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 Authors’ response to the review comments 

 

Title: OMI NO2 column densities over North American urban cities: The effect of satellite 
footprint resolution 

Authors: Hyun Cheol Kim, Pius Lee, Laura Judd, Li Pan, and Barry Lefer 

First of all, the authors express their appreciation to the two reviewers and the editor. We believe that 
their comments are very productive and substantially contributed to improving the manuscript. We 
offer point-by-point responses to the issues and comments addressed by reviewers. Reviews’ comments 
are shown in italics. 

 

Reviewer #1 

 

“The manuscript addresses an innovative way of enhancing the spatial resolution of OMI NO2 columns 
for studies of the urban plumes in the US by adopting the spatial distributions of the NO2 columns 
from the CMAQ model. Another important point the manuscript emphasizes is careful ways of 
processing the satellite retrievals and model results for quantitative comparisons that were often 
neglected. The IDL-based routine developed in this study (Figure 3) will be useful for many users of 
OMI retrievals. I suggest the authors to share this routine with potential users through the GMD 
journal.” 

We thank the reviewer. We will include the IDL routines of “conservative spatial regridding” and 
“downscaling” of OMI and CMAQ NO2 VCDs in the supplementary materials with brief descriptions. 
Users will be able to download and test sample codes, and further modify the codes for their own 
interest.  

“* Page 8457, Figure 4: An interpolation routine should be applied to make plots in Figure 4 from 
Figure 3. I suggest the authors to explain this part. It would be helpful if the names of cities in the text 
are given on the map.” 

Thanks for the comment. We have included city names on the NO2 VCD spatial plots. 

In order to convert irregular-shaped satellite data into model grid, we use a conservative spatial 
regridding technique based on polygon clipping algorithms instead of a traditional interpolation method. 
We have included descriptions of the method below. More detailed descriptions can be found in  Kim et 
al. (2013). 

Regridding of model output or satellite data with different map projection settings is very important for 
inter-comparisons of modeled results and/or satellite outputs. Spatial regridding is a commonly 
performed procedure in satellite data processing. It converts a data set between different map 
projections and resolutions. Among numerous spatial regridding methods, interpolation and pixel 
aggregation are two of the most common methods. Interpolation is preferred when the target domain 
resolution is finer than that of the raw data pixels, on the other hand, pixel aggregation is the preferred 
way to average all the pixels inside each domain cell when the grid cell size is bigger than the raw data 
pixel size. Despite their popularity, both methodologies for interpolation and aggregation have 
numerical limitation especially in dealing with fine resolution data and/or where conservation of 
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measured quantities is required. More mathematically complete methods for spatial regridding is to 
handle the geospatial data (e.g. satellite data) as “polygon with area” instead of “(dimensionless) 
pixels”. It requires the calculation of fractional areas between the overlapping polygons that describe 
raw data pixels and modeling grid cells. 

The IDL-based Geospatial Data Processor can provide exact fractions using the polygon clipping 
algorithm, and this information can be used for lossless (zero-loss) spatial regridding in the conservative 
remapping method. This method reconstructs raw data pixels (e.g. satellite data) into target domain grid 
cells, by calculating fractional weighting of each overlapping portions between data pixels and domain 
grid cells. If the raw pixel data is in density units (e.g. concentration) we can calculate the overlapping 
fractions for each data pixel and grid cell. The grid cell concentration can be calculated as a weighted 
average of data pixels and fractions. (Fig. R1) 

 

𝑓𝑖,𝑗 =
𝐴𝑟𝑒𝑎(𝑃𝑖 ∩ 𝐶𝑗)

𝐴𝑟𝑒𝑎(𝐶𝑗)
 

𝐶𝑗 =
∑𝑃𝑖 · 𝑓𝑖,𝑗
∑𝑓𝑖,𝑗

 

where i and j are indices of data pixel, P,  and grid cells, C. 𝑓𝑖,𝑗 is the overlapping fractions, and ∑𝑓𝑖,𝑗=1 if 

no missing pixels are involved in grid cell 𝐶𝑗. 

If the satellite pixel data is in mass units, equations for the conservative remapping are slightly different. 
We need to calculate fractions of overlapped area to raw data pixel size, instead of grid cell size. 

 

𝑔𝑖,𝑗 =
𝐴𝑟𝑒𝑎(𝑃𝑖 ∩ 𝐶𝑗)

𝐴𝑟𝑒𝑎(𝑃𝑗)
 

𝐶𝑗 =∑𝑃𝑖 · 𝑔𝑖,𝑗 

where 𝑔𝑖,𝑗  is the fraction of overlapped area to the data pixel size. 
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Figure R1. Example of "Conservative spatial regridding" method using variable-pixel linear 
reconstruction algorithm 

 

 

 

 

“* Page 8459, line 17-19: I think the emission problems are large and that certainly affect the spatial 
distribution of the plumes. In addition to wind errors, the impact of emission inventory errors from 
various sectors can be large (see Figures 8 and 10 in the manuscript). Potential problems stemming 
from this error source need to be written clearly. And which emission inventory was utilized for the 
model simulations? This may determine the limit of the methodology developed in this study.” 

Thanks for the comment. We agree that emission information plays a crucial role in the technique 
described in this study. We have included the descriptions for emission used in the model run. Detailed 
information on the emission data is also described in (Pan et al., 2014). 

We have clarified the limitations of current downscaling technique. As described in line 178-192, this 
method can be affected if an emission source has any error in its geospatial information. On the other 
hand, this method is less sensitive to the absolute strength of emissions from known sources. It is an 
unique advantage of the conservative downscaling technique of this study. Further investigations on the 
technique using different emission data, different meteorology and/or chemistry model are being 
conducted, but the results are not included in the current draft yet. 

“* Page 8460: I think it is best to show the comparison results for other days (May 7, May 16 etc.) and 
discuss the causes for agreement or disagreement. Was P3 data averaged for comparison with OMI 
data (at a model resolution)? Was averaging kernel applied to P3 data?” 

Thanks for the comment. Figure 6 already includes measurements from all three days (May 4th ,7th & 
16th 2010), and we have clarified it. Spatial plots of the original and adjusted OMI NO2 VCDs for all days 
are shown in the Figure R2. Clear enhancements are shown in May 4th & 7th when the P3 measurements 
show strong spatial gradient, and the impact is weaker on May 16th 2010 when its spatial gradient is 
smoother (Sunday, less traffic due to the weekend effect). Current P3 circles represent averages of OMI 
pixel’s coverage since they were initially prepared for a direct comparison between OMI and P3 NO2 
VCDs (Judd et al., in preparation) 

Since observations (e.g. OMI and P3) are column-integrated 2 dimensional data and model has 3 
dimensional structures, we applied the averaging kernel information to 3 dimensional model structure 
and converted the model NO2 concentration into column data (2 dimensional) format (e.g. NO2 VCD) for 
the comparison with observations. OMI and P3 are compared directly. 
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Figure R2. Comparisons of spatial distributions of OMI and P3 NO2 VCDs for May 4th, 7th, & 15th, 2010. 

 

“* Page 8462: For Figure 9, the period of analysis needs to be given in the main text. The results in this 
manuscript are based on a short-term analysis. Please mention this clearly in the many plots and 
analyses in the manuscript. Explain the differences in Figure 9d. Which points show large discrepancies 
between the OMI data and the model results in Figure 9d?” 

Thanks for the comment. We have included that Figure 9 is for a one month period of September 2013.  
In addition, we like to note that we have tested all months in 2013 & 2014. Their results are mostly 
consistent. 

Since this study mainly focuses on the uncertainty of satellite to model comparison due to spatial 
resolution differences between satellite footprint pixels and model grid cells, we did not emphasize on 
the implication of the comparison. However, we notice that the comparison in this draft shows general 
agreement with previous research. For urban locations (e.g. higher NO2 VCD values), the trend of 
continuous NOx emissions reduction, especially from the mobile sources, might be the main reason of 
the overestimated CMAQ NO2 VCDs. On the other hand, the underestimation of CMAQ NO2 VCDs in the 
rural areas (e.g. lower NO2 VCD points) might be attributed to the lack of natural NOx emission sources 
in the current modeling system, especially the soil NOx emissions. It also should be noted the rural NO2 
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VCD level is usually near the lower boundary of detection limit from space-borne instrument, so 
satellite-based measurements have relatively high uncertainty in the rural area. 

 

“* Page 8463, line 5-6: it is not clear that the recent shale-gas development is a significant source of 
NOx. One even assumes zero emission from this source. I could not find a reference (Chang et al., 
2015) in the reference section.” 

Thanks for the comment. Although the emission from recent shale-gas development is a very important 
topic, we agree that there is no clear consensus on detailed information on those emissions yet, and 
they are beyond the scope of this study. We have clarified it in the main context. 

 

“* Figure 10: Discuss causes for the differences between the OMI data and the model results.” 

Thanks for the comment. We have included additional discussions on the causes of discrepancies 
between OMI and modeled NO2 VCDs. As already mentioned for the comment on Figure 9, the 
reduction trend of urban NOx emission (e.g., mobile sources) might be the main reason of the 
overestimated CMAQ NO2 VCDs. On the other hand, missing natural NOx emission sources in rural area 
could be the reason for the underestimation of CMAQ NO2 VCDs. 

 

“* Acknowledgements: The P3 data from the CalNex campaign and related scientists should be 
acknowledged.” 

Thanks for the comment. We have included acknowledge for the P3 campaign and scientists. 

Thanks again for very productive comments.  
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Reviewer #2 
 
The authors express their appreciation to the reviewer. We provide replies for the reviewer’s two main 
comments: (1) Why this draft is suited to the GMD’s general goal, and (2) why findings and approaches 
in this draft are valuable for the future scientific model development. We also try to clarify the use of 
Averaging Kernel (AK) in the draft. Reviews’ comments are shown in italics. 
 

(1) The journal choice 
 
“I consider this study out-of-scope for the aforementioned journal, as the authors have merely used 
the CMAQ model in their study; the study does not include any aspects of model development.” 
 
We believe that the evaluation of a model is a crucial part of model development. Without proper 
evaluation with observational evidences, the model’s capability to represent the natural phenomena will 
be seriously limited. The main goal of this study is to discuss how a geoscientific model should be 
evaluated when its evaluation has likely been systematically biased due to data resolution.  

In this draft, we have demonstrated that a direct comparison of the modeled and satellite NO2 vertical 
column density (VCD) over urban cities might have serious systematic bias due to differences in the data 
geospatial resolutions between the model and observation (e.g. satellite). Subsequently we have 
described an approach to reduce this systematic bias.  We have submitted this draft to the Geoscientific 
Model Development because our study addresses the scientific fairness in model evaluation between 
different geospatial data sets. This is a fundamental underpinning of model development. 

Furthermore, the comparison of modeled and satellite NO2 VCDs is usually used to improve model’s 
emission input (e.g., NOx emission) which is one of the most important elements for better atmospheric 
chemistry modeling system. 

 
(2) Scientific importance and implication 

 
“The study lacks scientific novelty. Regarding the second point, the fact that measurements of trop. 
NO2 over urban areas are not able to capture the high pollution maxima over the emission hot spot 
due to the spatial smoothing caused by the coarse satellite ground pixel is trivial and has been 
reported on previously.” 
 
The reviewer commented that this draft is trivial since the underestimation of satellite NO2 VCD 
observations over urban cities due to its coarse spatial resolution has already been reported. However, 
this comment seriously misinterprets our work. The draft did not only report these biases, but also tried 
to quantify the magnitude of the biases, and tried to suggest approaches to overcome those systematic 
biases.  

In addition, we do not agree with the notion that quantification of such biases as was suggested by this 
draft is trivial or negligible. The draft has demonstrated that the theoretical systematic biases from OMI 
could be as large as 100% over urban cities just by the geometric effect of coarse satellite footprint 
pixels. Considering the economic cost and impact on the public health, the estimation suggested from 
this study has a serious implication in the interpretation of current anthropogenic emission inventory, 
and should be further considered in the policy decision-making of emission regulation. 
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For more detailed technical point of view, this study is a first approach to use a (mass) conservative 
spatial regridding method with satellite data in a footprint pixel level (e.g. level2), using the polygon 
clipping algorithms. Although the smoothing effect due to satellite resolution is already reported, there 
have been few approaches to adjust the impact of satellite resolution effect; Hilboll et al. (2013) might 
be the one of the few to name. In accordance with the authors’ knowledge, no approach has been tried 
with pixel level mass conservation in the top-down approach. 

The key idea in this approach is to handle geospatial data as “polygon with area” instead of “pixels”, as 
described in Kim et al., (2013) or in the response to the review #1. The mass conservative spatial 
regridding capability will be essential in the development of fine-scaling modeling approaches. We 
believe that this technique can provide a useful tool to handle multi-scale model or geospatial data 
together; It can be useful for the comparison between model and satellites, or inter-comparison 
between various satellite platforms.  

 
“The fact that the agreement between modelled and measured pixels improves when AK information 
is applied to the model fields is also trivial; in fact, any quantitative comparison between model and 
measurements has to use AK information, as neglecting to do so leads to a comparison of apples and 
oranges.” 
 
Moreover, we would like to clarify the use of the Averaging Kernel (AK) information. We do not claim 
that the use of the AK information in the comparison of modeled and space-borne NO2 VCD is one of our 
achievements in this study. We just used the AK information because its use is a necessary step to 
prepare the satellite data for a fair comparison as the reviewer commented. We described through a 
step-by-step data comparisons (e.g. raw data case, using AK case, using downscaling (DS) case, and using 
both AK and DS case), to demonstrate that the impact of the DS method is comparable to the impact of 
AK use in the model-satellite comparison. If one thinks the use of the AK is mandatary for satellite-
model comparison, we suggest that the impact of satellite footprint pixel resolution also should be 
considered to understand the fine scale phenomena such as urban NO2 plumes. 

Thanks again for the reviewer’s comment. 
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