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Abstract 40 

During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) 41 

substantial efforts were made to systematically assess of the skill of Earth system 42 

models. One goal was to check how realistically representative marine 43 

biogeochemical tracer distributions could be reproduced by models. In routine 44 

assessments model historical hindcasts were compared with available modern 45 

biogeochemical observations. However, these assessments considered neither how 46 

close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of 47 

model performance to initial conditions or to the spin-up protocols. Here, we explore 48 



  3  3 

how the large diversity in spin-up protocols used for marine biogeochemistry in 49 

CMIP5 Earth system models (ESM) contribute to model-to-model differences in the 50 

simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-51 

LR to quantify the influence of the spin-up protocol on model ability to reproduce 52 

relevant data fields. Amplification of biases in selected biogeochemical fields (O2, 53 

NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a 54 

relationship between spin-up duration and assessment metrics emerges from our 55 

model results and holds when confronted with a larger ensemble of CMIP5 models. 56 

This shows that drift has implications for performance assessment in addition to 57 

possibly aliasing estimates of climate change impact. Our study suggests that 58 

differences in spin-up protocols could explain a substantial part of model disparities, 59 

constituting a source of model-to-model uncertainty. This requires more attention in 60 

future model intercomparison exercises in order to provide quantitatively more correct 61 

ESM results on marine biogeochemistry and carbon cycle feedbacks. 62 

 63 

1- Introduction 64 

1-1 Context 65 

Earth system models (ESM) are recognized as the current state-of-the-art global 66 

coupled models used for climate research (e.g., Hajima et al., 2014; IPCC, 2013). 67 

They expand the numerical representation of the climate system used during the 4th 68 

IPCC assessment report (AR4) that was limited to coupled physical general 69 

circulation models, to the inclusion of biogeochemical and biophysical interactions 70 

between the physical climate system and the biosphere. The ESMs that contributed to 71 

CMIP5 substantially differed from each other in terms of their simulations of physical 72 

and biogeochemical components of the Earth System. These differences in design 73 
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translate into a significant variability between the skill with which the different 74 

models reproduce the observed biogeochemistry and carbon cycle, which in turn may 75 

impact projected climate change responses (IPCC, 2013). 76 

 77 

In the typical objective evaluation and intercomparison of these models, a suite of 78 

standardized statistical metrics (e.g., correlation, root-mean-squared errors) are 79 

applied to quantify differences between modeled and observed variables (e.g., Doney 80 

et al., 2009; Rose et al., 2009; Stow et al., 2009; Romanou et al., 2014; 2015). With 81 

the goal of constraining future projections, statistical metrics are often used for model 82 

ranking (e.g., Anav et al., 2013), weighting of model projections (e.g., Steinacher et 83 

al., 2010) or selection of the most skillful models across a wider ensemble (e.g., Cox 84 

et al., 2013; Massonnet et al., 2012; Wenzel et al., 2014). Most of these approaches 85 

can be considered as “blind” given that they are routinely applied without considering 86 

models’ specific characteristics and treat models a priori as equivalently independent 87 

of observations. However, since these models are typically initialized from 88 

observations, the spin-up procedure (e.g. the length of time for which the model has 89 

been run since initialization, and therefore the degree to which it has approached it’s 90 

own equilibrium) has the potential to exert a significant control over the statistical 91 

metrics calculated for each model, using those observations. 92 

 93 

1-2 Initialization of biogeochemical fields and spin-up protocols in CMIP5 94 

Ocean initialization protocols aim at obtaining stable and equilibrated distributions of 95 

model state variables, such as temperature or concentrations of dissolved tracers. Most 96 

commonly used initialization protocols consist of initializing both physical and 97 

biogeochemical variables from either climatologies (derived from the observed fields 98 
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or previous model simulations) or spatially constant values before running the model 99 

to equilibrium. In theory, equilibrium corresponds to steady-state and, hence, 100 

temporal derivatives of tracer fields close to zero. The time needed to equilibrate 101 

tracer distributions or, in other words, the integration time needed by the model to 102 

converge towards its own attractor (which is different from the true state of the 103 

climate system) varies greatly between components of the climate system. It spans 104 

from several weeks for the atmosphere (e.g., Phillips et al., 2004)  to several centuries 105 

for ocean and sea ice components (e.g., Stouffer et al., 2004). The equilibration of 106 

ocean biogeochemical tracers across the entire water column amounts to several 107 

thousands of years (e.g., Heinze et al., 1999; Wunsch and Heimbach, 2008) and 108 

depends on the state of background ocean circulation as well as the turbulent mixing 109 

and eddy stirring parameterizations (e.g., Aumont et al., 1998; Bryan, 1984; 110 

Gnanadesikan, 2004; Marinov et al., 2008). The equilibration time can be different in 111 

coupled model configuration (i.e., ocean-atmosphere general circulation models or 112 

ESMs) compared to stand-alone climate components due to leaks in the energy budget 113 

(Hobbs et al., 2016). In practice, these simulations, called “spin-ups”, often span in 114 

general only several hundred of years, at the end of which a quasi-equilibrium state is 115 

assumed for the interior ocean tracers.    116 

 117 

The present degree of complexity and spatial as well as temporal resolution of marine 118 

biogeochemical ESM components (as well as other physical and chemical 119 

components), however, often precludes a spin-up to reach adequate equilibration of 120 

biogeochemical tracers. This is a consequence of the large number of state variables 121 

present in most of the current generation of biogeochemical models (e.g., for each 122 

tracer a separate advection equation has to be solved via a numerical CPU time 123 
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demanding algorithm), more complex process descriptions (e.g., including more 124 

plankton functional types than before), and spatial as well as temporal resolution. This 125 

number of state variables has continuously increased from simple biogeochemical 126 

models (e.g., HAMOCC3, Maier-Reimer and Hasselmann (1987)) to marine 127 

biodiversity models  (e.g., Follows et al., 2007). Current generation biogeochemical 128 

models embedded in CMIP5 ESMs contain roughly two to four times more state 129 

variables than physical models (e.g., atmosphere, ocean, sea-ice), which makes their 130 

equilibration computationally costly and difficult. The initialization of 131 

biogeochemical state variables is further complicated by the scarcity of 132 

biogeochemical observations as compared to observations of physical variables (e.g., 133 

temperature, salinity). So far, three-dimensional observation-based climatologies exist 134 

for macro-nutrients, oxygen, dissolved carbon and alkalinity. For other tracers such as 135 

dissolved iron, dissolved organic carbon and biomass of the various plankton 136 

functional types data are still sparse in space and time in-spite of considerable efforts 137 

such as the GEOTRACES program for trace elements, or MAREDAT for biomasses 138 

of plankton functional types. The latter set of variables is initialized either with 139 

constant values (e.g. global average estimates) or with output from a previous model 140 

run. An additional difficulty stems from the use of modern climatologies to initialize 141 

the ocean state, implicitly assuming a long-term steady state, which does not 142 

necessarily represent the preindustrial state of the ocean. These climatologies 143 

incorporate the ongoing anthropogenic perturbation of marine biogeochemical fields, 144 

be it the uptake of anthropogenic CO2 or the excess of nutrients inputs and pollutants 145 

(e.g., Doney, 2010). Although methods exist to remove the anthropogenic 146 

perturbation from some observed ocean carbon tracer fields, their use is still debated 147 

since they lead to non-unique results (e.g., Tanhua et al., 2007; Yool et al., 2010). 148 
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 149 

The equilibration of marine biogeochemical tracer distributions is driven not only by 150 

the ocean circulation but also by numerous internal biogeochemical processes acting 151 

at various time scales. For example, while the transport and degradation of sinking 152 

organic matter spans days to perhaps several months, the associated impact on deep 153 

water chemistry accumulates over several decades to centuries as zones of differential 154 

remineralization are mixed across water masses and follows the ocean circulation 155 

(Wunsch and Heimbach, 2008). For models including interactive sediment modules, 156 

the sediment equilibration takes even longer (O(104) years; e.g., Archer et al. (2009) 157 

and Heinze et al. (1999)). As a consequence of the interplay between ocean 158 

circulation and biogeochemical processes, biogeochemical models require long spin-159 

up times to equilibrate (e.g., Khatiwala et al., 2005; Wunsch and Heimbach, 2008). 160 

Modeling studies of paleo-oceanographic passive tracers such as δ18O or Δ14C 161 

(Duplessy et al., 1991), or global ocean passive tracers  (Wunsch and Heimbach, 162 

2008), as well as more recently available modern global scale data compilations (e.g., 163 

Key et al., 2004; Sarmiento and Gruber, 2006)  and GEOTRACES Intermediate Data 164 

product 2014 (Version 2) http://www.bodc.ac.uk/geotraces/data/idp2014/)  provide an 165 

estimate of the time required for the ocean biogeochemical reservoir to equilibrate 166 

with the climate systems (excluding continental weathering and reaction with marine 167 

sediments). For the deep water masses, this time is about 1500 years in the Atlantic 168 

Ocean and reaches up to 10000 years in the North Pacific Ocean (Wunsch and 169 

Heimbach, 2008). 170 

 171 

In a context of model-to-model intercomparison, this time range contributes to the 172 

model uncertainty. Lessons from the previous Ocean Carbon Model Intercomparison 173 
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Project phase 2 (OCMIP-2) exercise have demonstrated that some models required 174 

~10,000 years to reach a state where the global sea-air carbon flux is about 0.01 Pg C 175 

y-1.  176 

 177 

While it is recognized that long time-scale processes influence the length of spin-up to 178 

equilibrium, the spin-up duration is usually defined ad hoc based on external 179 

constraints or internal biogeochemical criteria. The computational cost is commonly 180 

invoked as external constraint to shorten and limit the spin-up duration. It is directly 181 

related to model complexity (e.g., Tjiputra et al., 2013; Vichi et al., 2011; Yool et al., 182 

2013) and spatial resolution (Ito et al., 2010). The internal biogeochemical criteria 183 

applied to derive the duration of the spin-up simulations are generally defined by (i) 184 

reaching a steady-state, quasi equilibrium of the long-term global-mean CO2 fluxes 185 

between the ocean and the atmosphere (e.g., Dunne et al., 2013; Ilyina et al., 2013; 186 

Lindsay et al., 2014; Romanou et al., 2013; Séférian et al., 2013), (ii) determining the 187 

amount of carbon stored in the ocean at preindustrial state (e.g., Dunne et al., 2013; 188 

Vichi et al., 2011) or (iii) representing relevant biogeochemical tracer patterns (e.g., 189 

oxygen minimum zone in Ito and Deutsch (2013)).   190 

 191 

Despite its importance, only limited information on spin-up procedures is available 192 

through the CMIP5 metadata portal (http://metaforclimate.eu/trac). Information on 193 

spin-up protocols and model initialization is usually not taken into account in model 194 

intercomparison studies (e.g., Andrews et al., 2013; Bopp et al., 2013; Cocco et al., 195 

2013; Frölicher et al., 2014; Gehlen et al., 2014; Keller et al., 2014; Resplandy et al., 196 

2013; 2015; Rodgers et al., 2014; Séférian et al., 2014). This information, if available, 197 

can only be found separately in the reference papers of individual models (e.g., 198 
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Adachi et al., 2013; Arora et al., 2011; Collins et al., 2011; Dunne et al., 2013; Ilyina 199 

et al., 2013; Lindsay et al., 2014; Romanou et al., 2013; Séférian et al., 2013; Séférian 200 

et al., 2015; Tjiputra et al., 2013; Vichi et al., 2011; Volodin et al., 2010; Watanabe et 201 

al., 2011; Wu et al., 2013). The duration of spin-up simulations of CMIP5 ocean 202 

biogeochemical components spans from one hundred years (e.g., CMCC-CESM) to 203 

several thousand years (e.g., MPI-ESM-LR, MPI-ESM-MR) (Figure 1 and Table 1). 204 

Model initialization and spin-up procedures are equally variable across the model 205 

ensemble (Figure 1 and Table 1). Four different sources of initialization and four 206 

different procedures of model equilibration emerge from the 24 ESMs reviewed for 207 

this study.  208 

 209 

Biogeochemical state variables were mostly initialized from observations, although 210 

from various releases of the same World Ocean Atlas global climatology (WOA1994, 211 

WOA2001, WOA2006, WOA2010). A small subset of ESMs relied either on a mix 212 

between previous model output and observations or solely on model output from a 213 

previous simulation for initialization. Similarly, spin-up procedures fall into two 214 

categories. The first one may be called “sequential”: it consists in decomposing the 215 

spin-up integration into one long offline simulation (~200-10000 years) and one 216 

shorter online simulation (~100-1000 years). During the offline simulation, the 217 

biogeochemical model is forced by dynamical fields from the climate model or from 218 

reanalysis (CanESM2, MRI-ESM, Figure 1 and Table 1). Some modeling groups have 219 

adopted a “direct” strategy, which consists in running solely one online or coupled 220 

spin-up simulation (e.g., CNRM-ESM1, GFDL-ESM2M, GFDL-ESM2G, GISS-E2-221 

H-CC, GISS-E2-R-CC, NorESM1-ME). Finally, a spin-up “acceleration” procedure is 222 

used by CMCC-CESM. This technique consists of enhancing the ocean carbon 223 
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outgassing to remove anthropogenic carbon from the ocean, a legacy from 224 

initialization with modern data (Global Data Analysis Project or GLODAP following 225 

Key et al., 2004). None of these spin-up procedures, durations and sources of 226 

initialization can be considered as “standard”; each of them is unique and subjectively 227 

employed by one modeling group.  228 

 229 

Objective arguments and hypotheses justifying the choice of one method of spin-up 230 

rather than the others have been the focus of previous studies (e.g., Dunne et al., 2013; 231 

Heinze and Ilyina, 2015; Tjiputra et al., 2013). Similarly, individual modeling groups 232 

have discussed the impacts of their particular spin-up procedure on model 233 

performance individually (e.g., Dunne et al., 2013; Lindsay et al., 2014; Séférian et 234 

al., 2013; Vichi et al., 2011). However, no study has addressed the potential for the 235 

large diversity of spin-up procedures found across the CMIP5 ensemble to translate 236 

into model-to-model differences in terms of comparative model performance 237 

assessments or model evaluations in terms of future projections.  238 

 239 

1-3 Objectives of this study 240 

This study assesses the role of the spin-up protocol in controlling the ‘final’ 241 

representation of biogeochemical fields, and subsequent model skill assessment, 242 

providing a complementary analysis from the studies of Sen Gupta et al. (2012; 2013). 243 

It relies on a 500-year long spin-up simulation from a state-of-the-art Earth system 244 

model, IPSL-CM5A-LR to investigate the impacts of spin-up strategy on selected 245 

biogeochemical tracers and residual model drift across the various ESMs of the 246 

CMIP5 ensemble. We demonstrate that the duration of the spin-up has implications 247 

for the determination of robust and meaningful skill-score metrics that should improve 248 
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future intercomparison studies such as CMIP6 (Meehl et al., 2014).   249 

 250 

Section 2 describes the model, the observations, the model experiments, as well as the 251 

methods used for assessing the impacts of spin-up protocols on the representation of 252 

biogeochemical fields in IPSL-CM5A-LR, as well as across the ensemble of CMIP5 253 

ESMs. Section 3 presents the analysis developed for the assessment of the impact of 254 

spin-up duration on the representation of biogeochemical structures. Implications and 255 

recommendations are discussed in Sections 4 and 5, respectively.           256 

 257 

2- Methods 258 

2-1- Model simulations 259 

This study exploits in particular results from one simulation performed with IPSL-260 

CM5A-LR (Dufresne et al., 2013), considered here to be representative of the likely 261 

behavior of other CMIP5 Earth system models. Like other current generation of 262 

ESMs, IPSL-CM5A-LR combines the major components of the climate system (Chap 263 

9, Table 9.1, (IPCC, 2013). The atmosphere is represented by the atmospheric general 264 

circulation model LMDZ (Hourdin et al., 2006) with a horizontal resolution of 265 

3.75°x1.87° and 39 levels. The land surface is simulated with ORCHIDEE (Krinner et 266 

al., 2005). The oceanic component is NEMOv3.2 in its ORCA2 global configuration 267 

(Madec, 2008). It has a horizontal resolution of about 2° with enhanced resolution at 268 

the equator (0.5°) and 31 vertical levels. NEMOv3.2 includes the sea-ice model LIM2 269 

(Fichefet and Maqueda, 1997), and the marine biogeochemistry model PISCES 270 

(Aumont and Bopp, 2006). PISCES simulates the biogeochemical cycles of oxygen, 271 

carbon and the main nutrients with 24 state variables. The model simulates dissolved 272 

inorganic carbon and total alkalinity (carbonate alkalinity + borate + water) and the 273 
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distributions of macronutrients (nitrate and ammonium, phosphate, and silicate) and 274 

the micronutrient iron. PISCES represents two sizes of phytoplankton (i.e., 275 

nanophytoplankton and diatoms) and two zooplankton size-classes: microzooplankton 276 

and mesozooplankton. PISCES simulates semi-labile dissolved organic matter, and 277 

small and large sinking particles with different sinking speeds (3 m d-1 and 50 to 200 278 

m d-1, respectively). While fixed elemental stoichiometric C:N:P-∆O2 ratios after 279 

Takahashi et al. (1985) are imposed for these three compartments the internal 280 

concentrations of iron, silica and calcite are simulated prognostically . The carbon 281 

system is represented by dissolved inorganic carbon, alkalinity and calcite. Calcite is 282 

prognostically simulated following Maier-Reimer (1993) and Moore et al. (2002). 283 

Alkalinity in the model system includes the contribution of carbonate, bicarbonate, 284 

borate, protons, and hydroxide ions. Oxygen is prognostically simulated. The model 285 

distinguishes between oxic and suboxic remineralization pathways, the former relying 286 

on oxygen as electron acceptor, the latter on nitrate. For carbon and oxygen pools, air-287 

sea exchange follows the Wanninkhof (1992) formulation.  288 

The model’s boundary conditions account for nutrient supplies from three different 289 

sources: atmospheric dust deposition for iron, phosphorus and silica (Jickells and 290 

Spokes, 2001; Moore et al., 2004; Tegen and Fung, 1995), rivers for nutrients, 291 

alkalinity and carbon (Ludwig et al., 1996) and sediment mobilization for sedimentary 292 

iron (de Baar and de Jong, 2001; Johnson et al., 1999). To ensure conservation of 293 

nitrogen in the ocean, annual total nitrogen fixation is adjusted to balance losses from 294 

denitrification. For the other macronutrients, alkalinity and organic carbon, the 295 

conservation is ensured by tuning the sedimental burial to the total external input from 296 

rivers and dust. In PISCES, an adequate treatment of external boundary conditions has 297 

been demonstrated to be essential for the accurate simulation of nutrient distributions 298 
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(Aumont and Bopp, 2006; Aumont et al., 2003). Riverine carbon inputs induce a 299 

natural outgassing of carbon of 0.6 Pg C y-1 which has been shown to be essential to 300 

model the inter-hemispheric gradient of atmospheric CO2 under preindustrial state 301 

(Aumont et al., 2001). 302 

 303 

The core simulation used within this study is a 500-year long coupled preindustrial 304 

run. It uses the same atmospheric, land surface and ocean configurations as IPSL-305 

CM5A-LR (Dufresne et al., 2013) for which the marine biogeochemistry has been 306 

extensively evaluated (see e.g., Séférian et al. (2013) for modern-state evaluation). 307 

The only difference between the “standard” preindustrial simulation contributed to 308 

CMIP5 and the present one is the initial conditions. While the CMIP5 preindustrial 309 

simulation starts from an ocean circulation after several thousand years of online 310 

physical adjustment, the present simulation starts from an ocean at rest using the 311 

January temperature and salinity fields from the World Ocean Atlas (Levitus and 312 

Boyer, 1994). Biogeochemical state variables were initialized from data compilations 313 

or climatologies as explained in the following section. Atmospheric CO2 and other 314 

greenhouse gases, as well as natural aerosols, were set to their 1850 preindustrial 315 

values. The simulation is extensively described in terms of ocean physics by Mignot 316 

et al. (2013). Mignot and coworkers show that the strength of the Atlantic meridional 317 

overturning circulation and the Antarctic circumpolar current as well as the upper 300 318 

m ocean heat content stabilize after 250 years of simulation.  319 

 320 

Although the spin-up protocol used to conduct this 500-year long simulation is not 321 

readily comparable to the one used to produce the initial conditions for the CMIP5 322 

preindustrial simulation, its duration is greater than the median length of on-line 323 
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adjustment computed from the multiple spin-up protocols applied during CMIP5 324 

(~395 years, Figure 1 and Table 1). Besides, the methodology of initializing 325 

biogeochemical state variables from data fields is not broadly employed by the 326 

various modeling groups that have contributed to CMIP5. Despite the above-327 

mentioned methodological shortcuts, we take this 500-year long preindustrial 328 

simulation as a representative example of a spin-up protocol given the diversity of 329 

approaches used by CMIP5 models. 330 

 331 

2-2- Observations for initialization and evaluation 332 

Two streams of data sets were used in this study. The first stream combines data from 333 

the World Ocean Atlas 1994 (WOA94, Levitus and Boyer (1994) and Levitus et al., 334 

(1993)) for the initialization of 3-dimensional fields of temperature and salinity, 335 

dissolved nitrate, silicate, phosphate and oxygen, and data from GLODAP (Key et al., 336 

2004)  for preindustrial dissolved inorganic carbon and total alkalinity. This stream of 337 

data was chosen purposely in our experimental setup to be slightly different than the 338 

second stream of data, World Ocean Atlas 2013 (WOA2013, Levitus et al. (2013)), 339 

the evaluation data set. 340 

 341 

A second stream of data was used to compare modeled biogeochemical fields. It 342 

includes up-to-date observed climatologies of nitrate and oxygen from the WOA2013. 343 

This database is based on samples collected since 1965, and including data more 344 

recently collected than that made us of in WOA94. For the concentrations of 345 

preindustrial dissolved inorganic carbon and total alkalinity, we still use GLODAP. 346 

The second stream of data was selected to be as close as possible to the “standard” 347 

evaluation procedure of skill-assessment protocols found in CMIP5 model reference 348 
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papers (Adachi et al., 2013; Arora et al., 2011; Collins et al., 2011; Dunne et al., 2013; 349 

Ilyina et al., 2013; Lindsay et al., 2014; Romanou et al., 2013; Séférian et al., 2013; 350 

Séférian et al., 2015; Tjiputra et al., 2013; Vichi et al., 2011; Volodin et al., 2010; 351 

Watanabe et al., 2011; Wu et al., 2013). Differences between these two streams of 352 

data are minor and are further detailed below. 353 

 354 

2-3- Approach and statistical analysis 355 

To quantify the impacts of a large diversity of spin-up procedures on the 356 

representation of biogeochemical fields in CMIP5, we employ a three-fold approach.  357 

(1) The 500-year long spin-up simulation described in Section 2.1 is used to 358 

determine the influence of the spin-up procedure on the representation of 359 

biogeochemical fields in IPSL-CM5A-LR. 360 

(2) In the next step, relationships between biases in modeled fields, model-data 361 

mismatches and the duration of the spin-up simulation are identified across the 362 

CMIP5 ensemble. For this step, drifts in biogeochemical fields are determined from 363 

the first century of the preindustrial simulation (referred to as piControl) of each 364 

CMIP5 ESM.  365 

(3) Finally, the ensemble of industrial-revolution to present-day simulation (referred 366 

to as historical) from each available CMIP5 ESM are used to estimate the impact of 367 

these drifts in biogeochemical fields on the ability of models to replicate modern 368 

observations. For a given model, we use the ensemble average of the available 369 

‘historical’ members if several realizations are available.  370 

For this purpose, several statistical skill score metrics are computed following Rose et 371 

al. (2009) and Stow et al. (2009) from model fields interpolated on a regular 1° grid 372 

and to fixed depth levels. The skill score metrics are (1) the global averaged 373 
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concentrations for overall drift; (2) the error or bias between modeled and observed 374 

fields at each grid-cell; (3) spatial correlation between model and observations to 375 

assess mismatches between modeled and observed large-scale structures; (4) the root-376 

mean squared error (RMSE) to assess the total cumulative errors between modeled 377 

and observed fields. These statistical metrics are computed at different depth levels, 378 

but for clarity we focus on surface, 150 m (thermocline) and 2000 m (deep) levels. 379 

These statistical metrics were chosen among those described in the literature, because 380 

they proved to yield the most indicative scores for tracking model errors or 381 

improvement along the various intercomparison exercises (IPCC, 2013).  382 

 383 

The drift is determined for either concentrations in simulated biogeochemical fields or 384 

for skill score metrics (e.g., RMSE) using a linear regression fit over a time window 385 

of 100 years. This time window of 100 years was chosen as a trade-off between a 386 

longer time window (>200 years) that smoothes the drift signal and a shorter time 387 

window (<100 years) that introduces fluctuations due to internal variability and hence 388 

impacting the quality of the fit (see the assessment performed with the millennial-long 389 

CMIP5 piControl simulation of IPSL-CM5A-LR in Figure S1). 390 

The drift is assumed to decrease exponentially during the spin-up simulation and is 391 

described by a simple drift model: 392 

   (1) 393 

where τ is the relaxation time of the respective field at a given depth level. It 394 

corresponds to the time required to nullify the drift. 395 

 396 

Our analyses focus on the global distribution of nitrate (NO3), dissolved oxygen (O2) 397 

and the difference between total alkalinity and dissolved inorganic carbon (Alk-DIC).  398 
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The latter serves as an approximation of carbonate ion concentration following Zeebe 399 

and Wolf-Gladrow (2001). We use this approximation of the carbonate ion 400 

concentration rather than its concentration, [CO3
2-], since the latter was poorly 401 

assessed in CMIP5 reference papers and was not provided by a majority of ESMs. 402 

These three biogeochemical tracers were chosen because (1) most current 403 

biogeochemical models simulate Alk, DIC, NO3 and O2 prognostically and (2) they 404 

are frequently used in state-of-the-art model performance assessment (e.g., Anav et 405 

al., 2013; Bopp et al., 2013; Doney et al., 2009; Friedrichs et al., 2009; 2007; Stow et 406 

al., 2009), and (3) DIC and Alk are both used as “master tracers” for the carbonate 407 

system in the ocean biogeochemistry models (while [CO3
2-], e.g., is not explicitly 408 

transported as a tracer with the velocity fields but diagnosed from temperature, 409 

salinity, DIC, Alk, [H+], and pCO2 when needed) . Modeled distributions of NO3, O2 410 

and Alk-DIC reflect the representation of biogeochemical processes related to the 411 

biological pump (CO2, NO3, O2), the air-sea gas exchange and ocean ventilation (CO2 412 

and O2), as well as carbonate chemistry (Alk-DIC). These biogeochemical processes 413 

are of particular relevance for investigating the impact of climate change on marine 414 

productivity (e.g., Henson et al., 2010), ocean deoxygenation (e.g., Gruber, 2011; 415 

Keeling et al., 2009) and the ocean carbon sink, processes for which future projections 416 

with the current generation of ESMs yield large inter-model spreads (e.g., 417 

Friedlingstein et al., 2013; Resplandy et al., 2015; Séférian et al., 2014; Tjiputra et al., 418 

2014). 419 

 420 

3 Results 421 

3-1 Comparison of observational datasets 422 

Our review of spin-up protocols for CMIP5 ESM shows that several modeling groups 423 
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have employed different streams of datasets to initialize their biogeochemical models 424 

(e.g., WOA1994, WOA2001), while model evaluation relies on the most up-to-date 425 

stream of data. Differences between the two data streams used for initializing and 426 

assessing, respectively, NO3 and O2 concentrations are analyzed. Table 2 summarizes 427 

RMSE and correlation between WOA1994 and WOA2013 for these two 428 

biogeochemical fields. 429 

 430 

Table 2 indicates that differences between the two streams of data are fairly small. 431 

The total difference (RMSE) represents a departure between 5 to 10% from the global 432 

average concentrations of WOA2013 across depth levels. It is generally lower in 433 

regions where the sampling density has not increased markedly between the two 434 

releases. These values can be used as a baseline for model-to-model comparison 435 

assuming that errors attributed to the various sources of initialization cannot be larger 436 

than 10%. Considering that some models have used outputs from previous model 437 

simulations or globally averaged concentrations as initial conditions, we acknowledge 438 

that this baseline is not a perfect criterion for benchmarking model performance. 439 

There is, however, no ideal solution to address this issue since there is no standardized 440 

set of initial conditions in CMIP5 except some recommendations for the decadal 441 

prediction exercise in which specific attention was paid to initialization (e.g., 442 

Keenlyside et al., 2008; Kim et al., 2012; Matei et al., 2012; Meehl et al., 2013; 2009; 443 

Servonnat et al., 2014; Smith et al., 2007; Swingedouw et al., 2013). 444 

 445 

3-2 Equilibration state metrics in IPSL-CM5A-LR 446 

The global mean sea surface temperature (SST) is a common metric to quantify the 447 

energetic equilibrium of the model. This metric has been widely used in various 448 
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papers referenced in this study to determine the equilibration of ESM physical 449 

components. Figure 2a shows the evolution of this metric during the 500-year long 450 

spin-up simulation. The global average SST sharply decreases during the first 250 451 

years of the simulation. In the last 250 years of the simulation, the global averaged 452 

SST displays a small residual drift of ~-10-4 °C y-1 which falls into the range of the 453 

drifts reported for CMIP5 ESMs (Sen Gupta et al., 2013). The evolution over the last 454 

250 years is comparable to those of other physical equilibration metrics, such as the 455 

ocean heat content or the meridional overturning circulation (Mignot et al., 2013). 456 

 457 

To assess if ocean carbon cycle reservoirs are equilibrated, we track the temporal 458 

evolution of sea-to-air CO2 fluxes during the spin-up simulation. This metrics was 459 

used in phase 2 of the Ocean Carbon Model Intercomparison Project (OCMIP-2, Orr 460 

(2002)) and has still widely been used during CMIP5 as an equilibration metric for the 461 

marine biogeochemistry. Figure 2b presents its evolution in the 500-year long spin-up 462 

simulation. The global ocean sea-to-air CO2 flux is ~-0.7 Pg C y-1 over the last 463 

decades of the spin-up simulation (negative values indicate ocean CO2 uptake).  464 

We use the range of values estimated from preindustrial natural ocean carbon flux 465 

inversions (e.g. Gerber and Joos (2010) or Mikaloff Fletcher et al. (2007)) to evaluate 466 

the global sea-to-air carbon flux simulated by IPSL-CM5A-LR. Since, these estimates 467 

do not account for the preindustrial carbon outgassing induced by the river input, 468 

while our model does, we have added a constant outgassing of 0.45 Pg C y-1 to the 469 

range of 0.03 ± 0.08 Pg C y-1 (Mikaloff Fletcher et al. 2007). This value of 0.45 Pg C 470 

y-1 corresponds to the global open-ocean river-induced carbon outgassing accordingly 471 

to IPCC (2013) or Le Quéré et al. (2015). Consequently, in our modeling framework, 472 

the target value of the global sea-to-air carbon flux ranges between 0.4 and 0.56 Pg C 473 
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y-1. 474 

 475 

Figure 2b shows that the global sea-to-air carbon flux is still lower than the range of 476 

values estimated from preindustrial natural ocean carbon flux inversions (~0.4-0.56 477 

PgC y-1). Besides, Figure 2b shows that the drift in the global sea-to-air carbon flux 478 

becomes smaller more slowly after a strong decline during the first 50 years of the 479 

spin-up simulation. From year 250-500 this drift is about 0.001 Pg C y-2 and still 480 

weaker over the last century of the simulation (7x10-4 Pg C y-2). A one-sided t-test 481 

indicates that the two drifts differ from each other with a p-value < 2x10-16. When 482 

fitted with drifts computed from overlapping time segments of 100 years, our simple 483 

drift model (Equation 1) gives a relaxation time of around 160 years. We use this 484 

relaxation time and the drift of 7x10-4 Pg C y-2 to estimate the additional spin-up time 485 

required for the model to reach an outgassing of 0.4-0.56 Pg C y-1, as 1100 to 1300 486 

years. However, even after this integration time, the drift in global sea-to-air carbon 487 

flux estimated with our simple drift model still ranges from 2x10-7 to 7x10-7 Pg C y-2.  488 

 489 

These estimates do not account for the non-linearity of the ocean carbon cycle and the 490 

associated process uncertainties (Schwinger et al., 2014), and hence potentially 491 

underestimate the time required to equilibrate the ocean carbon cycle and sea-to-air 492 

carbon fluxes in the range of inversion estimates. The drift of 0.001 Pg C y-2 is, 493 

however, much smaller than the oceanic sink for anthropogenic carbon. Even if not 494 

fully equilibrated in terms of carbon balance, it is likely that this run would have 495 

given consistent estimates of anthropogenic carbon uptake in transient historical 496 

hindcasts.   497 

 498 
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3-3 Temporal evolution of model errors in IPSL-CM5A-LR 499 

Figure 3 shows the temporal evolution of globally averaged concentrations for O2, 500 

NO3 and Alk-DIC at the surface (panels a, b and c), 150 m (panels d, e and f) and 501 

2000 m (panels g, h, and i).  Globally averaged concentrations of O2, NO3 and Alk-502 

DIC (solid lines) reach steady state after 100 to 250 years of spin-up at the surface. 503 

While modeled nominal values for O2 concentration converge toward the observed 504 

concentration (i.e., 172.3 µmol L-1), that of NO3 presents persistent deviations from 505 

WOA2013. At the surface, the convergence of the simulated oxygen to observed 506 

value is expected since the dominant governing process of thermodynamic saturation 507 

(through the air-sea gas exchange) is well understood and modeled. The deviation in 508 

surface NO3 highlights uncertainty related to near surface biological processes and 509 

upper ocean physics. Below the surface, concentrations of biogeochemical tracers 510 

drift away from the globally averaged concentrations computed from WOA2013 or 511 

GLODAP (Figure 3, panels d-i). At 150 and 2000 meters, the drift in global averaged 512 

concentrations for these fields, computed over the last 250 years, is still significant 513 

with p<10-4 (Table 3). Except for the surface fields, Figure 3 shows that RMSE, 514 

indicated with dashed lines in Figure 3, globally increases with time for all 515 

biogeochemical fields. The linear drift in RMSE over the last 250 years of the spin-up 516 

simulation falls within the 2-3 % ky-1 range at the surface. It is much larger at 2000 m 517 

(144-280 % ky-1 ; Table 3). This is also the case regionally, because the latitudinal 518 

maximum in RMSE (RMSEmax) is similar to the global RMSE. Table 3 also shows 519 

that the magnitude of drift in RMSE for O2, NO3 and Alk-DIC differs at a given depth 520 

as different processes affect the interior distribution of these biogeochemical fields.  521 

 522 

3-4 Evolution of geographical mismatches in IPSL-CM5A-LR 523 
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To further explore the evolution of mismatch in biogeochemical distributions, we 524 

analyze differences (ε) between simulated and observed fields of O2, NO3 from 525 

WOA2013 and Alk-DIC from GLODAP after the initialization and at the end of the 526 

spin-up, i.e., the first year and the last year of the core spin-up simulation performed 527 

with the IPSL-CM5A-LR model (Figures 4, 5 and 6). 528 

 529 

Figure 4 (panels a, c, and e) shows that surface concentrations of biogeochemical 530 

fields are associated with small biases at initialization. This error represents less than 531 

5% of the observed surface concentrations for O2, NO3 and Alk-DIC and reflects the 532 

weak difference between the data stream employed for initialization and validation. 533 

After 500 years of spin-up, deviations between the modeled and observed fields at the 534 

surface have increased locally by up to ~40% (Figure 4, panels b, d, and f). The 535 

largest deviations are found in high-latitude oceans for O2 and NO3 and also to some 536 

extent in the tropics for NO3 and Alk-DIC. 537 

 538 

Below the surface, distributions of modeled biogeochemical fields compare well to 539 

the observations at 150 m at initialization with averaged errors close to zero (Figure 5, 540 

panels a, c, and e). This result was expected since WOA2013 and WOA1994 differ 541 

little at these depth levels. Subsurface distributions at initialization strongly contrast 542 

with the concentrations that resulted from 500 years of spin-up (Figure 5, panels b, d, 543 

and f). After 500 years of spin-up, substantial mismatches characterize the distribution 544 

of O2, NO3 and Alk-DIC fields in the high-latitude oceans and in the tropics. Figure 5 545 

illustrates that patterns of errors for O2, NO3 and Alk-DIC fields are well correlated 546 

with each other (R>0.6). This reflects that in PISCES carbon, nitrogen and oxygen 547 

concentrations are linked by the elemental C:N:-∆O2 stoichiometry fixed in space and 548 
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time.  Figure 6 shows that model-data deviations at 2000 m have substantially 549 

increased at a regional level after 500 years of simulation, showing large errors in the 550 

Southern Hemisphere oceans. This appears clearly in Figure 6, panels d and f for NO3 551 

and Alk-DIC fields, respectively.  552 

 553 

The temporal evolution of the RMSE between modeled and observed fields of O2, 554 

NO3 and Alk-DIC over the whole water column is presented in Figure 7 in terms of 555 

RMSE (Figure 7, panels a-c). As expected, Figure 7 illustrates that there is a good 556 

match during the first years of simulation for all biogeochemical fields at all depth 557 

levels with low RMSE. After a few centuries, patterns of error evolve differently 558 

across depth for O2, NO3 and Alk-DIC.  559 

The temporal evolution of RMSE shows that patterns of error have reached a steady 560 

state a few decades after 250 years of spin-up within the upper hundred meters of the 561 

ocean but continue to evolve at greater depths, even after 500 years. Patterns of errors 562 

within the thermocline and upper 1000 m water masses evolve relatively fast (within a 563 

few centuries) due to the relatively short mixing time in the upper ocean. Mid-depth 564 

(~1500-2500 m) RMSE evolves much slower because of the slow ocean circulation at 565 

these depth levels. Characteristics time scales here are thousand of years as evidenced 566 

by the observed radiocarbon age of seawater (e.g., Wunsch and Heimbach, 2007; 567 

2008). This explains why, at the end of the spin-up simulation, two maxima of 568 

comparable amplitude are found for RMSE at 150 m and 3750 m for O2 and at 50 m 569 

and 3800 m for Alk-DIC (Figure 7).  570 

 571 

3-5 Drifts in IPSL-CM5A-LR spin-up simulation 572 

With the evolution of the RMSE established, we can use the simple drift model 573 
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(Equation 1) to determine the relaxation time, τ, which characterizes the e-folding 574 

time scale of the RMSE. To use this simple drift model, we compute the drift in 575 

RMSE determined from time segments of 100 years distributed evenly every 5 years 576 

from year 250 to 500 for O2, NO3 and Alk-DIC tracers. The drift model (magenta 577 

lines in Figure 8) is fitted to the 80 drift values for each field and each depth level 578 

(colored crosses in Figure 8). 579 

 580 

The simple drift model fits well the evolution of the drift in RMSE for the 581 

biogeochemical variables along the spin-up simulation of IPSL-CM5A-LR (Figure 8). 582 

Correlation coefficients are mostly significant at 90% confidence level (r*=0.3 583 

determined with a student distribution with significance level of 90% and ~15 584 

effective degrees of freedom estimated with the formulation of Bretherton et al., 585 

(1999)), except for NO3 at surface and Alk-DIC at 150 m and 2000 m. Another 586 

exception is found for NO3 at 150 m where the drift does not correspond to an 587 

exponential decay of the drift as function of time. The large confidence interval of the 588 

fit indicates that the fit would have been considered as non-significant given a longer 589 

spin-up simulation or a higher confidence threshold. 590 

 591 

When significant, estimates of τ  for O2 RMSE are ≈ 90, 564 and 1149 y at the surface 592 

150 m and 2000 m, respectively. These values match reasonably well τ estimated for 593 

NO3 RMSE at 2000 m (1130 y) and those for Alk-DIC RMSE at surface and 2000 m 594 

(137 and 1163 y). However, these estimates are sensitive to the time windows used to 595 

compute the drift. For a subset of time windows between 100 and 250 years by step of 596 

50 years, τ estimates for O2 RMSE are ≈ 114±67, 375±140 and 1116±527 y at the 597 

surface 150 m and 2000 m depth. These large uncertainties associated with τ 598 
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estimates are essentially due to the length of the spin-up simulation. A longer spin-up 599 

simulation would improve the quality of the fit (see Figure S1). 600 

 601 

3-6 Drifts in CMIP5 ESMs preindustrial simulations 602 

In this subsection, the analysis is extended to the CMIP5 archive. We focus on oxygen 603 

fields in the long preindustrial simulation, piControl, for the 15 available CMIP5 604 

ESMs. From these simulations that span from 250 to 1000 years, we compute the drift 605 

in O2 RMSE across depth from several time segments of 100 years distributed evenly 606 

every 5 years from the beginning until the end of the piControl simulation. These 607 

drifts are used as a surrogate for drift computed from the spin-up of each model since 608 

such simulations are not available through the data portal.  609 

 610 

Figure 9 represents the drift in O2 RMSE versus the spin-up duration for each CMIP5 611 

ESM. The analysis shows that the drift in O2 RMSE differs substantially between 612 

models. For a given model, drifts in other biogeochemical tracers (NO3 and Alk-DIC) 613 

display similar features (not shown). The between-model differences in drift are not 614 

surprising since there are no reasons for different models to exhibit similar drift for a 615 

given field. Yet, Figure 9 shows that a global relationship emerges from this ensemble 616 

when using the simple drift model to fit the drift in O2 RMSE as function of the spin-617 

up duration (solid green lines in Figure 9). With a 90% confidence level, this 618 

relationship suggests a general decrease of the drift as a function of spin-up duration 619 

for all depth levels. At the surface and at 2000 m depth, the quality of fits is low with 620 

correlation coefficients of about  0.4. These are however significant at 90% 621 

confidence level (r*=0.34 determined with a student distribution with significance 622 

level of 90% and 15 models as degree of freedom). The weakest correlation 623 
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coefficient is found for the fit at 150 m depth and hence indicating that there is no link 624 

between the drift in O2 RMSE and the duration of the spin-up simulation. This low 625 

significance level must be put into perspective given the large diversity of spin-up 626 

protocols and initial conditions (Figure 1 and Table 1) that can deteriorate the drift-627 

spin up duration relationship in this ensemble of models. 628 

 629 

The drift versus spin up duration relationship established from the 15 CMIP5 ESMs is 630 

nonetheless consistent with the results obtained with IPSL-CM5A-LR (The results in 631 

Figure 8 have been reported in Figure 9 with magenta crosses). Indeed, the drifts in 632 

RMSE decreases in course of time at the various depth levels for the IPSL-CM5A-LR 633 

model, although their magnitudes differ. This difference in magnitude is not 634 

surprising if one considers that drift is highly model and protocol dependent and that 635 

the length of the IPSL-CM5A-LR spin-up simulation is potentially too short to 636 

determine accurate estimates of the long-term drift in O2 RMSE. Despite these 637 

differences, our analyses show that a relationship between the drift in O2 RMSE 638 

versus the spin-up duration emerges from an ensemble of models and is broadly 639 

consistent with our theoretical framework of a drift model established from the results 640 

of the IPSL-CM5A-LR model (Figure 8). 641 

 642 
3-7 Impact of the drift on model skill score assessment metrics across CMIP5 643 

ESMs 644 

In the following, we investigate the influence of model drift on skill score assessment 645 

metrics that are routinely used to benchmark model performance. For this purpose, we 646 

use the ensemble-mean O2 RMSE as a metrics to assess the distance between the 647 

biogeochemical observations and model results. For this purpose, we compute O2 648 

RMSE from each ensemble member of the CMIP5 models averaged from 1986 to 649 
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2005 with respect to WOA2013 observations. The model-data distance is then 650 

determined for each CMIP5 model using the mean across the available ensemble 651 

members. 652 

 653 

The left hand side panels of Figure 10 present the performance of available CMIP5 654 

models in terms of distance to oxygen observations at the surface, 150 m and 2000 m, 655 

respectively. In these panels, the various CMIP5 models are ordered as function of 656 

their distance to the oxygen observations. Following  Knutti et al. (2013), either the 657 

ensemble mean or the ensemble median is used to identify groups of models with 658 

similar skill within the CMIP5 ensemble. The left hand side panels of Figure 10 show 659 

that the ability of models to reproduce oxygen observations varies across depth levels. 660 

The RMSE in the simulated O2 fields in CESM1-BGC, HadGEM2-ES, HadGEM2-661 

CC, GFDL-ESM2M, MPI-ESM-LR and MPI-ESM-MR is generally smaller than the 662 

ensemble mean or ensemble median RMSE across the various depth levels (Figure 10 663 

panels a, b and c). On the other side of the ranking, CMCC-CESM, CNRM-CM5, 664 

CNRM-CM5-2, IPSL-CM5B-LR and NorESM1-ME exhibit RMSE generally higher 665 

than the ensemble mean and median RMSE across the various depth levels. The other 666 

models, i.e., CNRM-ESM1, GFDL-ESM2G, IPSL-CM5A-LR and IPSL-CM5A-MR 667 

display O2 RMSE that is generally close to the ensemble mean or the ensemble 668 

median. 669 

 670 

To assess the impact of model’s drift inherited from the diversity of spin-up strategies 671 

(Figure 1 and Table 1) on the performance metrics, we use a simple additive 672 

assumption to incorporate an incremental error due to the drift, ∆RMSE, to the above-673 

mentioned RMSE. This incremental error due to the drift is computed using the 674 
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relaxation time τ determined from the piControl simulations of each CMIP5 model at 675 

each depth level (Equation 1 and Figure 9) and a common duration of T=3000 years 676 

for all models (m): 677 

€ 

ΔRMSEm (z) = driftm (z,t = 0) × exp(− 1
τ(z)

t)
0

T

∫ dt  (2) 678 

where ∆RMSE has the same unit as RMSE.  679 

The common duration T is used to bring model drift close to zero and hence to make 680 

models comparable to each other. 681 

We employ ∆RMSE to penalize the distance from the observations assuming that this 682 

drift-induced deviation in tracer fields can be added to RMSE. This means that the 683 

effect of the penalty is to increase the distance giving a consistent measure of the 684 

equilibration error. 685 

 686 

The right hand side panels of Figure 10 show the influence of this penalization 687 

approach on the model ranking at the various depth levels. They show that several 688 

models have been upgraded in the ranking while others have not. For example, both 689 

MPI-ESM-LR, MPI-ESM-MR have been upgraded at the surface and 2000 m. On the 690 

other hand, the rank of HadGEM2-ES and HadGEM2-CC has been downgraded to 691 

the 5th and 3th position due to the large drift in surface oxygen concentrations in 692 

comparison to that of the other models. The surface drift might be attributed to drivers 693 

in oxygen fluxes (e.g., SST, SSS). The ranking of GFDL-ESM2G and GFDL-694 

ESM2M slightly changes with penalization but both models stay close to the 695 

ensemble mean or the ensemble median. At the bottom of the ranking, models with 696 

large deviation from the oxygen observations (i.e., CMCC-CESM, IPSL-CM5B-LR, 697 

NorESM1-ME, CNRM-CM5) are found. For these models, the computed ∆RMSE 698 
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and RMSE result in similar ranking, because even a small drift and hence relatively 699 

low ∆RMSE cannot compensate for their large RMSE.  700 

 701 

4- Discussion 702 

4-1 Implications for biogeochemical processes 703 

Our results show that errors in ocean biogeochemical fields amplify during the spin-704 

up simulation but not at the same rate at all depths. These differences in error 705 

evolution are consistent with an increasing contribution of biogeochemical processes 706 

in setting the distribution of tracers at depth. Indeed, Mignot et al. (2013) with the 707 

same model simulation showed that the main physical climate fields as well as the 708 

large-scale ocean circulation reach quasi-equilibrium after 250 years of spin-up, but 709 

our analyses indicate that biogeochemical tracers do not (Figure 3).  710 

 711 

Besides, our analysis demonstrates that drift in biogeochemical fields are highly 712 

model dependent. For example, despite having the same initialization strategy and 713 

comparable spin up duration, the GFDL-ESM2G, GFDL-ESM2M, and NorESM1-714 

ME models display considerable difference in drift (Figures 9 and 10) that mirror 715 

large differences in model performance and properties (e.g., resolution, simulated 716 

processes). 717 

 718 

The identification of the dynamical or biogeochemical processes responsible for these 719 

errors is not within the scope of this study and would required additional long 720 

simulations with additional tracers targeted for attribution of the various 721 

biogeochemical processes and the underlying ocean physics (e.g., Doney et al., 2004) 722 

involved (e.g. using abiotic, passive tracers as suggested in Walin et al. (2014)). Some 723 
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mechanisms can be nonetheless invoked to explain differences or similarities in 724 

behavior between biogeochemical fields. For example, the evolution of surface 725 

concentrations for O2 and Alk-DIC is controlled in part by the solubility of O2 and 726 

CO2 in seawater and the concentration of these gases in the atmosphere (set to the 727 

observed values and kept constant in all experiments performed with IPSL-CM5A-LR 728 

discussed here) and the biological soft-tissue and calcium carbonate counter pumps 729 

(in relation with the vertical transport of nutrients and alkalinity). Therefore, the 730 

equilibration of the O2 and Alk-DIC surface fields once the physical equilibrium is to 731 

a large degree reached (~250 years of spin-up) is expected (Figure 3, panels a and c 732 

and Figure 7). Nevertheless, spatial errors could increase depending on the physical 733 

state of the model (Figure 4, panels b and f). By contrast, the evolution of NO3 734 

concentration is predominantly determined by ocean circulation, biological processes, 735 

and to a lesser extent by external supplies from rivers and atmosphere.  Below the 736 

surface, concentrations of O2, NO3, and Alk-DIC evolve in response to the combined 737 

effect of ocean circulation and biogeochemical processes. The combination of 738 

dynamical and biogeochemical processes on the one hand, and the spin-up strategy on 739 

the other hand both shape the modeled distributions of large-scale biogeochemical 740 

tracers.  741 

 742 

Consequences of the difficulty in achieving the correct equilibration procedure have 743 

important implications for biogeochemical features that are defined by regional 744 

characteristics in tracer concentrations, such as high nutrient/low chlorophyll regions, 745 

oxygen minimum zones and nutrient-to-light colimitation patterns. This point is 746 

illustrated by recent studies focusing on future changes in phytoplankton productivity 747 

(e.g. Vancoppenolle et al. (2013) and Laufkötter et al. (2015). Vancoppenolle and co-748 
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workers report a wide spread of surface mean NO3 concentrations (1980-1999) in the 749 

Arctic with a range from 1.7 to 8.9 µmol L-1 across a subset of 11 CMIP5 models. The 750 

spread in present day NO3 concentrations translates into a large model-to-model 751 

uncertainty in future net primary production. Laufkötter and colleagues determined 752 

limitation terms of phytoplankton production for a subset of CMIP5 and MAREMIP 753 

(Marine Ecosystem Model Intercomparison Project) models. The authors demonstrate 754 

that nutrient-to-light colimitation patterns differ in strength, location and type between 755 

models and arise from large differences in the simulated nutrient concentrations. 756 

Although Vancoppenolle et al. (2013) and Laufkötter et al. (2015) explain a part of 757 

the difference in simulated nutrient concentration by the differences in the spatial 758 

resolution and the complexity of the models, the authors of both studies qualitatively 759 

invoked differences in spin-up duration to explain the remaining differences in 760 

simulated concentrations. Besides, a recent assessment of interannual to decadal 761 

variability of ocean CO2 and O2 fluxes in CMIP5 models, suggests that decadal 762 

variability can range regionally from 10 to 50% of the total natural variability among 763 

a subset of 6 ESMs (Resplandy et al., 2015).  In that study, the authors demonstrate 764 

that, despite the robustness of driving mechanisms (mostly related to vertical transport 765 

of water masses) across the model ensemble, model-to-model spread can be related to 766 

differences in modeled carbon and oxygen concentrations. In light of present results, 767 

it appears likely that differences in spin-up strategy and sources of initialization could 768 

also contribute to the amplitude of the natural variability of the ocean CO2 and O2 769 

fluxes.  770 

 771 

4-2 Implications for future projections 772 

The inconsistent strategies used to spin-up models in CMIP5 have resulted in a 773 
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significant source of uncertainty to the multi-model spread. It needs to be better 774 

constrained in order to draw robust conclusions on the impact of climate change on 775 

the carbon cycle as well as on climate feedback (e.g., Arora et al., 2013; Friedlingstein 776 

et al., 2013; Roy et al., 2011; Schwinger et al., 2014; Séférian et al., 2012) and on 777 

marine ecosystems (e.g., Bopp et al., 2013; Boyd et al., 2015; Cheung et al., 2012; 778 

Doney et al., 2012; Gattuso et al., 2015; Lehodey et al., 2006). So far, the most 779 

frequently used approach relies on long preindustrial control simulations running 780 

parallel to a transient simulations, allowing the ‘removal’ of the drift in the simulated 781 

fields over the historical period or future projections (e.g., Bopp et al., 2013; Cocco et 782 

al., 2013; Friedlingstein et al., 2013; 2006; Frölicher et al., 2014; Gehlen et al., 2014; 783 

Keller et al., 2014; Steinacher et al., 2010; Tjiputra et al., 2014). Although this 784 

approach allows one to determine relative changes, it does not allow to investigate the 785 

underlying reasons of the spread between models in terms of processes, variability 786 

and response to climate change. The “drift-correction” approach, much as the one 787 

used for this study, assumes that drift-induced errors in the simulated fields can be 788 

isolated from the signal of interest. Verification of this fundamental hypothesis would 789 

require a specific experimental set-up consisting of the perturbation of model fields 790 

(e.g., nutrients or carbon-related fields) to assess by how much the model projections 791 

would be modified. So far, several modeling groups have generated ensemble 792 

simulation in CMIP5 using a perturbation approach. However, the perturbations were 793 

applied either to physical fields only or to both the physical and marine 794 

biogeochemical fields. To assess impacts of different spin-up strategies and/or initial 795 

conditions on future projections of marine biogeochemical tracer distributions, 796 

ensemble simulations in which only biogeochemical fields are perturbed would be 797 

needed. 798 
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 799 

4-3 Implications for multi-model skill-score assessments. 800 

While the importance of spin-up protocols is well accepted in the modeling 801 

community, the link between spin-up strategy and the ability of a model to reproduce 802 

modern observations remains to be addressed.  803 

 804 

Most of the recent CMIP5 skill assessment approaches were based on historical 805 

hindcasts that were started from preindustrial runs of varying duration and from 806 

various spin-up strategies.  Therefore, in typical intercomparison exercises, Earth 807 

system models with a short spin-up, and hence modeled distributions still close to 808 

initial fields, are confronted with Earth system models with a longer spin-up duration 809 

and modeled distributions that have drifted further away from their initial states. Our 810 

study highlights that such inconsistencies in spin-up protocols and initial conditions 811 

across CMIP5 Earth system models (Figure 1 and Table 1) could significantly 812 

contribute to model-to-model spread in performance metrics. The analysis of the first 813 

century of CMIP5 piControl simulations demonstrated a significant spread of drift 814 

between CMIP5 models (Figure 9). An approximate exponential relationship between 815 

the amplitude of drift and the spin up duration emerges from the ensemble of CMIP5 816 

models, which is consistent with results from IPSL-CM5A-LR. For example, while 817 

the global average root-mean square error increased up to 70% during a 500-year 818 

spin-up simulation with IPSL-CM5A-LR, its rate of increase (or drift) decreased with 819 

time to a very small rate (0.001 Pg C y-1). Combining a simple drift model and this 820 

relationship, we propose a penalization approach in an effort to assess more 821 

objectively the influence of documented model differences on model-data biases. 822 

Figure 10 compares the standard approach to assess model performance (left hand 823 
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side panels) to the drift-penalized approach (right hand side panels). This novel 824 

approach penalizes models with larger drift without affecting the models with smaller 825 

drift. Taking into account drift in modeled fields results in subtle adjustments in 826 

ranking, which reflect differences in spin-up and initialization strategies.  827 

 828 

4-4 Limitations of the framework 829 

In this work, the analyses focus on the globally averaged O2 RMSE across a diverse 830 

ensemble of CMIP5 models, which differ in terms of represented processes, spatial 831 

resolution and performance in addition to differences in spin-up protocols. Major 832 

limitations of the framework are presented below. 833 

 834 

Due to their specificities in terms of processes and resolution (e.g., Cabré et al., 835 

(2015), Laufkötter et al. (2015)), regional drift in CMIP5 models may differ from the 836 

drift computed from globally averaged skill-score metrics (see Figure S2 and S3). 837 

These differences may lead to different estimates of the relaxation time τ at regional 838 

scale. Moreover, the combination of regional ocean physics and biogeochemical 839 

processes in each individual model may drive an evolution of a regional drift in 840 

RMSE that does not fit the hypothesis of an exponential decay of the drift during the 841 

course of the spin-up simulation.  842 

 843 

Besides, difference in the simulated processes and resolution in the different models 844 

can explain the relatively low confidence level of the fit to drift across the multi-845 

model CMIP5 ensemble (Figure 9). The relatively low significance level of the fit 846 

reflects not only the large diversity of spin-up protocols and initial conditions (Figure 847 

1 and Table 1) but also the large diversity of processes and resolution of the CMIP5 848 
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models. Indeed, as shown in Kriest and Oschlies (2015), various parameterizations of 849 

the particle sinking speed in a common physical framework may lead to a similar 850 

evolution of the globally averaged RMSE in the first century of the spin-up simulation 851 

but display very different behavior within a time-scale of O(103) years. As such, drift 852 

and τ estimates need to be used with caution when computed from short spin-up 853 

simulations because they can be subject to large uncertainties. An improved 854 

derivation of the penalization would require access to output from spin-up simulations 855 

for each individual model or, at least, a better quantification of model-model 856 

differences in terms of initial conditions.  857 

 858 

5- Conclusions and recommendation for future intercomparison exercises 859 

Skill-score metrics are expected to be widely used in the framework of the upcoming 860 

CMIP6 (Meehl et al., 2014) with the development of international community 861 

benchmarking tools like the ESMValTool (http://www.pa.op.dlr.de/ESMValTool , see 862 

also Eyring et al. (2015)). The assessment of model skill to reproduce observations 863 

will focus on the modern period. Complementary to this approach, our results call for 864 

the consideration of spin-up and initialization strategies in the determination of skill 865 

assessment metrics (e.g., Friedrichs et al., 2009; Stow et al., 2009) and, by extension, 866 

to model weighting (e.g., Steinacher et al., 2010) and model ranking (e.g., Anav et al., 867 

2013). Indeed, the use of equilibrium-state metrics of the model like the 3-868 

dimensional drift of relevant skill score metrics (e.g. RMSE) could be employed to 869 

increase the reliability of these traditional metrics and, as such, should be included in 870 

the set of standard assessment tools for CMIP6.  871 

 872 

In an effort to better represent interactions between marine biogeochemistry and 873 
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climate (Smith et al., 2014), future generations of Earth system models are likely to 874 

include more complex ocean biogeochemical models, be it in terms of processes (e.g., 875 

Tagliabue and Völker, 2011; Tagliabue et al., 2011) or  interactions with other 876 

biogeochemical cycles (e.g., Gruber and Galloway, 2008) or increased spatial 877 

resolution (e.g., Dufour et al., 2013; Lévy et al., 2012) in order to better represent 878 

mesoscale biogeochemical dynamics. These developments will go along with an 879 

increase in the diversity and complexity of spin-up protocols applied to Earth system 880 

models, especially those including an interactive atmospheric CO2 or interactive 881 

nitrogen cycle (e.g., Dunne et al., 2013; Lindsay et al., 2014). The additional 882 

challenge of spinning-up emission-driven simulations with interactive carbon cycle 883 

will also require us to extend the assessment of the impact of spin-up protocols to the 884 

terrestrial carbon cycle. Processes such as soil carbon accumulation, peat formation as 885 

well as shift in biomes such as tropical and boreal ecosystems for dynamic vegetation 886 

models require several long time-scales to equilibrate (Brovkin et al., 2010; Koven et 887 

al., 2015). In addition, the terrestrial carbon cycle has large uncertainties in terms of 888 

carbon sink/source behavior (Anav et al., 2013; Dalmonech et al., 2014; Friedlingstein 889 

et al., 2013) which might affect ocean CO2 uptake (Brovkin et al., 2010). A novel 890 

numerical algorithm to accelerate the spin-up integration time for computationally 891 

expensive ocean biogeochemical models has emerged (Khatiwala, 2008), which could 892 

help to disentangle physical from biogeochemical contribution to the inter-model 893 

spreads, but at the same time, could also potentially complicate the determination of 894 

inter-model spreads by increasing the diversity of spin-up protocols.  895 

 896 

To evaluate the contribution of variable spin-up and initialization strategies to model 897 

performance, these should be documented extensively and the corresponding model 898 
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output should be archived.  Ideally, for future coupled model intercomparison 899 

exercises (i.e., CMIP6, CMIP7, Meehl et al., (2014)), the community should agree on 900 

a set of simple recommendations for spin-up protocols, following past projects such 901 

as OCMIP-2.  In parallel, any trade-off between model equilibration and 902 

computationally efficient spin-up procedures has to be linked with efforts to reduce 903 

model errors due to the physical and biogeochemical parameterizations.  904 

 905 
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 1460 

 1461 

 1462 

 1463 

Models 
spin-up 

procedure 
initial 

conditions 
offline 
time 

online 
time 

total 
spin-up 
duration 

References 

BCC-CSM1-1 sequential 
WOA2001, 
GLODAP 200 100 300 

(Wu et al., 
2013) 

BCC-CSM1-1-m sequential 
WOA2001, 
GLODAP 200 100 300 

(Wu et al., 
2013) 

CanESM2 

sequential 
(forced w/ 

obs.) 

OCMIP 
profiles, 

CanESM1 6000 600 6600 
(Arora et al., 
2011) 

CESM1-BGC direct CCSM4 0 1000 1000 
(Lindsay et 
al., 2014) 

CMCC-CESM 
sequential 
(w/ acc.) 

WOA2001, 
GLODAP 100 100 200 

(Vichi et al., 
2011) 

CNRM-CM5 sequential 

WOA1994, 
GLODAP, 

IPSL 3000 100 3100 
(Séférian et 
al., 2013) 

CNRM-CM5-2 sequential 

WOA1994, 
GLODAP, 

CNRM 3000 100 3100 
(Schwinger et 
al., 2014) 

CNRM-ESM1 sequential 
CNRM-

CM5 0 1300 1300 
(Séférian et 
al., 2015) 

GFDL-ESM2G direct 
WOA2005, 
GLODAP 0 1000 1000 

(Dunne et al., 
2013) 

GFDL-ESM2M direct 
WOA2005, 
GLODAP 0 1000 1000 

(Dunne et al., 
2013) 

GISS-E2-H-CC direct 

WOA2005, 
GLODAP 

DIC* 0 3300 3300 
(Romanou et 
al., 2013) 

GISS-E2-R-CC direct 

WOA2005, 
GLODAP 

DIC* 0 3300 3300 
(Romanou et 
al., 2013) 

HadGEM2-CC sequential  
HadCM3LC
, WOA2011 400 100 500 

(Collins et 
al., 2011; 
Wassmann et 
al., 2010) 

HadGEM2-ES sequential  
HadCM3LC
, WOA2010 400 100 500 

(Collins et 
al., 2011) 

INMCM4 sequential 
 Uniform 

DIC 3000 200 3200 
(Volodin et 
al., 2010) 

IPSL-CM5A-LR sequential 
WOA1994, 
GLODAP, 3000 600 3600 

(Séférian et 
al., 2013) 
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IPSL 

IPSL-CM5A-MR sequential 

WOA1994, 
GLODAP, 

IPSL 3000 300 3300 
(Dufresne et 
al., 2013) 

IPSL-CM5B-LR sequential 
IPSL-

CM5A-LR 0 300 300 
(Dufresne et 
al., 2013) 

MIROC-ESM sequential 

GLODAP/c
onstant 
values 1245 480 1725 

(Watanabe et 
al., 2011) 

MIROC-ESM-
CHEM sequential 

GLODAP/c
onstant 
values 1245 484 1729 

(Watanabe et 
al., 2011) 

MPI-ESM-LR sequential 

HAMOCC/
constant 
values 10000 1900 11900 

(Ilyina et al., 
2013) 

MPI-ESM-MR sequential 

HAMOCC/
constant 
values 10000 1500 11500 

(Ilyina et al., 
2013) 

MRI-ESM1 

sequential 
(forced w/ 

obs.) GLODAP 550 395 945 
(Adachi et 
al., 2013) 

NorESM direct 
WOA2010, 
GLODAP 0 900 900 

(Tjiputra et 
al., 2013) 

 1464 

Table 1: Summary of spin-up strategy, sources of initial conditions, offline/online 1465 

durations and references used to equilibrate ocean biogeochemistry in CMIP5 ESMs. 1466 

The so-called direct and sequential strategies inform whether the spin-up of the ocean 1467 

biogeochemical model is run directly in online/coupled mode or first in offline (ocean 1468 

biogeochemistry only) and then in online/coupled mode. DIC* refers to the 1469 

observation-derived estimates of preindustrial dissolved inorganic carbon 1470 

concentration using the ∆C* method. w/ acc. and forced w/ obs. indicates the strategy 1471 

using ‘acceleration’ and observed atmospheric forcings during the spin-up, 1472 

respectively. 1473 

 1474 

 1475 

 O2 NO3 
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Depth surface 150 m 2000 m surface 150 m 2000 m 

RMSE 7.19 8.75 5.50 2.07 2.90 2.08 

R2 0.98 0.98 0.99 0.96 0.92 0.94 

 1476 

Table 2: Differences between the oxygen (O2, µmol L-1) and nitrate (NO3, µmol L-1) 1477 

datasets used for initializing IPSL-CM5A-LR (WOA1994) and the datasets used for 1478 

assessing its performances (WOA2013). 1479 

 1480 

 1481 

 O2 NO3 Alk-DIC 

metrics mean RMSE RMSEmax mean RMSE RMSEmax mean RMSE RMSEmax 

Surf 

-0.2 2.6 55.8 -0.1 -0.1 34.2 1.6 -0.1 -0.1 
150 m 

3.4 39.0 31.5 -15.9 33.4 55.2 6.1 27.9 24.7 
2000 m 

-30.4 144.3 -40.1 2 51.8 -34.8 -69.6 281.8 47.5 
Table 3: Drift in % ky-1  for oxygen (O2), nitrate (NO3) and total alkalinity minus DIC 1482 

(Alk-DIC) at surface, 150 and 2000 meters as simulated by the IPSL-CM5A-LR 1483 

model. The drift has been computed over the last 250 years of the spin-up simulation 1484 

using a linear regression fit of the globally averaged concentrations, root-mean 1485 

squared error (RMSE) and latitudinal maximum root-mean squared error (RMSEmax) 1486 

with respect to the values at year 250. 1487 

 1488 

 1489 
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 1490 

Figure 1: Spin-up protocols of CMIP5 Earth system models. Color shading represents 1491 

strategies of the various modeling groups. Online and Offline steps refer to runs 1492 

performed with coupled climate model and with stand-alone ocean biogeochemistry 1493 

model, respectively. Sources of initial conditions for biogeochemical component of  1494 

CMIP5 Earth system models are indicated as hatching below the barplot. 1495 

 1496 

Figure 2: Time series of two climate indices over the 500-year spin-up simulation of 1497 

IPSL-CM5A-LR. They represent the global averaged sea surface temperature (a) and 1498 

the global mean sea-air carbon flux (b). For sea-air carbon flux, negative value 1499 

indicates uptake of carbon. Steady state equilibrium of physical components as 1500 

described in Mignot et al., (2013) is reached at ~250 years and is indicated with a 1501 

vertical dashed line. Drifts in sea surface temperature and global carbon flux are 1502 

indicated with dashed blue lines. They are computed using a linear regression fit over 1503 

years 250 to 500. Hatching on panel (b) represents the range of inverse modeling 1504 

estimates for preindustrial global carbon flux as described in Mikaloff Fletcher et al., 1505 

(2007), i.e., 0.03±0.08 Pg C y-1 plus 0.45 Pg C y-1 corresponding to the riverine-1506 

induced natural CO2 outgassing outside of near-shore regions consistently with Le 1507 

Quéré et al. (2015). 1508 

 1509 

Figure 3: Time series of globally averaged concentration (in solid lines) and globally 1510 

averaged root-mean squared error (RMSE in dashed lines) for dissolved oxygen (O2), 1511 

nitrate (NO3) and difference between alkalinity and dissolved inorganic carbon (Alk-1512 

DIC) as simulated by IPSL-CM5A-LR. Globally averaged concentration and RMSE 1513 

are given at surface (a,b and c), 150 m (d, e and f), and 2000 m (g, h and i) for these 1514 

three biogeochemical fields. Their values are indicated on the left-side and right-side 1515 

y-axis, respectively. Hatching represents the ±σ observational uncertainty due to 1516 

optimal interpolation of in situ concentrations around the observed globally averaged 1517 

concentration. 1518 

 1519 

Figure 4: Snap-shots of spatial biases, ε, in surface concentrations (µmol L-1) in 1520 

biogeochemical fields during the 500-year spin-up simulation of IPSL-CM5A-LR. ε 1521 

in dissolved oxygen (O2), nitrate (NO3) and difference between alkalinity and 1522 
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dissolved inorganic carbon (Alk-DIC) is given for the first year (a, c and e, 1523 

respectively) and for the last year of spin-up simulation (b, d and f, respectively). 1524 

 1525 

Figure 5: As Figure 4 but for concentrations at 150 m. Note that color shading does 1526 

not represent the same amplitude in spatial biases as in Figures 4 and 6. 1527 

 1528 

Figure 6: As Figure 4 but for concentrations at 2000 m. Note that color shading does 1529 

not represent the same amplitude in spatial biases as in Figures 4 and 5. 1530 

 1531 

Figure 7: Temporal-vertical evolution in root-mean squared error (RMSE) for 1532 

biogeochemical tracers during the 500-year-long spin-up simulation of IPSL-CM5A-1533 

LR. RMSE is given for (a) dissolved oxygen O2, (b) nitrate NO3 and (c) difference 1534 

between alkalinity and dissolved inorganic carbon Alk-DIC. 1535 

 1536 

Figure 8: Temporal evolution of drift in root-mean squared error (RMSE) for 1537 

dissolved oxygen (O2, blue crosses), nitrate (NO3, green crosses) and difference 1538 

between alkalinity and dissolved inorganic carbon (Alk-DIC, orange crosses) during 1539 

the 500-year-long spin-up simulation of IPSL-CM5A-LR. Drift in RMSE is given at 1540 

surface (a,b and c), 150 m (d, e and f), and 2000 m (g, h and i) for these three 1541 

biogeochemical fields. Drift in RMSE is computed from time segments of 100 years 1542 

beginning every 5 years from the beginning until year 400 of the spin-up simulation 1543 

for O2, NO3 and Alk-DIC tracers. The best-fit regressions between drifts in RMSE 1544 

and spin-up duration over year 250 to 500 are indicated in solid magenta lines; their 1545 

90% confidence intervals are given by thin dashed envelopes. Least square correlation 1546 

coefficients are tested against a one-tailed t-test with significance level of 90% and 1547 

~15 effective degrees of freedom estimated with the formulation of Bretherton et al., 1548 

(1999) ; * indicates if a given least square correlation coefficient passes the test. 1549 

 1550 

Figure 9: Scatterplot of drifts in root-mean squared error (RMSE) in O2 concentration 1551 

versus the duration of the spin-up simulation for the available CMIP5 Earth system 1552 

models. Drifts in O2 RMSE are respectively given for surface (a), 150 m (b) and 2000 1553 

m (c) for oxygen concentrations. Drift in O2 RMSE is computed from several time 1554 

segments of 100 years beginning every 5 years from the beginning until the end of the 1555 
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piControl simulation for the available CMIP5 models. Coloured symbols indicate the 1556 

mean drift in O2 RMSE while vertical lines represent the associated 90% confidence 1557 

interval. The best-fit regressions between models’ mean drifts in RMSE and spin-up 1558 

duration are indicated as solid green lines; their 90% confidence intervals are given by 1559 

thin dashed envelopes. Fits are assumed robust if correlation coefficients are 1560 

significant at 90% (i.e., r*>0.34). For comparison, drift in O2 RMSE from our spin-up 1561 

simulation with IPSL-CM5A-LR (Figure 8) are represented by magenta crosses. 1562 

 1563 

Figure 10: Rankings of CMIP5 Earth system models based on standard and penalized 1564 

version of the distance from oxygen observations. The standard distance metric is 1565 

calculated as the ensemble-mean root-mean squared error (RMSE) for O2 1566 

concentrations at surface (a), 150 m (b) and 2000 m (c). The penalized distance metric 1567 

incorporates drift-induced changes in O2 RMSE (∆RMSE) to O2 RMSE at surface (d), 1568 

150 m (e) and 2000 m (f). Ensemble-mean RMSE are calculated using available 1569 

ensemble members of Earth system models oxygen concentrations averaged over the 1570 

1986-2005 historical period relative to WOA2013 observations. ∆RMSE is 1571 

determined using Equation 2 and fits derived from first century of the CMIP5 1572 

piControl simulations. Solid red and magenta lines indicate the multi-model mean 1573 

standard and penalized distance from O2 observations, respectively. With the same 1574 

colour pattern, dashed lines are indicative of the multi-model median for the standard 1575 

and penalized distance from O2 observations. 1576 

 1577 
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