
Dear Editor of Geoscientific Model Development, 
 
We modified the manuscript according to the comments and queries from the three 
reviewers. To fulfill their requests, we 
 
1) Clarified several sections of the main text by focusing our analysis on the root-mean 
squared error (RMSE) and removing information on the difference between modeled and 
observed spatial variability (∆σ). We included supplementary figures to several sections 
in order to support our hypotheses and strengthen our analysis. 
 
2) Included one additional IPCC-class Earth system model (ESM) to our analyses. This 
extends the current analysis to an ensemble of 15 IPCC-class ESMs. Accordingly, we 
have revised all computations and updated all figures of the manuscript. 
 
3) Added two new subsections to the revised manuscript to satisfy the request to include 
further discussion on the limitation of our framework. These are a new subsection dealing 
with the assessment of the simple drift model with IPSL-CM5A-LR as well as an 
extended discussion of the limitations of our framework. 
 
Finally, we also introduce two co-authors (O. Aumont and A. Romanou) for their 
expertise on their model and their help to address the comments and queries from the 
three reviewers. 
 
Please find a detailed response to each question/comment hereafter in blue (text 
fragments are in blue italics). 
 
 
 
# Editor 
The column for model INMCM4 is shown in a colour (red) that does not appear in the 
key to the figure. Presumably this colour is a simple error as the text does not identify 
INMCM4 as undertaking a unique spin-up strategy. 
 
We thank the Editor for his comment. It was indeed an error. Figure 1 was updated to 
improve its readability (bar plot enlarged and cross hatching modified). An additional 
model (CNRM-ESM1) was added to the analysis. The model is detailed in Séférian et al. 
(2015). 
 
 
 
Referee #1 
Inconsistent strategies to spin up models in CMIP5: implications for ocean  
biogeochemical model performance assessment. Séférian et al   
This study examines spin--‐up and drift in ocean biogeochemical properties using a spin-
-‐up run from a single model and archived model output from CMIP5. In particular the 
study demonstrates the need to take drift into account when assessing model skill. I 



think that this is a useful study that highlights an important issue that is probably not 
given enough attention. I do have some issues with the analysis undertaken however 
that need to be addressed or clarified before I think this manuscript is ready for 
publication.  
  
We appreciate the reviewer’s careful reading and suggestions for corrections. Most of his 
suggestions are addressed in the revised manuscript. 
 
8754:   
However, since these models are typically initialized from observations, 
initialization and equilibration of climate variables are the most model--‐dependent 
protocols that could introduce errors or drifts in modeled fields with consequences 
on skill score metrics.  
By ‘equilibration’ do you mean spin--‐up procedure. Sentence isn’t very clear  
  
We agree that the use of “equilibration” might be confusing. 
We consider the spin-up procedure to encompass: (1) the initial conditions, (2) the spin-
up time (duration of the spin-up simulation at the end of which a “quasi-steady-state 
equilibrium” is declared) and (3) the method to achieve this quasi-steady-state 
equilibrium (it can consist in an offline mode simulation or a coupled mode simulation —
called online in the manuscript). 
We modified the sentence as follows: 
 
Revised: 
“However, since these models are typically initialized from observations, the spin-up 
procedure of climate variables are the most model-dependent protocols that could 
introduce errors or drifts in modeled fields with consequences on skill score metrics.” 
 
8755:   
First paragraph  
There is an assumption here that the model will reach an equilibrium. This is not 
clear.  Sen Gupta et al 2013 show little evidence for equilibration in many physical 
variables. Work by Will Hobbs and collaborators (soon to be published) shows that 
a large component of drift in physical variables is associated with spurious energy 
leaks in the models that are independent of model state. As such the models just 
keep drifting. Indeed in your Fig 2b I don’t really see clear evidence for 
equilibration.  
  
‘quasi--‐equilibrium state is assumed for the interior ocean tracers.’  
I don’t think its assumed its either corrected for or neglected. 
 
We agree with the reviewer that “reaching an equilibrium” is a strong assumption. It is, 
however, mentioned in several published papers: 
In (Dunne et al., 2013): 



“The fully coupled models were then integrated over 1000 model years with 1860 solar 
and radiative forcing before declaring ‘‘quasi-steady-state equilibrium’’ and beginning 
the 1860 control and perturbation integrations. In addition to the many qualitative 
requirements, we define acceptable quasi-steady-state equilibrium with quantitative 
metrics: net top-of-the-atmosphere radiative fluxes less than 0.5 W m-2, surface 
temperature drifts less than 0.18C century-1, stable Atlantic meridional overturning 
circulation (AMOC; Delworth et al. 1993) above 10 Sv (1 Sv [ 106 m3 s-1), local sea 
surface tem- perature (SST) biases less than ;98C, global 708S–708N root-mean-square 
SST errors less than 1.98C, and global net CO2 fluxes between the atmosphere and both 
land and ocean lower than 20 PgC century-1 (averaged over two centuries).” 
 
In (Mignot et al., 2013): 
“First of all, although it is clear that the oceanic adjustment requires several hundreds of 
years, this figure illustrates that all simulations approaches an equilibrium state after 300 
years. The latter is nevertheless not reached and may require thousands of years, as it was 
necessary in CM5_piCtrl.” 
 
In (Stouffer et al., 2004): 
“The initialization of coupled atmosphere-ocean climate models (AOGCMs) has been a 
long-standing problem in models used to study climate change on multi-century time 
scales (Moore et al. 2001). To perform simulations of the twentieth century and into the 
future, modellers must start with an initial equilibrium prior to extensive industrialization 
(typically near year 1850).” 
 
In (Vichi et al., 2011): 
“Oceanic DIC and alkalinity pools have been initialized from current climate data 
reconstructions (Key et al. 2004) and DIC has been spun up to equilibrium with the 
preindustrial atmospheric CO2 concentration by means of an acceleration method 
(adapted from Alessandri 2006 and Alessandri et al. 2011) consisting of increasing the 
air–sea CO2 outgassing flux of a factor 20 and removing the corresponding DIC amount 
homogeneously from the oceanic pool.” 
 
Besides, in most of the reference papers we reviewed for this study it is indicated that a 
near steady-state equilibrium is declared or assumed before performing any CMIP5 
control and 20th century simulation. Therefore, we prefer to keep the term “assumed” in 
the revised version of the manuscript. 
 
 
8757:  
It ranges from 1500 to 4000 years depending on the ocean circulation and can reach 
up to 10 000 years in the deeper domains of the ocean  
Doesnt really make sense to give a range of 1500 to 4000 and then say some regions 
are 10,000. That means the range is 1500 to 10,000. 
 
We have amended the sentence as follows. 
Revised: 
“Depending on ocean circulation, it ranges from 1500 years for subsurface water masses 
to 10000 years for deep water masses (Wunsch and Heimbach, 2008).” 



 
 
8759: 
Gupta et al. (2012, 2013). 
Should be ‘Sen Gupta et al’  
 
Done and acknowledged.  
 
8763 last paragraph:  
The metrics (2-4) are not very well defined can you be more precise? 
Does 2 mean you calculate the difference between model and obs at each grid point 
and then average? Is 3 just the spatial correlation between model and observations. 
4 I dont really understand. Is this the difference between the spatial standard 
deviation for model and obs? 
 
In the revised version of the manuscript, we chose to simplify the methodology and to 
concentrate the analysis on: 
- The error or bias (metric 2 in the submitted manuscript) 
- The root-mean-squared error (RMSE, the metric 5 in the submitted manuscript)  
Since most of the analyses were performed with the RMSE, we have chosen to remove 
mention to the metrics 4 (∆σ) in the revised manuscript. 
Consequently, we have amended the sentence as follows. 
Original: 
“The skill score metrics are (1) the global averaged concentrations for overall drift; (2) 
the average error or bias for mismatches between modeled and observed fields; (3) 
spatial correlation for mismatches between modeled and observed large-scale structures; 
(4) the difference between modeled and observed spatial variability (∆σ) and (5) the root-
mean squared error (RMSE) to assess the total cumulative errors between modeled and 
observed fields.” 
Revised: 
“The skill score metrics are (1) the global averaged concentrations for overall drift; (2) 
the error or bias between modeled and observed fields at each grid-cell; (3) spatial 
correlation between model and observations to assess mismatches between modeled and 
observed large-scale structures; (4) the root-mean squared error (RMSE) to assess the 
total cumulative errors between modeled and observed fields.” 
 
 
Figure 1:  
In Fig 1 I think that the direction of the cross hatching for initial conditions are the 
opposite way round for ‘model’ and ‘mixed’ in the figure and the legend. 
 
As stated above in the response to the Editor, we updated Figure 1 in order to improve its 
readability: we have enlarged the barplot and made cross hatching in only one way 
direction.  
 
 
8766: 
except some recommendations for the decadal prediction exercise … 



I presume however that there was no simulation of BGC in the decadal 
prediction simulations 
At least one ESM participating in the CMIP5 decadal prediction exercise 
included BGC, namely IPSL-CM5A-LR (Séférian et al., 2014)). 
 
8767: 
Figure 2b also shows that the drift in the global sea--‐to--‐air carbon flux reduces 
slowly after the first 50 years of the spin--‐up simulation. While this drift is about 
0.001 PgCyr--‐2 from year 250 to 500, it is much weaker over the last century of the 
simulation (5_10--‐4 PgCy--‐2) 
The drift looks pretty linear after about year 50. Are the differences you discuss 
really significant? For example, if you shifted your analysis 50 years earlier i.e 
using 150 to 450 do you get robust results? 
We appreciate the reviewer’s careful reading. To address this question, we have 
computed the drift in fgCO2 over several time windows (Table R1): 
 
Time window 
(model year) 

251-350 301-400 401-500 

Drift (PgC y-1 y-1) 0.0030 0.0004 0.0007 
Table R1: Drift in ocean carbon flux (fgCO2 in PgC y-2) over various time window of 
100 years. 
 
Drift estimates differ by one order of magnitude between each other and they decrease 
with time. Although our computations show drift to fluctuate in course of the spin-up 
simulation, only the two last time window (301-400 and 401-500) are statistically 
different from the long-term drift of 0.001 PgC y-2 at 90% confidence level. 
 
the simulated sea--‐to--‐air carbon flux would reach a steady state after ~500 
supplemental years of spin--‐up. 
I’m a bit confused. By steady state do you mean when the air-sea flux is zero? 
But this isn’t steady state. Steady state is when dF/dt=0, which will never 
happen under an exponential model, which is why you have a decay timescale. 
Also your time estimates seem strange. If the decay timescale was only 73 years we 
would expect to see a large slowdown in drift over the course of the experiment, 
whereas it looks pretty linear. Also, if the trend at the end of the control is 5e-4, and 
the carbon flux is just less than -0.5PgCy-1 it would take almost 1000years to reach 
0 and a further 950 years to reach 0.45. This is without any further reduction in the 
rate of the drift. Am I missing something? 
 
We apologize for the confusion. The subsection discusses two distinct criteria: 
(1) The ocean carbon flux: the model set up includes a prescribed input of riverine carbon 
which should induce an outgassing of about 0.45-0.6 PgC y-1 at preindustrial state and 
under quasi-steady-state equilibrium (see (Aumont et al., 2001)). 
(2) The drift in ocean carbon flux: the simple drift model is used to track the temporal 
evolution of drift until it approaches a value close to zero. At this stage, we consider that 
the variable has reached a quasi-steady-state equilibrium. 
 



Figure R1: Comparison of linear (solid blue line) and exponential (dashed magenta and 
green lines) regression in ocean carbon fluxes from years 250 to 500. 
 
To address the first point, we fitted a linear model (in solid blue line in Fig R1) and two 
exponential models (in green and magenta dashed lines in Fig R1) to the time series of 
carbon flux. The linear model was fitted over 251-500 years. The exponential models 
were fitted over years 251-500, respectively 351-500. While the differences between the 
three models are overall small, the two exponential models show a flattening of the long-
term tendency towards the end of the simulation (Fig. R1).  
 
 
From these fits, we estimated that fgCO2 would reach the range of 0.44-0.56 PgC y-1 
after 1627-1838 years of simulation, This range corresponds to the multi-model inverse 
estimate of preindustrial fluxes of CO2 estimated by (Mikaloff Fletcher et al., 2007) plus 
a river-induced outgassing of 0.45 PgC y-1. 
Since the model has already completed 500 years of spin-up, we substracted this duration 
and concluded that the model would fit the target flux after an additional of 1127-1338 
years of simulation.  
The above is consistent with the estimate computed by the referee considering that he/she 
did not account for the 500 years of spin-up simulation already performed by the model. 
After correction, his/her estimate of 1450 years is close to ours. 
To improve the readability, we modified the following subsection. 
Original: 
“The temporal evolution of sea-to-air CO2 fluxes was used in phase 2 of the Ocean 
Carbon Model Intercomparison Project (OCMIP-2, (Orr, 2002)) as an equilibration 
metric for the marine biogeochemistry and was still widely used during CMIP5. Figure 



2b presents its evolution in the 500-year long spin-up simulation. The global ocean sea-
to-air CO2 flux is ~-0.7 Pg C y-1 over the last decades of the spin-up simulation (negative 
values indicate ocean CO2 uptake). The global sea-to-air carbon flux does not fit the 
range of values estimated from preindustrial natural ocean carbon flux inversions (e.g. 
(Gerber and Joos, 2010) or (Mikaloff Fletcher et al., 2007), referred to as MF2007 on 
Figure 2), which amounts to 0.03 ± 0.08 Pg C y-1 (to which an open-ocean river-induced 
carbon outgassing of 0.45 Pg C y-1 has to be added on Figure 2 accordingly to (IPCC, 
2013; Le Quéré et al., 2015). This indicates that the ocean carbon cycle has not reached 
a steady state in the model system following the 500 years of integration.  
Figure 2b also shows that the drift in the global sea-to-air carbon flux reduces slowly 
after the first 50 years of the spin-up simulation. While this drift is about 0.001 Pg C y-2 
from year 250 to 500, it is much weaker over the last century of the simulation (5x10-4 Pg 
C y-2).  Using an approximate relaxation time of 73 years estimated from the simple drift 
model (Equation 1) over years 250-500 and the drift of 0.001 Pg C y-2, we find that the 
simulated sea-to-air carbon flux would reach a steady state after ~500 supplemental 
years of spin-up. After the additional 500 supplemental years of spin-up, sea-air carbon 
flux would fall into the range of inverse estimates of MF2007 with accounting for 
outgassing of river carbon of 0.45 Pg C y-1. This estimate does not account for the non-
linearity of the ocean carbon cycle and the associated process uncertainties (Schwinger 
et al., 2014). This estimation potentially underestimates the time required to equilibrate 
the ocean carbon cycle and sea-to-air carbon fluxes in the range of inversion estimates. 
The duration of the spin-up simulation would have to be increased by an additional 500 
years to account for the estimated river-induced natural CO2 outgassing of about 0.45 Pg 
C y-1 (IPCC, 2013). The drift of 0.001 Pg C y-2 is, however, much smaller than the 
oceanic sink for anthropogenic carbon. Even if not fully equilibrated in terms of carbon 
balance, it is likely that this run would have given consistent estimates of anthropogenic 
carbon uptake in transient historical hindcasts.“ 
Revised: 
“The temporal evolution of sea-to-air CO2 fluxes was used in phase 2 of the Ocean 
Carbon Model Intercomparison Project (OCMIP-2, Orr (2002)) as an equilibration 
metric for the marine biogeochemistry and was still widely used during CMIP5. Figure 
2b presents its evolution in the 500-year long spin-up simulation. The global ocean sea-
to-air CO2 flux is ~-0.7 Pg C y-1 over the last decades of the spin-up simulation (negative 
values indicate ocean CO2 uptake).  
To assess the global sea-to-air carbon flux, we use the range of values estimated from 
preindustrial natural ocean carbon flux inversions (e.g. Gerber and Joos (2010) or 
Mikaloff Fletcher et al. (2007)). Since, these estimates do not account for the 
preindustrial carbon outgassing induced by the river input, while our model does, we 
have added a constant outgassing of 0.45 Pg C y-1 to the range of 0.03 ± 0.08 Pg C y-1 
(Mikaloff Fletcher et al. 2007). This value of 0.45 Pg C y-1 corresponds to the global 
open-ocean river-induced carbon outgassing accordingly to IPCC (2013) or Le Quéré et 
al. (2015). Consequently, in our modeling framework, the target value of the global sea-
to-air carbon flux ranges between 0.4 and 0.56 Pg C y-1. 
Figure 2b shows that the global sea-to-air carbon flux does not fit our range of values 
estimated from preindustrial natural ocean carbon flux inversions. Besides, Figure 2b 
shows that the drift in the global sea-to-air carbon flux reduces more slowly after  a 
strong decline during the first 50 years of the spin-up simulation. While this drift is about 
0.001 Pg C y-2 from year 250 to 500, it is weaker over the last century of the simulation 
(7x10-4 Pg C y-2). Using a linear fit over the last century of the simulation with a drift of 
7x10-4 Pg C y-2, we estimate that the simulated sea-to-air carbon flux would reach the 
range of 0.4-0.56 Pg C y-1 after 1100 to 1300 supplemental years of spin-up simulation. 
Our simple drift model (Equation 1) gives a relaxation time of around 160 years, which 



indicates that drift in ocean carbon flux should range between 2x10-7 and 7x10-7 Pg C y-2 
after this 1100 to 1300 supplemental years of spin-up simulation.” 
 
8770: 
… over the last century of spin--‐up … 
Is 100 years really sufficient to get a good estimate? While you need to remove the 
period of initial coupling shock, this seems to only affect the first 100yrs or so in Fig 
2. 
 
These decay timescales seem very short. The tracers dont look like they would 
reach equilibrium on O[50yr] timescales. Indeed given that there is still substantial 
drift at the end of the 500yr control, when you exclude the initial coupling shock 
the timescale for reaching steady conditions look to be much longer. 
 
I would like to see more detail on how you are fitting your drift model as it seems 
something is going wrong. 
 
The reviewer is right. We apologize for errors in reporting results of our computation. 
Fig R2 presents the fit of the drift model at three depth levels. For this Figure, we 
computed drift in oxygen RMSE over a time window of 100 years starting from model 
year 200 to model year 400 every 5 years. The simple drift model was fitted to the 
resulting drift estimates presented with black circles in Fig R2. 



Figure R2: Evaluation of a simple drift model to fit drift in O2 RMSE for time windows 
of 100 years starting every 5 years from year 200 to 400 as simulated by IPSL-CM5A-LR 
500-year-long spin-up simulation. Top: surface, middle 150m, bottom 2000m. 
 
 
The corrected relaxation times of drift in the oxygen field are 90, 564 and 1149 years at 
surface, 150 m, respectively 2000 m depth. 
We agree with the referee’s comment on the noise in the fit (below). Figure R2 clearly 
shows that there are substantial fluctuations in the drift across the spin-up simulation. To 
assess uncertainty in relaxation time, we repeated the analysis for time windows of 100, 
150, 200 and 250 years. Table R2 presents the relaxation time for oxygen RMSE for 
these time windows. 
 
Depth levels 100 years 150 years 200 years 250 years Mean±sd 
surface 90  200 126 40 114±67 
150 m 564  391 238 306 375±140 
2000 m  1149 590  895 1829 1116±527 
Table R2: Relaxation time estimated from the 500-year-long spin-up simulation 
performed with IPSL-CM5A-LR using a simple drift model and different time windows. 
 
We modified the subsection as follows. 
Original: 
“From these two metrics, the simple drift model (Equation 1) enables us to determine the 
relaxation time τ required to reach equilibration over the last century of spin-up 
simulation. The relaxation times for oxygen RMSE are about 4, 13 and 140 y at the 
surface 150 m and 2000 m, respectively.  Different values are derived for oxygen ∆σ with 



8, 7 and 46 y at surface, 150 and 2000 m, respectively. Values for other biogeochemical 
fields are quite similar to those for O2 except for NO3 at 150 m. This contrasting result 
between the two skill score metrics expresses the fact that RMSE accounts for the total 
distance between modeled and observed oxygen distributions, while ∆σ considers solely 
the difference in spatial structure between model fields and observations.  This shows 
that the time scale for equilibration of spatial structure is not necessarily the same as the 
drift.“ 
Revised: 
“3-5 Drifts in IPSL-CM5A-LR spin-up simulation 
With the evolution of the RMSE established, we can use the simple drift model (Equation 
1) to determine the relaxation time, τ, required to reach equilibration after a longer of 
spin-up simulation. To use this simple drift model, we compute the drift in RMSE 
determined from time segments of 100 years distributed evenly every 5 years from year 
250 to 500 for O2, NO3 and Alk-DIC tracers. The drift model (magenta lines in Figure 8) 
is fitted level to the 80 drift values for each field and each depth (colored crosses in 
Figure 8). 
The simple drift model fits well the evolution of the drift in RMSE for the biogeochemical 
variables along the spin-up simulation of IPSL-CM5A-LR (Figure 8). Correlation 
coefficients are mostly significant at 90% confidence level (r*=0.14 determined with a 
student distribution with significance level of 90% and 80 degrees of freedom), except for 
NO3 at surface and Alk-DIC at 150 m. Another exception is found for NO3 at 150 m 
where the drift does not correspond to an exponential decay of the drift as function of 
time. The large confidence interval of the fit indicates that the fit would have been 
considered as non-significant given a longer spin-up simulation or a higher confidence 
threshold. 
When significant, estimates of τ  for O2 RMSE are ≈ 90, 564 and 1149 y at the surface 
150 m and 2000 m, respectively. These values match reasonably well τ estimated for NO3 
RMSE at 2000 m (1130 y) and those for Alk-DIC RMSE at surface and 2000 m (137 and 
1163 y). However, these estimates are sensitive to the time windows used to compute the 
drift. For a subset of time windows between 100 and 250 years by step of 50 years, 
τ estimates for O2 RMSE are ≈ 114±67, 375±140 and 1116±527 y at the surface 150 m 
and 2000 m depth. These large uncertainties associated with τ estimates are essentially 
due to the length of the spin-up simulation. A longer spin-up simulation would improve 
the quality of the fit (see Figure S1).” 
 
We added Figure S1 to the supplementary materials to show how the fit is sensitive to the 
time-window. Estimates of the relaxation time are quite similar when using a time-
window greater than 80 years. Below this threshold, the quality of the fit is significantly 
reduced (R<0.3)  
 
 
…across depth over the first century of simulation for each ESM … 
Given that the minimum control is 250yrs I don’t see why you would only consider 
100ys to obtain your drift estimate. The shorter the time period the more likely it is 
that you are aliasing low frequency natural variability. Indeed you are assuming that 
the drift follows an exponential model so why wouldn’t you use the full control run 
to estimate the decay timescale? 



At the very least I would like to see error bars on the drift estimates based on the rest 
of the control runs (the full period should be subject to the same drift timescale, if 
your model is appropriate) 
  
We thank the referee for his/her thoughtful comment. Accordingly, we re-run the analysis 
for the different CMIP5 models using the full available control simulation and a time 
window of 100 years. We modified Figure 8 which now presents this new computation 
and includes error bars for each model drift. 
We removed the fit performed with the IPSL spin-up simulation from the Figure 9 
(previous Fig. 8), acknowledging that extrapolation IPSL drift up to 11900 years is 
subject to large uncertainties. We have nonetheless included results of the drift 
computation performed with this simulation in the Figure to strengthen our conclusions. 
They are represented in magenta cross over the available period (1 to 500 model year). 
 
8771:  
… between the drift in RMSE and the spin--‐up duration.  
The relationship is with the log of the spin up time 
 
Please see response below 
 
fall outside the 90% … 
Do you mean ‘below’ not outside 
 
Please refer to text changes presented below. 
 
This low significance level must be put into perspective given the large diversity of 
spin--‐ up protocols and initial conditions (Fig. 1 and Table 1) that can deteriorate the 
drift--‐spin up duration relationship in this ensemble of models. 
In addition you are unlikely to find the same drift rates in different models anyway 
 
Please see the modification of the text below. 
 
extrapolated over the 250–11900 spin--‐up duration range 
This is a massive extrapolation. I would like to see the raw data this is based on 
displayed on the graph as I suspect the drift estimates from the 100yr chunks are 
very noisy 
 
You might also consider doing this analysis for all depths (and plotting R vs depth) 
to see how robust the relationship is, although I appreciate that this might be a big 
task given all the data required 
 
As mentioned above, we have removed the extrapolation from the original version of 
Figure 8. Besides, we have introduced a new subsection in the revised manuscript with 
new Figures. Previous section 3.4 and 3.5 are now splitted in 3.4 3.5 and 3.6. Major 
changes are presented below. 



Please note that a new Figure has been introduced as Figure 8 (see modification below). 
Therefore, the Figure 8 of the submitted manuscript now becomes Figure 9 in the revised 
manuscript. 
 
“3-5 Drifts in IPSL-CM5A-LR spin-up simulation 
With the evolution of the RMSE established, we can use the simple drift model (Equation 
1) to determine the relaxation time, τ, required to reach equilibration after a longer of 
spin-up simulation. To use this simple drift model, we compute the drift in RMSE 
determined from time segments of 100 years distributed evenly every 5 years from year 
250 to 500 for O2, NO3 and Alk-DIC tracers. The drift model (magenta lines in Figure 8) 
is fitted level to the 80 drift values for each field and each depth (colored crosses in 
Figure 8). 
The simple drift model fits well the evolution of the drift in RMSE for the biogeochemical 
variables along the spin-up simulation of IPSL-CM5A-LR (Figure 8). Correlation 
coefficients are mostly significant at 90% confidence level (r*=0.14 determined with a 
student distribution with significance level of 90% and 80 degrees of freedom), except for 
NO3 at surface and Alk-DIC at 150 m. Another exception is found for NO3 at 150 m where 
the drift does not correspond to an exponential decay of the drift as function of time. The 
large confidence interval of the fit indicates that the fit would have been considered as 
non-significant given a longer spin-up simulation or a higher confidence threshold. 
When significant, estimates of τ  for O2 RMSE are ≈ 90, 564 and 1149 y at the surface 
150 m and 2000 m, respectively. These values match reasonably well τ estimated for NO3 
RMSE at 2000 m (1130 y) and those for Alk-DIC RMSE at surface and 2000 m (137 and 
1163 y). However, these estimates are sensitive to the time windows used to compute the 
drift. For a subset of time windows between 100 and 250 years by step of 50 years, 
τ estimates for O2 RMSE are ≈ 114±67, 375±140 and 1116±527 y at the surface 150 m 
and 2000 m depth. These large uncertainties associated with τ estimates are essentially 
due to the length of the spin-up simulation. A longer spin-up simulation would improve 
the quality of the fit (see Figure S1). 
 
3-6 Drifts in CMIP5 ESMs preindustrial simulations 
In this subsection, the analysis is extended to the CMIP5 archive. We focus on oxygen 
fields in the long preindustrial simulation, piControl, for the 15 available CMIP5 ESMs. 
From these simulations that span from 250 to 1000 years, we compute the drift in O2 
RMSE across depth from several time segments of 100 years distributed evenly every 5 
years from the beginning until the end of the piControl simulation. These drifts are used 
as a surrogate for drift computed from the spin-up of each model since such simulations 
are not available through the data portal.  
Figure 9 represents the drift in O2 RMSE versus the spin-up duration for each CMIP5 
ESM. The analysis shows that the drift in O2 RMSE differs substantially between models. 
For a given model, drifts in other biogeochemical tracers (NO3 and Alk-DIC) display 
similar features (not shown). The between-model differences in drift are not surprising 
since there are no reasons for different models to exhibit similar drift for a given field. 
Yet, Figure 9 shows that a global relationship emerges from this ensemble when using the 
simple drift model to fit the drift in O2 RMSE as function of the spin-up duration (solid 
green lines in Figure 9). With a 90% confidence level, this relationship suggests a 



general decrease of the drift as a function of spin-up duration for all depth levels. At the 
surface and at 2000 m depth, the quality of fits is low with correlation coefficients of 
about  ~0.4. These are however significant at 90% confidence level (r*=0.34 determined 
with a student distribution with significance level of 90% and 15 models as degree of 
freedom). The weakest correlation coefficient is found for the fit at 150 m depth and 
hence indicating that there is no link between the drift in O2 RMSE and the duration of the 
spin-up simulation. This low significance level must be put into perspective given the 
large diversity of spin-up protocols and initial conditions (Figure 1 and Table 1) that can 
deteriorate the drift-spin up duration relationship in this ensemble of models. 
The drift versus spin up duration relationship established from the 15 CMIP5 ESMs is 
nonetheless consistent with the results obtained with IPSL-CM5A-LR (The results in 
Figure 8 have been reported in Figure 9 with magenta crosses). Consistency is indicated 
by the sign of the drift versus spin up duration relationship of the IPSL-CM5A-LR model 
at the various depth levels, although their magnitudes differ. This difference in magnitude 
is not surprising if one considers that drift is highly model and protocol dependent and 
that the length of the IPSL-CM5A-LR spin-up simulation is potentially too short to 
determine accurate estimates of the long-term drift in O2 RMSE. Despite these 
differences, our analyses show that a relationship between the drift in O2 RMSE versus 
the spin-up duration emerges from an ensemble of models and is broadly consistent with 
our theoretical framework of a drift model established from the results of the IPSL-
CM5A-LR model (Figure 8).” 
 
8773: 
We employ ∆RMSE to penalize the normalized distance … 
Im not really clear what has been done here. Is the following correct? 
1. You have taken the RMSE for the mean 1985-2005 historical period 
relative to available observations 
2. You then calculate the drift timescale for each model based on the first 
100yrs of picontrol 
3. You then calculate the additional RMSE you would expect for a further 
3000 years worth of integration and add it to the original RMSE. 
 
Correct. 
 
If so, some problems I see with this: 
1. It assumes that 100yrs from the picontrol is sufficient to get an accurate estimate 
of the drift. 
2. It assumes that the drift at the start of the control is representative of the 
1985-2000 period. This depends on when the historical simulation was 
branched off the control. 
 
The referee is right.  
In the revised version of the manuscript, we updated the different computations taking 
into account the referee’s comments. In particular, we accounted for uncertainties 
associated with the long-term drift estimate and those due to the different starting dates of 
the historical hindcast. 



In the revised version, we now use  
(1) The average of several drift estimates computed over a time window of 100 years 
from year 1 to the end of the preindustrial simulation every 5 years. 
(2) The ensemble-mean of all historical hindcast members (over 1986-2005). 
We preferred this approach rather than computing a single drift estimate from the full 
control simulation (since this latter is not equal between models). 
We updated Figure 9 (now Figure 10 in the revised manuscript) accordingly of the 
manuscript and we have amended the text as follows. 
Original: 
“To assess the impact of model drift inherited from the diversity of spin-up strategies 
(Figure 1 and Table 1) on model performance metrics, the incremental deviation due to 
drift in biogeochemical fields is estimated from the simple drift model (Equation 1). The 
incremental deviation, ∆RMSE, is computed using the relaxation time τ determined from 
the piControl simulations of each CMIP5 model (Figure 8) and a common duration of 
T=3000 years for all models: 

 (2) 

where ∆RMSE has the same unit as RMSE. The common duration T is used to bring 
model drift close to zero and hence to make models comparable to each other. 
We employ ∆RMSE to penalize the normalized distance from the observations assuming 
that this drift-induced deviation in tracer fields can be added to RMSE. This means that 
the effect of the penalty is to increase the normalized distance giving a consistent 
measure of the equilibration error.” 
Revised: 
“To assess the impact of model drift inherited from the diversity of spin-up strategies 
(Figure 1 and Table 1) on the performance metrics, we use a simple additive assumption 
to incorporate an incremental error due to the drift, ∆RMSE, to the above-mentioned 
RMSE. This incremental error due to the drift is computed using the relaxation time 
τ determined from the piControl simulations of each CMIP5 model at each depth level 
(Equation 1 and Figure 9) and a common duration of T=3000 years for all models (m): 

 (2) 

where ∆RMSE has the same unit as RMSE.  
The common duration T is used to bring model drift close to zero and hence to make 
models comparable to each other. 
We employ ∆RMSE to penalize the distance from the observations assuming that this 
drift-induced deviation in tracer fields can be added to RMSE. This means that the effect 
of the penalty is to increase the distance giving a consistent measure of the equilibration 
error.“ 
 
In addition to this modification, we extended the discussion of our approach in a new 
subsection : 
“4-4 Limitations of the framework 
In this work, the analyses focus on the globally averaged O2 RMSE across a diverse 
ensemble of CMIP5 models, which differ in terms of represented processes, spatial 



resolution and performance in addition to differences in spin-up protocols. Major 
limitations of the framework are presented below. 
Due to their specificities in terms of processes and resolution (e.g., Cabré et al., (2015), 
Laufkötter et al. (2015)), regional drift in CMIP5 models may differ from the drift 
computed from globally averaged skill-score metrics (see Figure S2 and S3). These 
differences may lead to different estimates of the relaxation time τ at regional scale. 
Moreover, the combination of regional ocean physics and biogeochemical processes in 
each individual model may drive an evolution of regional drift in RMSE that does not fit 
the hypothesis of an exponential decay of the drift during the course of the spin-up 
simulation.  
The above-mentioned remark can explain the relatively low confidence level of the fit to 
drift across the multi-model CMIP5 ensemble (Figure 9). The relatively low significance 
level of the fit directly reflects not only the large diversity of spin-up protocols and initial 
conditions (Figure 1 and Table 1) but also the large diversity of processes and resolution 
of the CMIP5 models.  An improved derivation of the penalization would require access 
to output from spin-up simulations for each individual model or, at least, a better 
quantification of model-model differences in terms of initial conditions.  
Finally, it is unlikely that model fields drift at the same rate along the spin-up simulation, 
even under the same spin-up protocols. Indeed, as shown in Kriest and Oschlies (2015), 
various parameterizations of the particles sinking speeds in a common physical 
framework may lead to a similar evolution of the globally averaged RMSE in the first 
century of the spin-up simulation but display very different behaviour within a time-scale 
of O(103) years. As such, drift and τ estimates need to be used with caution when 
computed from short spin-up simulation because they can be subject to large 
uncertainties.” 
 
(i.e., CMCC--‐CESM, IPSL--‐CM5B--‐LR, NorESM1--‐ME, CNRM--‐CM5) 
what about the GFDL ESM2M? 
 
Our focus is on the identification of main patterns, rather than on the description of 
individual models. We nevertheless added a sentence specific to GFDL ESM2: 
“The ranking of GFDL-ESM2G and GFDL-ESM2M slightly evolves with penalization 
but both models stay close to the ensemble median and ensemble mean.” 
 
8774: 
… errors in ocean biogeochemical fields amplify and propagate… 
not sure what you mean by propogate in this context 
 
 
We removed the word ‘propagate’ from the revised manuscript. 
 
Mignot et al. (2013) with the same model simulation showed that the large--‐scale 
ocean circulation reaches quasi--‐equilibrium after 250 years of spin--‐up, but our 
analyzes indicate that biogeochemical tracers do not … 
But all the characteristic timescales you have calculated are <150yrs. This does 
not match with your assertions of long equilibrium times 
 



As mentioned above, we have corrected the relaxation time in the revised 
manuscript. Except at surface, subsurface and deep ocean relaxation times are 
greater than 150 years.  
 
8777: that have drifted further away from their initial states … 
This doesn’t seem to be true always. Examination of Fig 3 shows that in many cases 
the initial coupling shock is in the opposite direction to the long term drift. Eg in 3e, 
NO3 is almost back to its initial state after the spin up period 
 
In the ideal case of a model perfectly reproducing all the processes occurring in the real 
world (which is not the case), the model field will fit the observed field some time after 
the initial coupling shock (years to thousand of years). 
Figure 9 abc confirms that none of the CMIP5 model represents an ideal case since none 
of them displays an RMSE close to zero for oxygen fields.  
However, we acknowledge that a 500-year-long spin-up simulation might be too short to 
accurately determine the long-term drift of the model. The use of output from the spin-up 
simulations performed for CMIP5 would have provided a solution to the problem, but 
these have not been archived. We included further discussion on the limitation of our 
framework in the revised manuscript. 
 
 
Swart and Fyfe (2011) 
I’m not sure about the relevance of this study here - please explain 
 
We removed this sentence from the text and the reference list. 
 
8778: 
One issue is that the penalization relates to what the model state will look like 
around the time of full equilibration. However the transient (historical/RCP) runs 
are potentially done when the model state is closer to the initial observed state 
than the final equilibrium state. As such the transient response to greenhouse 
forcing may be more correct (even if the model is going to keep drifting). In the 
end the scores are there to help identify the models that produce the most realistic 
projections 
 
This is not always true. Indeed Figure 1 indicates that several CMIP5 modelling 
groups have used previous simulations to initialize their model, some others have 
used mixed sources of initialization (both models and observations).  
Nonetheless, we agree with the referee that drift in model field are one or two order 
of magnitude smaller than the climate change trends. This is why we emphasize the 
fact that our penalization approach does not totally turn upside down model 
standard ranking (i.e., done with standard RMSE over the historical period). 
Besides, we have already mentioned this point in the submitted manuscript: 
“The drift of 0.001 Pg C y-2 is, however, much smaller than the oceanic sink for 
anthropogenic carbon. Even if not fully equilibrated in terms of carbon balance, it is 



likely that this run would have given consistent estimates of anthropogenic carbon 
uptake in transient historical hindcasts.” 
 
The low confidence level of the fit to drift … 
Where in your analysis do you demonstrate this low confidence? 
 
Please see the response below. 
 
The impact of this penalization approach on model ranking calls for the consideration 
of spin--‐up and initialization strategies in the determination of skill assessment 
metrics… 
I don’t follow this. Your penalisation process doesn’t involve the spin up. It just 
requires an estimate of the drift which is estimated by looking at the control 
simulation. However I agree that it would be very useful to have more spin up 
information (including the spin up run output) as part of the available archive. 
 
In this section, we have discussed our results. 
First, we have highlighted the fact that the fit of our model is quite low. Even if, 
correlation coefficients are larger than zero with a 90% confidence interval at surface and 
2000m, there are substantial uncertainties on the drift estimates (shown in the revised 
Figure 8 with error bars). These uncertainties influence the confidence we can have on the 
fit of the exponential model. 
Next, we have attributed the large diversity in drift to both the protocols employed for 
spin-up and the initial condition (observations, models, mixing of both or constant 
values). These have to be considered to explain part of the model drift. As mentioned 
above, we introduce a new subsection “4-4 Limitations of this framework” where we 
further discuss the limitations and caveats of our approach. 
  
8779: 
CMIP7 … 
What happened to CMIP6? 
We have corrected this error. 
Yet, we acknowledge that CMIP6 has been omitted purposely since we (all of the co-
authors) that it is/was too late to agree on a common set of spin-up protocol for CMIP6. 
 
agree on a set of recommendations for initialization, spin--‐up protocols and 
duration  
I’m not sure that it makes sense to have a common duration as different models 
drift at different rates 
We understand the referee’s point of view. Therefore, we have simplified the 
message with “the community should agree on a set of simple recommendations for 
spin-up protocols”. Yet, we could agree that drift is a direct metrics of model 
performance. Consequently, a common set of recommendations including the 
duration of the spin-up simulation should contribute to valuable information for 
model assessment protocols. This suggestion needs further discussion and, of 
course, to be tested in a forthcoming study 
 



 
Referee #2 (F. Joos) 
 
This is a nice and timely paper that addresses an important issue – model drift. It reflects 
the authors’ broad knowledge in the field of coupled modelling. The authors show that 
short spin-up simulations initialized with observations lead to a too optimistic error 
statistic and biases model ranking. The authors also make proposal how model drift may 
be accounted for in future model assessments. This is an important and original 
contribution to the field. 
I recommend publication after the following comments have been addressed 
 
We appreciate the thoughtful suggestions from F. Joos. We incorporated most of the 
suggestions in the revised manuscript. 
 
1) I am concerned about the way the drift model is presented and introduced and that the 
drift model may be used inappropriately in future work. The authors apply an exponential 
model with a single relaxation time scale to approximate the evolution of drift. However, 
the application of a single time scale is most likely not appropriate to determine the drift 
in whole ocean RMSE or other global error statistics. For example, this is implicitly 
demonstrated by the results in section 3.5 where the authors apply the drift models for 
different depth levels individually and show that time scales are different between depth 
levels. 
In my opinion, the following point should be made very clear in this manuscript and in 
the method, results and discussion/conclusion section: different relaxation time scales 
apply for different regions (and variables). This requires that the drift in RMSE and other 
metrics is to be determined for different regions or even for different grid boxes 
individually before the drift in RMSE for the whole ocean is to be determined. In this 
way, multiple time scales would be applied to estimate the evolution of whole ocean 
RMSE and to correct error statistics for drift. 
 
Please see our response below. 
 
2) I am not convinced that selecting depth levels as regions is a good approach. For 
example, drift at 2000 m in the well-ventilated North Atlantic Deep Water may be quite 
different from drift in the slowly ventilated North Pacific. It would be illustrative to 
compute the relaxation time scale, tau, individually for each grid cell and plot tau along 
sections in the Atlantic, Pacific and Indian (or similar). A grid-cell based approach is 
generally also applied when removing model drift from projections by using a control 
simulation. Computing tau for individual grid cells would be comparable with such an 
approach. 
 
We agree with F. Joos and his comments are addressed in the revised manuscript by 
adding in a new subsection “4.4 Limitations of the framework” and including 
corresponding results to the supplementary material. At the scale of individual grid cells, 
drift displays a large temporal and spatial variability. The larger variability reflects the 
mismatch between model output and observations, i.e. model fields vary on inter-annual 



to decadal timescales, while observations are climatological means based on sparse 
observations. A similar problem arises when analyzing temporal trends and requires to be 
solved using either longer time series or smoothing procedures. Extending the analysis of 
drift to basin-scale improves the signal-to-noise ratio and facilitates the determination of 
drift without smoothing procedure. 
The preceding is addressed in a new subsection: 
“4-4 Limitations of the framework 
In this work, the analyses focus on the globally averaged O2 RMSE across a diverse 
ensemble of CMIP5 models, which differ in terms of represented processes, spatial 
resolution and performance in addition to differences in spin-up protocols. Major 
limitations of the framework are presented below. 
Due to their specificities in terms of processes and resolution (e.g., Cabré et al., (2015), 
Laufkötter et al. (2015)), regional drift in CMIP5 models may differ from the drift 
computed from globally averaged skill-score metrics (see Figure S2 and S3). These 
differences may lead to different estimates of the relaxation time τ at regional scale. 
Moreover, the combination of regional ocean physics and biogeochemical processes in 
each individual model may drive an evolution of regional drift in RMSE that does not fit 
the hypothesis of an exponential decay of the drift during the course of the spin-up 
simulation.  
The above-mentioned remark can explain the relatively low confidence level of the fit to 
drift across the multi-model CMIP5 ensemble (Figure 9). The relatively low significance 
level of the fit directly reflects not only the large diversity of spin-up protocols and initial 
conditions (Figure 1 and Table 1) but also the large diversity of processes and resolution 
of the CMIP5 models.  An improved derivation of the penalization would require access 
to output from spin-up simulations for each individual model or, at least, a better 
quantification of model-model differences in terms of initial conditions.  
Finally, it is unlikely that model fields drift at the same rate along the spin-up simulation, 
even under the same spin-up protocols. Indeed, as shown in Kriest and Oschlies (2015), 
various parameterizations of the particles sinking speeds in a common physical 
framework may lead to a similar evolution of the globally averaged RMSE in the first 
century of the spin-up simulation but display very different behaviour within a time-scale 
of O(103) years. As such, drift and τ estimates need to be used with caution when 
computed from short spin-up simulation because they can be subject to large 
uncertainties.” 
 
The discussion of limitations is supported by two new supplementary Figures: 
- Figure S2 presents the sensitivity of the drift profile computed either from global-
averaged RMSE or form 3D RMSE. The figure suggests that while the approach selected 
for computing global drift might impact its magnitude, the general form of vertical 
profiles appears robust. 
- Figure S3 presents basin-scale drift in O2 RMSE and its structure for the ensemble of 
CMIP5 models. The results are broadly consistent with the outcome of the penalization 
approach (Figure 10) with models displaying the largest drift having the greatest 
penalization. 
 
 



Further comments: 
——————— 
1) A sufficiently long spin up over several hundred years is a prerequisite to estimate drift 
in error statistics and other variables. (High-resolution) models that are initialized with 
observed fields and not spun-up over several centuries very likely suffer from serious 
drift problems. It may be very difficult to estimate the future evolution of the drift from a 
short spin-up. This should be mentioned explicitly in the manuscript. (May be this could 
even be quantitatively illustrated by estimating relaxation time scales from an initial 
period, e.g., first 50 or 100 yr as compared to time scales from the last 100 year of the 
simulation as already presented for three different depth levels.) 
 
As mentioned above, we have introduced a new subsection in the revised version of the 
manuscript in which we further discussed the limitation of our approach. One of the 
limitations is of course the duration of the spin-up simulation employed to determine the 
drift. 
It is worth mentioning that the scope of the study emphasizes the impact of drift on skill-
score assessment and not the assessment time required, for each CMIP5 models, to reach 
a quasi-steady-state equilibrium.  
 
2) The authors may also note that rate of drifts (e.g. in the surface) may increase when the 
mode of model operation is changed, e.g. from prescribed atmospheric CO2 to freely 
simulated atmospheric CO2. 
 
We agree with F. Joos. But this point was already mentioned in the submitted version of 
the manuscript: 
“These developments will go along with an increase in the diversity and complexity of 
spin-up protocols applied to Earth system models, especially those including an 
interactive atmospheric CO2 or interactive nitrogen cycle (Dunne et al., 2013; Lindsay et 
al., 2014). The additional challenge of spinning-up emission-driven simulations with 
interactive carbon cycle will also require us to extend the assessment of the impact of 
spin-up protocols to the terrestrial carbon cycle. Processes such as soil carbon 
accumulation, peat formation as well as shift in biomes such as tropical and boreal 
ecosystems for dynamic vegetation models require several long time-scales to equilibrate 
(Brovkin et al., 2010; Koven et al., 2015).” 
 
 
3) The authors do hardly evaluate the validity of their exponential model. It would be 
nice if this model could be validated, e.g. in the context of a millennium long control 
simulation or similar? 
 
An important part of the analysis was dedicated to the evaluation of the simple drift 
model. However, we did not present any material to support its reliability in the 
submitted version of the manuscript. Consequently, in agreement with F. Joos suggestion, 
we included the assessment of our simple drift model with a long millennial-scale control 
simulation of IPSL-CM5A-LR. The result of this assessment is presented in Figure S1. 



In response to a suggestion by reviewer 1, Figure S1 shows sensitivity tests on the length 
of the time-window to compute the drift in O2 RMSE. It supports the fact that long time 
series are required to accurately estimate the time of relaxation (R<0.3 with a time-
window < 80 years). 
 
Sec 3.6: It is not entirely clear whether the same time scale is applied here across all 
models considered. Please make this clear. It is also not clear whether different time 
scales are used for different depth levels. Please clarify. 
 
We apologize for the lack of clarity. Pending on your comments and those of reviewer 1, 
we have amended the following section. 
Original: 
“To assess the impact of model drift inherited from the diversity of spin-up strategies 
(Figure 1 and Table 1) on model performance metrics, the incremental deviation due to 
drift in biogeochemical fields is estimated from the simple drift model (Equation 1). The 
incremental deviation, ∆RMSE, is computed using the relaxation time τ determined from 
the piControl simulations of each CMIP5 model (Figure 8) and a common duration of 
T=3000 years for all models: 

 (2) 

where ∆RMSE has the same unit as RMSE. The common duration T is used to bring 
model drift close to zero and hence to make models comparable to each other. 
We employ ∆RMSE to penalize the normalized distance from the observations assuming 
that this drift-induced deviation in tracer fields can be added to RMSE. This means that 
the effect of the penalty is to increase the normalized distance giving a consistent 
measure of the equilibration error.” 
Revised: 
“To assess the impact of model drift inherited from the diversity of spin-up strategies 
(Figure 1 and Table 1) on the performance metrics, we use a simple additive assumption 
to incorporate an incremental error due to the drift, ∆RMSE, to the above-mentioned 
RMSE. This incremental error due to the drift is computed using the relaxation time 
τ determined from the piControl simulations of each CMIP5 model at each depth level 
(Equation 1 and Figure 9) and a common duration of T=3000 years for all models (m): 

 (2) 

where ∆RMSE has the same unit as RMSE.  
The common duration T is used to bring model drift close to zero and hence to make 
models comparable to each other. 
We employ ∆RMSE to penalize the distance from the observations assuming that this 
drift-induced deviation in tracer fields can be added to RMSE. This means that the effect 
of the penalty is to increase the distance giving a consistent measure of the equilibration 
error.“ 
 



Sec 3.2: I am somewhat confused here about the role of river outgassing. The clarity of 
the text should be increased. It is not readily clear whether the model should actually 
achieve a flux of 0 GtC/yr or an outgassing of ~0.4 to 0.6 GtC/yr at equilibrium. 
 
Reviewer #1 also critized the lack of clarity of this section. To improve its readability and 
to clarify our computation, we modified this subsection as follows. 
Original: 
“The temporal evolution of sea-to-air CO2 fluxes was used in phase 2 of the Ocean 
Carbon Model Intercomparison Project (OCMIP-2, (Orr, 2002)) as an equilibration 
metric for the marine biogeochemistry and was still widely used during CMIP5. Figure 
2b presents its evolution in the 500-year long spin-up simulation. The global ocean sea-
to-air CO2 flux is ~-0.7 Pg C y-1 over the last decades of the spin-up simulation (negative 
values indicate ocean CO2 uptake). The global sea-to-air carbon flux does not fit the 
range of values estimated from preindustrial natural ocean carbon flux inversions (e.g. 
(Gerber and Joos, 2010) or (Mikaloff Fletcher et al., 2007), referred to as MF2007 on 
Figure 2), which amounts to 0.03 ± 0.08 Pg C y-1 (to which an open-ocean river-induced 
carbon outgassing of 0.45 Pg C y-1 has to be added on Figure 2 accordingly to (IPCC, 
2013; Le Quéré et al., 2015). This indicates that the ocean carbon cycle has not reached 
a steady state in the model system following the 500 years of integration.  
Figure 2b also shows that the drift in the global sea-to-air carbon flux reduces slowly 
after the first 50 years of the spin-up simulation. While this drift is about 0.001 Pg C y-2 
from year 250 to 500, it is much weaker over the last century of the simulation (5x10-4 Pg 
C y-2).  Using an approximate relaxation time of 73 years estimated from the simple drift 
model (Equation 1) over years 250-500 and the drift of 0.001 Pg C y-2, we find that the 
simulated sea-to-air carbon flux would reach a steady state after ~500 supplemental 
years of spin-up. After the additional 500 supplemental years of spin-up, sea-air carbon 
flux would fall into the range of inverse estimates of MF2007 with accounting for 
outgassing of river carbon of 0.45 Pg C y-1. This estimate does not account for the non-
linearity of the ocean carbon cycle and the associated process uncertainties (Schwinger 
et al., 2014). This estimation potentially underestimates the time required to equilibrate 
the ocean carbon cycle and sea-to-air carbon fluxes in the range of inversion estimates. 
The duration of the spin-up simulation would have to be increased by an additional 500 
years to account for the estimated river-induced natural CO2 outgassing of about 0.45 Pg 
C y-1 (IPCC, 2013). The drift of 0.001 Pg C y-2 is, however, much smaller than the 
oceanic sink for anthropogenic carbon. Even if not fully equilibrated in terms of carbon 
balance, it is likely that this run would have given consistent estimates of anthropogenic 
carbon uptake in transient historical hindcasts.“ 
Revised: 
“The temporal evolution of sea-to-air CO2 fluxes was used in phase 2 of the Ocean 
Carbon Model Intercomparison Project (OCMIP-2, Orr (2002)) as an equilibration 
metric for the marine biogeochemistry and was still widely used during CMIP5. Figure 
2b presents its evolution in the 500-year long spin-up simulation. The global ocean sea-
to-air CO2 flux is ~-0.7 Pg C y-1 over the last decades of the spin-up simulation (negative 
values indicate ocean CO2 uptake).  
To assess the global sea-to-air carbon flux, we use the range of values estimated from 
preindustrial natural ocean carbon flux inversions (e.g. Gerber and Joos (2010) or 
Mikaloff Fletcher et al. (2007)). Since, these estimates do not account for the 
preindustrial carbon outgassing induced by the river input, while our model does, we 
have added a constant outgassing of 0.45 Pg C y-1 to the range of 0.03 ± 0.08 Pg C y-1 
(Mikaloff Fletcher et al. 2007). This value of 0.45 Pg C y-1 corresponds to the global 
open-ocean river-induced carbon outgassing accordingly to IPCC (2013) or Le Quéré et 



al. (2015). Consequently, in our modeling framework, the target value of the global sea-
to-air carbon flux ranges between 0.4 and 0.56 Pg C y-1. 
Figure 2b shows that the global sea-to-air carbon flux does not fit our range of values 
estimated from preindustrial natural ocean carbon flux inversions. Besides, Figure 2b 
shows that the drift in the global sea-to-air carbon flux reduces more slowly after  a 
strong decline during the first 50 years of the spin-up simulation. While this drift is about 
0.001 Pg C y-2 from year 250 to 500, it is weaker over the last century of the simulation 
(7x10-4 Pg C y-2). Using a linear fit over the last century of the simulation with a drift of 
7x10-4 Pg C y-2, we estimate that the simulated sea-to-air carbon flux would reach the 
range of 0.4-0.56 Pg C y-1 after 1100 to 1300 supplemental years of spin-up simulation. 
Our simple drift model (Equation 1) gives a relaxation time of around 160 years, which 
indicates that drift in ocean carbon flux should range between 2x10-7 and 7x10-7 Pg C y-2 
after this 1100 to 1300 supplemental years of spin-up simulation.” 
 
8767, line 17: additional compared to what? 
Please refer to the modification of the text above. 
 
8778 line 24: conclusion: Is it sufficient to report the drift in global RMSE? Perhaps this 
clause should be deleted or refined 
This section has been amended as follows. 
Original: 
“Skill-score metrics are expected to be widely used in the framework of the future CMIP6 
(Meehl et al., 2014) with the development of international community benchmarking tools 
like the ESMValTool (http://www.pa.op.dlr.de/ESMValTool (Eyring et al., 2015)). The 
assessment of model skill to reproduce observations will focus on the modern period. In 
order to increase the reliability of these traditional metrics, additional metrics that allow 
us to determine the equilibrium state of the model like the 3-dimensional growth rate or 
drift of relevant skill score metrics (e.g., RMSE) over the last decades or centuries of the 
spin-up, should be included in the set of standard assessment tools for CMIP6.” 
Revised: 
“Skill-score metrics are expected to be widely used in the framework of the future CMIP6 
(Meehl et al., 2014) with the development of international community benchmarking tools 
like the ESMValTool (http://www.pa.op.dlr.de/ESMValTool (Eyring et al., 2015)). The 
assessment of model skill to reproduce observations will focus on the modern period. 
Complementary to this approach, our results call for the consideration of spin-up and 
initialization strategies in the determination of skill assessment metrics (Friedrichs et al., 
2009; Stow et al., 2009) and, by extension, to model weighting (Steinacher et al., 2010) 
and model ranking (Anav et al., 2013). Indeed, the use of equilibrium-state metrics of the 
model like the 3-dimensional growth rate or drift of relevant skill score metrics (e.g. 
RMSE) could be employed to increase the reliability of these traditional metrics and, as 
such, should be included in the set of standard assessment tools for CMIP6.” 
 

 
 
Referee #3 (I. Kriest) 
This paper examines the impact of different initialization procedures and spinup times in 
CMIP5 models, the resulting drift, and its impact on model skill assessement. I am 



delighted to see that finally the issue of spinup times and drift is addressed 
comprehensively for the CMIP5 model suite. However, I have two concerns or 
comments, that I think should be kept in mind, and a few minor issues. 
 
We appreciate I. Kriest careful reading. We included most of her suggestions and 
corrections in the revised version of the manuscript. 
 
(1) As far as I understand, the core model experiment, IPSL-CM5A-LR, was spun up 
from rest for 500 years. I am aware that it is sometimes quite expensive - in terms of 
computational cost - to simulate global or earth system models over a long time. 
However, I am not quite sure that a spinup time of 500 years, as used for this experiment, 
is always sufficient to draw conclusions about the long-term model drift. As has been 
shown recently (Kriest and Oschlies, 2015; www.geosci-model-dev.net/8/2929/2015/), 
simulated global average oxygen, nitrate, or total fixed nitrogen can exhibit a non-linear 
trajectory over time, sometimes with inflection points within the first few centuries of 
spinup; i.e., the model drift may not only decrease or increase, but change its sign. In 
practice, it means that, due to the many timescales involved, a model that shows a bad fit 
and negative trend within the first few hundred years e.g., with respect to global average 
oxygen, may cease to do so after some more centuries, and finally show a quite good fit 
to observed oxygen after some millenia. 
 
We agree with the referee. In the revised version of the manuscript, we clearly stated that 
our 500-year-long spin-up simulation, as used for this study, is maybe too short to draw 
robust conclusions on the long-term drift. An ideal solution would have been to use 
output of the spin-up simulation performed in the context of CMIP5 but these latter have 
not been archived. This will be tested in a forthcoming study in the context of CMIP6 for 
which we hope some modeling groups will store output from the spin-up simulation. 
 
(2) The above doesn’t have to hold for all model types. It can depend on the 
biogeochemical time scales involved, i.e. on particle sinking speed or remineralization 
(Kriest and Oschlies, 2015), circulation, and probably other parameters as well. Given 
that the CMIP5 biogeochemical models involve a huge variety of these parameterizations 
(e.g., Cabre et al., 2015; www.biogeosciences.net/12/5429/2015/; Fig. 6), together with 
very different circulations, resolutions, etc., the time scales associated with model 
equilibration, as well as their transient may be very different, and not always follow 
linear relationships for the decay term. 
Therefore, I would suggest to include some discussion on this in the paper. Overall, 
nevertheless I think this paper gives a helpful and timely overview about potential 
limitations of model-model and model-data comparison of this suite of models. 
 
As mentioned above to the first referee and to F. Joos, we have amended the manuscript 
with the inclusion of this new subsection: 
“4-4 Limitations of the framework 
In this work, the analyses focus on the globally averaged O2 RMSE across a diverse 
ensemble of CMIP5 models, which differ in terms of represented processes, spatial 



resolution and performance in addition to differences in spin-up protocols. Major 
limitations of the framework are presented below. 
 
Due to their specificities in terms of processes and resolution (e.g., Cabré et al., (2015), 
Laufkötter et al. (2015)), regional drift in CMIP5 models may differ from the drift 
computed from globally averaged skill-score metrics (see Figure S2 and S3). These 
differences may lead to different estimates of the relaxation time τ at regional scale. 
Moreover, the combination of regional ocean physics and biogeochemical processes in 
each individual model may drive an evolution of regional drift in RMSE that does not fit 
the hypothesis of an exponential decay of the drift during the course of the spin-up 
simulation.  
 
The above-mentioned remark can explain the relatively low confidence level of the fit to 
drift across the multi-model CMIP5 ensemble (Figure 9). The relatively low significance 
level of the fit directly reflects not only the large diversity of spin-up protocols and initial 
conditions (Figure 1 and Table 1) but also the large diversity of processes and resolution 
of the CMIP5 models.  An improved derivation of the penalization would require access 
to output from spin-up simulations for each individual model or, at least, a better 
quantification of model-model differences in terms of initial conditions. 
  
Finally, it is unlikely that model fields drift at the same rate along the spin-up simulation, 
even under the same spin-up protocols. Indeed, as shown in Kriest and Oschlies (2015), 
various parameterizations of the particles sinking speeds in a common physical 
framework may lead to a similar evolution of the globally averaged RMSE in the first 
century of the spin-up simulation but display very different behaviour within a time-scale 
of O(103) years. As such, drift and τ estimates need to be used with caution when 
computed from short spin-up simulation because they can be subject to large 
uncertainties.” 
 
Other comments: 
 
p. 8760, line 27ff: "Oxygen is prognostically simulated using two different oxygen-to- 
carbon ratios, one for the oxic remineralization of matter and one for the sub-oxic path- 
way (Sarmiento and Gruber, 2006)." - It is not clear to me what is meant with "oxygen- 
to-carbon ratios": the ratio of organic matter, or of the process itself? If the latter, how 
can oxygen be used in sub-oxic pathways? If the former: doesn’t this imply that either 
oxygen or carbon is not conserved when switching between these processes? E.g. 
consider that - implicitly - organic matter built during photosynthesis has a composition 
according to Anderson (1995, Deep-Sea Res. I, 42(9), 1675-1680), with C:H:O:N:P = 
106:175:42:16:1. Of course, one usually does not describe OM in models exactly this 
way; but the assumption particularly about C:H:O (in some way: the amount of carbo- 
hydrates) is reflected in the stoichiometry for O2 release and CO2 consumption. If then 
the C:O-ratio of OM is different between remineralization and denitritification/anammox 
(whatever is considered), wouldn’t this affect mass conservation of either C or O? 
 
We apologize for this misleading information. We have amended the description of 



PISCES accordingly. 
Original: 
“Oxygen is prognostically simulated using two different oxygen-to-carbon ratios, one for 
the oxic remineralization of organic matter and one for the sub-oxic pathway (Sarmiento 
and Gruber, 2006).” 
Revised: 
“Oxygen is prognostically simulated. The model distinguishes between oxic and suboxic 
remineralization pathways, the former relying on oxygen as electron acceptor, the latter 
on nitrate.” 
 
Therefore the total amount of C and O is conserved in PISCES. 
 
p. 8763, subsection 2.3: I would suggest to more clearly define drift, to make this term 
more easily accessible for users outside the modeling or CMIP5 community. 
 
We refined the subsection describing the way we determine the drift. In addition, in the 
revised subsection, we briefly discuss the sensitivity to the time-window used to compute 
the drift. 
Original: 
“The drift is determined for either concentrations in simulated biogeochemical fields or 
for skill score metrics (e.g., RMSE or ∆σ) using a linear regression fit over a time 
window of 100 years. This time window of 100 years was chosen as a trade off between 
longer time window (>200 years) that smoothes the drift signal and shorter time window 
(<80 years) that introduces fluctuations due to internal variability.” 
Revised: 
“The drift is determined for either concentrations in simulated biogeochemical fields or 
for skill score metrics (e.g., RMSE) using a linear regression fit over a time window of 
100 years. This time window of 100 years was chosen as a trade off between a longer 
time window (>200 years) that smoothes the drift signal and a shorter time window 
(<100 years) that introduces fluctuations due to internal variability and hence impacting 
the quality of the fit (see the assessment performed with the millennial-long CMIP5 
piControl simulation of IPSL-CM5A-LR in Figure S1).” 
 
p. 8773, lines 10-11: "We employ ∆RMSE to penalize the normalized distance from the 
observations assuming that this drift-induced deviation in tracer fields can be added to 
RMSE. " - Why choose an additive model? 
 
We acknowledge that there is no justification to employ a simple additive model rather 
than a multiplicative model in our case. That said, we aimed at keeping our framework as 
simple as possible for this study.  
The additive approach is coherent with current ‘drift-correction’ approaches which are 
based on an additive hypothesis. As indicated in the submitted version of the manuscript: 
“So far, the most frequent approach relies on the use of long preindustrial control 
simulations to ‘remove’ the drift embedded in the simulated fields over the historical 
period or future projections (Bopp et al., 2013; Cocco et al., 2013; Friedlingstein et al., 
2006; 2013; Frölicher et al., 2014; Gehlen et al., 2014; Keller et al., 2014; Steinacher et 



al., 2010; Tjiputra et al., 2014). Although this approach allows to determine relative 
changes, it does not allow to investigate the underlying reasons of the spread between 
models in terms of processes, variability and response to climate change. The “drift-
correction” approach, much as the one used for this study, assumes that drift-induced 
errors in the simulated fields can be isolated from the signal of interest.” 
 
Testing the validity of both hypothesis (additive or multiplicative amplification of the 
errors) is not easy. We think that it would have required for example a large ensemble of 
historical simulations starting at various date of the spin-up, with an important 
computation cost. To our knowledge, this question remains an uncharted territory that 
would require further analyses to be answered. 
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Abstract 39 

During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) 40 

substantial efforts were made on the systematic assessment of the skill of Earth 41 

system models. One goal was to check how realistically representative marine 42 

biogeochemical tracer distributions could be reproduced by models. Mean-state 43 

assessments routinely compared model hindcasts to available modern biogeochemical 44 

observations. However, these assessments considered neither the extent of equilibrium 45 

in modeled biogeochemical reservoirs nor the sensitivity of model performance to 46 

initial conditions or to the spin-up protocols. Here, we explore how the large diversity 47 

in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models 48 
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(ESM) contribute to model-to-model differences in the simulated fields. We take 49 

advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the 50 

influence of the spin-up protocol on model ability to reproduce relevant data fields. 51 

Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is 52 

assessed as a function of spin-up duration. We demonstrate that a relationship 53 

between spin-up duration and assessment metrics emerges from our model results and 54 

is consistent when confronted against a larger ensemble of CMIP5 models. This 55 

shows that drift has implications on performance assessment in addition to possibly 56 

aliasing estimates of climate change impact. Our study suggests that differences in 57 

spin-up protocols could explain a substantial part of model disparities, constituting a 58 

source of model-to-model uncertainty. This requires more attention in future model 59 

intercomparison exercises in order to provide realistic ESM results on marine 60 

biogeochemistry and carbon cycle feedbacks. 61 

 62 

1- Introduction 63 

1-1 Context 64 

Earth system models (ESM) are recognized as the current state-of-the-art global 65 

coupled models used for climate research (e.g., Hajima et al., 2014; IPCC, 2013). 66 

They expand the numerical representation of the climate system used during the 4th 67 

IPCC assessment report (AR4) that was limited to coupled physical general 68 

circulation models, to the inclusion of biogeochemical and biophysical interactions 69 

between the physical climate system and the biosphere. ESMs that contributed to 70 

CMIP5 substantially differ in terms of their simulations of physical and 71 

biogeochemical components. These differences in design translate into a significant 72 

variability of the models’ ability to reproduce the observed biogeochemistry and 73 

roland seferian� 28/1/16 09:08

roland seferian� 26/1/16 14:07

Deleted: their 

Deleted: c



  4  4 

carbon cycle, which in turn may impact projected climate change responses (IPCC, 74 

2013). 75 

 76 

In the typical objective evaluation and intercomparison of these models, a suite of 77 

standardized statistical metrics (e.g., correlation, root-mean-squared errors) is applied 78 

to quantify differences between modeled and observed variables (e.g., Doney et al., 79 

2009; Rose et al., 2009; Stow et al., 2009; Romanou et al., 2014; 2015). With the goal 80 

of constraining future projections, statistical metrics are often used for model ranking 81 

(e.g., Anav et al., 2013), weighting of model projections (e.g., Steinacher et al., 2010) 82 

or selection of the most skillful models across a wider ensemble (e.g., Cox et al., 83 

2013; Massonnet et al., 2012; Wenzel et al., 2014). Most of these approaches can be 84 

considered as “blind” given that they are routinely applied without considering 85 

models’ specific characteristics and treat models a priori as equivalently independent 86 

of observations. However, since these models are typically initialized from 87 

observations, the spin-up procedure of climate variables are the most model-88 

dependent protocols that could introduce errors or drifts in modeled fields with 89 

consequences on skill score metrics.  90 

 91 

1-2 Initialization of biogeochemical fields and spin-up protocols in CMIP5 92 

Ocean initialization protocols aim at obtaining stable and equilibrated distributions of 93 

model state variables, such as temperature or concentrations of dissolved tracers. Most 94 

commonly used initialization protocols consist of initializing both physical and 95 

biogeochemical variables with either climatologies of the observed fields or constant 96 

values before running the model to equilibrium. In theory, equilibrium corresponds to 97 

steady-state and, hence, temporal derivatives of tracer fields close to zero. The time 98 
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needed to equilibrate tracer distributions or, in other words, the integration time 99 

needed by the model to converge towards its own attractor (which is different from 100 

the true state of the climate system) varies greatly between components of the climate 101 

system. It spans from several weeks for the atmosphere (e.g., Phillips et al., 2004)  to 102 

several centuries for ocean and sea ice components (e.g., Stouffer et al., 2004). The 103 

equilibration of ocean biogeochemical tracers across the entire water column amounts 104 

to several thousands of years (e.g., Heinze et al., 1999; Wunsch and Heimbach, 2008) 105 

and depends on the state of background ocean circulation as well as the turbulent 106 

mixing and eddy stirring parameterizations (e.g., Aumont et al., 1998; Bryan, 1984; 107 

Gnanadesikan, 2004; Marinov et al., 2008). In practice, these simulations, called 108 

“spin-up”, span in general only several hundreds of years at the end of which a quasi-109 

equilibrium state is assumed for the interior ocean tracers.    110 

 111 

The present degree of complexity and increasing spatial as well as temporal resolution 112 

of marine biogeochemical ESM components, however, often precludes a spin-up to 113 

reach adequate equilibration of biogeochemical tracers. This is a consequence of the 114 

increasing number of state variables present in most of the current generation of 115 

biogeochemical models (e.g., for each tracer a separate advection equation has to be 116 

solved via a numerical CPU time demanding algorithm), more complex process 117 

descriptions (e.g., including more plankton functional types than before), and 118 

increasing spatial as well as temporal resolution. This number has continuously 119 

increased from simple biogeochemical models (e.g., HAMOCC3, Maier-Reimer and 120 

Hasselmann (1987)) to marine biodiversity models  (e.g., Follows et al., 2007). 121 

Current generation biogeochemical models embedded in CMIP5 ESMs contain 122 

roughly two to four times more state variables than the physical models (e.g., 123 
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atmosphere, ocean, sea-ice), which makes their equilibration computationally costly 124 

and difficult. The initialization of biogeochemical state variables is further 125 

complicated by the scarcity of biogeochemical observations as compared to 126 

observations of physical variables (e.g., temperature, salinity).  While three-127 

dimensional observation-based climatologies exist for macro-nutrients, oxygen, 128 

dissolved carbon and alkalinity, for other tracers such as dissolved iron, dissolved 129 

organic carbon and biomass of the various plankton functional types data are still 130 

sparse and represent measurements done over different time periods and climate 131 

conditions (in-spite of considerable efforts such as the GEOTRACES program for 132 

trace elements, or MAREDAT for biomasses of plankton functional types). The latter 133 

are initialized either with constant values (e.g. global average estimates) or with 134 

output from a previous model run. An additional difficulty stems from the use of 135 

modern climatologies to initialize the ocean state, implicitly assuming a long-term 136 

steady state, which does not necessarily represent the preindustrial state of the ocean. 137 

These climatologies incorporate the ongoing anthropogenic perturbation of marine 138 

biogeochemical fields, be it the uptake of anthropogenic CO2 or the excess of 139 

nutrients inputs and pollutants (e.g., Doney, 2010). Although methods exist to remove 140 

the anthropogenic perturbation from observed ocean carbon tracer fields, their use is 141 

still debated since they lead to non-unique results (e.g., Tanhua et al., 2007; Yool et 142 

al., 2010). 143 

 144 

The equilibration of marine biogeochemical tracer distributions is driven not only by 145 

the ocean circulation but also by numerous internal biogeochemical processes acting 146 

at various time scales. For example, while the transport and degradation of sinking 147 

organic matter spans days to perhaps several months, the associated impact on deep 148 
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water chemistry accumulates over several decades to centuries as zones of differential 149 

remineralization are mixed across water masses and follows the ocean circulation 150 

(Wunsch and Heimbach, 2008). For models including interactive sediment modules, 151 

the sediment equilibration takes even longer (O(104) years; e.g., Archer et al. (2009) 152 

and Heinze et al. (1999)). As a consequence of the interplay between ocean 153 

circulation and biogeochemical processes, biogeochemical models require long spin-154 

up times to equilibrate (e.g., Khatiwala et al., 2005; Wunsch and Heimbach, 2008). 155 

Modeling studies of paleo-oceanographic passive tracers such as δ18O or Δ14C 156 

(Duplessy et al., 1991), or global ocean passive tracers  (Wunsch and Heimbach, 157 

2008), as well as more recently available modern global scale data compilations (e.g., 158 

Key et al., 2004; Sarmiento and Gruber, 2006)  and GEOTRACES Intermediate Data 159 

product 2014 (Version 2) http://www.bodc.ac.uk/geotraces/data/idp2014/)  provide an 160 

estimate of the time required for the ocean biogeochemical reservoir to equilibrate 161 

with the climate systems (excluding continental weathering and reaction with marine 162 

sediments).  Depending on ocean circulation, it ranges from 1500 years for subsurface 163 

water masses to 10000 years for the deep water masses (Wunsch and Heimbach, 164 

2008). 165 

 166 

In a context of model-to-model intercomparison, this time range contributes to the 167 

model uncertainty. Lessons from the previous OCMIP-2 exercise have demonstrated 168 

that some models required ~10,000 years to equilibrate to a global sea-air carbon flux 169 

of 0.01 Pg C y-1.  170 

 171 

While it is recognized that long time-scale processes influence the length of spin-up to 172 

equilibrium, the spin-up duration is usually defined ad hoc based on external 173 
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constraints or internal biogeochemical criteria. The computational cost is commonly 174 

invoked as external constraint to shorten and limit the spin-up duration. It is directly 175 

related to model complexity (e.g., Tjiputra et al., 2013; Vichi et al., 2011; Yool et al., 176 

2013) and spatial resolution (Ito et al., 2010). The internal biogeochemical criteria 177 

applied to derive the duration of the spin-up simulations are generally defined by (i) 178 

reaching a steady-state, quasi equilibrium of the long-term global-mean CO2 fluxes 179 

between the ocean and the atmosphere (e.g., Dunne et al., 2013; Ilyina et al., 2013; 180 

Lindsay et al., 2014; Romanou et al., 2013; Séférian et al., 2013), (ii) determining the 181 

amount of carbon stored into the ocean at preindustrial state (e.g., Dunne et al., 2013; 182 

Vichi et al., 2011) or (iii) representing relevant biogeochemical tracer patterns (e.g., 183 

oxygen minimum zone in Ito and Deutsch (2013)).   184 

 185 

Despite its importance, only limited information on spin-up procedures is available 186 

through the CMIP5 metadata portal (http://metaforclimate.eu/trac). Information on 187 

spin-up protocols and model initialization is usually not taken into account in model 188 

intercomparison studies (e.g., Andrews et al., 2013; Bopp et al., 2013; Cocco et al., 189 

2013; Frölicher et al., 2014; Gehlen et al., 2014; Keller et al., 2014; Resplandy et al., 190 

2013; 2015; Rodgers et al., 2014; Séférian et al., 2014). This information, if available, 191 

can only be found separately in the reference papers of individual models (e.g., 192 

Adachi et al., 2013; Arora et al., 2011; Collins et al., 2011; Dunne et al., 2013; Ilyina 193 

et al., 2013; Lindsay et al., 2014; Romanou et al., 2013; Séférian et al., 2013; Séférian 194 

et al., 2015; Tjiputra et al., 2013; Vichi et al., 2011; Volodin et al., 2010; Watanabe et 195 

al., 2011; Wu et al., 2013). The duration of spin-up simulations of CMIP5 ocean 196 

biogeochemical components spans from one hundred years (e.g., CMCC-CESM) to 197 

several thousand years (e.g., MPI-ESM-LR, MPI-ESM-MR) (Figure 1 and Table 1). 198 
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Model initialization and spin-up procedures are equally variable across the model 199 

ensemble (Figure 1 and Table 1). Four different sources of initialization and four 200 

different procedures of model equilibration emerge from the 24 ESMs reviewed for 201 

this study.  202 

 203 

Biogeochemical state variables were mostly initialized from observations, although 204 

from various releases of the same World Ocean Atlas global climatology (WOA1994, 205 

WOA2001, WOA2006, WOA2010). A small subset of ESMs relied either on a mix 206 

between previous model output and observations or solely on model output from a 207 

previous simulation for initialization. Similarly, spin-up procedures fall into two 208 

categories. The first one may be called “sequential”: it consists in decomposing the 209 

spin-up integration into one long offline simulation (~200-10000 years) and one 210 

shorter online simulation (~100-1000 years). During the offline simulation, the 211 

biogeochemical model is forced by dynamical fields from the climate model or from 212 

reanalysis (CanESM2, MRI-ESM, Figure 1 and Table 1). Some modeling groups have 213 

adopted a “direct” strategy, which consists in running solely one online or coupled 214 

spin-up simulation (e.g., CNRM-ESM1, GFDL-ESM2M, GFDL-ESM2G, GISS-E2-215 

H-CC, GISS-E2-R-CC, NorESM1-ME). Finally, a spin-up “acceleration” procedure is 216 

used by CMCC-CESM. This technique consists of enhancing the ocean carbon 217 

outgassing to remove anthropogenic carbon from the ocean, a legacy from 218 

initialization with modern data (Global Data Analysis Project or GLODAP following 219 

Key et al., 2004). None of these spin-up procedures, durations and sources of 220 

initialization can be considered as “standard”; each of them is unique and subjectively 221 

employed by one modeling group.  222 

 223 
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Objective arguments and hypotheses justifying the choice of one method of spin-up 224 

rather than the others have been the focus of previous studies (e.g., Dunne et al., 2013; 225 

Heinze and Ilyina, 2015; Tjiputra et al., 2013). Similarly, modeling groups discussed 226 

impacts of their particular spin-up procedure on model performance (e.g., Dunne et 227 

al., 2013; Lindsay et al., 2014; Séférian et al., 2013; Vichi et al., 2011). However, no 228 

study has addressed the potential for the large diversity of spin-up procedures found 229 

across the CMIP5 ensemble to translate into model-to-model differences in terms of 230 

comparative model performance assessments or model evaluations in terms of future 231 

projections.  232 

 233 

1-3 Objectives of this study 234 

This study assesses the role of the spin-up protocol in the representation of 235 

biogeochemical fields and subsequent model skill assessment, providing a 236 

complementary analysis from the studies of Sen Gupta et al. (2012; 2013). It relies on 237 

a 500-year long spin-up simulation from a state-of-the-art Earth system model, IPSL-238 

CM5A-LR to investigate the impacts of spin-up strategy on selected biogeochemical 239 

tracers and residual model drift across the various ESMs of the CMIP5 ensemble. We 240 

demonstrate that the duration of the spin-up has implications for the determination of 241 

robust and meaningful skill-score metrics that should improve future intercomparison 242 

studies such as CMIP6 (Meehl et al., 2014).   243 

 244 

Section 2 describes the model, the observations, the model experiments, as well as the 245 

methods used for assessing the impacts of spin-up protocols on the representation of 246 

biogeochemical fields in IPSL-CM5A-LR, as well as across the ensemble of CMIP5 247 

ESMs. Section 3 presents the analysis developed for the assessment of the impact of 248 
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spin-up duration on the representation of biogeochemical structures. Implications and 249 

recommendations are discussed in Sections 4 and 5, respectively.           250 

 251 

2- Methods 252 

2-1- Model simulations 253 

This study exploits in particular results from one simulation performed with IPSL-254 

CM5A-LR (Dufresne et al., 2013) as representative for other CMIP5 Earth system 255 

models. As a typical representative of the current generation of ESMs, IPSL-CM5A-256 

LR combines the major components of the climate system (Chap 9, Table 9.1, (IPCC, 257 

2013). The atmosphere is represented by the atmospheric general circulation model 258 

LMDZ (Hourdin et al., 2006) with a horizontal resolution of 3.75°x1.87° and 39 259 

levels. The land surface is simulated with ORCHIDEE (Krinner et al., 2005). The 260 

oceanic component is NEMOv3.2 in its ORCA2 global configuration (Madec, 2008). 261 

It has a horizontal resolution of about 2° with enhanced resolution at the equator 262 

(0.5°) and 31 vertical levels. NEMOv3.2 includes the sea-ice model LIM2 (Fichefet 263 

and Maqueda, 1997), and the marine biogeochemistry model PISCES (Aumont and 264 

Bopp, 2006). PISCES simulates the biogeochemical cycles of oxygen, carbon and the 265 

main nutrients with 24 state variables. The model simulates dissolved inorganic 266 

carbon and total alkalinity (carbonate alkalinity + borate + water) and the distributions 267 

of macronutrients (nitrate and ammonium, phosphate, and silicate) and micronutrient 268 

iron. PISCES represents two sizes of phytoplankton (i.e., nanophytoplankton and 269 

diatoms) and two zooplankton size-classes: microzooplankton and mesozooplankton. 270 

PISCES simulates semi-labile dissolved organic matter, and small and large sinking 271 

particles with different sinking speeds (3 m d-1 and 50 to 200 m d-1, respectively). 272 

While fixed elemental stoichiometric C:N:P-O2 ratios after Takahashi et al. (1985) are 273 
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imposed for these three compartments the internal concentrations of iron, silica and 274 

calcite are simulated prognostically . The carbon system is represented by dissolved 275 

inorganic carbon, alkalinity and calcite. Calcite is prognostically simulated following 276 

Maier-Reimer (1993) and Moore et al. (2002). Alkalinity in the model system 277 

includes the contribution of carbonate, bicarbonate, borate, protons, and hydroxide 278 

ions. Oxygen is prognostically simulated. The model distinguishes between oxic and 279 

suboxic remineralization pathways, the former relying on oxygen as electron acceptor, 280 

the latter on nitrate. For carbon and oxygen pools, air-sea exchange follows the 281 

Wanninkhof (1992) formulation.  282 

The boundary conditions account for nutrient supplies from three different sources: 283 

atmospheric dust deposition for iron, phosphorus and silica (Jickells and Spokes, 284 

2001; Moore et al., 2004; Tegen and Fung, 1995), rivers for nutrients, alkalinity and 285 

carbon (Ludwig et al., 1996) and sediment mobilization for sedimentary iron (de Baar 286 

and de Jong, 2001; Johnson et al., 1999). To ensure conservation of nitrogen in the 287 

ocean, annual total nitrogen fixation is adjusted to balance losses from denitrification. 288 

For the other macronutrients, alkalinity and organic carbon, the conservation is 289 

ensured by tuning the sedimental loss to the total external input from rivers and dust. 290 

In PISCES, an adequate treatment of external boundary conditions has been 291 

demonstrated to be essential for the accurate simulation of nutrient distributions 292 

(Aumont and Bopp, 2006; Aumont et al., 2003). Riverine carbon inputs induce a 293 

natural outgassing of carbon of 0.6 Pg C y-1 which has been shown essential to model 294 

the inter-hemispheric gradient of atmospheric CO2 under preindustrial state (Aumont 295 

et al., 2001). 296 

 297 
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The core simulation of this study is a 500-year long coupled preindustrial run. It uses 298 

the same atmospheric, land surface and ocean configurations as IPSL-CM5A-LR 299 

(Dufresne et al., 2013) for which the marine biogeochemistry has been extensively 300 

evaluated (see e.g., Séférian et al. (2013) for modern-state evaluation). The only 301 

difference between the “standard” preindustrial simulation contributed to CMIP5 and 302 

the present one is the initial conditions. While the CMIP5 preindustrial simulation 303 

starts from an ocean circulation after several thousand years of online physical 304 

adjustment, the present simulation starts from an ocean at rest using the January 305 

temperature and salinity fields from the World Ocean Atlas (Levitus and Boyer, 306 

1994). Biogeochemical state variables were initialized from data compilations or 307 

climatologies as explained in the following section. Atmospheric CO2 and other 308 

greenhouse gases, as well as natural aerosols, were set to their 1850 preindustrial 309 

values. The simulation is extensively described in terms of ocean physics by Mignot 310 

et al. (2013). Mignot and coworkers show that the strength of the Atlantic meridional 311 

overturning circulation and the Antarctic circumpolar current as well as the upper 300 312 

m ocean heat content stabilize after 250 years of simulation.  313 

 314 

Although the spin-up protocol used to conduct this 500-year long simulation is not 315 

readily comparable to the one used to produce the initial conditions for the CMIP5 316 

preindustrial simulation, its duration is greater than the median length of on-line 317 

adjustment computed from the multiple spin-up protocols applied during CMIP5 318 

(~395 years, Figure 1 and Table 1). Besides, the methodology of initializing 319 

biogeochemical state variables from data fields is not broadly employed by the 320 

various modeling groups that have contributed to CMIP5. Despite the above-321 

mentioned methodological shortcuts, we take this 500-year long preindustrial 322 
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simulation as a representative example of a spin-up protocol for the diversity of 323 

approaches used by CMIP5 models. 324 

 325 

2-2- Observations for initialization and evaluation 326 

Two streams of data sets were used in this study. The first stream combines data from 327 

the World Ocean Atlas 1994 (WOA94, Levitus and Boyer (1994) and Levitus et al., 328 

(1993)) for the initialization of 3-dimensional fields of temperature and salinity, 329 

dissolved nitrate, silicate, phosphate and oxygen, and data from GLODAP (Key et al., 330 

2004)  for preindustrial dissolved inorganic carbon and total alkalinity. This stream of 331 

data was chosen purposely in our experimental setup to be slightly different than the 332 

second stream of data, World Ocean Atlas 2013 (WOA2013, Levitus et al. (2013)), 333 

the evaluation data set. 334 

 335 

A second stream of data was used to compare modeled biogeochemical fields. It 336 

includes up-to-date observed climatologies of nitrate and oxygen from the WOA2013. 337 

This database is based on samples collected since 1965, and incorporates also data 338 

from WOA94 onwards. For the concentrations of preindustrial dissolved inorganic 339 

carbon and total alkalinity, we still use GLODAP. The second stream of data was 340 

selected to be as close as possible to the “standard” evaluation procedure of skill-341 

assessment protocols found in CMIP5 model reference papers (Adachi et al., 2013; 342 

Arora et al., 2011; Collins et al., 2011; Dunne et al., 2013; Ilyina et al., 2013; Lindsay 343 

et al., 2014; Romanou et al., 2013; Séférian et al., 2013; Séférian et al., 2015; Tjiputra 344 

et al., 2013; Vichi et al., 2011; Volodin et al., 2010; Watanabe et al., 2011; Wu et al., 345 

2013). Differences between these two streams of data are minor and are further 346 

detailed below. 347 
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 348 

2-3- Approach and statistical analysis 349 

To quantify the impacts of a large diversity of spin-up procedures on the 350 

representation of biogeochemical fields in CMIP5, we employ a three-fold approach.  351 

(1) The 500-year long spin-up simulation described in Section 2.1 is used to 352 

determine the influence of the spin-up procedure on the representation of 353 

biogeochemical fields in IPSL-CM5A-LR. 354 

(2) In the next step, relationships between biases in modeled fields, model-data 355 

mismatches and the duration of the spin-up simulation are identified across the 356 

CMIP5 ensemble. For this step, drifts in biogeochemical fields are determined from 357 

the first century of the preindustrial simulation (referred to as piControl) of each 358 

CMIP5 ESM.  359 

(3) Finally, the various ensemble of modern hindcast (referred to as historical) from 360 

each available CMIP5 ESM are used to estimate the impact of these drifts in 361 

biogeochemical fields on the ability of models to replicate modern observations. For a 362 

given model, we use the ensemble average of the available ‘historical’ members if 363 

several realizations are available.  364 

For this purpose, several statistical skill score metrics are computed following Rose et 365 

al. (2009) and Stow et al. (2009) from model fields interpolated on a regular 1° grid 366 

and to fixed depth levels. The skill score metrics are (1) the global averaged 367 

concentrations for overall drift; (2) the error or bias between modeled and observed 368 

fields at each grid-cell; (3) spatial correlation between model and observations to 369 

assess mismatches between modeled and observed large-scale structures; (4) the root-370 

mean squared error (RMSE) to assess the total cumulative errors between modeled 371 

and observed fields. These statistical metrics are computed across the water column, 372 
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but for clarity we focus on surface, 150 m (thermocline) and 2000 m (deep) levels. 373 

These statistical metrics were chosen among those described in the literature, because 374 

they proved to yield the most indicative scores for tracking model errors or 375 

improvement along the various intercomparison exercises (IPCC, 2013).  376 

 377 

The drift is determined for either concentrations in simulated biogeochemical fields or 378 

for skill score metrics (e.g., RMSE) using a linear regression fit over a time window 379 

of 100 years. This time window of 100 years was chosen as a trade off between a 380 

longer time window (>200 years) that smoothes the drift signal and a shorter time 381 

window (<100 years) that introduces fluctuations due to internal variability and hence 382 

impacting the quality of the fit (see the assessment performed with the millennial-long 383 

CMIP5 piControl simulation of IPSL-CM5A-LR in Figure S1). 384 

The drift is assumed to decrease exponentially during the spin-up simulation and is 385 

described by a simple drift model: 386 

   (1) 387 

where τ is the relaxation time of the respective field at a given depth level. It 388 

corresponds to the time required to nullify the drift. 389 

 390 

Our analyses focus on the global distribution of nitrate (NO3), dissolved oxygen (O2) 391 

and the difference between total alkalinity and dissolved inorganic carbon (Alk-DIC).  392 

The latter serves as an approximation of carbonate ion concentration following Zeebe 393 

and Wolf-Gladrow (2001). We use this approximation of the carbonate ion 394 

concentration rather than its concentration, [CO3
2-], since the latter was poorly 395 

assessed in CMIP5 reference papers and was not provided by a majority of ESMs. 396 

These three biogeochemical tracers were chosen because (1) most current 397 
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biogeochemical models simulate Alk, DIC, NO3 and O2 prognostically and (2) they 398 

are frequently used in state-of-the-art model performance assessment (e.g., Anav et 399 

al., 2013; Bopp et al., 2013; Doney et al., 2009; Friedrichs et al., 2009; 2007; Stow et 400 

al., 2009), and (3) DIC and Alk are both used as “master tracers” for the carbonate 401 

system in the ocean biogeochemistry models (while [CO3
2-], e.g., is not explicitly 402 

advected as a tracer but diagnosed from temperature, salinity, DIC, Alk, [H+], and 403 

pCO2 when needed) . Modeled distributions of NO3, O2 and Alk-DIC reflect the 404 

representation of biogeochemical processes related to the biological pump (CO2, NO3, 405 

O2), the air-sea gas exchange and ocean ventilation (CO2 and O2), as well as carbonate 406 

chemistry (Alk-DIC). These biogeochemical processes are of particular relevance for 407 

investigating the impact of climate change on marine productivity (e.g., Henson et al., 408 

2010), ocean deoxygenation (e.g., Gruber, 2011; Keeling et al., 2009) and the ocean 409 

carbon sink, processes for which future projections with the current generation of 410 

ESMs yield large inter-model spreads (e.g., Friedlingstein et al., 2013; Resplandy et 411 

al., 2015; Séférian et al., 2014; Tjiputra et al., 2014). 412 

 413 

3 Results 414 

3-1 Comparison of observational datasets 415 

Our review of spin-up protocols for CMIP5 ESM shows that several modeling groups 416 

have employed different streams of datasets to initialize their biogeochemical models 417 

(e.g., WOA1994, WOA2001), while model evaluation relies on the most up-to-date 418 

stream of data. Differences between the two data streams used for initializing and 419 

assessing, respectively, NO3 and O2 concentrations are analyzed. Table 2 summarizes 420 

RMSE and correlation between WOA1994 and WOA2013 for these two 421 

biogeochemical fields. 422 
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 423 

Table 2 indicates that differences between the two streams of data are fairly small. 424 

The total difference (RMSE) represents a departure between 5 to 10% from the global 425 

average concentrations of WOA2013 across depth levels. It is generally lower in 426 

regions where the sampling density has not increased markedly between the two 427 

releases. These values can be used as a baseline for model-to-model comparison 428 

assuming that errors attributed to the various sources of initialization cannot be larger 429 

than 10%. Considering that some models have used outputs from previous model 430 

simulations or globally averaged concentrations as initial conditions, we acknowledge 431 

that this baseline is not a perfect criterion for benchmarking model performance. 432 

There is, however, no ideal solution to address this issue since there is no standardized 433 

set of initial conditions in CMIP5 except some recommendations for the decadal 434 

prediction exercise in which specific attention was paid to initialization (e.g., 435 

Keenlyside et al., 2008; Kim et al., 2012; Matei et al., 2012; Meehl et al., 2013; 2009; 436 

Servonnat et al., 2014; Smith et al., 2007; Swingedouw et al., 2013). 437 

 438 

3-2 Equilibration state metrics in IPSL-CM5A-LR 439 

The global mean sea surface temperature (SST) is a common metric to quantify the 440 

energetic equilibrium of the model. This metric has been widely used in various 441 

papers referenced in this study to determine the equilibration of ESM physical 442 

components. Figure 2a shows the evolution of this metric during the 500-year long 443 

spin-up simulation. The global average SST sharply decreases during the first 250 444 

years of the simulation. In the last 250 years of the simulation, the global averaged 445 

SST displays a small residual drift of ~-10-4 °C y-1 which falls into the range of the 446 

drifts reported for CMIP5 ESMs. The evolution over the last 250 years is comparable 447 
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to those of other physical equilibration metrics, such as the ocean heat content or the 448 

meridional overturning circulation (Mignot et al., 2013). 449 

 450 

The temporal evolution of sea-to-air CO2 fluxes was used in phase 2 of the Ocean 451 

Carbon Model Intercomparison Project (OCMIP-2, Orr (2002)) as an equilibration 452 

metric for the marine biogeochemistry and was still widely used during CMIP5. 453 

Figure 2b presents its evolution in the 500-year long spin-up simulation. The global 454 

ocean sea-to-air CO2 flux is ~-0.7 Pg C y-1 over the last decades of the spin-up 455 

simulation (negative values indicate ocean CO2 uptake).  456 

To assess the global sea-to-air carbon flux, we use the range of values estimated from 457 

preindustrial natural ocean carbon flux inversions (e.g. Gerber and Joos (2010) or 458 

Mikaloff Fletcher et al. (2007)). Since, these estimates do not account for the 459 

preindustrial carbon outgassing induced by the river input, while our model does, we 460 

have added a constant outgassing of 0.45 Pg C y-1 to the range of 0.03 ± 0.08 Pg C y-1 461 

(Mikaloff Fletcher et al. 2007). This value of 0.45 Pg C y-1 corresponds to the global 462 

open-ocean river-induced carbon outgassing accordingly to IPCC (2013) or Le Quéré 463 

et al. (2015). Consequently, in our modeling framework, the target value of the global 464 

sea-to-air carbon flux ranges between 0.4 and 0.56 Pg C y-1. 465 

 466 

Figure 2b shows that the global sea-to-air carbon flux does not fit our range of values 467 

estimated from preindustrial natural ocean carbon flux inversions. Besides, Figure 2b 468 

shows that the drift in the global sea-to-air carbon flux reduces more slowly after  a 469 

strong decline during the first 50 years of the spin-up simulation. While this drift is 470 

about 0.001 Pg C y-2 from year 250 to 500, it is weaker over the last century of the 471 

simulation (7x10-4 Pg C y-2). Using a linear fit over the last century of the simulation 472 
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with a drift of 7x10-4 Pg C y-2, we estimate that the simulated sea-to-air carbon flux 473 

would reach the range of 0.4-0.56 Pg C y-1 after 1100 to 1300 supplemental years of 474 

spin-up simulation. Our simple drift model (Equation 1) gives a relaxation time of 475 

around 160 years, which indicates that drift in ocean carbon flux should range 476 

between 2x10-7 and 7x10-7 Pg C y-2 after this 1100 to 1300 supplemental years of spin-477 

up simulation.  478 

 479 

These estimates do not account for the non-linearity of the ocean carbon cycle and the 480 

associated process uncertainties (Schwinger et al., 2014), and hence potentially 481 

underestimate the time required to equilibrate the ocean carbon cycle and sea-to-air 482 

carbon fluxes in the range of inversion estimates. The drift of 0.001 Pg C y-2 is, 483 

however, much smaller than the oceanic sink for anthropogenic carbon. Even if not 484 

fully equilibrated in terms of carbon balance, it is likely that this run would have 485 

given consistent estimates of anthropogenic carbon uptake in transient historical 486 

hindcasts.   487 

 488 

3-3 Temporal evolution of model errors in IPSL-CM5A-LR 489 

Figure 3 shows the temporal evolution of globally averaged concentrations for O2, 490 

NO3 and Alk-DIC at the surface (panels a, b and c), 150 m (panels d, e and f) and 491 

2000 m (panels g, h, and i).  Globally averaged concentrations of O2, NO3 and Alk-492 

DIC (solid lines) reach steady state after 100 to 250 years of spin-up at the surface. 493 

While modeled nominal values for O2 concentration converge toward the observed 494 

concentration (i.e., 172.3 µmol L-1), that of NO3 and to a lesser extent Alk-DIC 495 

present persistent deviations from WOA2013 and GLODAP. At the surface, the 496 

convergence of the simulated oxygen to observed value is expected since the 497 
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dominant governing process of thermodynamic saturation (through the air-sea gas 498 

exchange) is well understood and modeled. The deviation in surface NO3 highlights 499 

uncertainty related to near surface biological processes and upper ocean physics. 500 

Below the surface, concentrations of biogeochemical tracers drift away from the 501 

globally averaged concentrations computed from WOA2013 or GLODAP (Figure 3, 502 

panels d-i). At 150 and 2000 meters, the drift in global averaged concentrations for 503 

these fields, computed over the last 250 years, is still significant with p<10-4 (Table 3). 504 

Dashed lines in Figure 3 indicate the temporal evolution of RMSE, which quantifies 505 

the total mismatch between simulated and observed fields. Except for the surface 506 

fields, Figure 3 shows that RMSE globally increases with time for all biogeochemical 507 

fields. The linear drift in RMSE over the last 250 years of the spin-up simulation falls 508 

within the 2-3 % ky-1 range at the surface. It is much larger at 2000 m (144-280 % ky-1 509 

; Table 3). This is also the case regionally, because the latitudinal maximum in RMSE 510 

(RMSEmax) is similar to the global RMSE. Table 3 also shows that the magnitude of 511 

drift in RMSE for O2, NO3 and Alk-DIC differs at a given depth as different processes 512 

affect the interior distribution of these biogeochemical fields.  513 

 514 

3-4 Evolution of geographical mismatches in IPSL-CM5A-LR 515 

To further explore the evolution of mismatch in biogeochemical distributions, we 516 

analyze differences (ε) between simulated and observed fields of O2, NO3 from 517 

WOA2013 and Alk-DIC from GLODAP after the initialization and at the end of the 518 

spin-up, i.e., the first year and the last year of the core spin-up simulation performed 519 

with the IPSL-CM5A-LR model (Figures 4, 5 and 6). 520 

 521 

Figure 4 (panels a, c, and e) shows that surface concentrations of biogeochemical 522 
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fields are associated with small biases at initialization. This error represents less than 523 

5% of the observed surface concentrations for O2, NO3 and Alk-DIC and reflects the 524 

weak difference between the data stream employed for initialization and validation. 525 

After 500 years of spin-up, deviations between the modeled and observed fields at the 526 

surface have increased locally by up to ~40% (Figure 4, panels b, d, and f). The 527 

largest deviations are found in high-latitude oceans for O2 and NO3 and also to some 528 

extent in the tropics for NO3 and Alk-DIC. 529 

 530 

Below the surface, distributions of modeled biogeochemical fields compare well to 531 

the observations at 150 m at initialization with averaged errors close to zero (Figure 5, 532 

panels a, c, and e). This result was expected since WOA2013 and WOA1994 differ 533 

weakly at these depth levels. Subsurface distributions at initialization strongly contrast 534 

with the concentrations that resulted from 500 years of spin-up (Figure 5, panels b, d, 535 

and f). After 500 years of spin-up, strong mismatches characterize the distribution of 536 

O2, NO3 and Alk-DIC fields in the high-latitude oceans and in the tropics. Figure 5 537 

illustrates that pattern of errors are well correlated. It directly translates the 538 

assumptions employed in the biogeochemical model (here the elemental C:N:-O2 539 

stochiometry of PISCES). Figure 6 shows that model-data deviations at 2000 m have 540 

substantially increased regionally after 500 years of simulation, showing large errors 541 

in the southern hemisphere oceans. This appears clearly in Figure 6, panels d and f for 542 

NO3 and Alk-DIC fields, respectively.  543 

 544 

The temporal evolution of the total mismatch between modeled and observed fields of 545 

O2, NO3 and Alk-DIC over the whole water column is presented in Figure 7 in terms 546 

of RMSE (Figure 7, panels a-c). As expected, Figure 7 illustrates that there is a good 547 
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match during the first years of simulation for all biogeochemical fields at all depth 548 

levels with low RMSE. After a few centuries, patterns of error evolve differently 549 

across depth for O2, NO3 and Alk-DIC.  550 

The temporal evolution of RMSE shows that patterns of error have reached a steady 551 

state after few decades within the upper hundred meters of the ocean but continue to 552 

evolve at greater depths, even after 500 years. Patterns of errors within the 553 

thermocline and deep water masses evolve at time scales of few decades and few 554 

centuries, respectively in relation with the structure of the large-scale ocean 555 

circulation. Mid-depth (~1500-2500m) RMSE evolves much slower because this 556 

depth corresponds to the depth of the very old radiocarbon age (e.g., Wunsch and 557 

Heimbach, 2007; 2008) whose characteristics time scale spans over thousand of years. 558 

At the end of the spin-up simulation, two maxima of comparable amplitude are found 559 

for RMSE at 150 and 3750 m for O2 and at 50 m and 3800 m for Alk-DIC.  560 

 561 

3-5 Drifts in IPSL-CM5A-LR spin-up simulation 562 

With the evolution of the RMSE established, we can use the simple drift model 563 

(Equation 1) to determine the relaxation time, τ, required to reach equilibration after a 564 

longer of spin-up simulation. To use this simple drift model, we compute the drift in 565 

RMSE determined from time segments of 100 years distributed evenly every 5 years 566 

from year 250 to 500 for O2, NO3 and Alk-DIC tracers. The drift model (magenta 567 

lines in Figure 8) is fitted level to the 80 drift values for each field and each depth 568 

(colored crosses in Figure 8). 569 

 570 

The simple drift model fits well the evolution of the drift in RMSE for the 571 

biogeochemical variables along the spin-up simulation of IPSL-CM5A-LR (Figure 8). 572 
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Correlation coefficients are mostly significant at 90% confidence level (r*=0.14 573 

determined with a student distribution with significance level of 90% and 80 degrees 574 

of freedom), except for NO3 at surface and Alk-DIC at 150 m. Another exception is 575 

found for NO3 at 150 m where the drift does not correspond to an exponential decay 576 

of the drift as function of time. The large confidence interval of the fit indicates that 577 

the fit would have been considered as non-significant given a longer spin-up 578 

simulation or a higher confidence threshold. 579 

 580 

When significant, estimates of τ  for O2 RMSE are ≈ 90, 564 and 1149 y at the surface 581 

150 m and 2000 m, respectively. These values match reasonably well τ estimated for 582 

NO3 RMSE at 2000 m (1130 y) and those for Alk-DIC RMSE at surface and 2000 m 583 

(137 and 1163 y). However, these estimates are sensitive to the time windows used to 584 

compute the drift. For a subset of time windows between 100 and 250 years by step of 585 

50 years, τ estimates for O2 RMSE are ≈ 114±67, 375±140 and 1116±527 y at the 586 

surface 150 m and 2000 m depth. These large uncertainties associated with τ 587 

estimates are essentially due to the length of the spin-up simulation. A longer spin-up 588 

simulation would improve the quality of the fit (see Figure S1). 589 

 590 

3-6 Drifts in CMIP5 ESMs preindustrial simulations 591 

In this subsection, the analysis is extended to the CMIP5 archive. We focus on oxygen 592 

fields in the long preindustrial simulation, piControl, for the 15 available CMIP5 593 

ESMs. From these simulations that span from 250 to 1000 years, we compute the drift 594 

in O2 RMSE across depth from several time segments of 100 years distributed evenly 595 

every 5 years from the beginning until the end of the piControl simulation. These 596 

drifts are used as a surrogate for drift computed from the spin-up of each model since 597 
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such simulations are not available through the data portal.  598 

 599 

Figure 9 represents the drift in O2 RMSE versus the spin-up duration for each CMIP5 600 

ESM. The analysis shows that the drift in O2 RMSE differs substantially between 601 

models. For a given model, drifts in other biogeochemical tracers (NO3 and Alk-DIC) 602 

display similar features (not shown). The between-model differences in drift are not 603 

surprising since there are no reasons for different models to exhibit similar drift for a 604 

given field. Yet, Figure 9 shows that a global relationship emerges from this ensemble 605 

when using the simple drift model to fit the drift in O2 RMSE as function of the spin-606 

up duration (solid green lines in Figure 9). With a 90% confidence level, this 607 

relationship suggests a general decrease of the drift as a function of spin-up duration 608 

for all depth levels. At the surface and at 2000 m depth, the quality of fits is low with 609 

correlation coefficients of about  ~0.4. These are however significant at 90% 610 

confidence level (r*=0.34 determined with a student distribution with significance 611 

level of 90% and 15 models as degree of freedom). The weakest correlation 612 

coefficient is found for the fit at 150 m depth and hence indicating that there is no link 613 

between the drift in O2 RMSE and the duration of the spin-up simulation. This low 614 

significance level must be put into perspective given the large diversity of spin-up 615 

protocols and initial conditions (Figure 1 and Table 1) that can deteriorate the drift-616 

spin up duration relationship in this ensemble of models. 617 

 618 

The drift versus spin up duration relationship established from the 15 CMIP5 ESMs is 619 

nonetheless consistent with the results obtained with IPSL-CM5A-LR (The results in 620 

Figure 8 have been reported in Figure 9 with magenta crosses). Consistency is 621 

indicated by the sign of the drift versus spin up duration relationship of the IPSL-622 
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CM5A-LR model at the various depth levels, although their magnitudes differ. This 623 

difference in magnitude is not surprising if one considers that drift is highly model 624 

and protocol dependent and that the length of the IPSL-CM5A-LR spin-up simulation 625 

is potentially too short to determine accurate estimates of the long-term drift in O2 626 

RMSE. Despite these differences, our analyses show that a relationship between the 627 

drift in O2 RMSE versus the spin-up duration emerges from an ensemble of models 628 

and is broadly consistent with our theoretical framework of a drift model established 629 

from the results of the IPSL-CM5A-LR model (Figure 8). 630 

 631 
3-7 Impact of the drift on model skill score assessment metrics across CMIP5 632 

ESMs 633 

In the following, we investigate the influence of model drift on skill score assessment 634 

metrics that are routinely used to benchmark model performance. For this purpose, we 635 

use the ensemble-mean O2 RMSE as a metrics to assess the distance between the 636 

biogeochemical observations and model results. For this purpose, we compute O2 637 

RMSE from each ensemble member of the CMIP5 models averaged from 1986 to 638 

2005 with respect to WOA2013 observations. The model-data distance is then 639 

determined for each CMIP5 model using the mean across the available ensemble 640 

members. 641 

 642 

The left hand side panels of Figure 10 present the performance of available CMIP5 643 

models in terms of distance to oxygen observations at the surface, 150 m and 2000 m, 644 

respectively. In these panels, the various CMIP5 models are ordered as function of 645 

their distance to the oxygen observations. Following  Knutti et al. (2013), either the 646 

ensemble mean or the ensemble median is used to identify groups of models with 647 

similar skill within the CMIP5 ensemble. The left hand side panels of Figure 10 show 648 
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that the ability of models to reproduce oxygen observations varies across depth levels. 649 

The RMSE in the simulated O2 fields in CESM1-BGC, HadGEM2-ES, HadGEM2-650 

CC, GFDL-ESM2M, MPI-ESM-LR and MPI-ESM-MR is generally smaller than the 651 

ensemble mean or ensemble median RMSE across the various depth levels (Figure 10 652 

panels a, b and c). On the other side of the ranking, CMCC-CESM, CNRM-CM5, 653 

CNRM-CM5-2, IPSL-CM5B-LR and NorESM1-ME exhibit RMSE generally higher 654 

than the ensemble mean and median RMSE across the various depth levels. The other 655 

models, i.e., CNRM-ESM1, GFDL-ESM2G, IPSL-CM5A-LR and IPSL-CM5A-MR 656 

display O2 RMSE that is generally close to the ensemble mean or the ensemble 657 

median. 658 

 659 

To assess the impact of model’s drift inherited from the diversity of spin-up strategies 660 

(Figure 1 and Table 1) on the performance metrics, we use a simple additive 661 

assumption to incorporate an incremental error due to the drift, ∆RMSE, to the above-662 

mentioned RMSE. This incremental error due to the drift is computed using the 663 

relaxation time τ determined from the piControl simulations of each CMIP5 model at 664 

each depth level (Equation 1 and Figure 9) and a common duration of T=3000 years 665 

for all models (m): 666 

€ 

ΔRMSEm (z) = driftm (z,t = 0) × exp(− 1
τ(z)

t)
0

T

∫ dt  (2) 667 

where ∆RMSE has the same unit as RMSE.  668 

The common duration T is used to bring model drift close to zero and hence to make 669 

models comparable to each other. 670 

We employ ∆RMSE to penalize the distance from the observations assuming that this 671 

drift-induced deviation in tracer fields can be added to RMSE. This means that the 672 
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effect of the penalty is to increase the distance giving a consistent measure of the 673 

equilibration error. 674 

 675 

Right hand side panels of Figure 10 show the influence of this penalization approach 676 

on the model ranking at the various depth levels. They show that several models have 677 

been upgraded in the ranking while others have not. For example, both MPI-ESM-LR, 678 

MPI-ESM-MR have been upgraded at the surface and 2000 m. On the other hand, the 679 

rank of HadGEM2-ES and HadGEM2-CC has been downgraded to the 5th and 3th 680 

position due to the large drift in surface oxygen concentrations in comparison to that 681 

of the other models. The surface drift might be attributed to drivers in oxygen fluxes 682 

(e.g., SST, SSS). The ranking of GFDL-ESM2G and GFDL-ESM2M slightly changes 683 

with penalization but both models stay close to the ensemble mean or the ensemble 684 

median. At the bottom of the ranking, models with large deviation from the oxygen 685 

observations (i.e., CMCC-CESM, IPSL-CM5B-LR, NorESM1-ME, CNRM-CM5) are 686 

found. For these models, the computed ∆RMSE and RMSE result in similar ranking, 687 

because even a small drift and hence relatively low ∆RMSE cannot compensate for 688 

their large RMSE.  689 

 690 

4- Discussion 691 

4-1 Implications for biogeochemical processes 692 

Our results show that errors in ocean biogeochemical fields amplify during the spin-693 

up simulation but not at the same rate at all depths. These differences in error 694 

evolution are consistent with an increasing contribution of biogeochemical processes 695 

in setting the distribution of tracers at depth. Indeed, Mignot et al. (2013) with the 696 

same model simulation showed that the large-scale ocean circulation reaches quasi-697 
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equilibrium after 250 years of spin-up, but our analyses indicate that biogeochemical 698 

tracers do not (Figure 3).  699 

 700 

Besides, our analysis demonstrates that error propagation and biogeochemical drift are 701 

highly model dependent. For example, despite having the same initialization strategy 702 

and comparable spin up duration, the GFDL-ESM2G, GFDL-ESM2M, and 703 

NorESM1-ME models display considerable difference in drift (Figures 9 and 10) that 704 

mirror large differences in model performance and properties (e.g., resolution, 705 

simulated processes). 706 

 707 

The identification of the dynamical or biogeochemical processes responsible for these 708 

errors is not within the scope of this study and would required additional long 709 

simulations with additional tracers targeted for attribution of the various 710 

biogeochemical processes and the underlying ocean physics (e.g., Doney et al., 2004) 711 

involved (e.g. using abiotic, passive tracers as suggested in Walin et al. (2014)). Some 712 

mechanisms can be nonetheless invoked to explain differences or similarities in 713 

behavior between biogeochemical fields. For example, the evolution of surface 714 

concentrations for O2 and Alk-DIC is controlled by the solubility of O2 and CO2 in 715 

seawater and the concentration of these gases in the atmosphere (set to the observed 716 

values and kept constant in all experiments performed with IPSL-CM5A-LR 717 

discussed here) and the biological soft-tissue and calcium carbonate counter pumps 718 

(in relation with the vertical transport of nutrients and alkalinity). Therefore, the 719 

equilibration of the O2 and Alk-DIC surface fields once the physical equilibrium is 720 

reached (~250 years of spin-up) is expected (Figure 3, panels a and c and Figure 7). 721 

Nevertheless, spatial errors could increase depending on the physical state of the 722 
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model (Figure 4, panels b and f). By contrast, the evolution of NO3 concentration is 723 

predominantly determined by ocean circulation, biological processes, and to a lesser 724 

extent by external supplies from rivers and atmosphere.  Below the surface, 725 

concentrations of O2, NO3, and Alk-DIC evolve in response to the combined effect of 726 

ocean circulation and biogeochemical processes. The combination of dynamical and 727 

biogeochemical processes on the one hand, and the spin-up strategy on the other hand 728 

both shape the modeled distributions of large-scale biogeochemical tracers.  729 

 730 

Consequences of the difficulty in achieving the correct equilibration procedure are 731 

even larger for biogeochemical features that are defined by regional characteristics in 732 

tracer concentrations, such as high nutrient/low chlorophyll regions, oxygen minimum 733 

zones and nutrient-to-light colimitation patterns. This point is illustrated by recent 734 

studies focusing on future changes in phytoplankton productivity (e.g. Vancoppenolle 735 

et al. (2013) and Laufkötter et al. (2015). Vancoppenolle and co-workers report a 736 

wide spread of surface mean NO3 concentrations (1980-1999) in the Arctic with a 737 

range from 1.7 to 8.9 µmol L-1 across a subset of 11 CMIP5 models. The spread in 738 

present day NO3 concentrations translates into a large model-to-model uncertainty in 739 

future net primary production. Laufkötter and colleagues determined limitation terms 740 

of phytoplankton production for a subset of CMIP5 and MAREMIP (Marine 741 

Ecosystem Model Intercomparison Project) models. The authors demonstrate that 742 

nutrient-to-light colimitation patterns differ in strength, location and type between 743 

models and arise from large differences in the simulated nutrient concentrations. 744 

Although large differences between models were reported by Vancoppenolle et al. 745 

(2013) and Laufkötter et al. (2015) such as the spatial resolution and the complexity 746 

of biogeochemical models, differences in nutrient concentrations were identified as 747 
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the largest source of model-to-model spread in addition to simply model error. The 748 

authors of both studies qualitatively invoked differences in spin-up duration to explain 749 

this spread. Besides, a recent assessment of interannual to decadal variability of ocean 750 

CO2 and O2 fluxes in CMIP5 models, suggests that decadal variability can range 751 

regionally from 10 to 50% of the total natural variability among a subset of 6 ESMs 752 

(Resplandy et al., 2015).  In that study, the authors demonstrate that, despite the 753 

robustness of driving mechanisms (mostly related to vertical transport of water 754 

masses) across the model ensemble, model-to-model spread can be related to 755 

differences in modeled carbon and oxygen concentrations. In light of present results, 756 

it appears likely that differences in spin-up strategy and sources of initialization could 757 

also contribute to the amplitude of the natural variability of the ocean CO2 and O2 758 

fluxes.  759 

 760 

4-2 Implications for future projections 761 

The inconsistent strategy to spin-up models in CMIP5 is a significant source of model 762 

uncertainty. It needs to be better constrained in order to draw robust conclusions on 763 

the impact of climate change on the carbon cycle as well as its climate feedback (e.g., 764 

Arora et al., 2013; Friedlingstein et al., 2013; Roy et al., 2011; Schwinger et al., 2014; 765 

Séférian et al., 2012) and on marine ecosystems (e.g., Bopp et al., 2013; Boyd et al., 766 

2015; Cheung et al., 2012; Doney et al., 2012; Gattuso et al., 2015; Lehodey et al., 767 

2006). So far, the most frequent approach relies on the use of long preindustrial 768 

control simulations to ‘remove’ the drift embedded in the simulated fields over the 769 

historical period or future projections (e.g., Bopp et al., 2013; Cocco et al., 2013; 770 

Friedlingstein et al., 2013; 2006; Frölicher et al., 2014; Gehlen et al., 2014; Keller et 771 

al., 2014; Steinacher et al., 2010; Tjiputra et al., 2014). Although this approach allows 772 
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to determine relative changes, it does not allow to investigate the underlying reasons 773 

of the spread between models in terms of processes, variability and response to 774 

climate change. The “drift-correction” approach, much as the one used for this study, 775 

assumes that drift-induced errors in the simulated fields can be isolated from the 776 

signal of interest. Verification of this fundamental hypothesis would require a specific 777 

experimental set-up consisting of the perturbation of model fields (e.g., nutrients or 778 

carbon-related fields) to assess by how much the model projections would be 779 

modified. So far, several modeling groups have generated ensemble simulation in 780 

CMIP5 using a similar approach. However, the perturbations were applied either to 781 

physical fields only or to both the physical and marine biogeochemical fields. To 782 

assess impacts of different spin-up strategies and/or initial conditions on future 783 

projections of marine biogeochemical tracer distributions, ensemble simulations in 784 

which only biogeochemical fields are perturbed would be needed. 785 

 786 

4-3 Implications for multi-model skill-score assessments. 787 

While the importance of spin-up protocols is well accepted in the modeling 788 

community, the link between spin-up strategy and the ability of a model to reproduce 789 

modern observations remains to be addressed.  790 

 791 

Most of the recent CMIP5 skill assessment approaches were based on historical 792 

hindcasts that were started from preindustrial runs of varying duration and from 793 

various spin-up strategies.  Therefore, in typical intercomparison exercises, Earth 794 

system models with a short spin-up, and hence modeled distributions still close to 795 

initial fields, are confronted with Earth system models with a longer spin-up duration 796 

and modeled distributions that have drifted further away from their initial states. Our 797 
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study highlights that such inconsistencies in spin-up protocols and initial conditions 798 

across CMIP5 Earth system models (Figure 1 and Table 1) could significantly 799 

contribute to model-to-model spread in performance metrics. The analysis of the first 800 

century of CMIP5 piControl simulations demonstrated a significant spread of drift 801 

between CMIP5 models (Figure 9). An approximate exponential relationship between 802 

the amplitude of drift and the spin up duration emerges from the ensemble of CMIP5 803 

models, which is consistent with results from IPSL-CM5A-LR. For example, while 804 

the global average root-mean square error increased up to 70% during a 500-year 805 

spin-up simulation with IPSL-CM5A-LR, its rate of increase (or drift) decreased with 806 

time to a very small rate (0.001 Pg C y-1). Combining a simple drift model and this 807 

relationship, we propose a penalization approach in an effort to assess more 808 

objectively the influence of documented model differences on model-data biases. 809 

Figure 10 compares the state-of-the-art approach to assess model performance (left 810 

hand side panels) to the drift-penalized approach (right hand side panels). This novel 811 

approach penalizes models with larger drift without affecting the models with smaller 812 

drift. Taking into account drift in modeled fields results in subtle adjustments in 813 

ranking, which reflect differences in spin-up and initialization strategies.  814 

 815 

4-4 Limitations of the framework 816 

In this work, the analyses focus on the globally averaged O2 RMSE across a diverse 817 

ensemble of CMIP5 models, which differ in terms of represented processes, spatial 818 

resolution and performance in addition to differences in spin-up protocols. Major 819 

limitations of the framework are presented below. 820 

 821 

Due to their specificities in terms of processes and resolution (e.g., Cabré et al., 822 
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(2015), Laufkötter et al. (2015)), regional drift in CMIP5 models may differ from the 823 

drift computed from globally averaged skill-score metrics (see Figure S2 and S3). 824 

These differences may lead to different estimates of the relaxation time τ at regional 825 

scale. Moreover, the combination of regional ocean physics and biogeochemical 826 

processes in each individual model may drive an evolution of regional drift in RMSE 827 

that does not fit the hypothesis of an exponential decay of the drift during the course 828 

of the spin-up simulation.  829 

 830 

The above-mentioned remark can explain the relatively low confidence level of the fit 831 

to drift across the multi-model CMIP5 ensemble (Figure 9). The relatively low 832 

significance level of the fit directly reflects not only the large diversity of spin-up 833 

protocols and initial conditions (Figure 1 and Table 1) but also the large diversity of 834 

processes and resolution of the CMIP5 models.  An improved derivation of the 835 

penalization would require access to output from spin-up simulations for each 836 

individual model or, at least, a better quantification of model-model differences in 837 

terms of initial conditions.  838 

 839 

Finally, it is unlikely that model fields drift at the same rate along the spin-up 840 

simulation, even under the same spin-up protocols. Indeed, as shown in Kriest and 841 

Oschlies (2015), various parameterizations of the particles sinking speeds in a 842 

common physical framework may lead to a similar evolution of the globally averaged 843 

RMSE in the first century of the spin-up simulation but display very different 844 

behaviour within a time-scale of O(103) years. As such, drift and τ estimates need to 845 

be used with caution when computed from short spin-up simulation because they can 846 

be subject to large uncertainties. 847 
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 848 

5- Conclusions and recommendation for future intercomparison exercises 849 

Skill-score metrics are expected to be widely used in the framework of the future 850 

CMIP6 (Meehl et al., 2014) with the development of international community 851 

benchmarking tools like the ESMValTool (http://www.pa.op.dlr.de/ESMValTool , see 852 

also Eyring et al. (2015)). The assessment of model skill to reproduce observations 853 

will focus on the modern period. Complementary to this approach, our results call for 854 

the consideration of spin-up and initialization strategies in the determination of skill 855 

assessment metrics (e.g., Friedrichs et al., 2009; Stow et al., 2009) and, by extension, 856 

to model weighting (e.g., Steinacher et al., 2010) and model ranking (e.g., Anav et al., 857 

2013). Indeed, the use of equilibrium-state metrics of the model like the 3-858 

dimensional growth rate or drift of relevant skill score metrics (e.g. RMSE) could be 859 

employed to increase the reliability of these traditional metrics and, as such, should be 860 

included in the set of standard assessment tools for CMIP6.  861 

 862 

In an effort to better represent interactions between marine biogeochemistry and 863 

climate (Smith et al., 2014), future generations of Earth system models are likely to 864 

include more complex ocean biogeochemical models, be it in terms of processes (e.g., 865 

Tagliabue and Völker, 2011; Tagliabue et al., 2011) or  interactions with other 866 

biogeochemical cycles (e.g., Gruber and Galloway, 2008) or increased spatial 867 

resolution (e.g., Dufour et al., 2013; Lévy et al., 2012) in order to better represent 868 

mesoscale biogeochemical dynamics. These developments will go along with an 869 

increase in the diversity and complexity of spin-up protocols applied to Earth system 870 

models, especially those including an interactive atmospheric CO2 or interactive 871 

nitrogen cycle (e.g., Dunne et al., 2013; Lindsay et al., 2014). The additional 872 
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challenge of spinning-up emission-driven simulations with interactive carbon cycle 873 

will also require us to extend the assessment of the impact of spin-up protocols to the 874 

terrestrial carbon cycle. Processes such as soil carbon accumulation, peat formation as 875 

well as shift in biomes such as tropical and boreal ecosystems for dynamic vegetation 876 

models require several long time-scales to equilibrate (Brovkin et al., 2010; Koven et 877 

al., 2015). In addition, the terrestrial carbon cycle has large uncertainties in terms of 878 

carbon sink/source behavior (Anav et al., 2013; Dalmonech et al., 2014; Friedlingstein 879 

et al., 2013) which might affect ocean CO2 uptake (Brovkin et al., 2010). A novel 880 

numerical algorithm to accelerate the spin-up integration time for computationally 881 

expensive ocean biogeochemical models has emerged (Khatiwala, 2008), which could 882 

further complicate the determination of inter-model spreads. 883 

 884 

To evaluate the contribution of variable spin-up and initialization strategies to model 885 

performance, these should be documented extensively and the corresponding model 886 

output should be archived.  Ideally, for future coupled model intercomparision 887 

exercises (i.e., CMIP6, CMIP7, Meehl et al., (2014)), the community should agree on 888 

a set of simple recommendations for spin-up protocols, following past projects such 889 

as OCMIP-2.  In parallel, any trade-off between model equilibration and 890 

computationally efficient spin-up procedures has to be linked with efforts to reduce 891 

model errors due to the physical and biogeochemical parameterizations.  892 

 893 
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time 
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spin-up 
duration 

References 

BCC-CSM1-1 sequential 
WOA2001, 
GLODAP 200 100 300 

(Wu et al., 
2013) 

BCC-CSM1-1-m sequential 
WOA2001, 
GLODAP 200 100 300 

(Wu et al., 
2013) 

CanESM2 

sequential 
(forced w/ 

obs.) 

OCMIP 
profiles, 

CanESM1 6000 600 6600 
(Arora et al., 
2011) 

CESM1-BGC direct CCSM4 0 1000 1000 
(Lindsay et 
al., 2014) 

CMCC-CESM 
sequential 
(w/ acc.) 

WOA2001, 
GLODAP 100 100 200 

(Vichi et al., 
2011) 

CNRM-CM5 sequential 

WOA1994, 
GLODAP, 

IPSL 3000 100 3100 
(Séférian et 
al., 2013) 

CNRM-CM5-2 sequential 

WOA1994, 
GLODAP, 

CNRM 3000 100 3100 
(Schwinger et 
al., 2014) 

CNRM-ESM1 sequential 
CNRM-

CM5 0 1300 1300 
(Séférian et 
al., 2015) 

GFDL-ESM2G direct WOA2005, 0 1000 1000 (Dunne et al., 
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GLODAP 2013) 

GFDL-ESM2M direct 
WOA2005, 
GLODAP 0 1000 1000 

(Dunne et al., 
2013) 

GISS-E2-H-CC direct 

WOA2005, 
GLODAP 

DIC* 0 3300 3300 
(Romanou et 
al., 2013) 

GISS-E2-R-CC direct 

WOA2005, 
GLODAP 

DIC* 0 3300 3300 
(Romanou et 
al., 2013) 

HadGEM2-CC sequential  
HadCM3LC
, WOA2011 400 100 500 

(Collins et 
al., 2011; 
Wassmann et 
al., 2010) 

HadGEM2-ES sequential  
HadCM3LC
, WOA2010 400 100 500 

(Collins et 
al., 2011) 

INMCM4 sequential 
 Uniform 

DIC 3000 200 3200 
(Volodin et 
al., 2010) 

IPSL-CM5A-LR sequential 

WOA1994, 
GLODAP, 

IPSL 3000 600 3600 
(Séférian et 
al., 2013) 

IPSL-CM5A-MR sequential 

WOA1994, 
GLODAP, 

IPSL 3000 300 3300 
(Dufresne et 
al., 2013) 

IPSL-CM5B-LR sequential 
IPSL-

CM5A-LR 0 300 300 
(Dufresne et 
al., 2013) 

MIROC-ESM sequential 

GLODAP/c
onstant 
values 1245 480 1725 

(Watanabe et 
al., 2011) 

MIROC-ESM-
CHEM sequential 

GLODAP/c
onstant 
values 1245 484 1729 

(Watanabe et 
al., 2011) 

MPI-ESM-LR sequential 

HAMOCC/
constant 
values 10000 1900 11900 

(Ilyina et al., 
2013) 

MPI-ESM-MR sequential 

HAMOCC/
constant 
values 10000 1500 11500 

(Ilyina et al., 
2013) 

MRI-ESM1 

sequential 
(forced w/ 

obs.) GLODAP 550 395 945 
(Adachi et 
al., 2013) 

NorESM direct 
WOA2010, 
GLODAP 0 900 900 

(Tjiputra et 
al., 2013) 

 1445 

Table 1: Summary of spin-up strategy, sources of initial conditions, offline/online 1446 

durations and references used to equilibrate ocean biogeochemistry in CMIP5 ESMs. 1447 

The so-called direct and sequential strategies inform whether the spin-up of the ocean 1448 
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 52 

biogeochemical model is run directly in online/coupled mode or first in offline (ocean 1449 

biogeochemistry only) and then in online/coupled mode. DIC* refers to the 1450 

observation-derived estimates of preindustrial dissolved inorganic carbon 1451 

concentration using the ∆C* method. w/ acc. and forced w/ obs. indicates the strategy 1452 

using ‘acceleration’ and observed atmospheric forcings during the spin-up, 1453 

respectively. 1454 

 1455 

 1456 

 O2 NO3 

Depth surface 150 m 2000 m surface 150 m 2000 m 

RMSE 7.19 8.75 5.50 2.07 2.90 2.08 

R2 0.98 0.98 0.99 0.96 0.92 0.94 

 1457 

Table 2: Differences between the oxygen (O2, µmol L-1) and nitrate (NO3, µmol L-1) 1458 

datasets used for initializing IPSL-CM5A-LR (WOA1994) and the datasets used for 1459 

assessing its performances (WOA2013). 1460 

 1461 

 1462 

 O2 NO3 Alk-DIC 

metrics mean RMSE RMSEmax mean RMSE RMSEmax mean RMSE RMSEmax 

Surf 

-0.2 2.6 55.8 -0.1 -0.1 34.2 1.6 -0.1 -0.1 
150 m 

3.4 39.0 31.5 -15.9 33.4 55.2 6.1 27.9 24.7 
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2000 m 

-30.4 144.3 -40.1 2 51.8 -34.8 -69.6 281.8 47.5 
Table 3: Drift in % ky-1  for oxygen (O2), nitrate (NO3) and total alkalinity minus DIC 1463 

(Alk-DIC) at surface, 150 and 2000 meters as simulated by the IPSL-CM5A-LR 1464 

model. The drift has been computed over the last 250 years of the spin-up simulation 1465 

using a linear regression fit of the globally averaged concentrations, root-mean 1466 

squared error (RMSE) and latitudinal maximum root-mean squared error (RMSEmax) 1467 

with respect to the values at year 250. 1468 

 1469 

 1470 

 1471 

Figure 1: Spin-up protocols of CMIP5 Earth system models. Color shading represents 1472 

strategies of the various modeling groups. Online and Offline steps refer to runs 1473 

performed with coupled climate model and with stand-alone ocean biogeochemistry 1474 

model, respectively. Sources of initial conditions for biogeochemical component of  1475 

CMIP5 Earth system models are indicated as hatching below the barplot. 1476 

 1477 

Figure 2: Time series of two climate indices over the 500-year spin-up simulation of 1478 

IPSL-CM5A-LR. They represent the global averaged sea surface temperature (a) and 1479 

the global mean sea-air carbon flux (b). For sea-air carbon flux, negative value 1480 

indicates uptake of carbon. Steady state equilibrium of physical components as 1481 

described in Mignot et al., (2013) is reached at ~250 years and is indicated with a 1482 

vertical dashed line. Drifts in sea surface temperature and global carbon flux are 1483 

indicated with dashed blue lines. They are computed using a linear regression fit over 1484 

years 250 to 500. Hatching on panel (b) represents the range of inverse modeling 1485 

estimates for preindustrial global carbon flux as described in Mikaloff Fletcher et al., 1486 

(2007), i.e., 0.03±0.08 Pg C y-1 plus 0.45 Pg C y-1 corresponding to the riverine-1487 

induced natural CO2 outgassing outside of near-shore regions consistently with Le 1488 

Quéré et al. (2015). 1489 

 1490 
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Figure 3: Time series of globally averaged concentration ([X] in solid lines) and 1491 

globally averaged root-mean squared error (RMSE in dashed lines) for dissolved 1492 

oxygen (O2), nitrate (NO3) and difference between alkalinity and dissolved inorganic 1493 

carbon (Alk-DIC) as simulated by IPSL-CM5A-LR. [X] and RMSE are given at 1494 

surface (a,b and c), 150 m (d, e and f), and 2000 m (g, h and i) for these three 1495 

biogeochemical fields. Their values are indicated on the left-side and right-side y-axis, 1496 

respectively. Hatching represents the ±σ observational uncertainty due to optimal 1497 

interpolation of in situ concentrations around the observed [X]. 1498 

 1499 

Figure 4: Snap-shots of spatial biases, ε, in surface concentrations (µmol L-1) in 1500 

biogeochemical fields during the 500-year spin-up simulation of IPSL-CM5A-LR. ε 1501 

in dissolved oxygen (O2), nitrate (NO3) and difference between alkalinity and 1502 

dissolved inorganic carbon (Alk-DIC) is given for the first year (a, c and e, 1503 

respectively) and for the last year of spin-up simulation (b, d and f, respectively). 1504 

 1505 

Figure 5: As Figure 4 but for concentrations at 150 m. Note that color shading does 1506 

not represent the same amplitude in spatial biases as in Figures 4 and 6. 1507 

 1508 

Figure 6: As Figure 4 but for concentrations at 2000 m. Note that color shading does 1509 

not represent the same amplitude in spatial biases as in Figures 4 and 5. 1510 

 1511 

Figure 7: Temporal-vertical evolution in root-mean squared error (RMSE) for 1512 

biogeochemical tracers during the 500-year-long spin-up simulation of IPSL-CM5A-1513 

LR. RMSE is given for (a) dissolved oxygen O2, (b) nitrate NO3 and (c) difference 1514 

between alkalinity and dissolved inorganic carbon Alk-DIC. 1515 

 1516 

Figure 8: Temporal evolution of drift in root-mean squared error (RMSE) for 1517 

dissolved oxygen (O2, blue crosses), nitrate (NO3, green crosses) and difference 1518 

between alkalinity and dissolved inorganic carbon (Alk-DIC, orange crosses) during 1519 

the 500-year-long spin-up simulation of IPSL-CM5A-LR. Drift in RMSE is given at 1520 

surface (a,b and c), 150 m (d, e and f), and 2000 m (g, h and i) for these three 1521 

biogeochemical fields. Drift in RMSE is computed from time segments of 100 years 1522 

begenning every 5 years from the beginning until year 400 of the spin-up simulation 1523 

for O2, NO3 and Alk-DIC tracers. The best-fit linear regressions between drifts in 1524 
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RMSE and spin-up duration over year 250 to 500 are indicated in solid magenta lines; 1525 

their 90% confidence intervals are given by thin dashed envelopes. 1526 

 1527 

Figure 9: Scatterplot of drifts in root-mean squared error (RMSE) in O2 concentration 1528 

versus the duration of the spin-up simulation for the available CMIP5 Earth system 1529 

models. Drifts in O2 RMSE are respectively given for surface (a), 150 m (b) and 2000 1530 

m (c) for oxygen concentrations. Drift in O2 RMSE is computed from several time 1531 

segments of 100 years begenning every 5 years from the beginning until the end of the 1532 

piControl simulation for the available CMIP5 models. Coloured symbols indicate the 1533 

mean drift in O2 RMSE while vertical lines represent the associated 90% confidence 1534 

interval. The best-fit linear regressions between models’ mean drifts in RMSE and 1535 

spin-up duration are indicated as solid green lines; their 90% confidence intervals are 1536 

given by thin dashed envelopes. Fits are assumed robust if correlation coefficients are 1537 

significant at 90% (i.e., r*>0.34). For comparison, drift in O2 RMSE from our spin-up 1538 

simulation with IPSL-CM5A-LR (Figure 8) are represented by magenta crosses. 1539 

 1540 

Figure 10: Rankings of CMIP5 Earth system models based on standard and penalized 1541 

version of the distance from oxygen observations. The standard distance metric is 1542 

calculated as the ensemble-mean root-mean squared error (RMSE) for O2 1543 

concentrations at surface (a), 150 m (b) and 2000 m (c). The penalized distance metric 1544 

incorporates drift-induced changes in O2 RMSE (∆RMSE) to O2 RMSE at surface (d), 1545 

150 m (e) and 2000 m (f). Ensemble-mean RMSE are calculated using available 1546 

ensemble members of Earth system models oxygen concentrations averaged over the 1547 

1986-2005 historical period relative to WOA2013 observations. ∆RMSE is 1548 

determined using Equation 2 and fits derived from first century of the CMIP5 1549 

piControl simulations. Solid red and magenta lines indicate the multi-model mean 1550 

standard and penalized distance from O2 observations, respectively. With the same 1551 

colour pattern, dashed lines are indicative of the multi-model median for the standard 1552 

and penalized distance from O2 observations. 1553 

 1554 
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Figure S 1: Temporal evolution of the drift in O2 root-mean squared error (RMSE) at 2000 m over the
1000-year-long CMIP5 piControl simulation of IPSL-CM5A-LR. Drift in O2 RMSE is computed from
time segments of (a) 20, (b) 50, (c) 80, and (d) 100 years distributed evenly every 5 years from the
beginning until the end of the piControl simulation. The best-fit linear regressions between drifts in
O2 RMSE and simulation duration are indicated in solid magenta lines; their 90% confidence intervals
are given by thin dashed envelope.
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Figure S 2: Vertical profiles of the globally averaged drift in O2 root-mean squared error (in 10−3 µmol
L−1 kyr−1) from the 15 CMIP5 Earth system models used in this study. Two ways to determine the
globally averaged drift are presented in this Figure: vertical profiles determined from global-averaged
O2 RMSE are indicated in blue while those computed from the globally averaged 3-dimensionnal drift
(i.e., estimated from 3-dimensionnal O2 RMSE over domains where the drift in O2 RMSE fits the
simple drift model) are given in red. Solid lines represent the mean vertical profile of the drift in O2

RMSE; the 90% confidence interval around the mean profile is represented with hatching patterns.
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Figure S 3: Vertical structures of the basin-scale drift in O2 root-mean squared error (in 10−3 µmol
L−1 kyr−1) from the 15 CMIP5 Earth system models used in this study. Basin-scale drift in O2 RMSE
has been computed from 3-dimensionnal drift averaged over Atlantic and Pacific oceans (i.e., estimated
from 3-dimensionnal O2 RMSE over domains where the drift in O2 RMSE fits the simple drift model).
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