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Abstract

Recent decades have seen significant developments in climate prediction capabilities at
seasonal-to-interannual timescales. However, until recently the potential of such systems to
predict Arctic climate had rarely been assessed. This paper describes a multi-model pre-
dictability experiment which was run as part of the Arctic Predictability and Prediction On5

Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE
was to quantify the timescales on which Arctic climate is predictable. In order to achieve
this, a coordinated set of idealised initial-value predictability experiments, with seven gen-
eral circulation models, was conducted. This was the first model intercomparison project de-
signed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales.10

Here we present a description of the archived data set (which is available at the British At-
mospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability
estimates in these models, and an investigation into to what extent predictability is depen-
dent on the initial state.

The inclusion of additional models expands the range of sea ice volume and extent pre-15

dictability estimates, demonstrating that there is model diversity in the potential to make
seasonal-to-interannual timescale predictions. We also investigate whether sea ice fore-
casts started from extreme high and low sea ice initial states exhibit higher levels of poten-
tial predictability than forecasts started from close to the models mean state, and find that
the result depends on the metric.20

Although designed to address Arctic predictability, we describe the archived data here so
that others can use this data set to assess the predictability of other regions and modes of
climate variability on these timescales, such as the El Niño Southern Oscillation.

1 Introduction

Unprecedented climate change in the Arctic has opened up opportunities for business in25

diverse sectors such as fossil fuel and mineral extraction, shipping and tourism but has also
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put pressure on local communities, who are dependent on the ice for their livelihoods (Em-
merson and Lahn, 2012; Stephenson et al., 2013). The need for these stakeholder groups
to avoid hazardous sea ice and weather conditions has increased demand for Arctic sea ice
forecasts at seasonal-to-interannual time scales (Eicken, 2013; Jung et al., 2016). These
local interests and a growing appreciation of the importance of the Arctic in mid-latitude5

weather phenomena (Jung et al., 2014) have motivated the development of seasonal sea
ice prediction systems (e.g. Sigmond et al., 2013; Chevallier et al., 2013; Wang et al., 2013;
Peterson et al., 2014) which are initialised from observations.

It has previously been shown that these sea ice prediction systems exhibit significant skill
in predicting summer sea ice extent a season ahead (Guemas et al., 2016), but diagnosing10

the source of forecast errors is problematic. Forecast errors may be due to both inadequate
representation of important physical processes in the model (such as melt ponds, Schröder
et al., 2014) or inadequate knowledge of initial-state conditions, such as sea ice thickness
(Day et al., 2014a; Msadek et al., 2014; Massonnet et al., 2015), which is not currently
used to initialise operational forecasts. Sea ice predictability is also inherently limited due to15

chaotic, unpredictable atmospheric variability (Blanchard-Wrigglesworth et al., 2011b; Hol-
land et al., 2010) which will lead to irreducible errors in sea ice predictions at seasonal and
longer timescales, fundamentally limiting the timescale at which sea ice will be predictable
(Tietsche et al., 2016). If the skill of a given forecast system is already close to this funda-
mental limit it will not be possible to further increase the leadtime at which the forecast is20

skilful.
To determine if there is the potential to improve the operational prediction systems, we

consider a more idealised situation. The “perfect-model” approach to estimating predictabil-
ity involves producing initial-value ensemble-predictions with a General Circulation Model
(GCM), which are verified against the model itself rather than against observations of the25

real world (following Griffies and Bryan, 1997b). It is therefore not hampered by changes
to the observational network over time or changes in predictability due to secular climate
change, which hampers this kind of analysis in the real world (Collins, 2002). Such studies
provide an estimate of the predictive skill obtainable in a world with a perfect model and
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complete observations. However, such estimates are not necessarily an upper bound for
the limit of predictability in the real world because important predictability mechanisms may
be missing (Eade et al., 2014). There is an ongoing discussion in the literature on this point
(e.g. Shi et al., 2015).

The perfect model approach has previously been used to quantify and understand5

predictability of coupled modes of climate variability, such as the Atlantic Meridional-
Overturning Circulation (AMOC) (e.g. Griffies and Bryan, 1997a; Collins, 2002; Pohlmann
et al., 2004) and the El Niño Southern Oscillation (ENSO) (Collins et al., 2002), lead-
ing to the development of operational seasonal-to-decadal prediction systems based on
atmosphere-ocean climate models (e.g. Smith et al., 2007; Jin et al., 2008).10

Using this approach Collins et al. (2006) demonstrated that the timescale on which the
AMOC is predictable varies from model to model. These inter-model differences in pre-
dictability arise because different GCMs have different representations of the underlying
physical equations and parameters. It is therefore likely that there will be inter-model differ-
ences in predictability for other climate variables so it is important to conduct such analyses15

in multiple GCMs. The APPOSITE model intercomparison was designed to diagnose the
limit of initial-value predictability of Arctic sea ice in multiple GCMs. Previous studies had es-
timated this limit in individual climate models, but with slightly different experiment designs
(such as Blanchard-Wrigglesworth et al., 2011b; Holland et al., 2010; Koenigk and Miko-
lajewicz, 2009; Tietsche et al., 2013). All these experiments demonstrated initial-value sea20

ice predictability on seasonal-to-interannual timescales, however because they focussed on
slightly different variables, averaging periods and because the experimental protocols were
inconsistent between the studies, it was not clear whether the results of these studies were
consistent (Guemas et al., 2016). For the APPOSITE ensemble a consistent protocol was
followed to ensure that it was possible to intercompare models, so that any differences in25

predictability were only the result of differences in the inherent predictability of the models
themselves. The first results of this project were presented in Tietsche et al. (2014).

The primary aim of this manuscript is to provide a detailed description of the APPOSITE
experiment, archived at the British Atmospheric Data Centre (BADC) (Day et al., 2015). We
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also present an updated assessment of the limit of Arctic sea ice extent and volume pre-
dictability, initially presented in Tietsche et al. (2014), including more models than available
at the time of this publication. In addition we consider an open question in Arctic prediction:
to what extent is sea ice predictability state dependent? In this study we consider whether
sea ice extent and volume predictability is different when initialised from high and low states5

compared to states close to the model climatology.
The paper is outlined as follows: Sect. 2 describes the experiment in detail as well as

the mean state of the models used, Sect. 3 includes an update of the results of Tietsche
et al. (2014) and the state dependence analysis, followed by the conclusions in Sect. 4.
Additional details of the data set, archived at the BADC, are included as Appendix A.10

2 Description of the simulations

Seven different coupled climate models performed simulations for APPOSITE (see Table 1).
Six of these models followed the same experimental protocol, which is described in Sect. 2.1
and 2.2. For practical reasons one model, CanCM4, followed a slightly different protocol
which is described in Sect. 2.3.15

2.1 Control simulations

Predictability of the climate system changes with mean climate (DelSole et al., 2014) com-
plicating the assessment of predictability in a transient climate. This is likely to be particu-
larly acute in the Arctic where the sea ice climate changes rapidly in transient simulations
(Holland et al., 2010). The APPOSITE experimental protocol therefore asked for both con-20

trol simulations and ensemble predictions to be conducted in GCMs with forcing fixed at
present-day values.

Since the perfect-model approach uses initial conditions generated by the model itself,
present-day control simulations with each model were run under fixed present-day radiative
forcings. For practical reasons the year that the forcings correspond to differ between mod-25

els, either 1990, 2000 or 2005 depending on the model (see Table 1). Apart from MPI-ESM,
5
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which was initialised from year 2005 of the CMIP5 historical simulation, all other models
were initialised in a static state from present day ocean temperature and salinity profiles
(e.g. Conkright et al., 2002). The period of spinup varied from model to model but is at
least 100 years. Each model was integrated for at least 100 further years to fully sample
the model’s climate, drift, and the models internal variability. Data from the spinup period of5

each model was not archived. However, it is worth noting that despite more than a century
of spinup, some of these simulations still have significant drifts in the mean sea ice ex-
tent and volume timeseries (see Fig. 1). These drifts are accounted for by the predictability
metrics we use in Section 3 and are not expected to significantly influence the estimate of
predictability.10

All of the models are coupled atmosphere-ocean-sea ice GCMs and each has a fully
prognostic sea ice component. These account for variations in sea ice due to both ther-
modynamic and advective processes that result from stress internal to the sea ice as well
as through interaction with the atmosphere and ocean. Like all components of the GCMs,
the sea ice models have both structural and conceptual differences, the most significant of15

which are their treatment of sea ice dynamics, such as the local ice thickness distribution,
as well as vertical heat flux through the ice and heat exchange at the ice-ocean interface.
Except for HadGEM1.2, E6F and MIROC5.2 the versions of the models used were those
submitted to the Coupled Model Intercomparison Project Phase 5 (CMIP5). These models
have been well tested and evaluated against observations and their strengths and weak-20

nesses are well-documented (see references in Table 1). However, in order to facilitate
understanding of the differences in sea ice predictability, we present the differences in their
sea ice mean state and variability.

Although not designed to robustly assess the realism of each model’s climate this anal-
ysis shows that sea ice mean state and variability in the control runs differ considerably25

from model-to-model and to the observations (see Figs. 2, 3 and 4). Before calculating the
standard deviation, shown in Fig. 4, a linear trend was removed from sea ice extent and vol-
ume timeseries for each model. The wide range of sea ice climates in GCMs is well known
(e.g. Arzel et al., 2006; Flato et al., 2013), however the wide model variety in inter-annual
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variability exhibited by the different models is likely to be just as important for determining
the inherent predictability exhibited by each model. Indeed looking across the models, the
inter-annual variability of summer sea ice extent in each model appears to be negatively
correlated to its mean, in line with previous studies (Goosse et al., 2009; Holland et al.,
2008). This does not appear to be the case for winter. It should also be noted that whilst5

the climate of each model is very well sampled here (over 100 years), the observational
timeseries, at a length of 35 years, is much shorter.

2.2 Ensemble predictions

To diagnose the inherent predictability in each of these models, we performed a suite of
ensemble predictions. The number of start dates selected from the control run differs from10

model to model and ranges between 8 and 18, depending on the resource limitations of
each modelling centre. Whilst participating groups were responsible for choosing their own
start dates, they were encouraged to pick them so that a range of high, low and medium
sea ice extent and volume states were captured, in order that any dependence of sea ice
predictability on the size of the initial state anomaly could be assessed (see Section 3.4).15

They were also encouraged to keep start dates well spaced in time, so that they could be
considered independent (see Fig. 1). The minimum spacing between start dates is 3 years
in the case of GFDL-CM3, and longer in other models.

For each start date an ensemble of between 8 and 16 members was generated, again
depending on the resource limitations of each modelling centre. The initial conditions were20

taken from the control run of each model and each ensemble member differs only by a
perturbation to the sea surface temperature field. The perturbation used to generate the
ensemble takes the form of randomly-generated spatially-uncorrelated noise, applied to
each grid cell. This noise is sampled from a Gaussian distribution with a standard deviation
of 10−4K. Each ensemble member starts with a slightly different realisation of this noise.25

Such a perturbation is so small that it is equivalent to assuming perfect knowledge of the
initial conditions. For a given start date, differences in the evolution of each ensemble mem-
ber are solely determined by the chaotic nature of the simulated climate system. Note that

7
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different initialisation methods, such as lagged atmospheric conditions may lead to slightly
different predictability estimates (see Hawkins et al., 2016). For each start date the ensem-
ble was run for 3 years, with the exception of MIROC5.2, which was run for 3.5 years.

A minimum contribution for models to be included in the APPOSITE experiment was to
submit a control run and predictability experiments started on the 1st July, which allows an5

assessment of seasonal predictions of the late-summer sea ice conditions, when the sea
ice is at its lowest extent, and human activity in the the Arctic Ocean is largest. Although
we restrict our analysis to the simulations started in July, some groups have also submitted
simulations started in January, May and November (see Table 1 for details). Note that oper-
ational dynamical seasonal predictions, such as GloSea5 and ECMWF-System 5, are more10

commonly started in May. We decided to start our simulations later due to the presence of
an early summer predictability barrier, which might lead to a sharply decreased skill in pre-
dicting the late-summer sea ice extent minimum (Blanchard-Wrigglesworth et al., 2011a;
Day et al., 2014b).

2.3 CanCM4 transient experiments15

The set of simulations with the CanCM4 model uses a different protocol, in order to facilitate
direct comparison of these simulations with the CanSIPS operational seasonal prediction
system, which uses the same climate model (Sigmond et al., 2013).

The CanCM4 simulations were different in two key respects. Firstly, they were run under
a transient climate, with observed historical forcing agents prescribed. Secondly, initial-20

value ensembles were generated every year and only run for 1 year. In all other regards,
such as the method of ensemble generation, these simulations are the same as the other
APPOSITE perfect model simulations.

8
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3 Perfect model intercomparison

An intermodel comparison of Arctic sea ice predictability, using four climate models, was
published in Tietsche et al. (2014). Here we present an update of this study, including the
MIROC5.2, E6F and CanCM4 climate models.

3.1 Metrics5

Two predictability metrics, as defined by Collins (2002), were used to quantify predictability
in this study. These make use of the fact that in a perfect model study, such as this, any
ensemble member may be chosen as “the truth” or “the forecast”. Therefore it is possible to
increase the effective sample size by taking each member as “the truth” in turn, and com-
paring it with every other member as “the forecast”. For each model the Normalised Root10

Mean Squared Error (NRMSE) compares forecast RMSE to the climatological variability:

NRMSE =

√
〈(xkj −xij)2〉i,j,k 6=i

√
2σ2

(1)

where 〈·〉i denotes the expectation value, to be calculated by summing over the specified
index with appropriate normalization, xij(t) is the sea ice extent at lead time t for the ith
member of the jth ensemble. The σ in the denominator is the standard deviation of the con-15

trol run for the appropriate month, calculated from the whole archived timeseries (shown in
Fig. 1) after the linear trend has been removed (values shown in Fig. 4). The value of the de-
nominator is equivalent to the climatological RMSE between two independent realisations,
which is the limit that the RMSE term in the nominator will approach over time. Therefore
the NRMSE will approach a limit of 1. The model is said to show significant predictabil-20

ity when the NRMSE is significantly lower than 1, as calculated using an F-test, following
Collins (2002).

The second metric is the anomaly correlation coefficient (ACC). This is defined as:

ACC =
〈(xij −µj)(xkj −µj)〉i,j,k 6=j

〈(xij −µj)2〉i,j
. (2)

9
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where µj is the climatological mean at the time of the jth ensemble prediction. The anoma-
lies are calculated relative to a time varying climatology to take into account any drifts in
the control run, otherwise ACC values for models with larger drifts would be biased high.
For the jth start date, the climatology µj is the value of the linear fit at the corresponding
point in the control run timeseries at the corresponding point in time. Note that we chose5

to use the whole timeseries for each model (after the spinup period), shown in Fig 1, to
estimate the reference climate. For a detailed discussion on the impact of such choices on
the estimate of predictability see Hawkins et al. (2016).

At some lead-time, both of these metrics become insignificantly different from their
asymptotic limit (0 for ACC and 1 for NRMSE), and the lead-time at which this happens can10

be used to define the limit of predictability. For each lead-time, significance is calculated
using an F-test or t-test in the case of the NRMSE and ACC metrics respectively, where for
each model the degrees of freedom used in the test is the number of start dates multiplied
by the number of ensemble members run for that model. It appears that the NRMSE met-
ric is more conservative than the ACC metric and becomes insignificantly different from its15

limit at an earlier lead-time (see Fig. 5). Thus using both metrics gives some spread in the
estimate of the time when the limit of predictability is actually reached.

3.2 Fixed forcing experiments

Although sea ice extent predictability decreases rapidly during the first year, with the excep-
tion of EC-Earth, all models (and both metrics) show significant levels of predictability for20

the first year (see Fig. 5). After the first year of simulation, two of the models, MIROC5.2
and GFDL-CM3, show significant levels of predictability at all later lead times. At the other
end of the predictability spectrum, E6F is only intermittently predictable after the first year.
Predictability in E6F (and to a lesser extent HadGEM1.2) has a strong seasonal cycle with
months surrounding the winter extent maximum significantly predictable until the end of the25

simulation and no significant summer predictability after the first year.
Sea ice volume is much more predictable than sea ice extent in all models. Apart from

E6F all models exhibit significant predictability in all 3 years of the simulations. In a prog-

10
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nostic predictability analysis with decadal simulations, Germe et al. (2014) similarly found
that winter sea ice extent was predictable out to seven years in their model, compared to
three years in summer and found that volume was predictable out to nine years ahead. It
is therefore likely that the winter sea ice extent predictability horizon may be significantly
beyond the 3 years simulated in these experiments.5

3.3 CanCM4 transient experiments

Both the NRMSE and ACC metrics indicate lower levels of predictability in CanCM4 for sea
ice extent and sea ice volume (see Fig. 5). It is possible that the CanCM4 model actually
has inherently lower levels of initial-value predictability than the other models. However,
there are reasons to expect that both metrics will indicate lower levels of predictability not10

because of inherently lower levels of initial-value predictability, but because of using the
shorter control run associated with the transient protocol employed by CanCM4.

In the case of NRMSE, detrending a short timeseries is likely to significantly reduce the
climatological variance, since without multiple ensemble members to estimate the forced
trend, some internal variability is removed in attempting to remove the forced trend (see15

Hawkins et al., 2016).
We believe that the ACC values are lower than the estimates of other models for the

following reason. The reference climate (which is a linear fit to the control run) is a much
better fit to the data, with lower residuals, in the case of the short CanCM4 transient control
run than it is for the long fixed forcing control runs. This is because, in general, the long20

control runs have have large decadal anomalies which are not well approximated by a
linear fit. Therefore the CanCM4 simulations will exhibit lower persistence than would be
found if the same model had been run for a longer period in the fixed forcing setup, simply
as a result of differing accuracy of the linear fit in each case.

11
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3.4 State dependence of predictability

As mentioned in Section 2.2, start dates for the ensembles were chosen to sample low,
medium and high sea ice extent and volume states in each model’s control run. In order
to estimate whether starting in different positions of model state space has an impact on
predictability we calculated the anomaly correlation and NRMSE metrics again but only5

selecting start dates according to if they were started from a month of the control run with
a low, medium or high state. This was done for most models by choosing the two lowest
states, two highest states or two states closest to the mean of the control runs. E6F had 3
start dates in each class and CanCM4 had 7 in each, as a result of these models having
more start dates than other models. In general, the high states are larger than 0.8 standard10

deviations above the mean and the low states lower than 0.8 standard deviations below the
mean. To assess the start date dependence of sea ice extent predictability the start dates
were binned by sea ice extent and to assess the dependence of volume predictability they
were binned by volume. The ACC and NRMSE were recalculated for each of these bins
(see Fig. 6).15

According to Fig. 6, whether the predictability changes with the distance of the initial state
from the mean extent and volume appears to depend on the metric. For states initialised
close to the mean sea ice volume climatology, the ACC metric decreases much more rapidly
with lead time than the high or low cases, appearing to recover towards the end of the simu-
lations. Indeed the multi-model mean ACC falls dramatically in the medium case compared20

to the low and high years. However, similar features are not present when using the NRMSE
metric, with the mean NRMSE increasing with lead time at a similar rate across the high,
medium and low cases. We therefore believe that this behaviour is a statistical artefact of
the ACC metric, for the following reason. For start dates initialised close to climatology, the
numerator of the ACC metric (Eq. 2) will fluctuate between positive and negative values as25

the ensemble members diverge, more frequently than when initialised from a large anomaly.
When started from a large anomaly, the ensemble members will agree more strongly on the
sign. This leads to lower ACC in the medium cases. Similar behaviour is observed when

12
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experiments are binned by high, low and medium initial sea ice extent (not shown). With so
few data points it is not possible to robustly test the statistical significance of this finding, so
this result should only be seen as an indicative.

Although we show that there is little evidence of sea ice predictability depending on the
distance of the prediction’s initial state from the climatological mean, this does not mean that5

the predictability is not state dependent. For example, years where anomalous atmospheric
circulation patterns, which are unlikely to be predictable at seasonal timescales, play a role
in driving large sea ice anomalies (e.g. summer 2007; Serreze and Stroeve, 2015) will be
poorly predicted even in a perfect prediction system. Hawkins et al. (2016) also demonstrate
that the rate of ensemble divergence can vary from start date to start date in perfect model10

simulations.

4 Conclusions

We have presented the experimental protocol for the APPOSITE Arctic sea ice predictabil-
ity multi-model intercomparison, and described the archive of model simulations which con-
tributed to it. The mean state and variability of Arctic sea ice cover in the models was15

presented and compared to observed estimates. We utilise this database to assess the
limit of initial-value Arctic sea ice extent and volume predictability from each of the models,
updating the results of Tietsche et al. (2014) to include three more models.

The results of this analysis of perfect model predictability can be summarised as follows:

– The winter sea ice extent is predictable at interannual timescales (or possibly longer20

timescales) in all models.

– There is significant intermodel spread in the timescale at which summer sea ice extent
is predictable, with some models not showing any interannual or longer timescale
predictability, and others showing significant predictability throughout all months of
the 3 year simulations.25

– Sea ice volume is generally more predictable than sea ice extent.
13
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Further, because prediction ensembles were started from high, medium and low sea ice
states we were able to assess the state dependence of sea ice predictability for the first
time. We found little evidence of sea ice predictability depending on the distance of the
prediction’s initial state from the climatological mean.

These data are archived at the BADC (Day et al., 2015) and have been used in a number5

of sea ice predictability studies. These have: (i) quantified the predictability horizon for Arctic
sea ice forecasts (Tietsche et al., 2014, and this study), (ii) demonstrated the existence of
a spring “predictability barrier” for sea ice predictions (Day et al., 2014b), (iii) highlighted
the development of sea ice thickness initialisation as a crucial step towards skilful seasonal
predictions (Day et al., 2014a), (iv) quantified the sources of irreducible forecast error in10

Arctic predictions (Tietsche et al., 2016), and (v) been used to investigate the initial state
dependence of sea ice predictability (this study). This dataset has therefore helped fill key
knowledge gaps in sea ice prediction research.

However, important questions on Arctic sea ice predictability still remain. For example, a
clear understanding of why predictability varies from model to model and to what extent it15

depends on the models mean climate remains elusive. We feel that it will be necessary to
expand this set of predictability experiments in order to answer this question robustly. We
hope that by making these data available, other researchers will be able to utilise them to
answer these and other open questions.

As well as enabling the results of the APPOSITE project to be reproduced and allowing20

the community to utilise these simulations for Arctic sea ice research, this archive could also
be further utilised to improve understanding of predictability of other variables on seasonal-
to-interannual timescales, such as Antarctic sea ice cover (e.g. Holland et al., 2013) or even
ENSO (e.g. Collins et al., 2002).

4.1 Discussion of protocol25

Having presented a summary of the results of the APPOSITE model inter-comparison
project, it is natural to consider the suitability of the protocol and suggest ways in which
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a future protocol might be improved. Analyses pertinent to this question were described in
Hawkins et al. (2016), and we will use these examples in this discussion.

A number of methods exist for generating initial value ensembles in coupled models.
Perfect model studies have generally used simple methods including: white noise pertur-
bations of SST (as used in APPOSITE), or atmosphere or state lagged methods (where5

state vectors from adjacent days are used to initialise the model), although more complex
methods exist. Hawkins et al. (2016) conducted experiments to determine the impact of
these simple methods on ensemble spread in a set of 6 month long experiments with the
MPI-ESM. They found that the state lagged and atmosphere lagged approach generated
more ensemble spread in both sea ice extent and volume than did the SST white noise per-10

turbation. This finding suggests that using the same perturbation method for each model,
as was done in APPOSITE, is important although it is not clear a priori if one method is a
better than the others.

Given that all modelling centres work with finite computing resources, a pertinent ques-
tion both for future perfect model studies and for operational forecasting is how many en-15

semble members and start dates are required to robustly assess the inherent predictability
of a model. Hawkins et al. (2016) present an analysis with the HadGEM1.2 APPOSITE
simulations, where they subsample from the 16 ensemble members and 10 start dates to
investigate the sensitivity of September sea ice extent and volume predictability metrics
when using fewer start dates and members. RMSE seems quite insensitive to the number20

of members and start dates, certainly for values above the 8 start dates and 8 members,
which was suggested as a minimum in the APPOSITE protocol. However, the ACC mono-
tonically increases with ensemble size and, as we have shown in Section 3.4, is highly
sensitive to small numbers of start dates. Hawkins et al. (2016) conclude that even with 16
members (the most submitted to APPOSITE) probabilistic measures of predictability were25

not reliable.
The choice of ensemble size also depends on the particular question the experiment is

trying to address, for example if designing an experiment to investigate how predictability
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depends on the initial state, increasing the number of start dates, at the expense of ensem-
ble members, might be a worthwhile trade off.

As discussed in Section 3.4, in order to investigate the dependence of predictability on the
initial state, we decided to pick high, low and medium states rather than randomly selecting
them. Our analysis in this section demonstrates that some metrics, particularly ACC, could5

be very sensitive to this choice and that manually choosing start dates in this way may bias
the overall estimate of model predictability, compared to a random selection. Therefore, we
would recommend that studies focussed solely on understanding inter-model differences in
predictability use a random selection approach to choosing start dates.

A length of three years was decided upon for the APPOSITE predictability simulations.10

This was chosen both for pragmatic computational resource reasons and based on pre-
vious studies, which indicated that that the limit of sea ice extent predictability was under
three years (e.g. Blanchard-Wrigglesworth et al., 2011b). Although this is certainly the case
in some models, it appears to be predictable past this point in others (see Fig. 5). It is
also certainly the case that sea ice extent in some regions, such as the North Atlantic, is15

predictable past three years (Day et al., 2014b). Therefore, similar future studies should
consider extending simulations for longer in order to capture the predictability horizon for all
models.

A significant problem we encountered was dealing with drift in the control simulations.
Many of the control simulations were not in an equilibrium state, and had significant drifts20

in sea ice extent and volume (Fig. 1). Predictability metrics, such as the ACC and NRMSE
are dependent on the method used for choosing the reference climatology (see Hawkins
et al., 2016), therefore we would recommend running the control runs to equilibrium so that
a more stable model climate is used both for initialising ensembles and as a reference.

The set of diagnostics we asked for was generally sufficient sufficient for our analysis25

goal of quantifying and understanding seasonal-to-interannual sea ice predictability, with
a couple of exceptions. Firstly, Tietsche et al. (2014) utilised process based tendencies to
relate errors in sea ice thickness to their mechanical and thermodynamical processes in
HadGEM1.2 and MPI-ESM. These diagnostics were not available from the other models

16
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and we would recommend saving such diagnostics as part of a future predictability study.
Secondly, although the focus was on seasonal-to-interannual timescales, saving daily sea
ice data have been very useful in studying the predictability of user relevant metrics, such
as the position of the sea ice edge on these timescales (Goessling et al., 2016). Recently,
Notz et al. (2016) present a recommended set of diagnostics for CMIP6, with diagnostics5

designed to close the sea ice heat, momentum and mass budgets. Diagnostics are binned
into three tiers indicating the relative priority of each diagnostic. A future sea ice predictabil-
ity MIP could use their list as a starting point (see supplementary material for a full list of
recommended diagnostics as well as the experiment description, which was distributed to
the APPOSITE project participants).10

Appendix A: Database description

The APPOSITE version 1 dataset described in this paper is openly available from the BADC,
where data from all models can be downloaded in netCDF format (via the following link: http:
//catalogue.ceda.ac.uk/uuid/d330c7873c3f4880893bdedb547bea20) and has been issued
a digital object identifier (Day et al., 2015).15

APPOSITE requested a specific set of variables from participants focused on sea ice
analysis, but many other variables have been archived besides. The file and directory nam-
ing convention, followed by the archived data set, is very similar to that followed by CMIP5
(http://cmip-pcmdi.llnl.gov/cmip5/output_req.html).

APPOSITE required participants to prepare their data files so that they meet the following20

constraints.

– Data files are in netCDF file format and ideally conform to the climate and fore-
cast (CF) metadata convention (outlined on the website http://cf-pcmdi.llnl.gov). In
instances where it was not possible to produce fully CF compliant netCDF files, par-
ticipants were required to follow the CMOR variable naming convention.25

– There must be only one output variable per file.

17
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– The file names have to follow the file naming convention outlined below.

Each variable is contained in a single directory of a directory tree with the following struc-
ture:
<model>/<runtype>/<submodel&frequency>/<variable>
Where runtype is “ctrl” or “pred” for the control run or ensemble predictions respectively,5

model is the name of the climate model (e.g. hadgem1_2, mpiesm, . . . ), variable is the
CMOR name for a given climate variable and submodel&frequency indicates the model
sub-component and frequency (e.g. Amon, Aday, Omon and Oday).

Files are named using the following convention:
<variable>_<submode&frequency>_<model>_<runtype>_<run>_<time>.nc10

Where run is a concatenated string including the start year, prediction start month and
ensemble member number for ensemble predictions (e.g. 2005Jul3); or simply contains “1”
for a control run.

For example,
tas_Amon_hadgem1_2_ctrl_r1_200501-200512.nc for control runs,15

or
tas_Amon_hadgem1_2_pred_2005Jul3_200507-200806.nc for the 3rd en-

semble member of an ensemble started on the 1 July 2005.
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Table 1. Details of simulations submitted to the APPOSITE database.

Model CTRL length Forcing year Start dates Start months Ensemble size References

HadGEM1.2 249 1990 10 Jan, May, Jul 16 Johns et al. (2006)
Shaffrey et al. (2009)

MPI-ESM 200 2005 12 (Jul), 16 (Nov) Jul, Nov 9 (Jul), 16 (Nov) Notz et al. (2013)
Jungclaus et al. (2013)

GFDL-CM3 200 1990 8 Jan, Jul 16 Donner et al. (2011)
Griffies et al. (2011)

EC-Earth2.2 200 2005 9 Jul 8 Hazeleger et al. (2012)
MIROC5.2 100 2000 8 Jan, Jul 8 updated from Watanabe et al. (2010)
E6F 200 1990 18 Jan, Jul 9 Sidorenko et al. (2014)
CanCM4 45 transient (1970–2014) 32 Jan, Jul, 10 Sigmond et al. (2013)

Merryfield et al. (2013)
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Figure 1.
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Figure 1. Timeseries of monthly mean September sea ice extent (sie, left column) and sea ice
volume (siv, right column) in each model’s control simulation (blue) with the line of best fit to data
(black). Vertical grey lines indicate start years used to initialise simulations. Values on the time axis
are model clock times, and do not correspond to the actual run-length of the simulation.
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Figure 2. Average sea-ice concentration in present-day model control simulations and from
HadISST (1983–2012) (Rayner et al., 2003).
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Figure 3. Average sea-ice thickness in present-day model control simulations and from PIOMAS
(1983–2012) (Schweiger et al., 2011).
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Figure 4. Seasonal cycle of monthly mean sea-ice extent (a), volume (b) and standard deviation of
sea ice extent (c) and volume (d) in present-day model control simulations. The HadISST observa-
tions of sea ice extent and PIOMAS reconstruction of ice volume are included as a reference. These
data were linearly detrended prior to calculating the variance.
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Figure 5. (a) and (b) Lead-time dependence of SIE NRMSE and SIV NRMSE for all models. (c)
and (d) Lead-time dependence of SIE ACC and SIV ACC for all models. September and March
are marked by thin gray vertical lines. Dashed lines represent the averages across models. Circles
indicate where metrics do not indicate significant predictability (at 95 %). Updated from Tietsche
et al. (2014).
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Figure 6. Top row: NRMSE of sea ice extent, but calculated only for start dates with anomalously
low, medium or high sea ice volume, relative to the control run climatology. Bottom row: as top row
but for the ACC metric. The black dashed line shows the multi-model average of each metric and
grouping. The number of start dates in the low, medium and high bins is 2 for all models except E6F
(3) and CanCM4 (7).
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