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Abstract. The Finite-Element Sea-Ice Model, used as a component of the Finite-Element Sea ice
Ocean Model, is presented. Version 2 includes the elastic-viscous-plastic (EVP) and viscous-plastic
(VP) solvers and employs a flux corrected transport algorithm to advect the ice and snow mean
thicknesses and concentration. The EVP part also includes a modified approach proposed recently
by Bouillon et al., which is characterized by an improved stability compared to the standard EVP
approach. The model is formulated on unstructured triangular meshes. It assumes a collocated
placement of ice velocities, mean thicknesses and concentration at mesh vertices, and relies on a
piecewise-linear () continuous elements. Simple tests for the modified EVP and VP solvers are
presented to show that they may produce very close results provided the number of iterations is

sufficiently high.

1 Introduction

The Finite-Element Sea Ice Model (FESIM) was developed as a component of the Finite-Element
Sea Ice Ocean circulation Model (FESOM) (for a recent description see Wang et al. [(2014))) in 2003.
Its basis was the standard zero-layer thermodynamical component, and an elastic-viscous-plastic
(EVP) solver coded following |Hunke and Dukowicz | (1997) and the early version of CICE docu-
mentation (see Hunke and Lipscomb |(2008)) for the current one). It was the first unstructured-mesh
sea ice model used for global ocean — sea ice simulations. The description of the first version was
only available as an internal technical report (Danilov and Iakovlev 2003, unpublished manuscript)
and in a brief form was presented by Timmermann et al. | (2009). The P, — P; (linear polynomials
on triangles for velocities and scalars) continuous representation used in the dynamical core led to a

very compact code relying on the numerical infrastructure of FESOM. The components of stresses



25

30

35

40

45

50

55

and strain rate tensors are elementwise constant, which makes the numerical implementation very
straightforward.

Version 2 of the model is augmented by a new viscous-plastic (VP) solver, while the Galerkin-
Least-Squares stabilized advection scheme inherited from early versions of FESOM is replaced by
the FE flux corrected transport (FCT) scheme by |Lohner et al. {(1987), which warrants better numer-
ical stability. It also contains the new EVP solver by Bouillon et al. | (2013)), which puts the EVP and
VP approaches on the same footing. The model reached a high level of maturity and shows a robust
behavior in numerous simulations performed with FESOM (see, e. g.,|Sidorenko et al. |(2011),|Wang
et al. | (2012)), Wekerle et al. | (2013), [Timmermann and Hellmer | (2013)), [Wang et al. | (2014) and
Sidorenko et al. |(2014)). It may serve as a prototype for other groups developing unstructured-mesh
models intended for large-scale ocean sea-ice simulations.

The intention of this paper is to present the description of the dynamical part of the model (mo-
mentum balance and tracer advection), and illustrate the performance of the solver algorithms im-
plemented in the model. The thermodynamical part will not be described here, as its implementation
is standard (pointwise) and is not affected by the unstructured character of the surface mesh. It fol-
lows |Parkinson and Washington | (1979) and includes a prognostic snow layer (Owens and Lemke
(1990)).

Several approaches to sea-ice modelling on unstructured meshes have been proposed recently.
Hutchings et al. | (2004) describes an approach based on a finite-volume (FV) cell-centered discretiza-
tion. Another finite-volume implementation is that by FVCOM, which follows CICE (see Hunke and
Lipscomb |(2008)), but employs cell-vertex discretization, i. e., velocities are on cells (triangles), and
tracers are on vertices (see |Gao et al. | (2011))). Next to FESIM, another finite-element (FE) model
has been proposed by Lietaer et al. | (2008). It relies on linear non-conforming elements for velocities
(full velocity vectors are associated with the edges of the triangular mesh) and elementwise constant
tracers. We comment on these discretizations later.

Sections [2] and [3] introduce the basic equations and present the description of model’s numerical
part. We discuss some aspects of model performance in section ] and conclude the presentation in
section

2 Governing equations, VP and EVP methods

2.1 Governing equations

The sea-ice motion equation is

m(0s + fx)u =at —aCypo(u — u,)|u —u,| + F —mgVH. (1)

Here m is the ice plus snow mass per unit area, Cy the ice-ocean drag coefficient, p, the water

density, a the sea ice concentration, u© = (u,v) and wu, the ice and ocean velocities, T the wind
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stress, H the sea surface elevation, g the acceleration due to gravity and F; = 0;05; is the force from
stresses within the ice. We use Cartesian coordinates for brevity, with ¢,7 = 1,2 implying = and
y directions; the implementation of spherical coordinates will be discussed later. Summation over

repeating coordinate indices is implied. The total mass m is
m = pPicelice + pshs, (@)

with p;.. and p;, respectively, the densities of ice and snow and h;.. and hg their mean thicknesses
(volumes per unit area).

The internal ice stresses are computed assuming the VP rheology (Hibler | (1979)). One writes

Oij = QT](éij — (1/2)5ijékk) + C(Sijékk — (1/2)5@‘])’ 3)
where
€i; = (1/2)(0u;/0xj + Ouj/Ox;) )

is the strain rate tensor, 17 and ¢ are the moduli (‘viscosities’) and P is the ice strength. Both the
stress and the strain rate tensors are symmetric, so they are characterized by only three independent

components. The standard VP rheology adopts the following scheme of computing the ice strength

P and moduli 7 and (:

P=PRy, (=(Po/2)/(A+Amin), =0/, ®)
where

Po=hicep"e™ 070, A? = (&, +E,)(1+1/€%) +4ély/e” + 2én1ém(1 - 1/e?), ©)

e = 2 (the ellipticity parameter) and C = 20; the default values in FESOM for A,,;, and px are
Apin =2-1072 s71 and p* = 27500 N/m?. In this scheme, A,,;, serves for a viscous regular-
ization of plastic behavior in areas where A is very small. The ice strength can be modified as
P =PyA/(A+ Aip) for stresses to remain on the elliptic yield curve even if A is small, and we
will follow this variant below. We note that multi-category ice implementations (such as CICE, see
Hunke and Lipscomb | (2008)) use different parameterizations for Py, which take into account the
distribution of ice over thickness categories. This does not change the basic equations (I} [3).

In our case we deal with three tracers, the concentration a, ice mean thickness (volume per unit
area) h;.. and snow mean thickness h. They are advected by the ice velocities and modified through

thermodynamical forcing
ata +V. (ua) = Saa 8thice +V. (Ufhice) = Sicea aths +V- (Uhs) = Ss (7)

with S, S;c. the sources related to sea ice melting and freezing, and S the sources due to snow
precipitation and melting. The system (1), (3) and (7), augmented with an appropriate model of
sources and boundary conditions, defines the sea ice model. We use the no-slip boundary conditions

for momentum and no-flux condition for tracers at lateral walls.
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2.2 VP and EVP methods

The well known difficulty in solving the ice momentum equation is related to the internal stress term,
which makes this equation very stiff and would require time steps of fractions of second if stepped
explicitly. There are two common ways of handling this difficulty. The first one treats a part of stress
divergence in an implicit way, with linearization for the moduli, as suggested by |[Zhang and Hibler|
(1997). As mentioned by |Lemieux and Tremblay | (2009), it does not warrant full convergence,
and a full nonlinear solver (for example, a Jacobian-free Newton-Krylov solver, see Lemieux et al.
(2012)) has to be used for that. This strategy is still too expensive computationally, so the VP solver
adopted by us is similar in spirit to that of [Zhang and Hibler | (1997) (see section [3.4). The second
way is to reformulate the VP approach by adding pseudo-elasticity, which leads to the so-called
elastic—viscous—plastic (EVP) method. It raises the order of the system (I] [3) with respect to time,
which makes the CFL limitation on the explicit time step much less severe than in the original VP
framework.
The EVP approach, as proposed by Hunke and Dukowicz |(1997) (see also|[Hunke and Lipscomb

(2008))), is described as follows. One first defines the combinations

01=011+022, 02=011—022 ®
and similar combinations for the strain rate components:

€1 = €11+ €22, €2 =¢€11 — €. ©

In this notation, the EVP approach is
80' 1 g1 P P

doy oo P _ P . 1
ot Tor Tor T arAh 10
80’2 6202 P .

ot T or T oA an
80’12 620'12 o P .

ot " 2T aTAS (12

where T is the relaxation time. It determines the time scale of transition from elastic behavior to the
VP rheology. The default value is T' = At/3, where At is the external time step (set by the ocean
model). It can be easily seen that the EVP 'rheology’ becomes equivalent to the VP rheology if the
contribution from the time derivatives are negligible on the time scale given by At. The equations for
stresses are time stepped together with the momentum equation (I)) at a shorter time step At gy p, s0
that Ngy p = At/Atgy p is a large number (about one hundred or more). A caveat of this approach
is that by the end of the external time step the stresses may still differ from the VP solution, and
the difference may accumulate with time. So in practice the EVP solution may slightly deviate
from the VP one. Because of purely explicit time stepping for the stress-velocity pair (velocity is
considered known in stress computations and vice versa), the EVP approach must respect the CFL

limitation on the subcycling time step Atgy p (see Hunke and Dukowicz | (1997), Hunke | (2001)).
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It can be circumvented by limiting ‘viscosities” (¢ = Py/2(A + Apin),n = (/e?) so that they stay
below some level (see [Hunke | (2001)) Po/((A+ Apin) < CrimTAz?/(Atgyp)?, where Cyyyy, is
the limiting constant and Az the grid cell size. However, on unstructured meshes this can modify
solutions simply because of varying resolution (see the discussion by |Losch and Danilov | (2012)).
Limiting is therefore not used by us. The stability condition then demands that Atgy p remains
small. Note that the limitation on Atgy p becomes more restrictive for finer meshes, and would
require to use larger Ngy p.

If not observed, the CFL limitation may lead to noisy fields of velocity divergence and viscosities
in practical applications in the areas where A is low. The code remains stable in most cases (because
of stability added through time stepping, see further) and produces relatively smooth results for the
ice thickness and area coverage. Clearly, the noise may affect the ice dynamics, and a user must be
aware of that. Fully eliminating it could be both difficult and expensive in terms of CPU time.

Bouillon et al. | (2013)) proposed a modified EVP approach in which subcycling is fully detached
from the physical time stepping. It can be considered as a pseudo-time solver for the VP rheology.

In this case one writes
P

1 )
OK(O'Zer —Uf):m(Eﬁj—Ap)—O’f, (]3)
1 & .
1 P .
a(oly —Ufz):mﬁﬁ—o’fw (15)
for stresses and
BuPtt —uP) = —uPT +u™ — Atf x uPt!
+ (At/m)[FP + at + Caap,(ul —uP ™) |ug —u?| —mgVH"] (16)

for the velocity. Here o and (8 are some large constants. The superscript p is related to pseudotime
iterations, replacing the subcycling of the standard EVP, and n is the index of external time stepping.
Fields are initialized with values at time step n for p =1, and their values for the last iteration
p= Ngyp are taken as solutions for time step n+ 1. In order that CFL limitations be satisfied,
the product a3 should be sufficiently large compared to 2Py At(A + Apin) " *m~1Az=2 (see
Bouillon et al. [(2013) and further comments by |Kimmritz et al. |(2014))). The regime of the standard
EVP scheme (Ngyp = 120 and T' = At/3) will be approximately recovered for o = 3 = 80 (for
01) and Ngy p = 120, but much larger values have to be used on fine meshes to warrant the absence
of noise in strain rates and viscosities. The stability requirements here are very similar to those of
the standard EVP method if expressed in terms of Ngy p, and, likewise, become more restrictive for
finer meshes. For numerical convergence, Ngy p should exceed v and S (for the same reason that T’
is a fraction of At in the standard EVP).

One expects that if this scheme is stable and converged, it would produce solutions identical to

those of a converging VP solver, while the standard EVP scheme may slightly deviate. We will return
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to this in sections and[3.5] where the time stepping is discussed. In practice, it will seldom be run
for full convergence, which is rather expensive, and some difference will be preserved.

FESIM implements the three approaches mentioned above, which will be referred further as VP,
EVP and mEVP. The reason for keeping all them is two-fold. First, it facilitates the comparison of
results with other models which may use one of these approaches. Second, their numerical efficiency
and performance depend on applications, and one may wish to select the most appropriate one for a

particular application.

3 Numerical implementation

We first describe spatial discretization, and then the discretization in time. The easiest way of in-
troducing the FE method is through considering transport equations. For this reason we begin with

advection, and then continue with the motion equation.
3.1 Finite-element discretization of ice transport equations

This section explains the FE spatial discretization, which is based on linear continuous functions
defined on triangles. The original motivation for this choice was the ability to share the infrastructure
with the ocean model, which is based on the same discretization. The transport equations are
solved in two steps: first scalar quantities are advanced with the right hand sides (rhs) of tracer
equations set to zero. Then tracers are updated with account for thermodynamic sources and sinks
in a pointwise manner. We therefore limit ourselves to homogeneous equations. In what follows,
the superscript n will denote external time steps, and p subcycling time steps in solvers, as in the
discussion above. Subscripts j and k will denote quantities related to vertices (nodes) of triangular
mesh. It is hoped that they will not be mixed with the notation for coordinate indices of tensors. For
the mesh indices the agreement on summation over repeating indices will only be kept for matrix—
vector products.

The tracer equations are solved with the FE Taylor—Galerkin (TG) method (see, e. g.,|Zienkiewicz
and Taylor | (2000), p. 47), which is analogous to that of Lax—Wendroff for FV. One writes for the

concentration
a" ™t = a™ + Atdsal,, + (At?/2)0al,, an

and substitutes

da=—V-(u"a"), (13)
and
8ttCLZV' (u"V (u"a")) (19)
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In the last case the velocity is considered steady during the tracer time step. This still provides
the second order in time if velocity and tracers are considered to be shifted by a half time step

(asynchronous time stepping). The resulting equation
A"t =" —AtV-G", G"=u"a" - (At/2)u"V - (u"a") (20)

provides the second order in both time and space (for linear functions). Here G is the modified flux
vector, with a diffusive flux that exactly compensates for the first-order error in the time derivative.
Note that it does not introduce dissipation. The ice and snow thickness equations are solved similarly.

To solve the tracer equation (20) with the FE method one first projects it on an appropriate set of

test functions Mj:

/Mj(a”+1 —a"+ AtV-G")dS =0 1)
and then integrates it by parts to obtain

/(Mj(a"+1 —a™)— AtVM;-G™)dS = —At/MjG" -ndrl, (22)

where I is the boundary of the domain S. At the solid boundary (G - n = 0) or an open boundary
located far from the ice-covered region (so that a = 0), the boundary integral is zero. We will assume
that this is the case.

The procedure outlined above gives the equation in a so-called weak form. The discretization is

obtained by expanding scalar fields and velocities into series
a(x7y7t)zzak(t)Nk(x7y)7 (23)
k

and similarly for h;.e, hs, and components u, v of the velocity vector w. We use continuous Galerkin
discretization implying that M; = N, and that functions IN; are continuous across the boundaries of
triangles. We select IV; as a linear function associated to vertex j of the triangular mesh. It equals one
at vertex 7 and decays linearly to zero at all neighboring vertices; the expansion above is simply the
linear interpolation and summation is over all vertices. As a result, the Galerkin system of equations

on nodal values of ice concentration ay, (same for (h;ce ) and (hs)x) is obtained

Mi(ap ™ — ait) + Ajraj =0, (24)
where
Mjk = /NijdS, Ajk = —At/VNj(uNk - (At/?)uV . (uNk))dS (25)

Note that summation is implied over k£ (matrix—vector product). It will be reminded in some cases
below too. A similar procedure is used to obtain discretized momentum equations. The mass ma-
trix M, is not diagonal, but has a limited bandwidth (defined by the number of neighbors). Its

appearance is what makes the method different from the FV Lax—Wendroff implementation. Indeed,
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it is easy to check that the latter would lead to the same result on median-dual control volumes
(obtained by connecting triangle centroids with mid-edge points), but with the diagonal-lumped
mass matrix Mfk, whose diagonal entries are sums of rows of My, and other entries are zeros.
Two points should be mentioned here on practical implementation. First, the velocity field is linear
on triangles, so computations of operator A ;. should be formally done with account for this. Do-
ing so would not, however, improve accuracy compared to just using mean velocities on triangles,
which simplifies computations. Second, true iterative solution of equations involving mass matrices,
written schematically as M b, = c;, is expensive and is never attempted. Instead, one does three
iterations MJL,CbZ+1 = (MJLk — M, )b} + ¢; starting with b)) = 0. Doing more iterations does not
improve dispersive properties of the method, yet doing just one (lumping) deteriorates the method
rather noticeably.

The presence of a consistent mass matrix in the TG method effectively removes a significant por-
tion of dispersion related to the Lax—Wendroff method. However, remaining dispersive errors may
still be damaging. For this reason, the approach is augmented to the FE-FCT method as proposed by
Lohner et al. | (1987). In this method, the TG solution above serves as the high-order one, and will
be denoted as ELZ+1. The low order solution EZH is obtained by adding artificial dissipation to the

rhs and replacing the consistent mass matrix with the lumped one on the left hand side (lhs),
M (@t — af) + Ajrai = yror (M, — MJy)ay, (26)

which leads to a monotonic solution provided the parameter vpco is sufficiently high (about one).

The difference between the high-order solution &Z“ and the monotonic low-order solution EZ'H is

due to the antidiffusive flux contribution,
M (ap ™! —agth) = = (M, — MJ) (vror — Dag +ag ™) 27

The rhs of the last expression is split into contributions from separate elements. They are limited as

detailed in Lohner et al. (1987) and assembled back to recover a monotonic solution aZ"’l instead of

aptt.

By construction, the solution method is conserving. Indeed, because > i N; (x,y)=1,> Ak =
0, and Zj M, ay is the area integral. Also Zj M;ar = Zj Mfkak, so that the simple iterative
procedure above preserves conservation. According to|Budgell et al. | (2007)) the FCT method shows
second order convergence in simple advection tests. Note, however, that the ice velocity is divergent
and may thus lead to the formation of local extrema in scalar fields. The FCT scheme may therefore
result in excessive smoothing of extrema. Yet it does so for the antidiffusive fluxes only, the low-
order solution will react to the divergence of the velocity field. For this reason the parameter vror
should be taken at minimum compatible with stability and preservation of positivity.

Despite the fact that the FCT limiting doubles the computational cost of advection (compared
to using solely the TG method), the burden remains small compared to the cost of solving for ice

velocities.
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3.2 Computation of strain rates and stresses

Similar to the thicknesses and concentration, ice velocities are considered to be linear functions on

elements:

(u,v) = Z(uk,vk)Nk. (28)
k

The strain rates are therefore elementwise constant. At this point we need to take into account

sphericity and peculiarities coming from the derivatives of metric terms. We use spherical coordinate

system with poles at land to avoid the pole singularity. In spherical coordinates (¢, 6)

.1 @+ Ocosd . 10v 29)
U= Reosd\dp 00 ) “PT RO

and

. 1 Ou 1 dcosl  Ov

=R 90 T 2Reost <—u G &;5) ’ (30)

Here R it the Earth radius. We approximate the geometry as locally flat on triangles, which is equiv-
alent to replacing cosf in (1/cos)9/0¢ by its estimate on elements. If we use a local Cartesian
frame of reference on each element with the = and y axes oriented along the directions ey and eg, we
can then write 0, and 0, instead of (1/Rcos6)0/0¢ and (1/R)0/06 respectively. With the same
accuracy we make an elementwise-constant estimate of the metric differentiation term, so that the

expressions above become
€11 =0zu—vmy, €9 =20yv, é12=(1/2)(0yu+ 0zv+umy), 31)

where my = tanf/R is the metric factor. These expression for the strain rates are further used to
compute the components of stresses which would then be naturally treated as elementwise constant
too. Although the ice strength P would be more naturally modelled as a linear function because
hice and a are represented in that way, the estimate of the ice strength gradient at vertex points
will be the same if P is averaged to triangles, i. e., treated as elementwise constant. To further
simplify computations we estimate h;.. and a on triangles as the mean over vertices. This makes all
components of stresses elementwise quantities, so that time stepping of stresses in EVP and mEVP
becomes an algebraic operation on triangles. Formally projecting the last equations on functions

M. =1 on triangle (cell) c gives

(é11)e = Y (0uNiur —mpvg/3),  (éa2)e= Y vrdy Ny (32)
k(c) k(c)
and
(ér2)e = (1/2) Y (urdy Nic + mgup /3 + vx 0 Ni.). (33)
k(c)
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Here summation is over vertices k of cell ¢, hence the symbolic notation k(c). The expression
for the ice strength is computed as P. = (hjce)c(A + Apnin )2 10" exp(—C(1 — a.)) with (hice)e =
2 k(o) (hice)r /3 and ac =3 ) ar/3. With the strain rates and ice strength known, A and the stress

components are easily computed on elements.
3.3 Spatial discretization of momentum equation

Rigorous finite-element implementation of the momentum equation would involve mass matrices
and would be too time consuming in the case of EVP and mEVP solvers. For that reason some
simplifications are required. Luckily, mass matrices are not important here, as no compensation of
discrete errors can be achieved with their help. We therefore use nodal quadratures in all terms that
do not involve spatial derivatives. Multiplying () with test functions, integrating over the domain,

and integrating the rheology term by parts, one gets:
/mNj(at + fx)udS =

/Nj(arfC’dapo(ufu0)|ufuo\)dsf/(VNj)ade/mgVHdeSJr/Nj(na)dI‘.
(34)

Here NV is a shortcut for either (IN;,0) or (0,N;), so that (34) is a set of two equations obtained by
projecting on x and y directions, the second term on the rhs involves dyadic product of two tensors
and the last term involves the contraction of the stress tensor with the unit vector normal to the

boundary. On substituting the expansions in /Ny, for velocities, we approximate the lhs of as
/mNj(3t+fX)udS:Mfkmk(8t+f><)uk, (35)

where my = pice(Nice)r + ps(hs)r and M]Lk is a shortcut for two ’vectors’ (M]Lk,O) and (O,M]Ifk).

Similarly, the first term on the rhs is
/Nj(aT — Claapo(t— o) [ — o) = MY (s — Catrpo(ts — wo)lts — toli). 36)

Summation over k implied in these equations is trivial because the lumped mass matrix is diagonal.
The entries of the diagonal lumped mass matrix (for j=k) are just the areas of median-dual control
volumes associated with vertices, i. e., one third of the sums of areas of triangles containing the
vertex considered.

The second term on the rhs of leads to the following contributions to equations for local =

and y directions:

- [N ds (3 Aul—(011)c0uN; — (012)c0,N; — (712m5)c/3),
c(5)
> Ac(—(012)c02N; = (022)c0y N; + (G11m5)/3)). (37)
c(4)

10



315

320

325

330

335

340

345

Here c(j) are the indices of cells containing vertex j (spanned by test function N;) and A, is the
area of cell c. Notice that, because of metric differentiation, applying V to any of (N;,0) or (0, N;)
also gives a contribution projecting on the other vector.

In the third term on the rhs of computations of the slope term are simpler because the gradient
of scalar field H does not involve differentiation of metrics. We use the nodal quadrature for the

mass, which results in
—/mgVHdeS = gm; (G, G5),) Hy, (38)

with summation over k implied. Here G, = | N;0,NdS, and similarly for the y-equation com-
ponent. Clearly, G7, Hy, = Zc(j) (A./3) Zk(c) H}, 0, Ny, and likewise for the y equation.

The last term in (34) involves only vertices j on the boundary. We do not need equations there
in the no-slip case, which is used by us, because zero velocity will be prescribed by the virtue
of boundary conditions. Leaving equations there, but omitting the tangent component of this term

would impose free-slip boundary conditions.
3.4 Time stepping and the implementation details of VP solver

As mentioned above, large values for viscosities in the VP case would lead to severe CFL limitations
in the case of explicit time stepping. This suggests to account for the stress term in the ice motion

equation implicitly,

m"(1/At + fx)u™ M —m u™ /At =

a1 — Cga" po(u™ ™ —uM)|u —uo|" + V- —m"gVH". 39)

However, since the viscosities in o are functions of the velocity field, the expression for o should
be linearized (by estimating viscosities on time step n) in order to use standard iterative solvers. The
‘implicitness’ is recovered by doing (Picard) iterations, when the velocity of the previous iteration
is used to estimate the viscosities for the current iteration. Note that friction between ice and ocean
is linearized and taken implicitly too.

This approach is suboptimal because of the need to solve a problem for a matrix of dimension 2NV,
where [V is the number of surface nodes (vertices). The non-zero entries in each row come from both
u and v contributions in this case, which would make matrix—vector multiplications more expensive
too.

The now traditional way of handling this problem was proposed by |[Zhang and Hibler | (1997).
In that case one makes implicit the terms involving v in the z-equation and terms involving v in
the y-equation. This still requires assembling two matrices and preconditioning them. The approach
employed by us was formulated by Hutchings et al. | (2004)). It is similar in spirit to that of Zhang
and Hibler | (1997), but allows us to use the same matrix for v and v. This considerably reduces

the computational cost if general-purpose iterative solvers (like PETSc) are used. Its essence is in

11
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writing the stress tensor (3)) in the form
oij = (n+ Q) (9iu;) +n(05u;i) — ((Diug) + (¢ —n)dijénr — (1/2)6i; P, (40)

and making implicit only the first term on the rhs of this expression. Since the eigenvalue of the
implicit operator is larger in this case than in the algorithm of Zhang and Hibler |(1997), the method
is stable. Yet its convergence rate is not necessarily better because it introduces an artificial residual
through ((0;u;). The rest of the implementation resembles that of |Zhang and Hibler | (1997). It

consist of three steps. The first two of them are iterations of the scheme

m"uP /At — 0;(n+ () duf =
m™(f x u* +u"/At) + a1 — Cga" po(uP — ul)|u* — ul| + F* —m"gVH", (41)

where, as above, p is the index of iterations, and n of time stepping. In the original procedure p = 1,2,
but (Picard) iterations can be repeated to arbitrary high p = N,,. For p = 1 the superscript * implies
that the quantity is estimated at time step n. For p =2, u* = (u?~' +u")/2, F* = F(u*), and
same for the viscosities on the lhs, following Zhang and Hibler (1997). For p > 2 (if IV, > 2) the
starred quantities are those at iteration p — 1. In the expressions above, F denotes the explicit part of

the ice reaction. The final (third) step updates the Coriolis term to the implicit one:

m™(u" —u™Ne) JAt+mf x (uT —u) = —Caapo(u T — ulNe) jut — ul. (42)

Because of the need to keep the same matrix in u and v equations, the terms associated with metric
differentiation in the lhs operator are all put on the rhs (added to those of F), and the discretization
of the operator part is straightforward. For convenience, we write down F in the finite-element dis-
cretization. We first omit the terms arising from metrics differentiation, as they are more conveniently

taken into account separately all together. Since

11 =n0zu — (Ozu+ (¢ —n)(0zu+ Oyv) — P/2 = ({ —n)0yv — P/2, (43)
G12 = N0y — (0xv, 21 = N0,V — (Oyu 44)
and

Ga2 = N0yv — (0yv + (¢ = 1) (Ozu+ 0yv) — P/2 = (( —n)dyu— P/2, (45)

the divergence of stress tensor multiplied with test function IV ; and integrated by parts, will lead to

the following contributions to the rhs of the © and v components of the momentum equations
- [oNpRas= ([-aN G- mo - P12 - 0,N; 00 - CO,w)ds,
0N 00, 0r0) O, N((C ~ mdu— PJ2)ds). o)

All derivatives and P are elementwise constant, so the integrals are equivalent to summation over

the cells spanned by N;.
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It is easy to see that all ‘metric differentiation terms’ lead to the additional contributions

/mf[(’l? + C)v(‘)m]\fj — nuayNj — UlgNj]dS (47)
and
/mf[—nuﬁmNj +011Nj]d5, (48)

respectively, to v and v equations. The last terms in both contributions require integration of test
functions, which gives A./3 on each cell involved.

The operator matrix is assembled in the standard sparse format on each time step. In order to
reduce the computational load in the course of iterative solution, the matrix entries in the rows
corresponding to nodes where the ice concentration is less than a small critical value are set to one
at the diagonal, and zero otherwise. The rhs vector is corrected accordingly, and set to zero (default)
or to the ocean velocity or to the velocity of the previous time step. ThePETSc solver with ILU
preconditioning is used to solve the resulting matrix problem.

In theory, the tolerance does not necessarily need to be very small as the solution procedure is
repeated on every time step, and the solution cannot diverge very much from the previous solu-
tion. However, on unstructured meshes a small tolerance can sometimes be required to achieve an
acceptable accuracy on elements of differing size. Also, higher solver accuracy can be needed in
quasistationary regimes, to properly handle areas where A is small. Our experience with PETSc is
that while a tolerance of 10~ may be sufficient on relatively uniform meshes, it should be at least
two orders smaller if mesh size varies by a factor of 5 or more (see also discussion of convergence
below).

There is always some sensitivity to the mesh, domain geometry and preconditioning; users are

advised to experiment with the available options of the solver.
3.5 EVP and mEVP time stepping

In the EVP case equations (10H12) are time stepped implicitly on each cell (cell index c is omitted):

Py é¢-—A P
‘7113+1 =d; <U1 + AtEVPQ;“Aj-A-) ; (49)
P ¢ p
O'§+1 :d2 (02+AtEVP2701A{—Zz> s (50)
man
P é P
0'113;1 =ds <012+AtEVP210-,A+Z _ ) . (51)

Here dy = (1+ Atpyp/2T)~ ! and dy = (1 + Atgy pe?/2T) 1. The initial value for p = 1 is that

from the previous time step n.
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Pseudo-time stepping of the stress equations of mEVP is given by equations (I3]-[I5). It can also

be made implicit as

PID
o7 = o}t dy g (] - A7), (52)
p+1 =doP+d Pg P 53
b 1U2+ Q(AP—FA - )62627 ( )
min
p+1 =dioP d Pé) P 54
012 1079 + 2(AP+ A )e? )62612» (54)
min

where d; = /(1 + «) and d2 = 1/(1 + ). This has however a very small impact on stability.
Time stepping of momentum equations is implicit for the Coriolis term and the part of ice-ocean

stress. In the case of EVP the equations at each vertex j are

u?“ +ALf x u?“ + (CaAtpoam ™ uPt |uP —u,|); =
ull + (Ata(T + Caapou,|u? — uo)m )~

gM;! / NIVHdS —M; 'm;! / VN o?t1ds. (55)

The expressions for the two last terms have been given above (equations and M; =M jLJ
with no summation (it is the area associated with vertex j). The fields are initialized with values at
time step n. Pseudo-time stepping of the momentum part of mEVP is given by (I6) with the terms
interpreted similarly as in the equations above.

Now, when all equations are written, we can discuss the differences between the methods. The
differences between the EVP and mEVP are subtle (apart from the difference in variables used to
organize subcycling). First, (i) as can be seen comparing equations (IOI2) with (I3HI5), the EVP
uses different rates for o1 on one hand and o2 with o12 on the other to approach the VP rheology.
Second, (ii) after Ngy p iterations are done, the EVP scheme estimates the time derivative of velocity
based on the last substep, while mEVP employs the estimate over the entire time step At. Third, (iii)
there is damping in mEVP introduced by 3, which helps to equilibrate the solution over the places
where ice is weak. One does not expect large discrepancies between both approaches. However, it
turns out that (i) has a negative impact on stability (cf. Bouillon et al. | (2013))), which is why mEVP
is more robust, as will be demonstrated below. At the end of the external time step the VP and
mEVP solutions satisfy the same equations. To summarize, all three methods are expected to behave

approximately similar, and the main point is the convergence of their solutions (and hence stability).

4 Box test case

The model described above is routinely used with FESOM both in an ice/ocean-only version or in
a version coupled to an atmosphere model, so that its practical performance can be judged by the
results of respective papers (see, e. g., [Sidorenko et al. | (2011)/Wang et al. | (2012)), [Wekerle et al.
(2013), Timmermann and Hellmer | (2013), Wang et al. | (2014), Sidorenko et al. | (2014)) and is
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Figure 1. Triangular mesh used in simulations. The resolution varies from approximately 40 to 10 km. Stability

of EVP and mEVP on the fine mesh requires that o, 5 and Ngv p be sufficiently large.

not repeated here. Thus far FESOM was run only with the EVP solver (since it was the first one
available) and the comparison of the performance of the three available versions in the global setup
is the subject of future work. Here we will use a box test case without thermodynamic forcing,
with an intention to demonstrate similarities and disparities in the performance of VP, mEVP and
EVP algorithms. This will be more difficult for realistic simulations where many other factors may
contribute.

The setup follows that used by (2001), with the difference that islands are removed, ge-
ometry is spherical and the mesh is an unstructured one with variable resolution as used in
[and Danilov | (2012). The square box is of approximately 11 by 11 degrees in size (with the side
lengths L, and L,) and the resolution is varied from approximately 40 to 10 km from the south to

the north, as shown in Fig. ??. It will be seen below that noise, if excited, appears at the fine mesh
part, as could be anticipated. Apart from this, no other implications of mesh unstructuredness will be
mentioned here to keep discussion concise and concentrated on the algorithm performance issues.
Ice is driven by the wind stress 7 = Cfpata|tq
and the wind velocity (in m/s) is taken as u, = 5+ (sin(27t/T) — 3)sin(2nz /L, ) sin(my/ L, ) and
Vg = 5+ (sin(27t/T) — 3) sin(27wy/ L) sin(wx /L, ), where T' =4 days. The ocean velocity (in m/s)
is selected as u, = 0.1(2y — L)) /Ly, v, = —0.1(22¢ — L,)/L,, and the elevation H is computed

, with C, = 0.00225. Here p,, is the air density

by geostrophy. The coordinates x,y are the longitude and latitude counted from the south-west cor-
ner of the box. The ice thickness is 2 m initially and the ice concentration grows linearly from O to 1
in the west-east direction. The results of simulations at the end of one month are shown.

We start from comparing VP and mEVP solutions. In case A advection is switched off, and we

compare the convergence of solutions obtained with different methods. In cases B and C the advec-
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tion is switched on, they differ by the value of A,,,;,,: 2% 1072 s71 (B) and 2 x 107! s~! (C). Case
A takes A, of case B.

Figures[2]and[3]show, respectively, the zonal velocity and A (upper left panels) and the differences
in solutions obtained by different methods in case A. We take the mEVP solution with o = 3 = 500
and Ngyp = 1000 as a reference one (mEVP500), for modifications seen in runs with higher o, 8
and Ngy p are very small. The other solutions shown are those obtained with mEVP, but « = 8 =
250 and Ngy p = 250 (mEVP250), and with VP, but in the regime with 2 (VP2p) and 10 (VP10p)
additional Picard iterations (which means that N, =4 and 12 respectively). It is immediately seen
from the velocity comparison that mEVP250 is far from convergence (there is a large-scale pattern
in the velocity difference), and that it contains noise in the field of A. Note that the noise is seen
over the fine part of the mesh, as stressed in [Losch and Danilov |(2012), because it is more difficult
to satisfy the stability requirement when the mesh is refined. So the parameters of the mEVP and
the number of subcycles should be sufficiently large. Note that the same is also true for the standard
EVP. The traditional practice of running it with relatively low subcycling numbers (Ngy p = 120 is
commonly used) may lead to noise in A over places where it is sufficiently small.

The difference between the two VP solutions and mEVP500 is much smaller, and is largely con-
centrated at the front between the moving and nearly stopped ice. However, one sees that there is a
basin-scale pattern in the velocity difference in the bottom left panel of Fig.[2] which is the indication
of the lack of convergence of the VP solution over the area where ice is moving. Indeed, it almost
disappears on increasing the number of Picard iterations (bottom right panel). Simultaneously we see
the substantially improved agreement between the patterns of A in Fig. [3] The remaining discrep-
ancy is due to errors in both, EVP500 and VP10p, solutions, eliminating it will require increasing
the number of subcycling steps and iterations even further, and is not pursued. We conclude that
mEVP and VP converge to each other if one takes care that both are sufficiently accurate. Reaching
full agreement between mEVP and VP solutions is more difficult if the ice advection is on, because
errors may accumulate in this case with time. Smaller values of A,,;,, additionally complicate the
issue. In the presence of advection, ice is pressed into the north-east corner of the mesh, piling up
there. The western part of the basin becomes free of ice, so that there are two fronts no ice — moving
ice and moving ice — nearly stopped ice. We concentrate on the differences in the north-east corner,
errors along the fronts depend on minor details and are difficult to eliminate.

The results of case B are given in Fig. {] and [5] which present h;.. and A respectively after 1
month of model time. Here we compare three VP solutions with the mEVP500 reference simulation.
We checked that increasing o and 3 to 1000 with subsequent increase of Ngy p to 2000 in mEVP
does only small changes to the field of A compared to those seen for the VP solutions. The solu-
tion labelled VPb is obtained with the basic algorithm (N, = 2), and VP10p and VP25p correspond
to using 10 and 25 additional Picard iterations respectively. While the difference in ice thicknesses

remains small and is only slightly affected by the number of iterations in the VP solutions (patch-
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Figure 2. Ice zonal velocity (m/s) in case A (advection is switched off) after one month of simulations in
mEVP500 (top, left) and differences between the solutions obtained by different methods: mEVP250-mEVP500
(top right), VP2p-mEVP500 (bottom left) and VP10p-mEVP500 (bottom right). mEVP250 does not converge,
VP2p is closer to convergence, but still with noticeable errors. Additional Picard iterations in PV10p substan-

tially reduced differences between the mEVP and VP solutions.

iness in the difference panels of Fig. d]is due to the finite accuracy of output), there is substantial
improvement in the correspondence between the mEVP and VP solutions for A as the number of Pi-
card iterations is increased. The fact that the differences in the ice thickness in the north-east corner
stagnate hints that they evolved from some minor implementation details. Since the total ice volume
is conserved, these errors are connected to those in the front position. They are rather small to be of
practical importance.

Finally, case C (Fig[6} [7) shows that reaching agreement between the mEVP and VP runs for a
much smaller A,,;, requires even larger number of Picard iterations (and also more subcycling
in mEVP, although the improvements seen are less substantial). The mEVP500 solution in this
case contains some noise in A, and is replaced by mEVP1000 obtained with o = 8 = 1000 and
Ngyvp = 2000. We also consider the standard VPb solution and the solutions obtained with 100
(VP100p) and 200 (VP200p) Picard iterations. As in case B, the Picard iterations do not change the
difference between ice volumes very much, but have substantial impact on the field of A. Similarly,
VPb produces a stronger ice (smaller A) in the north-west corner, which is partly made weaker by

increased number of Picard iterations. Of particular interest is the structure in the compression zone

17



515

520

525

530

A, MEVP500 A, MEVP250-mEVPS00 .7
A y
40
05
35 0
05
30 -1
0 5 10
A, VP2p-mEVP500 A, VP10p-mEVP500 107
s
40 40
05
35 | 0 35 0
05 05
30 -1 30 1
0 5 10 0 5 10

Figure 3. Same as in Fig. 2] but for the ‘divergence’ A (1/s) after one month of simulations. Additional Picard

iterations in the PV method lead to very good agreement between mEVP and VP solutions.

of VP solutions, which is sensitive to the number of iterations. There is some sensitivity of band
structure to the change of solver tolerance and time step. This hints that one deals here either with
incomplete convergence or some internal instabilities in the iterative procedure, a question we post-
pone for the future. We see that it is much more difficult to minimize the difference between mEVP
and VP solutions if A,,,;,, is taken smaller.

Since the intention of A,,;,, is to provide regularization, it should not be made excessively small
unless there is motivation for that.

The next pair of figures (Fig. [8] P) compares the performance of EVP and mEVP solvers. We
use A,in =2 x 1079 s71, and three EVP solutions denoted EVP3_100 (At/T = 3, Ngy p = 100),
EVP3_500 (Ngy p=500) and a special solution, EVP4_1000 (At/T = 4, Ngy p = 1000), obtained
by removing e? from the second terms on the left hand side of and putting it to the denom-
inator of the right hand side. After this manipulation EVP becomes almost identical to mEVP (all
components of the stress tensor decay to the VP limit at the same rate), except for the differences in
the velocity time stepping. In this case one may identify o with 2T’ Ngy p/At. Solution EVP3_100,
with parameters typical for large-scale applications, shows noisy A over the area with compressed
ice. Increasing the number of subcycle steps improves the agreement (Fig. [0 bottom left), but it
still remains noisy. The noise takes the form of a wave structure. Simulations with further increased

Ngyp (1000 and 2000, not shown) improve the agreement, but only slightly. Similarly, varying T'
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Figure 4. Ice thickness hic. (m) after one month of simulations in case B in mEVP500 (top, left) and the
differences between solutions obtained by different methods: VPb-mEVP500 (top right), VP10p-mEVP500
(bottom left) and VP25p-mEVP500 (bottom right). Additional Picard iterations in the VP method only slightly

affect the differences.

is of no avail. However, the situation improves dramatically if the decay rates for stresses in (IO{I2))
are made similar, as indicated by the bottom right panel in Fig. [9] The noise disappears. While the
remaining discrepancy in A over the stiff ice can be further reduced, some differences will persist
because of the different treatment of the momentum equation. The central circular spot over weak
ice is common to all three solutions. Here the contribution from rheology is not dominant, and the
difference is entirely due to the time stepping of momentum equation. We therefore conclude that it
is the difference in the damping rates in the equations for stresses (I0I2)) in the standard EVP which
is the main factor responsible for the noise seen in the field of A. More detailed analysis of this
statement is needed. If we now turn to the patterns of ice thickness, we see that even in EVP3_100
and EVP3_500 with noisy A the simulated mean ice thickness agrees rather well with the mEVP
solution, with differences of about 10 cm at maximum. The difference virtually disappears for the
special case of EVP4_1000.

In summary, given the sensitivity of the field of A to the solution procedure, one should be cautious
to discuss its detail unless the convergence has been tested. Judged from this perspective, the VP and
mEVP approaches provide more consistent behavior than the EVP. However, even with them, one

should realize that there might be some sensitivity to the implementation detail. For example, the VP
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Figure 5. A (1/s) after one month of simulations in case B in mEVP500 (top, left) and differences between
the solutions: VPb-mEVP500 (top right), VP10p-mEVP500 (bottom left) and VP25p-mEVP500 (bottom right).
Additional Picard iterations in the VP method lead to substantially reduced differences between the solutions
in the north-east corner. VPb reproduces a much stronger ice (smaller A), but additional Picard iterations make

it weaker and closer to mEVP500.

solutions discussed here have been obtained with a tolerance of 108 in the PETSc solver; using a
tolerance of 10~ leads to changes in A comparable in magnitude to the effect of varying the number
of Picard iterations. We have not seen benefits from making the tolerance even smaller (10719), but
this may change in other applications. Additionally, there is some sensitivity to the time step interval
At. Finally, the lack of full agreement in the pattern of A in VP and mEVP simulations, especially for
the low A,,,;, = 2x 107! s~ ! in case C, can partly be due to the particular implicit/explicit splitting
of the stresses, and we cannot exclude that the original splitting of [Zhang and Hibler | (1997) will
converge somewhat differently. Note that the mEVP method shows less sensitivity to details than the
VP method if « and 3 are sufficiently large to ensure the absence of noise in the solutions, and if
Ngy p is sufficient for convergence.

The ice mean thickness and concentration, in contrast, show a much more robust behavior, and
are much more consistent, even in the presence of noise in A. Still, the presence of noise pushes
simulations on a dangerous ground and should be avoided. In many practical cases the VP, mEVP or

EVP solvers will be run in a ‘partially converging mode’ when accuracy is achieved over a number
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Figure 6. Ice thickness (m) after one month of simulations in case C (Apin = 2 X 10~ s~ in mEVP1000
(top, left) and differences between the solutions obtained by different methods: VPb-mEVP1000 (top right),
VP100p-mEVP1000 (bottom left) and VP200p-mEVP1000 (bottom right). The differences are small and addi-

tional Picard iterations only slightly change them.

of steps under conditions that forcing does not change much over a time step. Numerical stability

and lack of noise (for the EVP and mEVP methods) will remain an issue to pay attention to.

5 Discussion
5.1 Numerical aspects: spatial discretization

The finite-element discretization of sea-ice dynamics employed by FESIM works in a robust way
on unstructured triangular meshes. We now discuss how it relates to other unstructured-mesh dis-
cretizations proposed in the literature.

We first note that the FE P} — P; implementation can easily be cast in a FV form as explained in the
Appendix. As concerns the purely dynamical (momentum) part, there is almost no difference in the
final result to the FE discretization because of the lumping of the mass matrices we use for dynamics.
One may wish to select a transport scheme that differs from FE-FCT, but the only motivation behind
this can be the availability of a a more accurate and efficient FV scheme. Our experience is that
reaching the accuracy of the FE-FCT scheme would require a better than third-order method in the

respective FV FCT algorithm. As mentioned above, the presence of a consistent mass matrix in the
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Figure 7. A (1/s) after one month of simulations in case C in mEVP1000 (top, left) and differences between
the solutions: VPb-mEVP500 (top right), VP100p-mEVP1000 (bottom left) and VP200p-mEVP1000 (bottom
right). Additional Picard iterations in the VP method substantially modify the differences, reducing them in the

north-east corner. The convergence is not reached even for 200 Picard iterations.

FE transport equation efficiently compensates for a significant part of dispersion, which explains its
good performance.

The vertex placement of variables we used is an analogue of A-grid in the traditional (Arakawa)
terminology. A different A-grid implementation with the cell (triangle centroid) placement of vari-
ables was proposed by Hutchings et al. | (2004). The discretization is straightforward if the FV
approach is used and if the velocity derivatives on each triangle are computed by, e. g., the least
square fit using the velocities on this and three neighboring triangles. The potential problem of the
cell-based placement is a somewhat unfavorable stencil used in the computation of stress divergence.
Indeed, it involves not only the nearest neighbors, but the neighbors of neighbors. We therefore con-
sider the vertex placement of variables to be an easier choice.

The implementation adopted by FVCOM (Gao et al. | (2011)) is also a FV one, with velocities
placed at cells and scalars at vertices. We tested this variable placement while developing the sea-ice
model to complement the ocean circulation model based on the staggered cell-vertex discretization.
Because of an excessively large velocity space (the number of triangles is approximately twice that

of vertices) it is prone to noise in velocities along the ice edge and was therefore abandoned in favor
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Figure 8. Ice mean thickness h;c. (m) after one month of simulations in mEVP500 (top, left) and differ-
ences between it and EVP solutions: EVP3_100-mEVP500 (top right), EVP3_500-mEVP500 (bottom left) and
EVP4_1000p-mEVP500 (bottom right). The last EVP solution (bottom right), obtained with modified equations

for stresses, shows the results almost identical to mEVP (see the text for details).

of the vertex—vertex scheme. Once again the vertex placement of velocities and scalars seems to be
a more robust option.

Finally, the discretization proposed by |Lietaer et al. | (2008)) is a FE one, based on nonconforming
linear functions to represent the velocity vectors, with velocity degrees of freedom placed at the
edges, and elementwise-constant scalars. It also has a too large velocity space, and is not optimal
in this respect. Additionally, placing scalars at centers would be suboptimal for representing the ice
strength gradients: a nonconforming linear function used for velocity spans only two elements with
a common edge, and two ice strength values at centroids give only one component of the gradient.

Thus, despite its simplicity the discretization in FESIM deserves attention as a balanced choice.

Work is planned on augmenting it with a multi-category ice functionality.
5.2 Numerical aspects: VP/EVP convergence

There is ongoing discussion on the convergence of traditional implementations of VP and EVP, with
indications that convergence is lacking (see, e. g., [Lemieux and Tremblay | (2009)), Lemieux et al.
(2012)). It partly motivated the development of new approaches such as the Jacobian-free Newton—

Krylov solver (see |[Lemieux et al. | (2012))), which intends to improve the convergence of the VP
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Figure 9. Same as Fig. [8 but for A (s™1). Only the special solution obtained with the same decay rates in

equations for stresses (bottom right) compares well to the mEVP solution.

method, but is too CPU-demanding, and also served as a motivation behind the new formulation of
EVP in Bouillon et al. | (2013), referred to as mEVP here. However |Bouillon et al. | (2013 mention
that they fail to reach converging mEVP solutions. The analysis of [ Kimmritz et al. | (2014)) shows that
mEVP does provide converging solutions, but only when « and S are sufficiently large and Ngy p
is larger than any of them. From the theoretical viewpoint the mEVP and VP methods should lead
to identical solutions if converged, and the solutions obtained with EVP may slightly deviate from
them. The box test cases above illustrate that the solutions can be made rather close, but reaching
full agreement between them might be too expensive computationally and require adjusting minor
details of the algorithms.

The stability (and convergence as a result) of (m)EVP solvers is sensitive to the mesh size, and
will generally deteriorate if the mesh is refined. Larger «,3, Ngyp are to be expected on finer
meshes, and it is user’s responsibility to select values providing the absence of noise in the fields of
divergence and A. Note that the issues mentioned here are in full measure relevant for other models,
including those formulated on structured meshes. While in realistic applications they can be hidden
behind much larger uncertainties in parameterizations of mechanical and thermodynamical forcing,
one should be sure that the dynamical operators the model relies on behave in a predictable and

understandable way.
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5.3 Practical aspects: CPU load

Computations of stresses and their contributions to the rhs of momentum equation are rather expen-
sive in models formulated on unstructured meshes (compared to their structured-mesh counterparts)
mainly because of the lack of directional splitting and, in the case presented, also because the num-
ber of triangles is twice as large as the number of scalar degrees of freedom. For this reason, one
computation of the rhs (done Ngy p times per external time step in EVP and mEVP solvers) is sub-
stantially more expensive than one matrix-vector multiplication in the iterative matrix solver in the
VP method. On the other hand, the number of iterations needed to reach convergence to the speci-
fied tolerance may depend on the ice distribution and domain geometry and the number of required
Picard iterations can be high. One has to take into account the time spent on assembling the stiffness
matrix and preconditioning it. Any comparison is even more complicated because full convergence
of mEVP and VP methods will not necessarily be attempted in practice. For this reason no general
recommendation can be given here. Just for information, we present the results for the box test case
above: the time step of mEVP500 with Ngy p=1000 takes 0.55 s on 8 cores of old IBM BladeCenter
JS22, to be compared with 0.88 s for VP25p and only 0.065 s for VPb, and there is approximately
linear dependence on Ngy p and the number of Picard iterations V,,. Since VPb (/V,=2) provides a
very reasonable solution for the ice mean thickness, and since the field of A, despite the lack of con-
vergence, is smooth in this case, it can still be used and will be a faster option than mEVP500 with
Ngyp=1000. They will be close to each other if we run mEVP500 with Ngy p=120, sacrificing
convergence but keeping stability. As mentioned, the comparison in realistic global configuration is

the subject of future work.

6 Code availability

The code of the model can be obtained on request from the first author (sergey.danilov@awi). It has

also been uploaded as a supplement to this paper.

7 Conclusions

FESIM, the sea-ice component of FESOM v.1.4, is described here. We focus on the dynamical part
of the model in this documentation. The new EVP solver (mEVP) proposed by |Bouillon et al. [(2013))
leads to solutions approaching those of the VP solver if both are run toward convergence. However,
it is expected that some differences between their results would still persist in practical usage. While
the mEVP algorithm shows better stability in our tests than the standard EVP algorithm (@9}
@]), the performance of mEVP and VP is rather similar, and the CPU efficiency becomes the criterion
to select between them. The mEVP method can be more convenient on massive parallel computers.

As concerns the unstructured character of meshes, the implementation based on linear continuous
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elements is perhaps the easiest among the other possible choices. It shows robust behavior and serves
well the tasks of multi-resolution modeling, as indicated by a growing list of practical applications
using FESOM. An important issue to be kept in mind with respect to multi-resolution simulations is

the sensitivity of stability and hence convergence to the mesh resolution.

Appendix A: Finite-volume formulation

The finite-element implementation described above can be recast in a finite-volume form, as briefly
described below.

In a FV implementation one deals with median-dual cells formed around vertices. They are formed
by connecting mid-edges with centroids of mesh cells. The area of the median-dual cell associated

to vertex v is the sum A, =3 )AC /3, which coincides with the respective diagonal entry of

c=c(v
the lumped mass matrix (c(v) is the list of cells (triangles) containing vertex v). Since the force F is

given by the divergence of stresses, by integrating it over A, one gets

/FZdS: Z [(leO'ijl)l + (njaijl),-]e, (AI)

v e=e(v)

where the notation e(v) implies the list of edges emanating from vertex v, the indices 4, denote
directions, the subscripts [ and r denote the left and right segments of the boundary around cell v
which is associated to edge e (they connect the mid-edge point to the centroids of cells on both sides
of the edge), [ is the length of the respective segment and n is the outer normal. The stresses o;; are
constant on triangles, so the computations with the last formula are straightforward, but involve a
cycle over edges instead of that over elements in the FE implementation. The contribution from the

elevation gradient is computed by averaging the gradients on triangles

/ VHdS= > (VH).A./3. (A2)

v c=c(v)
Note that the gradient computed by the last formula will be slightly different from its true FV coun-

terpart in the spherical geometry. The latter can be recovered by using

/ VHAS = Y [(nHL)+ (nHl),)., (A3)

with H estimated on edges as average over the vertices forming the edge.

The modifications of the transport scheme are as wel straightforward, but it is recommended to
keep the consistent mass matrix of the FE case, which will augment the FV Lax—Wendroff scheme
to the FE Taylor—Galerkin one. The FCT scheme in that case should follow the FE logics, because
the mass matrix will mix the fluxes associated to boundaries. Other positivity preserving schemes

are possible too, but have to be tested.
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