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Abstract. The Finite-Element Sea-Ice Model, used as a component of the Finite-Element Sea ice

Ocean Model, is presented. Version 2 includes the elastic-viscous-plastic (EVP) and viscous-plastic

(VP) solvers and employs a flux corrected transport algorithm to advect the ice and snow mean

thicknesses and concentration. The EVP part also includes a modified approach proposed recently

by Bouillon et al., which is characterized by an improved stability compared to the standard EVP5

approach. The model is formulated on unstructured triangular meshes. It assumes a collocated

placement of ice velocities, mean thicknesses and concentration at mesh vertices, and relies on a

piecewise-linear (P1) continuous elements. Simple tests for the modified EVP and VP solvers are

presented to show that they may produce very close results provided the number of iterations is

sufficiently high.10

1 Introduction

The Finite-Element Sea Ice Model (FESIM) was developed as a component of the Finite-Element

Sea Ice Ocean circulation Model (FESOM) (for a recent description see Wang et al. (2014)) in 2003.

Its basis was the standard zero-layer thermodynamical component, and an elastic-viscous-plastic

(EVP) solver coded following Hunke and Dukowicz (1997) and the early version of CICE docu-15

mentation (see Hunke and Lipscomb (2008) for the current one). It was the first unstructured-mesh

sea ice model used for global ocean – sea ice simulations. The description of the first version was

only available as an internal technical report (Danilov and Iakovlev 2003, unpublished manuscript)

and in a brief form was presented by Timmermann et al. (2009). The P1−P1 (linear polynomials

on triangles for velocities and scalars) continuous representation used in the dynamical core led to a20

very compact code relying on the numerical infrastructure of FESOM. The components of stresses
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and strain rate tensors are elementwise constant, which makes the numerical implementation very

straightforward.

Version 2 of the model is augmented by a new viscous-plastic (VP) solver, while the Galerkin-

Least-Squares stabilized advection scheme inherited from early versions of FESOM is replaced by25

the FE flux corrected transport (FCT) scheme by Löhner et al. (1987), which warrants better numer-

ical stability. It also contains the new EVP solver by Bouillon et al. (2013), which puts the EVP and

VP approaches on the same footing. The model reached a high level of maturity and shows a robust

behavior in numerous simulations performed with FESOM (see, e. g., Sidorenko et al. (2011), Wang

et al. (2012), Wekerle et al. (2013), Timmermann and Hellmer (2013), Wang et al. (2014) and30

Sidorenko et al. (2014)). It may serve as a prototype for other groups developing unstructured-mesh

models intended for large-scale ocean sea-ice simulations.

The intention of this paper is to present the description of the dynamical part of the model (mo-

mentum balance and tracer advection), and illustrate the performance of the solver algorithms im-

plemented in the model. The thermodynamical part will not be described here, as its implementation35

is standard (pointwise) and is not affected by the unstructured character of the surface mesh. It fol-

lows Parkinson and Washington (1979) and includes a prognostic snow layer (Owens and Lemke

(1990)).

Several approaches to sea-ice modelling on unstructured meshes have been proposed recently.

Hutchings et al. (2004) describes an approach based on a finite-volume (FV) cell-centered discretiza-40

tion. Another finite-volume implementation is that by FVCOM, which follows CICE (see Hunke and

Lipscomb (2008)), but employs cell-vertex discretization, i. e., velocities are on cells (triangles), and

tracers are on vertices (see Gao et al. (2011)). Next to FESIM, another finite-element (FE) model

has been proposed by Lietaer et al. (2008). It relies on linear non-conforming elements for velocities

(full velocity vectors are associated with the edges of the triangular mesh) and elementwise constant45

tracers. We comment on these discretizations later.

Sections 2 and 3 introduce the basic equations and present the description of model’s numerical

part. We discuss some aspects of model performance in section 4, and conclude the presentation in

section 5.

2 Governing equations, VP and EVP methods50

2.1 Governing equations

The sea-ice motion equation is

m(∂t +f×)u= aτ − aCdρo(u−uo)|u−uo|+F −mg∇H. (1)

Here m is the ice plus snow mass per unit area, Cd the ice-ocean drag coefficient, ρo the water

density, a the sea ice concentration, u= (u,v) and uo the ice and ocean velocities, τ the wind55
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stress, H the sea surface elevation, g the acceleration due to gravity and Fj = ∂iσij is the force from

stresses within the ice. We use Cartesian coordinates for brevity, with i, j = 1,2 implying x and

y directions; the implementation of spherical coordinates will be discussed later. Summation over

repeating coordinate indices is implied. The total mass m is

m= ρicehice + ρshs,60

with ρice and ρs, respectively, the densities of ice and snow and hice and hs their mean thicknesses

(volumes per unit area).

The internal ice stresses are computed assuming the VP rheology (Hibler (1979)). One writes

σij = 2η(ε̇ij − (1/2)δij ε̇kk) + ζδij ε̇kk − (1/2)δijP, (2)

where65

ε̇ij = (1/2)(∂ui/∂xj + ∂uj/∂xi)

is the strain rate tensor, η and ζ are the moduli (‘viscosities’) and P is the ice strength. Both the

stress and the strain rate tensors are symmetric, so they are characterized by only three independent

components. The standard VP rheology adopts the following scheme of computing the ice strength

P and moduli η and ζ:70

P = P0, ζ = (P0/2)/(∆ + ∆min), η = ζ/e2,

where

P0 = hicep
∗e−C(1−a), ∆2 = (ε̇211 + ε̇222)(1 + 1/e2) + 4ε̇212/e

2 + 2ε̇11ε̇22(1− 1/e2),

e= 2 (the ellipticity parameter) and C = 20; the default values in FESOM for ∆min and p∗ are

∆min = 2 · 10−9 s−1 and p∗ = 27500 N/m2. In this scheme, ∆min serves for a viscous regular-75

ization of plastic behavior in areas where ∆ is very small. The ice strength can be modified as

P = P0∆/(∆ + ∆min) for stresses to remain on the elliptic yield curve even if ∆ is small, and we

will follow this variant below. We note that multi-category ice implementations (such as CICE, see

Hunke and Lipscomb (2008)) use different parameterizations for P0, which take into account the

distribution of ice over thickness categories. This does not change the basic equations (1, 2).80

In our case we deal with three tracers, the concentration a, ice mean thickness (volume per unit

area) hice and snow mean thickness hs. They are advected by the ice velocities and modified through

thermodynamical forcing

∂ta+∇ · (ua) = Sa, ∂thice +∇ · (uhice) = Sice, ∂ths +∇ · (uhs) = Ss (3)

with Sa, Sice the sources related to sea ice melting and freezing, and Ss the sources due to snow85

precipitation and melting. The system (1), (2) and (3), augmented with an appropriate model of

sources and boundary conditions, defines the sea ice model. We use the no-slip boundary conditions

for momentum and no-flux condition for tracers at lateral walls.
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2.2 VP and EVP methods

The well known difficulty in solving the ice momentum equation is related to the internal stress term,90

which makes this equation very stiff and would require time steps of fractions of second if stepped

explicitly. There are two common ways of handling this difficulty. The first one treats a part of stress

divergence in an implicit way, with linearization for the moduli, as suggested by Zhang and Hibler

(1997). As mentioned by Lemieux and Tremblay (2009), it does not warrant full convergence,

and a full nonlinear solver (for example, a Jacobian-free Newton-Krylov solver, see Lemieux et al.95

(2012)) has to be used for that. This strategy is still too expensive computationally, so the VP solver

adopted by us is similar in spirit to that of Zhang and Hibler (1997) (see section 3.4). The second

way is to reformulate the VP approach by adding pseudo-elasticity, which leads to the so-called

elastic–viscous–plastic (EVP) method. It raises the order of the system (1, 2) with respect to time,

which makes the CFL limitation on the explicit time step much less severe than in the original VP100

framework.

The EVP approach, as proposed by Hunke and Dukowicz (1997) (see also Hunke and Lipscomb

(2008)), is described as follows. One first defines the combinations

σ1 = σ11 +σ22, σ2 = σ11−σ22

and similar combinations for the strain rate components:105

ε̇1 = ε̇11 + ε̇22, ε̇2 = ε̇11− ε̇22.

In this notation, the EVP approach is

∂σ1
∂t

+
σ1
2T

+
P

2T
=

P

2T∆
ε̇1, (4)

∂σ2
∂t

+
e2σ2
2T

=
P

2T∆
ε̇2, (5)

∂σ12
∂t

+
e2σ12
2T

=
P

2T∆
ε̇12, (6)110

where T is the relaxation time. It determines the time scale of transition from elastic behavior to the

VP rheology. The default value is T = ∆t/3, where ∆t is the external time step (set by the ocean

model). It can be easily seen that the EVP ’rheology’ becomes equivalent to the VP rheology if the

contribution from the time derivatives are negligible on the time scale given by ∆t. The equations for

stresses are time stepped together with the momentum equation (1) at a shorter time step ∆tEV P , so115

that NEV P = ∆t/∆tEV P is a large number (about one hundred or more). A caveat of this approach

is that by the end of the external time step the stresses may still differ from the VP solution, and

the difference may accumulate with time. So in practice the EVP solution may slightly deviate

from the VP one. Because of purely explicit time stepping for the stress-velocity pair (velocity is

considered known in stress computations and vice versa), the EVP approach must respect the CFL120

limitation on the subcycling time step ∆tEV P (see Hunke and Dukowicz (1997), Hunke (2001)).
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It can be circumvented by limiting ‘viscosities’ (ζ = P0/2(∆ + ∆min),η = ζ/e2) so that they stay

below some level (see Hunke (2001)) P0/((∆ + ∆min)<ClimT∆x2/(∆tEV P )2, where Clim is

the limiting constant and ∆x the grid cell size. However, on unstructured meshes this can modify

solutions simply because of varying resolution (see the discussion by Losch and Danilov (2012)).125

Limiting is therefore not used by us. The stability condition then demands that ∆tEV P remains

small. Note that the limitation on ∆tEV P becomes more restrictive for finer meshes, and would

require to use larger NEV P .

If not observed, the CFL limitation may lead to noisy fields of velocity divergence and viscosities

in practical applications in the areas where ∆ is low. The code remains stable in most cases (because130

of stability added through time stepping, see further) and produces relatively smooth results for the

ice thickness and area coverage. Clearly, the noise may affect the ice dynamics, and a user must be

aware of that. Fully eliminating it could be both difficult and expensive in terms of CPU time.

Bouillon et al. (2013) proposed a modified EVP approach in which subcycling is fully detached

from the physical time stepping. It can be considered as a pseudo-time solver for the VP rheology.135

In this case one writes

α(σp+1
1 −σp1) =

P0

∆p + ∆min
(ε̇p1−∆p)−σp1 , (7)

α(σp+1
2 −σp2) =

P0

(∆p + ∆min)e2
ε̇p2−σ

p
2 , (8)

α(σp+1
12 −σ

p
12) =

P0

(∆p + ∆min)e2
ε̇p12−σ

p
12, (9)

for stresses and140

β(up+1−up) =−up+1 +un−∆tf ×up+1

+ (∆t/m)[F p+1 + aτ +Cdaρo(u
n
o −up+1)|uno −up| −mg∇Hn] (10)

for the velocity. Here α and β are some large constants. The superscript p is related to pseudotime

iterations, replacing the subcycling of the standard EVP, and n is the index of external time stepping.

Fields are initialized with values at time step n for p= 1, and their values for the last iteration145

p=NEV P are taken as solutions for time step n+ 1. In order that CFL limitations be satisfied,

the product αβ should be sufficiently large compared to π2P0∆t(∆ + ∆min)−1m−1∆x−2 (see

Bouillon et al. (2013) and further comments by Kimmritz et al. (2014)). The regime of the standard

EVP scheme (NEV P = 120 and T = ∆t/3) will be approximately recovered for α= β = 80 (for

σ1) and NEV P = 120, but much larger values have to be used on fine meshes to warrant the absence150

of noise in strain rates and viscosities. The stability requirements here are very similar to those of

the standard EVP method if expressed in terms of NEV P , and, likewise, become more restrictive for

finer meshes. For numerical convergence, NEV P should exceed α and β (for the same reason that T

is a fraction of ∆t in the standard EVP).

One expects that if this scheme is stable and converged, it would produce solutions identical to155

those of a converging VP solver, while the standard EVP scheme may slightly deviate. We will return
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to this in sections 3.4 and 3.5 where the time stepping is discussed. In practice, it will seldom be run

for full convergence, which is rather expensive, and some difference will be preserved.

FESIM implements the three approaches mentioned above, which will be referred further as VP,

EVP and mEVP. The reason for keeping all them is two-fold. First, it facilitates the comparison of160

results with other models which may use one of these approaches. Second, their numerical efficiency

and performance depend on applications, and one may wish to select the most appropriate one for a

particular application.

3 Numerical implementation

We first describe spatial discretization, and then the discretization in time. The easiest way of in-165

troducing the FE method is through considering transport equations. For this reason we begin with

advection, and then continue with the motion equation.

3.1 Finite-element discretization of ice transport equations

This section explains the FE spatial discretization, which is based on linear continuous functions

defined on triangles. The original motivation for this choice was the ability to share the infrastructure170

with the ocean model, which is based on the same discretization. The transport equations (3) are

solved in two steps: first scalar quantities are advanced with the right hand sides (rhs) of tracer

equations set to zero. Then tracers are updated with account for thermodynamic sources and sinks

in a pointwise manner. We therefore limit ourselves to homogeneous equations. In what follows,

the superscript n will denote external time steps, and p subcycling time steps in solvers, as in the175

discussion above. Subscripts j and k will denote quantities related to vertices (nodes) of triangular

mesh. It is hoped that they will not be mixed with the notation for coordinate indices of tensors. For

the mesh indices the agreement on summation over repeating indices will only be kept for matrix–

vector products.

The tracer equations are solved with the FE Taylor–Galerkin (TG) method (see, e. g., Zienkiewicz180

and Taylor (2000), p. 47), which is analogous to that of Lax–Wendroff for FV. One writes for the

concentration

an+1 = an + ∆t∂ta|n + (∆t2/2)∂tta|n,

and substitutes

∂ta=−∇ · (unan),185

and

∂tta=∇ · (un∇ · (unan)).
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In the last case the velocity is considered steady during the tracer time step. This still provides

the second order in time if velocity and tracers are considered to be shifted by a half time step

(asynchronous time stepping). The resulting equation190

an+1 = an−∆t∇ ·Gn, Gn = unan− (∆t/2)un∇ · (unan) (11)

provides the second order in both time and space (for linear functions). Here G is the modified flux

vector, with a diffusive flux that exactly compensates for the first-order error in the time derivative.

Note that it does not introduce dissipation. The ice and snow thickness equations are solved similarly.

To solve the tracer equation (11) with the FE method one first projects it on an appropriate set of195

test functions Mj :∫
Mj(a

n+1− an + ∆t∇ ·Gn)dS = 0

and then integrates it by parts to obtain∫
(Mj(a

n+1− an)−∆t∇Mj ·Gn)dS =−∆t

∫
MjG

n ·ndΓ, (12)

where Γ is the boundary of the domain S. At the solid boundary (G ·n= 0) or an open boundary200

located far from the ice-covered region (so that a= 0), the boundary integral is zero. We will assume

that this is the case.

The procedure outlined above gives the equation in a so-called weak form. The discretization is

obtained by expanding scalar fields and velocities into series

a(x,y, t) =
∑
k

ak(t)Nk(x,y),205

and similarly for hice, hs, and components u,v of the velocity vector u. We use continuous Galerkin

discretization implying thatMj =Nj , and that functionsNj are continuous across the boundaries of

triangles. We selectNj as a linear function associated to vertex j of the triangular mesh. It equals one

at vertex j and decays linearly to zero at all neighboring vertices; the expansion above is simply the

linear interpolation and summation is over all vertices. As a result, the Galerkin system of equations210

on nodal values of ice concentration ak (same for (hice)k and (hs)k) is obtained

Mjk(an+1
k − ank ) +Ajka

n
k = 0, (13)

where

Mjk =

∫
NjNkdS, Ajk =−∆t

∫
∇Nj(uNk − (∆t/2)u∇ · (uNk))dS.

Note that summation is implied over k (matrix–vector product). It will be reminded in some cases215

below too. A similar procedure is used to obtain discretized momentum equations. The mass ma-

trix Mjk is not diagonal, but has a limited bandwidth (defined by the number of neighbors). Its

appearance is what makes the method different from the FV Lax–Wendroff implementation. Indeed,
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it is easy to check that the latter would lead to the same result on median-dual control volumes

(obtained by connecting triangle centroids with mid-edge points), but with the diagonal-lumped220

mass matrix ML
jk, whose diagonal entries are sums of rows of Mjk, and other entries are zeros.

Two points should be mentioned here on practical implementation. First, the velocity field is linear

on triangles, so computations of operator Ajk should be formally done with account for this. Do-

ing so would not, however, improve accuracy compared to just using mean velocities on triangles,

which simplifies computations. Second, true iterative solution of equations involving mass matrices,225

written schematically as Mjkbk = cj , is expensive and is never attempted. Instead, one does three

iterations ML
jkb

p+1
k = (ML

jk −Mjk)bpk + cj starting with b0k = 0. Doing more iterations does not

improve dispersive properties of the method, yet doing just one (lumping) deteriorates the method

rather noticeably.

The presence of a consistent mass matrix in the TG method effectively removes a significant por-230

tion of dispersion related to the Lax–Wendroff method. However, remaining dispersive errors may

still be damaging. For this reason, the approach is augmented to the FE-FCT method as proposed by

Löhner et al. (1987). In this method, the TG solution above serves as the high-order one, and will

be denoted as ãn+1
k . The low order solution an+1

k is obtained by adding artificial dissipation to the

rhs and replacing the consistent mass matrix with the lumped one on the left hand side (lhs),235

ML
jk(an+1

k − ank ) +Ajka
n
k = γFCT (Mjk −ML

jk)ank ,

which leads to a monotonic solution provided the parameter γFCT is sufficiently high (about one).

The difference between the high-order solution ãn+1
k and the monotonic low-order solution an+1

k is

due to the antidiffusive flux contribution,

ML
jk(ãn+1

k − an+1
k ) =−(Mjk −ML

jk)((γFCT − 1)ank + ãn+1
k )240

The rhs of the last expression is split into contributions from separate elements. They are limited as

detailed in Löhner et al. (1987) and assembled back to recover a monotonic solution an+1
k instead of

ãn+1
k .

By construction, the solution method is conserving. Indeed, because
∑
jNj(x,y) = 1,

∑
jAjk =

0, and
∑
jMjkak is the area integral. Also

∑
jMjkak =

∑
jM

L
jkak, so that the simple iterative245

procedure above preserves conservation. According to Budgell et al. (2007) the FCT method shows

second order convergence in simple advection tests. Note, however, that the ice velocity is divergent

and may thus lead to the formation of local extrema in scalar fields. The FCT scheme may therefore

result in excessive smoothing of extrema. Yet it does so for the antidiffusive fluxes only, the low-

order solution will react to the divergence of the velocity field. For this reason the parameter γFCT250

should be taken at minimum compatible with stability and preservation of positivity.

Despite the fact that the FCT limiting doubles the computational cost of advection (compared

to using solely the TG method), the burden remains small compared to the cost of solving for ice

velocities.
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3.2 Computation of strain rates and stresses255

Similar to the thicknesses and concentration, ice velocities are considered to be linear functions on

elements:

(u,v) =
∑
k

(uk,vk)Nk.

The strain rates are therefore elementwise constant. At this point we need to take into account

sphericity and peculiarities coming from the derivatives of metric terms. We use spherical coordinate260

system with poles at land to avoid the pole singularity. In spherical coordinates (φ,θ)

ε̇11 =
1

Rcosθ

(
∂u

∂φ
+ v

∂ cosθ

∂θ

)
, ε̇22 =

1

R

∂v

∂θ
,

and

ε̇12 =
1

2R

∂u

∂θ
+

1

2Rcosθ

(
−u∂ cosθ

∂θ
+
∂v

∂φ

)
.

Here R it the Earth radius. We approximate the geometry as locally flat on triangles, which is equiv-265

alent to replacing cosθ in (1/cosθ)∂/∂φ by its estimate on elements. If we use a local Cartesian

frame of reference on each element with the x and y axes oriented along the directions eφ and eθ, we

can then write ∂x and ∂y instead of (1/Rcosθ)∂/∂φ and (1/R)∂/∂θ respectively. With the same

accuracy we make an elementwise-constant estimate of the metric differentiation term, so that the

expressions above become270

ε̇11 = ∂xu− vmf , ε̇22 = ∂yv, ε̇12 = (1/2)(∂yu+ ∂xv+umf ),

where mf = tanθ/R is the metric factor. These expression for the strain rates are further used to

compute the components of stresses which would then be naturally treated as elementwise constant

too. Although the ice strength P would be more naturally modelled as a linear function because

hice and a are represented in that way, the estimate of the ice strength gradient at vertex points275

will be the same if P is averaged to triangles, i. e., treated as elementwise constant. To further

simplify computations we estimate hice and a on triangles as the mean over vertices. This makes all

components of stresses elementwise quantities, so that time stepping of stresses in EVP and mEVP

becomes an algebraic operation on triangles. Formally projecting the last equations on functions

Mc = 1 on triangle (cell) c gives280

(ε̇11)c =
∑
k(c)

(∂xNkuk −mfvk/3), (ε̇22)c =
∑
k(c)

vk∂yNk

and

(ε̇12)c = (1/2)
∑
k(c)

(uk∂yNk +mfuk/3 + vk∂xNk).
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Here summation is over vertices k of cell c, hence the symbolic notation k(c). The expression

for the ice strength is computed as Pc = (hice)c(∆ + ∆min)−1
c p∗ exp(−C(1− ac)) with (hice)c =285 ∑

k(c)(hice)k/3 and ac =
∑
k(c) ak/3. With the strain rates and ice strength known, ∆ and the stress

components are easily computed on elements.

3.3 Spatial discretization of momentum equation

Rigorous finite-element implementation of the momentum equation would involve mass matrices

and would be too time consuming in the case of EVP and mEVP solvers. For that reason some290

simplifications are required. Luckily, mass matrices are not important here, as no compensation of

discrete errors can be achieved with their help. We therefore use nodal quadratures in all terms that

do not involve spatial derivatives. Multiplying (1) with test functions, integrating over the domain,

and integrating the rheology term by parts, one gets:∫
mN j(∂t +f×)udS =295 ∫
N j(aτ −Cdaρo(u−uo)|u−uo|)dS−

∫
(∇N j)σdS−

∫
mg∇HN jdS+

∫
N j(nσ)dΓ.

(14)

HereN j is a shortcut for either (Nj ,0) or (0,Nj), so that (14) is a set of two equations obtained by

projecting on x and y directions, the second term on the rhs involves dyadic product of two tensors

and the last term involves the contraction of the stress tensor with the unit vector normal to the

boundary. On substituting the expansions in Nk for velocities, we approximate the lhs of (14) as300 ∫
mN j(∂t +f×)udS =ML

jkmk(∂t +f×)uk,

where mk = ρice(hice)k + ρs(hs)k andML
jk is a shortcut for two ’vectors’ (ML

jk,0) and (0,ML
jk).

Similarly, the first term on the rhs is∫
N j(aτ −Cdaρo(u−uo)|u−uo|) =ML

jk(akτ k −Cdakρo(u−uo)k|u−uo|k).

Summation over k implied in these equations is trivial because the lumped mass matrix is diagonal.305

The entries of the diagonal lumped mass matrix (for j=k) are just the areas of median-dual control

volumes associated with vertices, i. e., one third of the sums of areas of triangles containing the

vertex considered.

The second term on the rhs of (14) leads to the following contributions to equations for local x

and y directions:310

−
∫

(∇N j)σdS = (
∑
c(j)

Ac(−(σ11)c∂xNj − (σ12)c∂yNj − (σ12mf )c/3),

∑
c(j)

Ac(−(σ12)c∂xNj − (σ22)c∂yNj + (σ11mf )c/3)). (15)
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Here c(j) are the indices of cells containing vertex j (spanned by test function Nj) and Ac is the

area of cell c. Notice that, because of metric differentiation, applying ∇ to any of (Nj ,0) or (0,Nj)

also gives a contribution projecting on the other vector.315

In the third term on the rhs of (14) computations of the slope term are simpler because the gradient

of scalar field H does not involve differentiation of metrics. We use the nodal quadrature for the

mass, which results in

−
∫
mg∇HN jdS = gmj(G

x
jk,G

y
jk)Hk, (16)

with summation over k implied. Here Gxjk =
∫
Nj∂xNkdS, and similarly for the y-equation com-320

ponent. Clearly, GxjkHk =
∑
c(j)(Ac/3)

∑
k(c)Hk∂xNk and likewise for the y equation.

The last term in (14) involves only vertices j on the boundary. We do not need equations there

in the no-slip case, which is used by us, because zero velocity will be prescribed by the virtue

of boundary conditions. Leaving equations there, but omitting the tangent component of this term

would impose free-slip boundary conditions.325

3.4 Time stepping and the implementation details of VP solver

As mentioned above, large values for viscosities in the VP case would lead to severe CFL limitations

in the case of explicit time stepping. This suggests to account for the stress term in the ice motion

equation implicitly,

mn(1/∆t+f×)un+1−mnun/∆t=330

anτ −Cdanρo(un+1−uno )|u−uo|n +∇ ·σn+1−mng∇Hn. (17)

However, since the viscosities in σ are functions of the velocity field, the expression for σ should

be linearized (by estimating viscosities on time step n) in order to use standard iterative solvers. The

‘implicitness’ is recovered by doing (Picard) iterations, when the velocity of the previous iteration

is used to estimate the viscosities for the current iteration. Note that friction between ice and ocean335

is linearized and taken implicitly too.

This approach is suboptimal because of the need to solve a problem for a matrix of dimension 2N ,

whereN is the number of surface nodes (vertices). The non-zero entries in each row come from both

u and v contributions in this case, which would make matrix–vector multiplications more expensive

too.340

The now traditional way of handling this problem was proposed by Zhang and Hibler (1997).

In that case one makes implicit the terms involving u in the x-equation and terms involving v in

the y-equation. This still requires assembling two matrices and preconditioning them. The approach

employed by us was formulated by Hutchings et al. (2004). It is similar in spirit to that of Zhang

and Hibler (1997), but allows us to use the same matrix for u and v. This considerably reduces345

the computational cost if general-purpose iterative solvers (like PETSc) are used. Its essence is in
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writing the stress tensor (2) in the form

σij = (η+ ζ)(∂iuj) + η(∂jui)− ζ(∂iuj) + (ζ − η)δij ε̇kk − (1/2)δijP,

and making implicit only the first term on the rhs of this expression. Since the eigenvalue of the

implicit operator is larger in this case than in the algorithm of Zhang and Hibler (1997), the method350

is stable. Yet its convergence rate is not necessarily better because it introduces an artificial residual

through ζ(∂iuj). The rest of the implementation resembles that of Zhang and Hibler (1997). It

consist of three steps. The first two of them are iterations of the scheme

mnup/∆t− ∂i(η+ ζ)∗∂iu
p =

mn(f ×u∗ +un/∆t) + anτ −Cdanρo(up−uno )|u∗−uno |+ F̃
∗−mng∇Hn,355

where, as above, p is the index of iterations, and n of time stepping. In the original procedure p= 1,2,

but (Picard) iterations can be repeated to arbitrary high p=Np. For p= 1 the superscript ∗ implies

that the quantity is estimated at time step n. For p= 2, u∗ = (up−1 +un)/2, F̃ ∗ = F̃ (u∗), and

same for the viscosities on the lhs, following Zhang and Hibler (1997). For p > 2 (if Np > 2) the

starred quantities are those at iteration p−1. In the expressions above, F̃ denotes the explicit part of360

the ice reaction. The final (third) step updates the Coriolis term to the implicit one:

mn(un+1−uNp)/∆t+mnf × (un+1−u∗) =−Cdanρo(un+1−uNp)|u∗−uno |.

Because of the need to keep the same matrix in u and v equations, the terms associated with metric

differentiation in the lhs operator are all put on the rhs (added to those of F̃ ), and the discretization

of the operator part is straightforward. For convenience, we write down F̃ in the finite-element dis-365

cretization. We first omit the terms arising from metrics differentiation, as they are more conveniently

taken into account separately all together. Since

σ̃11 = η∂xu− ζ∂xu+ (ζ − η)(∂xu+ ∂yv)−P/2 = (ζ − η)∂yv−P/2,

σ̃12 = η∂yu− ζ∂xv, σ̃21 = η∂xv− ζ∂yu

and370

σ̃22 = η∂yv− ζ∂yv+ (ζ − η)(∂xu+ ∂yv)−P/2 = (ζ − η)∂xu−P/2,

the divergence of stress tensor multiplied with test function N j and integrated by parts, will lead to

the following contributions to the rhs of the u and v components of the momentum equations

−
∫

(∇N j)F̃ dS = (

∫
(−∂xNj [(ζ − η)∂yv−P/2]− ∂yNj(η∂xv− ζ∂yu))dS,∫

(−∂xNj(η∂yu− ζ∂xv)− ∂yNj [(ζ − η)∂xu−P/2])dS).375

All derivatives and P are elementwise constant, so the integrals are equivalent to summation over

the cells spanned by Nj .
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It is easy to see that all ‘metric differentiation terms’ lead to the additional contributions∫
mf [(η+ ζ)v∂xNj − ηu∂yNj −σ12Nj ]dS

and380 ∫
mf [−ηu∂xNj +σ11Nj ]dS,

respectively, to u and v equations. The last terms in both contributions require integration of test

functions, which gives Ac/3 on each cell involved.

The operator matrix is assembled in the standard sparse format on each time step. In order to

reduce the computational load in the course of iterative solution, the matrix entries in the rows385

corresponding to nodes where the ice concentration is less than a small critical value are set to one

at the diagonal, and zero otherwise. The rhs vector is corrected accordingly, and set to zero (default)

or to the ocean velocity or to the velocity of the previous time step. ThePETSc solver with ILU

preconditioning is used to solve the resulting matrix problem.

In theory, the tolerance does not necessarily need to be very small as the solution procedure is390

repeated on every time step, and the solution cannot diverge very much from the previous solu-

tion. However, on unstructured meshes a small tolerance can sometimes be required to achieve an

acceptable accuracy on elements of differing size. Also, higher solver accuracy can be needed in

quasistationary regimes, to properly handle areas where ∆ is small. Our experience with PETSc is

that while a tolerance of 10−6 may be sufficient on relatively uniform meshes, it should be at least395

two orders smaller if mesh size varies by a factor of 5 or more (see also discussion of convergence

below).

There is always some sensitivity to the mesh, domain geometry and preconditioning; users are

advised to experiment with the available options of the solver.

3.5 EVP and mEVP time stepping400

In the EVP case equations (4–6) are time stepped implicitly on each cell (cell index c is omitted):

σp+1
1 = d1

(
σ1 + ∆tEV P

P0

2T

ε̇1−∆

∆ + ∆min

)p
, (18)

σp+1
2 = d2

(
σ2 + ∆tEV P

P0

2T

ε̇2
∆ + ∆min

)p
, (19)

σp+1
12 = d2

(
σ12 + ∆tEV P

P0

2T

ε̇12
∆ + ∆min

)p
. (20)

Here d1 = (1 + ∆tEV P /2T )−1 and d2 = (1 + ∆tEV P e
2/2T )−1. The initial value for p= 1 is that405

from the previous time step n.
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Pseudo-time stepping of the stress equations of mEVP is given by equations (7 - 9). It can also be

made implicit as

σp+1
1 = d1σ

p
1 + d2

P p0
∆p + ∆min

(εp1−∆p),

σp+1
2 = d1σ

p
2 + d2

P p0
(∆p + ∆min)e2

εp2,410

σp+1
12 = d1σ

p
12 + d2

P p0
(∆p + ∆min)e2

εp12,

where d1 = α/(1 +α) and d2 = 1/(1 +α). This has however a very small impact on stability.

Time stepping of momentum equations is implicit for the Coriolis term and the part of ice-ocean

stress. In the case of EVP the equations at each vertex j are

up+1
j + ∆tf ×up+1

j + (Cd∆tρoam
−1up+1|up−uo|)j =415

upj + (∆ta(τ +Cdaρouo|up−uo|)m−1)j−

gM−1
j

∫
Nn

j∇HdS−M−1
j m−1

j

∫
∇N jσ

p+1dS. (21)

The expressions for the two last terms have been given above (equations (15,16) and Mj =ML
jj

with no summation (it is the area associated with vertex j). The fields are initialized with values at

time step n. Pseudo-time stepping of the momentum part of mEVP is given by (10) with the terms420

interpreted similarly as in the equations above.

Now, when all equations are written, we can discuss the differences between the methods. The

differences between the EVP and mEVP are subtle (apart from the difference in variables used to

organize subcycling). First, (i) as can be seen comparing equations (4-6) with (7-9), the EVP uses

different rates for σ1 on one hand and σ2 with σ12 on the other to approach the VP rheology. Second,425

(ii) after NEV P iterations are done, the EVP scheme estimates the time derivative of velocity based

on the last substep, while mEVP employs the estimate over the entire time step ∆t. Third, (iii) there

is damping in mEVP introduced by β, which helps to equilibrate the solution over the places where

ice is weak. One does not expect large discrepancies between both approaches. However, it turns

out that (i) has a negative impact on stability (cf. Bouillon et al. (2013)), which is why mEVP430

is more robust, as will be demonstrated below. At the end of the external time step the VP and

mEVP solutions satisfy the same equations. To summarize, all three methods are expected to behave

approximately similar, and the main point is the convergence of their solutions (and hence stability).

4 Box test case

The model described above is routinely used with FESOM both in an ice/ocean-only version or in435

a version coupled to an atmosphere model, so that its practical performance can be judged by the

results of respective papers (see, e. g., Sidorenko et al. (2011),Wang et al. (2012), Wekerle et al.

(2013), Timmermann and Hellmer (2013), Wang et al. (2014), Sidorenko et al. (2014)) and is
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Figure 1. Triangular mesh used in simulations. The resolution varies from approximately 40 to 10 km. Stability

of EVP and mEVP on the fine mesh requires that α,β and NEV P be sufficiently large.

not repeated here. Thus far FESOM was run only with the EVP solver (since it was the first one

available) and the comparison of the performance of the three available versions in the global setup440

is the subject of future work. Here we will use a box test case without thermodynamic forcing,

with an intention to demonstrate similarities and disparities in the performance of VP, mEVP and

EVP algorithms. This will be more difficult for realistic simulations where many other factors may

contribute.

The setup follows that used by Hunke (2001), with the difference that islands are removed, ge-445

ometry is spherical and the mesh is an unstructured one with variable resolution as used in Losch

and Danilov (2012). The square box is of approximately 11 by 11 degrees in size (with the side

lengths Lx and Ly) and the resolution is varied from approximately 40 to 10 km from the south to

the north, as shown in Fig. ??. It will be seen below that noise, if excited, appears at the fine mesh

part, as could be anticipated. Apart from this, no other implications of mesh unstructuredness will be450

mentioned here to keep discussion concise and concentrated on the algorithm performance issues.

Ice is driven by the wind stress τ = Caρaua|ua|, with Ca = 0.00225. Here ρa is the air density

and the wind velocity (in m/s) is taken as ua = 5 + (sin(2πt/T )− 3)sin(2πx/Lx)sin(πy/Ly) and

va = 5+(sin(2πt/T )−3)sin(2πy/Ly)sin(πx/Lx), where T =4 days. The ocean velocity (in m/s)

is selected as uo = 0.1(2y−Ly)/Ly, vo =−0.1(2x−Lx)/Lx, and the elevation H is computed455

by geostrophy. The coordinates x,y are the longitude and latitude counted from the south-west cor-

ner of the box. The ice thickness is 2 m initially and the ice concentration grows linearly from 0 to 1

in the west-east direction. The results of simulations at the end of one month are shown.
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We start from comparing VP and mEVP solutions. In case A advection is switched off, and we

compare the convergence of solutions obtained with different methods. In cases B and C the advec-460

tion is switched on, they differ by the value of ∆min: 2×10−9 s−1 (B) and 2×10−11 s−1 (C). Case

A takes ∆min of case B.

Figures 2 and 3 show, respectively, the zonal velocity and ∆ (upper left panels) and the differences

in solutions obtained by different methods in case A. We take the mEVP solution with α= β = 500

and NEV P = 1000 as a reference one (mEVP500), for modifications seen in runs with higher α,β465

and NEV P are very small. The other solutions shown are those obtained with mEVP, but α= β =

250 and NEV P = 250 (mEVP250), and with VP, but in the regime with 2 (VP2p) and 10 (VP10p)

additional Picard iterations (which means that Np = 4 and 12 respectively). It is immediately seen

from the velocity comparison that mEVP250 is far from convergence (there is a large-scale pattern

in the velocity difference), and that it contains noise in the field of ∆. Note that the noise is seen470

over the fine part of the mesh, as stressed in Losch and Danilov (2012), because it is more difficult

to satisfy the stability requirement when the mesh is refined. So the parameters of the mEVP and

the number of subcycles should be sufficiently large. Note that the same is also true for the standard

EVP. The traditional practice of running it with relatively low subcycling numbers (NEV P = 120 is

commonly used) may lead to noise in ∆ over places where it is sufficiently small.475

The difference between the two VP solutions and mEVP500 is much smaller, and is largely con-

centrated at the front between the moving and nearly stopped ice. However, one sees that there is a

basin-scale pattern in the velocity difference in the bottom left panel of Fig. 2, which is the indication

of the lack of convergence of the VP solution over the area where ice is moving. Indeed, it almost

disappears on increasing the number of Picard iterations (bottom right panel). Simultaneously we see480

the substantially improved agreement between the patterns of ∆ in Fig. 3. The remaining discrep-

ancy is due to errors in both, EVP500 and VP10p, solutions, eliminating it will require increasing

the number of subcycling steps and iterations even further, and is not pursued. We conclude that

mEVP and VP converge to each other if one takes care that both are sufficiently accurate. Reaching

full agreement between mEVP and VP solutions is more difficult if the ice advection is on, because485

errors may accumulate in this case with time. Smaller values of ∆min additionally complicate the

issue. In the presence of advection, ice is pressed into the north-east corner of the mesh, piling up

there. The western part of the basin becomes free of ice, so that there are two fronts no ice – moving

ice and moving ice – nearly stopped ice. We concentrate on the differences in the north-east corner,

errors along the fronts depend on minor details and are difficult to eliminate.490

The results of case B are given in Fig. 4 and 5 which present hice and ∆ respectively after 1

month of model time. Here we compare three VP solutions with the mEVP500 reference simulation.

We checked that increasing α and β to 1000 with subsequent increase of NEV P to 2000 in mEVP

does only small changes to the field of ∆ compared to those seen for the VP solutions. The solu-

tion labelled VPb is obtained with the basic algorithm (Np = 2), and VP10p and VP25p correspond495
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Figure 2. Ice zonal velocity (m/s) in case A (advection is switched off) after one month of simulations in

mEVP500 (top, left) and differences between the solutions obtained by different methods: mEVP250-mEVP500

(top right), VP2p-mEVP500 (bottom left) and VP10p-mEVP500 (bottom right). mEVP250 does not converge,

VP2p is closer to convergence, but still with noticeable errors. Additional Picard iterations in PV10p substan-

tially reduced differences between the mEVP and VP solutions.

to using 10 and 25 additional Picard iterations respectively. While the difference in ice thicknesses

remains small and is only slightly affected by the number of iterations in the VP solutions (patch-

iness in the difference panels of Fig. 4 is due to the finite accuracy of output), there is substantial

improvement in the correspondence between the mEVP and VP solutions for ∆ as the number of Pi-

card iterations is increased. The fact that the differences in the ice thickness in the north-east corner500

stagnate hints that they evolved from some minor implementation details. Since the total ice volume

is conserved, these errors are connected to those in the front position. They are rather small to be of

practical importance.

Finally, case C (Fig 6, 7) shows that reaching agreement between the mEVP and VP runs for a

much smaller ∆min requires even larger number of Picard iterations (and also more subcycling505

in mEVP, although the improvements seen are less substantial). The mEVP500 solution in this

case contains some noise in ∆, and is replaced by mEVP1000 obtained with α= β = 1000 and

NEV P = 2000. We also consider the standard VPb solution and the solutions obtained with 100

(VP100p) and 200 (VP200p) Picard iterations. As in case B, the Picard iterations do not change the

difference between ice volumes very much, but have substantial impact on the field of ∆. Similarly,510
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Figure 3. Same as in Fig. 2 but for the ‘divergence’ ∆ (1/s) after one month of simulations. Additional Picard

iterations in the PV method lead to very good agreement between mEVP and VP solutions.

VPb produces a stronger ice (smaller ∆) in the north-west corner, which is partly made weaker by

increased number of Picard iterations. Of particular interest is the structure in the compression zone

of VP solutions, which is sensitive to the number of iterations. There is some sensitivity of band

structure to the change of solver tolerance and time step. This hints that one deals here either with

incomplete convergence or some internal instabilities in the iterative procedure, a question we post-515

pone for the future. We see that it is much more difficult to minimize the difference between mEVP

and VP solutions if ∆min is taken smaller.

Since the intention of ∆min is to provide regularization, it should not be made excessively small

unless there is motivation for that.

The next pair of figures (Fig. 8, 9) compares the performance of EVP and mEVP solvers. We520

use ∆min = 2×10−9 s−1, and three EVP solutions denoted EVP3_100 (∆t/T = 3, NEV P = 100),

EVP3_500 (NEV P=500) and a special solution, EVP4_1000 (∆t/T = 4, NEV P = 1000), obtained

by removing e2 from the second terms on the left hand side of (5,6) and putting it to the denom-

inator of the right hand side. After this manipulation EVP becomes almost identical to mEVP (all

components of the stress tensor decay to the VP limit at the same rate), except for the differences in525

the velocity time stepping. In this case one may identify α with 2TNEV P /∆t. Solution EVP3_100,

with parameters typical for large-scale applications, shows noisy ∆ over the area with compressed

ice. Increasing the number of subcycle steps improves the agreement (Fig. 9, bottom left), but it
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Figure 4. Ice thickness hice (m) after one month of simulations in case B in mEVP500 (top, left) and the

differences between solutions obtained by different methods: VPb-mEVP500 (top right), VP10p-mEVP500

(bottom left) and VP25p-mEVP500 (bottom right). Additional Picard iterations in the VP method only slightly

affect the differences.

still remains noisy. The noise takes the form of a wave structure. Simulations with further increased

NEV P (1000 and 2000, not shown) improve the agreement, but only slightly. Similarly, varying T530

is of no avail. However, the situation improves dramatically if the decay rates for stresses in (4-6)

are made similar, as indicated by the bottom right panel in Fig. 9. The noise disappears. While the

remaining discrepancy in ∆ over the stiff ice can be further reduced, some differences will persist

because of the different treatment of the momentum equation. The central circular spot over weak

ice is common to all three solutions. Here the contribution from rheology is not dominant, and the535

difference is entirely due to the time stepping of momentum equation. We therefore conclude that it

is the difference in the damping rates in the equations for stresses (4-6) in the standard EVP which

is the main factor responsible for the noise seen in the field of ∆. More detailed analysis of this

statement is needed. If we now turn to the patterns of ice thickness, we see that even in EVP3_100

and EVP3_500 with noisy ∆ the simulated mean ice thickness agrees rather well with the mEVP540

solution, with differences of about 10 cm at maximum. The difference virtually disappears for the

special case of EVP4_1000.

In summary, given the sensitivity of the field of ∆ to the solution procedure, one should be cautious

to discuss its detail unless the convergence has been tested. Judged from this perspective, the VP and
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Figure 5. ∆ (1/s) after one month of simulations in case B in mEVP500 (top, left) and differences between

the solutions: VPb-mEVP500 (top right), VP10p-mEVP500 (bottom left) and VP25p-mEVP500 (bottom right).

Additional Picard iterations in the VP method lead to substantially reduced differences between the solutions

in the north-east corner. VPb reproduces a much stronger ice (smaller ∆), but additional Picard iterations make

it weaker and closer to mEVP500.

mEVP approaches provide more consistent behavior than the EVP. However, even with them, one545

should realize that there might be some sensitivity to the implementation detail. For example, the VP

solutions discussed here have been obtained with a tolerance of 10−8 in the PETSc solver; using a

tolerance of 10−6 leads to changes in ∆ comparable in magnitude to the effect of varying the number

of Picard iterations. We have not seen benefits from making the tolerance even smaller (10−10), but

this may change in other applications. Additionally, there is some sensitivity to the time step interval550

∆t. Finally, the lack of full agreement in the pattern of ∆ in VP and mEVP simulations, especially for

the low ∆min = 2×10−11 s−1 in case C, can partly be due to the particular implicit/explicit splitting

of the stresses, and we cannot exclude that the original splitting of Zhang and Hibler (1997) will

converge somewhat differently. Note that the mEVP method shows less sensitivity to details than the

VP method if α and β are sufficiently large to ensure the absence of noise in the solutions, and if555

NEV P is sufficient for convergence.

The ice mean thickness and concentration, in contrast, show a much more robust behavior, and

are much more consistent, even in the presence of noise in ∆. Still, the presence of noise pushes

simulations on a dangerous ground and should be avoided. In many practical cases the VP, mEVP or
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Figure 6. Ice thickness (m) after one month of simulations in case C (∆min = 2× 10−11 s−1 in mEVP1000

(top, left) and differences between the solutions obtained by different methods: VPb-mEVP1000 (top right),

VP100p-mEVP1000 (bottom left) and VP200p-mEVP1000 (bottom right). The differences are small and addi-

tional Picard iterations only slightly change them.

EVP solvers will be run in a ‘partially converging mode’ when accuracy is achieved over a number560

of steps under conditions that forcing does not change much over a time step. Numerical stability

and lack of noise (for the EVP and mEVP methods) will remain an issue to pay attention to.

5 Discussion

5.1 Numerical aspects: spatial discretization

The finite-element discretization of sea-ice dynamics employed by FESIM works in a robust way565

on unstructured triangular meshes. We now discuss how it relates to other unstructured-mesh dis-

cretizations proposed in the literature.

We first note that the FE P1−P1 implementation can easily be cast in a FV form as explained in the

Appendix. As concerns the purely dynamical (momentum) part, there is almost no difference in the

final result to the FE discretization because of the lumping of the mass matrices we use for dynamics.570

One may wish to select a transport scheme that differs from FE-FCT, but the only motivation behind

this can be the availability of a a more accurate and efficient FV scheme. Our experience is that

reaching the accuracy of the FE-FCT scheme would require a better than third-order method in the
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Figure 7. ∆ (1/s) after one month of simulations in case C in mEVP1000 (top, left) and differences between

the solutions: VPb-mEVP500 (top right), VP100p-mEVP1000 (bottom left) and VP200p-mEVP1000 (bottom

right). Additional Picard iterations in the VP method substantially modify the differences, reducing them in the

north-east corner. The convergence is not reached even for 200 Picard iterations.

respective FV FCT algorithm. As mentioned above, the presence of a consistent mass matrix in the

FE transport equation efficiently compensates for a significant part of dispersion, which explains its575

good performance.

The vertex placement of variables we used is an analogue of A-grid in the traditional (Arakawa)

terminology. A different A-grid implementation with the cell (triangle centroid) placement of vari-

ables was proposed by Hutchings et al. (2004). The discretization is straightforward if the FV

approach is used and if the velocity derivatives on each triangle are computed by, e. g., the least580

square fit using the velocities on this and three neighboring triangles. The potential problem of the

cell-based placement is a somewhat unfavorable stencil used in the computation of stress divergence.

Indeed, it involves not only the nearest neighbors, but the neighbors of neighbors. We therefore con-

sider the vertex placement of variables to be an easier choice.

The implementation adopted by FVCOM (Gao et al. (2011)) is also a FV one, with velocities585

placed at cells and scalars at vertices. We tested this variable placement while developing the sea-ice

model to complement the ocean circulation model based on the staggered cell-vertex discretization.

Because of an excessively large velocity space (the number of triangles is approximately twice that

of vertices) it is prone to noise in velocities along the ice edge and was therefore abandoned in favor
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Figure 8. Ice mean thickness hice (m) after one month of simulations in mEVP500 (top, left) and differ-

ences between it and EVP solutions: EVP3_100-mEVP500 (top right), EVP3_500-mEVP500 (bottom left) and

EVP4_1000p-mEVP500 (bottom right). The last EVP solution (bottom right), obtained with modified equations

for stresses, shows the results almost identical to mEVP (see the text for details).

of the vertex–vertex scheme. Once again the vertex placement of velocities and scalars seems to be590

a more robust option.

Finally, the discretization proposed by Lietaer et al. (2008) is a FE one, based on nonconforming

linear functions to represent the velocity vectors, with velocity degrees of freedom placed at the

edges, and elementwise-constant scalars. It also has a too large velocity space, and is not optimal

in this respect. Additionally, placing scalars at centers would be suboptimal for representing the ice595

strength gradients: a nonconforming linear function used for velocity spans only two elements with

a common edge, and two ice strength values at centroids give only one component of the gradient.

Thus, despite its simplicity the discretization in FESIM deserves attention as a balanced choice.

Work is planned on augmenting it with a multi-category ice functionality.

5.2 Numerical aspects: VP/EVP convergence600

There is ongoing discussion on the convergence of traditional implementations of VP and EVP, with

indications that convergence is lacking (see, e. g., Lemieux and Tremblay (2009), Lemieux et al.

(2012)). It partly motivated the development of new approaches such as the Jacobian-free Newton–

Krylov solver (see Lemieux et al. (2012)), which intends to improve the convergence of the VP
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Figure 9. Same as Fig. 8 but for ∆ (s−1). Only the special solution obtained with the same decay rates in

equations for stresses (bottom right) compares well to the mEVP solution.

method, but is too CPU-demanding, and also served as a motivation behind the new formulation of605

EVP in Bouillon et al. (2013), referred to as mEVP here. However Bouillon et al. (2013) mention

that they fail to reach converging mEVP solutions. The analysis of Kimmritz et al. (2014) shows that

mEVP does provide converging solutions, but only when α and β are sufficiently large and NEV P

is larger than any of them. From the theoretical viewpoint the mEVP and VP methods should lead

to identical solutions if converged, and the solutions obtained with EVP may slightly deviate from610

them. The box test cases above illustrate that the solutions can be made rather close, but reaching

full agreement between them might be too expensive computationally and require adjusting minor

details of the algorithms.

The stability (and convergence as a result) of (m)EVP solvers is sensitive to the mesh size, and

will generally deteriorate if the mesh is refined. Larger α,β,NEV P are to be expected on finer615

meshes, and it is user’s responsibility to select values providing the absence of noise in the fields of

divergence and ∆. Note that the issues mentioned here are in full measure relevant for other models,

including those formulated on structured meshes. While in realistic applications they can be hidden

behind much larger uncertainties in parameterizations of mechanical and thermodynamical forcing,

one should be sure that the dynamical operators the model relies on behave in a predictable and620

understandable way.
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5.3 Practical aspects: CPU load

Computations of stresses and their contributions to the rhs of momentum equation are rather expen-

sive in models formulated on unstructured meshes (compared to their structured-mesh counterparts)

mainly because of the lack of directional splitting and, in the case presented, also because the num-625

ber of triangles is twice as large as the number of scalar degrees of freedom. For this reason, one

computation of the rhs (done NEV P times per external time step in EVP and mEVP solvers) is sub-

stantially more expensive than one matrix-vector multiplication in the iterative matrix solver in the

VP method. On the other hand, the number of iterations needed to reach convergence to the speci-

fied tolerance may depend on the ice distribution and domain geometry and the number of required630

Picard iterations can be high. One has to take into account the time spent on assembling the stiffness

matrix and preconditioning it. Any comparison is even more complicated because full convergence

of mEVP and VP methods will not necessarily be attempted in practice. For this reason no general

recommendation can be given here. Just for information, we present the results for the box test case

above: the time step of mEVP500 withNEV P=1000 takes 0.55 s on 8 cores of old IBM BladeCenter635

JS22, to be compared with 0.88 s for VP25p and only 0.065 s for VPb, and there is approximately

linear dependence on NEV P and the number of Picard iterations Np. Since VPb (Np=2) provides a

very reasonable solution for the ice mean thickness, and since the field of ∆, despite the lack of con-

vergence, is smooth in this case, it can still be used and will be a faster option than mEVP500 with

NEV P=1000. They will be close to each other if we run mEVP500 with NEV P=120, sacrificing640

convergence but keeping stability. As mentioned, the comparison in realistic global configuration is

the subject of future work.

6 Code availability

The code of the model can be obtained on request from the first author (sergey.danilov@awi). It has

also been uploaded as a supplement to this paper.645

7 Conclusions

FESIM, the sea-ice component of FESOM v.1.4, is described here. We focus on the dynamical part

of the model in this documentation. The new EVP solver (mEVP) proposed by Bouillon et al. (2013)

leads to solutions approaching those of the VP solver if both are run toward convergence. However,

it is expected that some differences between their results would still persist in practical usage. While650

the mEVP (7-10) algorithm shows better stability in our tests than the standard EVP algorithm (18-

21), the performance of mEVP and VP is rather similar, and the CPU efficiency becomes the criterion

to select between them. The mEVP method can be more convenient on massive parallel computers.

As concerns the unstructured character of meshes, the implementation based on linear continuous
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elements is perhaps the easiest among the other possible choices. It shows robust behavior and serves655

well the tasks of multi-resolution modeling, as indicated by a growing list of practical applications

using FESOM. An important issue to be kept in mind with respect to multi-resolution simulations is

the sensitivity of stability and hence convergence to the mesh resolution.

Appendix A: Finite-volume formulation

The finite-element implementation described above can be recast in a finite-volume form, as briefly660

described below.

In a FV implementation one deals with median-dual cells formed around vertices. They are formed

by connecting mid-edges with centroids of mesh cells. The area of the median-dual cell associated

to vertex v is the sum Av =
∑
c=c(v)Ac/3, which coincides with the respective diagonal entry of

the lumped mass matrix (c(v) is the list of cells (triangles) containing vertex v). Since the force F is

given by the divergence of stresses, by integrating it over Av one gets∫
v

FidS =
∑
e=e(v)

[(njσij l)l + (njσij l)r]e,

where the notation e(v) implies the list of edges emanating from vertex v, the indices i, j denote

directions, the subscripts l and r denote the left and right segments of the boundary around cell v

which is associated to edge e (they connect the mid-edge point to the centroids of cells on both sides

of the edge), l is the length of the respective segment and n is the outer normal. The stresses σij are

constant on triangles, so the computations with the last formula are straightforward, but involve a

cycle over edges instead of that over elements in the FE implementation. The contribution from the

elevation gradient is computed by averaging the gradients on triangles∫
v

∇HdS =
∑
c=c(v)

(∇H)cAc/3.

Note that the gradient computed by the last formula will be slightly different from its true FV coun-

terpart in the spherical geometry. The latter can be recovered by using∫
v

∇HdS =
∑
e=e(v)

[(nHl)l + (nHl)r]e,

with H estimated on edges as average over the vertices forming the edge.

The modifications of the transport scheme are as wel straightforward, but it is recommended to

keep the consistent mass matrix of the FE case, which will augment the FV Lax–Wendroff scheme

to the FE Taylor–Galerkin one. The FCT scheme in that case should follow the FE logics, because665

the mass matrix will mix the fluxes associated to boundaries. Other positivity preserving schemes

are possible too, but have to be tested.
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