum

(Blanchard-Wrigglesworth et al., 2011a; Day et al., 2014b).

2.3 CanCM4 transient experiments

The set of simulations with the CanCM4 model use a different protocol, in order to facilitate
direct comparison of these simulations with the CanSIPS operational seasonal prediction
system, which uses the same climate model (Sigmond et al., 2013).

The CanCM4 simulations were different in two key respects. Firstly, they were run under
a transient climate, with observed historical forcing agents prescribed. Secondly, initial-
value ensembles were generated every year and only run for 1 year. In all other regards,
such as the method of ensemble generation, these simulations are the same as the other
APPOSITE perfect model simulations.

3 Perfect model intercomparison

An intermodel comparison of Arctic sea ice predictability, using four climate models, was
published in Tietsche et al. (2014). Here we present an update of this study, including the
MIROC5.2, E6F and CanCM4 climate models.

3.1 Metrics

Two predictability metrics, as defined by Collins (2002), were used to quantify predictability
in this study. These make use of the fact that in a perfect model study, such as this, any
ensemble member may be chosen as “the truth” or “the forecast”. Therefore it is possible to
increase the effective sample size by taking each member as “the truth” in turn, and compar-
ing it with every other member as “the forecast”. The

:::
For

:::::
each

::::::
model

::::
the

:
Normalised Root

9
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Mean Squared Error (NRMSE) compares forecast RMSE to the climatological variability:

NRMSE =

√
〈(xkj −xij)2〉i,j,k 6=i

√
2σ2

(1)

where 〈·〉i denotes the expectation value, to be calculated by summing over the speci-
fied index with appropriate normalization, xij(t) is the sea ice extent at lead time t for the
ith member of the jth ensemble. The

:
σ
::
in

::::
the

:
denominator is the

::::::::
standard

:::::::::
deviation

:::
of

:::
the

::::::
control

::::
run

:::
for

:::
the

:::::::::::
appropriate

:::::::
month,

::::::::::
calculated

::::
from

::::
the

::::::
whole

::::::::
archived

::::::::::
timeseries

:::::::
(shown

::
in

::::
Fig.

::
1)

:::::
after

:::
the

::::::
linear

:::::
trend

::::
has

:::::
been

:::::::::
removed

:::::::
(values

:::::::
shown

::
in

::::
Fig.

:::
4).

::::
The

:::::
value

:::
of

:::
the

::::::::::::
denominator

::
is

::::::::::
equivalent

:::
to

:::
the

:
climatological RMSE between two independent realisa-

tions. Significance of this is ,
::::::
which

::
is
::::

the
:::::
limit

::::
that

::::
the

::::::
RMSE

:::::
term

:::
in

:::
the

::::::::::
nominator

::::
will

:::::::::
approach

::::
over

:::::
time.

::::::::::
Therefore

::::
the

::::::::
NRMSE

:::
will

::::::::::
approach

:
a
:::::
limit

::
of

:::
1.

::::
The

::::::
model

::
is

:::::
said

::
to

:::::
show

::::::::::
significant

::::::::::::
predictability

:::::
when

::::
the

::::::::
NRMSE

::
is

::::::::::::
significantly

:::::
lower

:::::
than

::
1,

:::
as

:
calculated

using an f test
:::::
F-test, following Collins (2002).

The second metric is the anomaly correlation coefficient (ACC). This is defined as:

ACC =
〈(xij −µj)(xkj −µj)〉i,j,k 6=j

〈(xij −µj)2〉i,j
. (2)

where µj is the climatological mean at the time of the jth ensemble prediction.
::::
The

:::::::::
anomalies

::::
are

::::::::::
calculated

:::::::
relative

::
to

::
a

::::
time

:::::::
varying

:::::::::::
climatology

::
to

:::::
take

::::
into

:::::::
account

::::
any

:::::
drifts

::
in

:::
the

:::::::
control

::::
run,

::::::::::
otherwise

::::
ACC

:::::::
values

:::
for

:::::::
models

::::
with

::::::
larger

:::::
drifts

::::::
would

:::
be

:::::::
biased

:::::
high.

:::
For

::::
the

:::
jth

:::::
start

:::::
date,

::::
the

:::::::::::
climatology

:::
µj ::

is
::::
the

:::::
value

:::
of

:::
the

::::::
linear

::
fit

:::
at

:::
the

::::::::::::::
corresponding

:::::
point

::
in

:::
the

:::::::
control

::::
run

::::::::::
timeseries

:::
at

:::
the

::::::::::::::
corresponding

::::::
point

::
in

:::::
time.

:::::
Note

::::
that

::::
we

::::::
chose

::
to

::::
use

::::
the

::::::
whole

::::::::::
timeseires

:::
for

::::::
each

::::::
model

::::::
(after

:::
the

:::::::
spinup

::::::::
period),

:::::::
shown

::
in

::::
Fig

:::
1,

::
to

::::::::
estimate

:::
the

::::::::::
reference

:::::::
climate.

::::
For

::
a

::::::::
detailed

::::::::::
discussion

:::
on

:::
the

:::::::
impact

:::
of

:::::
such

:::::::
choices

:::
on

:::
the

::::::::
estimate

:::
of

::::::::::::
predictability

::::
see

::::::::::::::::::::
Hawkins et al. (2015).

:

At some lead-time, both of these metrics become insignificantly different from their
asymptotic limit (0 for ACC and 1 for NRMSE), and the lead-time at which this happens can
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be used to define the limit of predictability. However, it
:::
For

:::::
each

::::::::::
lead-time,

::::::::::::
significance

::
is

:::::::::
calculated

::::::
using

:::
an

::::::
F-test

::
or

:::::
t-test

::
in

::::
the

::::
case

:::
of

:::
the

::::::::
NRMSE

::::
and

:::::
ACC

:::::::
metrics

::::::::::::
respectively,

::::::
where

:::
for

:::::
each

:::::::
model

::::
the

::::::::
degrees

:::
of

:::::::::
freedom

:::::
used

:::
in

::::
the

::::
test

::
is
::::

the
::::::::

number
:::

of
:::::
start

:::::
dates

::::::::::
multiplied

:::
by

:::
the

::::::::
number

::
of

::::::::::
ensemble

::::::::::
members

:::
run

:::
for

:::::
that

:::::::
model.

::
It appears that

the NRMSE metric is more conservative than the ACC metric and becomes insignificant

::::::::::::
insignificantly

::::::::
different

:::::
from

:::
its

::::
limit

:
at an earlier lead time

::::::::
lead-time

:
(see Fig. 5). Thus us-

ing both metrics gives some spread in the estimate of the time when the limit of predictability
is actually reached.

3.2 Fixed forcing experiments

Although sea ice extent predictability decreases rapidly during the first year, with the excep-
tion of EC-Earth, all models (and both metrics) show significant levels of predictability for
the first year .

::::
(see

:::::
Fig.

:::
5). After the first year of simulation, two of the models, MIROC5.2

and GFDL-CM3, show significant levels of predictability at all later lead times. At the other
end of the predictability spectrum, E6F is only intermittently predictable after the first year.
Predictability in E6F (and to a lesser extent HadGEM1.2) has a strong seasonal cycle with
months surrounding the winter extent maximum significantly predictable until the end of the
simulation and no significant summer predictability after the first year.

Sea ice volume is much more predictable than sea ice extent in all models. Apart from
E6F all models exhibit significant predictability in all 3 years of the simulations. In a prog-
nostic predictability analysis with decadal simulations, Germe et al. (2014) similarly found
that winter sea ice extent was predictable out to seven years in their model, compared to
three years in summer and found that volume was predictable out to nine years ahead.

:
It

::
is

:::::::::
therefore

:::::
likely

::::
that

::::
the

::::::
winter

::::
sea

::::
ice

::::::
extent

::::::::::::
predictability

::::::::
horizon

::::
may

::::
be

:::::::::::
significantly

:::::::
beyond

:::
the

::
3

::::::
years

:::::::::
simulated

::
in

::::::
these

::::::::::::
experiments.

:
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3.3 CanCM4 transient experiments

Both the NRMSE and ACC metrics indicate lower levels of predictability in CanCM4 for
sea ice extent and sea ice volume .

::::
(see

::::
Fig.

::::
5).

:
It is possible that the CanCM4 model

actually has inherently lower levels of initial-value predictability than the other models. How-
ever, there are reasons to expect that both metrics will be more conservative using the
transient protocol

:::::::
indicate

:::::
lower

::::::
levels

::
of

::::::::::::
predictability

::::
not

::::::::
because

::
of

::::::::::
inherently

:::::
lower

::::::
levels

::
of

:::::::::::
initial-value

::::::::::::
predictability,

:::
but

:::::::::
because

::
of

:::::
using

::::
the

:::::::
shorter

:::::::
control

:::
run

:::::::::::
associated

::::
with

:::
the

::::::::
transient

::::::::
protocol

:::::::::
employed

:::
by

:::::::::
CanCM4.

In the case of NRMSE, detrending a short timeseries reduces
::
is

:::::
likely

::
to

::::::::::::
significantly

::::::
reduce

:
the climatological variance,

:
since without multiple ensemble members to estimate

the forced trend, some internal variability is removed in attempting to remove the forced
trend (see Hawkins et al., 2015).

In the case of ACC , the
:::
We

:::::::
believe

::::
that

::::
the

:::::
ACC

:::::::
values

:::
are

::::::
lower

:::::
than

:::
the

::::::::::
estimates

::
of

:::::
other

::::::::
models

:::
for

:::
the

:::::::::
following

:::::::
reason.

:::::
The reference climate (which is a linear fit to the

control run) is a much closer fit
:::::
better

::
fit
:::
to

:::
the

:::::
data,

:::::
with

:::::
lower

::::::::::
residuals, in the case of the

short CanCM4 transient control run than it is for the long fixed forcing control runs, which
have

:
.
::::
This

::
is

:::::::::
because,

::
in

::::::::
general,

:::
the

:::::
long

:::::::
control

::::
runs

:::::
have

:::::
have

:
large decadal anomalies

. This will reduce the correlation and is analogous to the way that the ACC between two
timeseries is reduced by removing the trend from both.

::::::
which

::::
are

:::
not

:::::
well

:::::::::::::
approximated

::
by

::
a

::::::
linear

::
fit.

::::::::::
Therefore

::::
the

:::::::::::
simulations

:::
will

:::::::
exhibit

:::::
lower

::::::::::::
persistence

::::::::
CanCM4

:::::
than

::::::
would

::
be

::::::
found

::
if
::::
the

:::::
same

:::::::
model

::::
had

:::::
been

::::
run

::
in
::::

the
:::::
fixed

:::::::
forcing

::::::
setup,

:::::::
simply

:::
as

::
a

::::::
result

::
of

:::::::
differing

:::::::::
accuracy

:::
of

:::
the

::::::
linear

::
fit

::
in

:::::
each

::::::
case.

3.4
:::::
State

:::::::::::::
dependence

::
of

::::::::::::::
predictability

::
As

:::::::::::
mentioned

::
in

::::::::
Section

::::
2.2,

:::::
start

::::::
dates

:::
for

::::
the

:::::::::::
ensembles

:::::
were

::::::::
chosen

::
to

::::::::
sample

::::
low,

:::::::
medium

::::
and

:::::
high

::::
sea

:::
ice

::::::
extent

::::
and

::::::::
volume

::::::
states

::
in

:::::
each

::::::::
model’s

:::::::
control

::::
run.

::
In

::::::
order

::
to

::::::::
estimate

::::::::
whether

:::::::
starting

:::
in

::::::::
different

:::::::::
positions

::
of

::::::
model

:::::
state

::::::
space

::::
has

:::
an

:::::::
impact

:::
on

::::
skill

:::
we

::::::::::
calculated

:::
the

::::::::
anomaly

:::::::::::
correlation

::::::
metric

::::::
again

:::
but

::::
only

:::::::::
selecting

:::::
start

::::::
dates

:::::::::
according

12
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::
to

::
if

::::
they

:::::
were

::::::::
started

:::::
from

::
a

::::::
month

:::
of

:::
the

:::::::
control

::::
run

:::::
with

:
a
:::::

low,
::::::::
medium

:::
or

::::
high

::::::
state.

::::
This

::::
was

::::::
done

:::
for

:::::
most

::::::::
models

:::
by

:::::::::
choosing

:::
the

::::
two

:::::::
lowest

:::::::
states,

::::
two

:::::::
highest

::::::
states

:::
or

:::
two

::::::
states

:::::::
closest

:::
to

:::
the

::::::
mean

::
of

::::
the

:::::::
control

:::::
runs.

::::
E6F

::::
had

::
3
:::::
start

:::::
dates

:::
in

:::::
each

:::::
class

::::
and

::::::::
CanCM4

::::
had

::
7
:::

in
::::::
each,

:::
as

::
a

::::::
result

::
of

::::::
these

:::::::
models

:::::::
having

::::::
more

:::::
start

::::::
dates

:::::
than

:::::
other

:::::::
models.

:::
In

::::::::
general,

:::
the

:::::
high

::::::
states

:::
are

::::::
larger

:::::
than

:::
0.8

:::::::::
standard

::::::::::
deviations

::::::
above

:::
the

::::::
mean

:::
and

::::
the

::::
low

::::::
states

:::::
lower

:::::
than

:::
0.8

:::::::::
standard

::::::::::
deviations

::::::
below

::::
the

::::::
mean.

:::
To

:::::::
assess

:::
the

:::::
start

::::
date

::::::::::::
dependence

:::
of

::::
sea

::::
ice

::::::
extent

::::::::::::
predictability

::::
the

:::::
start

::::::
dates

:::::
were

:::::::
binned

:::
by

:::::
sea

:::
ice

::::::
extent

::::
and

::
to

:::::::
assess

:::
the

:::::::::::::
dependence

::
of

:::::::
volume

::::::::::::
predictability

:::::
they

:::::
were

:::::::
binned

::
by

::::::::
volume.

::::
The

::::
ACC

:::::
was

::::::::::::
recalculated

::
for

::::::
each

::
of

::::::
these

::::
bins

:::::
(see

::::
Fig.

:::
6).

:::
Fig

::
6.

:::::::::
provides

:
a
:::::
clear

::::::::::
indication

::::
that

:::::
there

::
is

:::::::
indeed

::::::
some

::::
start

:::::
date

::::::::::::
dependence.

:::
In

:::
the

::::
case

:::
of

::::
sea

:::
ice

::::::
extent,

::::
the

:::::
ACC

::
of

:::::::::::
ensembles

:::::::
started

::::
from

::::::
years

:::::
close

::
to

:::::::::::
climatology

::::::
drops

::::
very

:::::::
rapidly

::::::
during

:::
the

::::
first

::
6

:::::::
months

::
of

::::
the

:::::::::::
simulations,

:::::
both

::
in

:::
the

:::::::::::
multi-model

::::::
mean

::::
and

::
in

:::::::::
individual

:::::::
models

::::::
(apart

:::::
from

::::::::::
HadGEM),

::::::::::
compared

:::
to

:::
the

:::::
high

::::
and

::::
low

::::::
cases

::::::
where

:::::
ACC

::::::
values

::::
stay

:::::::
higher

:::
for

::::::
longer.

::::
The

:::::::::::
differences

::::
are

:::::
most

::::::::
apparent

:::
in

:::
the

:::::::
months

::::::::::::
immediately

::::::::
following

:::::::::::
September,

:::::::
which

::
is

::::::
when

:::::::::
freeze-up

:::::::
begins

:::::::::
following

::::
the

::::::::
summer

::::::::::
minimum.

::
It

::::
may

:::
be

::::
that

:::::
there

::::
are

:::::::::::
differences

::
at

:::::::
longer

::::
lead

::::::
times,

::::
but

::::
with

::::
this

::::::
small

:::::::
sample

:::::
size

:::
the

::::
time

::::::
series

::
of

:::::
ACC

::::
are

:::::
noisy

::::
and

:::::::
difficult

:::
to

:::::::::
interpret.

::::
Sea

:::
ice

::::::::
volume

::::
also

::::::::
exhibits

:::::
much

:::::
less

::::::::::::
predictability

::::::
when

:::::::::
initialised

:::::
from

::::::
states

::::::
where

:::
the

::::::::
volume

::
is

::::::
close

:::
to

::::
the

::::::
model

::::::::::::
climatology.

:::::::
Indeed

::::
the

::::::::::::
multi-model

::::::
mean

:::::
ACC

:::::
falls

:::::::::::
dramatically

:::
in

::::
the

::::::::
medium

::::::
case

::::::::::
compared

:::
to

::::
the

::::
low

:::::
and

:::::
high

:::::::
years.

:::::
Skill

::::::::
remains

:::::::::::::
comparatively

:::
low

:::::::
during

:::
the

::::
rest

:::
of

:::
the

:::::::::::
simulation.

:::
We

::::::::
believe

:::
the

:::::::::::
inter-model

:::::::::::
agreement

:::::
over

::::
the

::::::::
features

:::
we

:::::::::
highlight

::::::::
provide

:
a
:::::::

strong

:::::::::
indication

::::
that

:::::::::::
initialising

:::::::::
forecasts

:::::
from

:::::::::
extreme

:::::::
model

::::::
states

:::
of

::::
the

:::::::
results

:::
in

::::::
more

:::::
skilful

:::::::::
forecasts

:::
of

:::::
both

::::
sea

:::
ice

:::::::
extent

::::
and

::::::::
volume.

:::::::::::
Physically,

::::
one

:::::::
reason

:::
for

::::
this

::::::
might

::
be

:::
is

::::
that

::::::::
autumn

::::
and

::::::
winter

:::::
heat

:::::
loss

:::::
acts

:::
as

::
a

::::::
strong

:::::::::
negative

:::::::::::
(stabilising)

::::::::::
feedback.

:
If
::::::::::::

anomalous
::::::::::::
atmospheric

::::::::
forcing

::::::
leads

:::
to

:::
a

:::::
large

::::::::::
negative

:::::::::
anomaly

:::
in

:::::::::::
September

:::
ice

::::::
extent

:::
or

::::::::::
thickness

:::::
one

:::::
year,

::::::
there

::::
will

:::::
also

:::
be

::::::
large

::::::::
oceanic

:::::
heat

:::::::
losses

:::::::
during

:::
the

:::::::::
following

::::::::::
freeze-up

:::::::
season

:::::::
areas

::
of

::::::
open

::::::
water

::::
and

:::::
thin

:::
ice

:::::::
which

::::::::::
encourage

::::
ice

::::::::::
production

:::::::::::::::::::::::::::
(Serreze and Stroeve, 2015).

::::
One

::::::
might

:::::::
expect

:::
the

:::::::::
evolution

:::::
from

::::::
states

::::::
where

13
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:::
this

::::::::::
feedback

::::::::
dictates

::::::
large

:::::
heat

::::
flux

:::::::::::
anomalies

:::
to

:::
be

::::::
more

:::::::::::
predictable

::::::
than

:::::::
others.

:::::::::
However,

::::
this

::::::::::
behaviour

::::::
might

:::::
also

:::
be

:::::::::
expected

:::::
from

:::::::
simple

:::::::::::
arguments

:::::::
based

:::
on

::::
the

:::::::
positive

:::::::::::::::
auto-correlation

:::
of

:::::
sea

:::
ice

:::
on

:::::::
these

:::::::::::
timescales.

::::::
Since

::::
the

::::
sea

::::
ice

:::::::
extent

::::
and

:::::::
volume

:::::::::::::::
auto-correlation

::
is

:::::::::
positive,

::::
one

::::::
might

:::::::
expect

:::::
large

::::::::::
anomalies

:::
to

::::::::
persist,

:::::::
leading

::
to

:::::::::
increased

:::::::::::::
predictability

:::::
when

::::::::::
initialising

:::::
from

::::::::
extreme

:::::::
states.

::
A
::::::
more

::
in

::::::
depth

::::::
study

::
in

:::
this

:::::
area

::::::
would

:::
be

:::::::
needed

:::
to

:::::::::::
differentiate

:::::::::
between

:::::
these

::::
two

::::::::::::
hypotheses.

4 Conclusions

We have presented the
::::::::::::
experimental protocol for the APPOSITE Arctic sea ice predictabil-

ity multi-model intercomparison,
:::::
and

::::::::::
described

:::
the

::::::::
archive

:::
of

::::::
model

::::::::::::
simulations

::::::
which

::::::::::
contributed

:::
to

:
it. The mean state and variability of Arctic sea ice cover in the models was

:::::::::
presented

::::
and

:
compared to observed estimatesand .

::::
We

::::::
utilise

:::
this

:::::::::
database

:::
to

:::::::
assess the

limit of initial-value Arctic sea ice extent and volume predictability was estimated from each
of the models, updating the results of Tietsche et al. (2014)

::
to

:::::::
include

:::::
three

:::::
more

::::::::
models.

The results of this analysis
::
of

:::::::
perfect

::::::
model

::::::::::::
predictability

:
can be summarised

:::
as

:::::::
follows:

– The winter sea ice extent is predictable at interannual timescales (or possibly longer
timescales) in all models.

– There is significant intermodel spread in the timescale at which summer sea ice ex-
tent is predictable, with some models not showing any interanual

::::::::::
interannual

:
or longer

timescale predictability, and others showing significant predictability throughout all
months of the 3 year simulations.

– Sea ice volume is much
:::::::::
generally more predictable than sea ice extent.

The data used in this study

:::::::
Further,

:::::::::
because

::::::::::
prediction

::::::::::
ensembles

:::::
were

:::::::
started

:::::
from

:::::
high,

::::::::
medium

::::
and

::::
low

::::
sea

:::
ice

::::::
states

:::
we

:::::
were

:::::
able

::
to

::::::::
assess

:::
the

::::::
state

::::::::::::
dependence

::
of

::::
sea

::::
ice

::::::::::::
predictability

:::
for

::::
the

::::
first

::::
time.

::::
We

::::::
found

::::
that

:::
for

:::::
both

:::::::
volume

::::
and

:::::::
extent,

:::
the

::::::
future

:::::::::
evolution

::
of

::::
the

:::::::
climate

::::::::
appears

14
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::
to

:::
be

:::::
more

:::::::::::
predictable

::::::
when

:::::::
started

:::::
from

::::
high

:::
or

::::
low

::::::
states

::::::::::
compared

::
to

::::::
those

:::::::::
forecasts

::::::
started

:::::
from

::::::
states

::::::
close

::
to

::::
the

::::::
model

::::::
mean.

:

::::::
These

::::
data

:
are archived at the BADC (Day et al., 2015) .

::::
and

:::::
have

:::::
been

:::::
used

::
in

::
a

:::::::
number

::
of

::::
sea

:::
ice

::::::::::::
predictability

:::::::
studies.

:::::::
These

:::::
have:

::
(i)

::::::::::
quantified

:::
the

::::::::::::
predictability

::::::::
horizon

::
for

::::::
Arctic

:::
sea

::::
ice

:::::::::
forecasts

:::::::::::::::::::::::::::::::::::
(Tietsche et al., 2014, and this study),

:::
(ii)

::::::::::::::
demonstrated

:::
the

::::::::::
existence

::
of

:
a
:::::::
spring

:::::::::::::
“predictability

:::::::
barrier”

::::
for

::::
sea

:::
ice

:::::::::::
predictions

:::::::::::::::::::
(Day et al., 2014b),

:::
(iii)

:::::::::::
highlighted

:::
the

::::::::::::
development

:::
of

:::
sea

::::
ice

:::::::::
thickness

:::::::::::
initialisation

:::
as

::
a

::::::
crucial

:::::
step

:::::::
towards

::::::
skilful

:::::::::
seasonal

::::::::::
predictions

:::::::::::::::::::
(Day et al., 2014a),

:::
(iv)

::::::::::
quantified

::::
the

::::::::
sources

:::
of

::::::::::
irreducible

::::::::
forecast

::::::
error

::
in

:::::
Arctic

:::::::::::
predictions

:::::::::::::::::::::
(Tietsche et al., 2016),

:::::
and

:::
(v)

:::::
been

::::::
used

::
to

:::::::::::
investigate

:::
the

::::::
initial

:::::
state

:::::::::::
dependence

:::
of

::::
sea

:::
ice

::::::::::::
predictability

:::::
(this

:::::::
study).

::::
This

::::::::
dataset

::::
has

:::::::::
therefore

:::::::
helped

::
fill

::::
key

::::::::::
knowledge

:::::
gaps

::
in

::::
sea

:::
ice

::::::::::
prediction

:::::::::
research.

:

:::::::::
However,

:::::::::
important

::::::::::
questions

::
on

::::::
Arctic

::::
sea

:::
ice

:::::::::::::
predictability

:::
still

::::::::
remain.

:::
For

:::::::::
example,

::
a

:::::
clear

:::::::::::::
understanding

:::
of

::::
why

::::::::::::
predictability

:::::::
varies

::::
from

:::::::
model

::
to

::::::
model

:::::
and

::
to

:::::
what

::::::
extent

::
it

::::::::
depends

:::
on

:::
the

::::::::
models

::::::
mean

:::::::
climate

::::::::
remains

::::::::
elusive.

:::
We

::::
feel

::::
that

::
it
::::
will

:::
be

::::::::::
necessary

::
to

:::::::
expand

::::
this

:::
set

:::
of

::::::::::::
predictability

::::::::::::
experiments

::
in

::::::
order

::
to

::::::::
answer

:::
this

:::::::::
question

::::::::
robustly.

::::
We

:::::
hope

::::
that

:::
by

:::::::
making

::::::
these

::::
data

::::::::::
available,

:::::
other

::::::::::::
researchers

:::
will

:::
be

:::::
able

::
to

::::::
utilise

::::::
them

::
to

:::::::
answer

:::::
these

::::
and

::::::
other

:::::
open

::::::::::
questions.

As well as enabling the results of the APPOSITE project to be reproduced , this will
also allow these predictability experiments to

:::
and

::::::::
allowing

::::
the

:::::::::::
community

::
to

::::::
utilise

::::::
these

::::::::::
simulations

:::
for

::::::
Arctic

::::
sea

:::
ice

:::::::::
research,

::::
this

:::::::
archive

::::::
could

::::
also

:
be further utilised to improve

understanding of predictability of other variables
::
on

:::::::::::::::::::::::
seasonal-to-interannual

:::::::::::
timescales,

such as Antarctic sea ice cover (e.g. Holland et al., 2013) or even ENSO (e.g. Collins et al.,
2002).

Appendix A: Database description

APPOSITE requested a specific set of variables from participants focused on sea ice anal-
ysis, but many other variables have been archived besides. The file and directory naming

15
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convention, followed by the archived data set, is very similar to that followed by CMIP5
(http://cmip-pcmdi.llnl.gov/cmip5/output_req.html).

APPOSITE required participants to prepare their data files so that they meet the following
constraints.

– Data files are in netCDF file format and ideally conform to the climate and fore-
cast (CF) metadata convention (outlined on the website http://cf-pcmdi.llnl.gov). In
instances where it was not possible to produce fully CF compliant netCDF files, par-
ticipants were required to follow the CMOR variable naming convention.

– There must be only one output variable per file.

– The file names have to follow the file naming convention outlined below.

Each variable is contained in a single directory of a directory tree with the following struc-
ture:
<model>/<runtype>/<submodel&frequency>/<variable>
Where runtype is “ctrl” or “pred” for the control run or ensemble predictions respectively,

model is the name of the climate model (e.g. hadgem1_2, mpiesm, . . . ), variable is the
CMOR name for a given climate variable and submodel&frequency indicates the model
sub-component and frequency (e.g. Amon, Aday, Omon and Oday).

Files are named using the following convention:
<variable>_<submode&frequency>_<model>_<runtype>_<run>_<time>.nc

Where run is a concatenated string including the start year, prediction start month and
ensemble member number for ensemble predictions (e.g. 2005Jul3); or simply contains “1”
for a control run.

For example,
tas_Amon_hadgem1_2_ctrl_r1_200501-200512.nc for control runs,
or
tas_Amon_hadgem1_2_pred_2005Jul3_200507-200806.nc for the 3rd en-

semble member of an ensemble started on the 1 July 2005.

16
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Fučkar, N. S., Germe, A., Hawkins, E., Keeley, S., Koenigk, T., Salas y Mélia, D., and Tietsche, S.:
A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales: Arctic
Sea-Ice Predictability and Prediction, Q. J. Roy. Meteorol. Soc., in press, doi:10.1002/qj.2401,
2014.

Hawkins, E., Tietsche, S., Day, J. J., Melia, N., Haines, K., and Keeley, S.: Aspects of designing and
evaluating seasonal-to-interannual Arctic sea-ice prediction systems, Q. J. Roy. Meteorol. Soc.,
in press, doi:10.1002/qj.2643, 2015.
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Table 1. Details of simulations submitted to the APPOSITE database.

Model CTRL length Forcing year Start dates Start months Ensemble size References

HadGEM1.2 249 1990 10 Jan, May, Jul 16 Johns et al. (2006)
Shaffrey et al. (2009)

MPI-ESM 200 2005 12 (Jul), 16 (Nov) Jul, Nov 9 (Jul), 16 (Nov) Notz et al. (2013)
Jungclaus et al. (2013)

GFDL-CM3 200 1990 8 Jan, Jul 16 Donner et al. (2011)
Griffies et al. (2011)

EC-Earth2.2 200 2005 9 Jul 8 Hazeleger et al. (2012)
MIROC5.2 100 2000 8 Jan, Jul 8 updated from Watanabe et al. (2010)
E6F 200 1990 18 Jan, Jul 9 Sidorenko et al. (2014)
CanCM4 45 transient (1970–2014) 32 Jan, Jul, 10 Sigmond et al. (2013)

Merryfield et al. (2013)
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Figure 1.
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Figure 1. Timeseries of monthly mean September sea ice extent (sie, left column) and sea ice
volume (siv, right column) in each model’s control simulation (blue) with the line of best fit to data
(black). Vertical grey lines indicate start years used to initialise simulations.

::::::
Values

:::
on

:::
the

::::
time

::::
axis

:::
are

:::::
model

:::::
clock

::::::
times,

::::
and

::
do

:::
not

::::::::::
correspond

::
to
::::
the

:::::
actual

:::::::::
run-length

::
of
::::
the

:::::::::
simulation.
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Figure 2. Average sea-ice concentration in present-day model control simulations and from
HadISST (1983–2012) (Rayner et al., 2003).
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Figure 3. Average sea-ice thickness in present-day model control simulations and from PIOMAS
(1983–2012) (Schweiger et al., 2011).
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Figure 4. Seasonal cycle of monthly mean sea-ice extent (a), volume (b) and standard deviation of
sea ice extent (c) and volume (d) in present-day model control simulations. The HadISST observa-
tions of sea ice extent and PIOMAS reconstruction of ice volume are included as a reference.

:::::
These

::::
data

::::
were

:::::::
linearly

:::::::::
detrended

::::
prior

::
to
::::::::::
calculating

:::
the

::::::::
variance.
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Figure 5. (a) and (b) Lead-time dependence of SIE NRMSE and SIV NRMSE for all models. (c)
and (d) Lead-time dependence of SIE ACC and SIV ACC for all models. September and March
are marked by thin gray vertical lines. Dashed lines represent the averages across models. Circles
indicate where metrics do not indicate significant predictability (at 95 %). Updated from Tietsche
et al. (2014).
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