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Abstract 10 

 11 
Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale 12 
regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-13 
borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for 14 
anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in 15 
determining the future direction of NOx emission policy. The National Aeronautics and Space Administration Ozone 16 
Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute 17 
(KNMI), are compared with a 12-km Community Multi-scale Air Quality (CMAQ) simulation from the National 18 
Oceanic and Atmospheric Administration. We found that OMI footprint pixel sizes are too coarse to resolve urban 19 
NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to 20 
quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data 21 
using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we 22 
then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake 23 
OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly 24 
showed smoothed signals over urban locations, resulting in roughly 20–30 % underestimation over major cities. 25 
Second, we further conducted conservative downscaling of OMI NO2 VCD using spatial information from the fine-26 
scale model to adjust the spatial distribution, and also applied Averaging Kernel (AK) information to adjust the 27 
vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ 28 
with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when 29 
both downscaling and AK methods are applied, with correlation coefficient R = 0.89. This study suggests that 30 
satellite footprint sizes might have a considerable effect on the measurement of fine-scale urban NO2 plumes. The 31 
impact of satellite footprint resolution should be considered when using satellite observations in emission policy 32 
making, and the new downscaling approach can provide a reference uncertainty for the use of satellite NO2 33 
measurements over most cities. 34 
 35 

1. Introduction 36 

 37 
Tropospheric nitrogen dioxide, NO2, is an important component of urban atmospheric chemistry. It is one of the 38 
major pollutants affecting humans and the biosphere (Chauhan et al., 2003; Kampa and Castanas, 2008), and works 39 
as an important precursor in tropospheric ozone chemistry and aerosol formation. Continuous monitoring of 40 
tropospheric NO2 is important to understand urban air quality and changes in anthropogenic emissions. NO2 is also 41 
used as an important indicator for traffic and urbanization (Rijnders et al., 2001; Ross et al., 2006; Studinicka et al., 42 
1997). 43 

Tropospheric NO2 has been measured from space since the mid-1990s; the Global Ozone Monitoring Experiment 44 
(GOME, 1996–2003, onboard the European Remote Sensing-2), Scanning Imaging Absorption SpectroMeter for 45 
Atmospheric CHartographY (SCIAMACHY, 2002–2012, onboard ENVISAT), Ozone Monitoring Instrument (OMI, 46 
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2004–present, onboard Aura), and GOME-2 (2007–present, onboard MetOp-A and 2013–present on MetOp-B) 47 
have all been used for the detection of NOx emission from natural and anthropogenic sources (Beirle et al., 2004; 48 
Boersma et al., 2007; Kim et al., 2006, 2009; Konovalov et al., 2006; Lamsal et al., 2008; Martin et al., 2003; 49 
Napelenok et al., 2008; Richter et al., 2005; van der A et al., 2006, 2008) 50 

NO2 plumes from urban anthropogenic sources, especially from point and mobile sources, usually have a fine 51 
structure, as small as a few hundred meters and as large as 10–20 km, as reported in comparisons of column NO2 52 
based on in situ observations and modeled calculations (Heue et al., 2008; Valin et al., 2011; Ryerson et al., 2001). 53 
Heue et al., (2008) used an airborne instrument based on imaging Differential Optical Absorption Spectroscopy 54 
(iDOAS) to build a two-dimensional distribution model of urban plumes. By comparing NO2 column densities over 55 
the industrialized South African Highveld with OMI and SCIAMACHY measurements, they demonstrated that iDOAS 56 
shows strong enhancements close to industrial areas, 4–9 times higher than measurements from OMI and 57 
SCIAMACHY. Previous studies have demonstrated that modeled ozone production depends strongly on the spatial 58 
scale of the modeling grid due to the nonlinear dependence of ozone production on NOx concentration (e.g., 59 
Cohan et al., 2006; Gillani and Pleim, 1996; Liang and Jacobson, 2000; Sillman et al., 1990), so an accurate 60 
comparison of urban NO2 plumes in fine scale is crucial for understanding surface ozone chemistry and air 61 
pollution over urban cities. Using 1-D and 2-D models, Valin et al., (2011) computed the resolution-dependent bias 62 
in the predicted NO2 column, demonstrating large negative biases over large sources and positive biases over small 63 
sources at coarse model resolution. 64 

The inhomogeneity of urban NO2 plumes within the scale of satellite footprint pixels is of rising interest as satellite-65 
based measurements are being compared with fine-scale modeling (Beirle et al., 2004; Beirle et al., 2011; Hilboll et 66 
al., 2013). Richter et al. (2005) showed that there are considerable differences between GOME and SCIAMACHY 67 
observations for locations with steep gradients in the tropospheric NO2 columns, while these observations agree 68 
very well over large areas of relatively homogeneous NO2 signals. Hilboll et al. (2013) argued that these effects 69 
result from spatial smoothing that differs depending on the ground resolution of the instruments, so the inherent 70 
spatial heterogeneity of the NOx fields must be considered when studying them over small, localized areas. Hilboll 71 
et al. (2013) also presented approaches to account for instrumental differences while preserving individual 72 
instruments’ spatial resolutions. In comparing GOME and SCIAMACHY, they used an explicit climatological 73 
correction factor to convolve GOME pixels (40×320 km

2
) with better-resolution SCIAMACHY (30×60 km

2
) data, 74 

producing a combined data set for studying long-term trends. 75 

In this study, we try to investigate and to quantify the uncertainty resulting from the geometry of OMI satellite-76 
based NO2 VCD measurements by comparing these data to a fine-scale regional quality model. First, a pseudo-OMI 77 
data set is built from the outputs of fine-scale model simulations, and then these results are compared to model 78 
data in order to quantify the impact from pure differences in geometry. Second, we extend the basic concept of 79 
Hilboll et al. (2013) to apply spatial-distribution information from the fine-scale model to the OMI measurements, 80 
and demonstrate how the new approach adjusts the original OMI measurements. Satellite and model data are 81 
described in Section 2. Construction of pseudo-OMI data and the quantification of the impact of pixel geometry are 82 
discussed in Section 3. In Section 4, the downscaling approach is discussed; Section 5 concludes and discusses the 83 
implications of findings for emission policy decision-making. 84 
 85 

2. Data 86 

 87 
OMI: We utilized OMI tropospheric NO2 VCD data, retrieved by the Royal Netherlands Meteorological Institute 88 
(KNMI). The OMI instrument, onboard NASA’s Earth Observing System Aura satellite, is a nadir-viewing imaging 89 
spectrograph measuring backscattered solar radiation with a measuring wavelength ranging from 270 to 500 nm 90 
and with a spectral resolution of about 0.5 nm. Its telescope has a 114° viewing angle, which corresponds to a 91 
2600 km-wide swath on the surface. In its normal global operation mode, its pixel size is 13 km (along) × 24 km 92 
(across) at nadir, which can be reduced to 13 km × 12 km in zoom mode (Levelt et al., 2006). Data were 93 
downloaded from the European Space Agency’s (ESA) Tropospheric Emission Monitoring Internet Service (TEMIS; 94 
http://www.temis.nl/airpollution/no2.html). DOMINO version 2.0 retrieval based on the Differential Optical 95 
Absorption Spectroscopy (DOAS) technique was used for the study. We disregarded data pixels with cloud fractions 96 

http://www.temis.nl/airpollution/no2.html
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over 40% or other contaminated pixels using quality flags. Details on the NO2 column retrieval algorithms and error 97 
analysis are described in Boersma et al. (2004, 2007). 98 

NAQFC: The U.S. National Air Quality Forecast Capability (NAQFC) provides daily, ground-level ozone predictions 99 
using the Weather Forecasting and Research non-hydrostatic mesoscale model (WRF-NMM) and CMAQ framework 100 
across the CONUS with a 12-km resolution domain (Chai et al., 2013; Eder et al., 2009). In our analysis, we used the 101 
experimental version of NAQFC, which uses WRF-NMM with B-grid (NMMB) as a meteorological driver and the 102 
CB05 chemical mechanism. Meteorological data is processed using the PREMAQ, which is a special version of the 103 
Meteorology-Chemistry Interface Processor (MCIP) designed for the NAQFC system. Emissions are projected to 104 
2012 level using Department of Energy Annual Energy Outlook and EPA Cross-State Air Pollution Rule (CSAPR) from 105 
the 2005 National Emission Inventory. Detailed information on the emission is available from Pan et al., (2014) and 106 
references within. 107 

 108 

3. Construction of pseudo-OMI data 109 

 110 
OMI footprint pixel size increases as the viewing angle deviates from the nadir direction to the edge of swaths. 111 
Figure 1 shows the actual size distributions of OMI pixels collected during September 2013. The blue line indicates 112 
size distribution counts for each 50 km

2
 bin, while the red line indicates the cumulative distribution of the OMI 113 

pixel sizes. The size distribution has high occurrences near 300 km
2
, as expected from the OMI’s resolution at the 114 

nadir (that is, 13x24 = 312). However, many pixels still have larger sizes; around half of total pixels are larger than 115 
500 km

2
, and 20% of total pixels are larger even than 1000 km

2
. Geographical coverage rapidly increases with pixel 116 

size, so deciding a threshold for footprint pixel sizes and available coverage may present a serious dilemma. 117 

Figure 2 shows the relationship between OMI footprint pixel size and actual geographical coverage over the 118 
Contiguous United States (CONUS). With 1 July 2011 data, 25% of OMI pixel sizes are less than 342 km

2
, and they 119 

cover 1.4% of the CONUS domain. CONUS coverage changes to 11.5%, 24.0%, and 58.8% when 50%, 75%, and 100% 120 
of OMI pixels are used, respectively. Using only finer data may provide detailed information, but they represent 121 
only a small part of all the data. If we also use coarser-resolution data, they provide more coverage but tend to be 122 
biased over areas with spatial gradient, as discussed in the previously mentioned studies (Hilboll et al., 2013). We 123 
therefore estimated the theoretical range of biases deriving from this geometric effect by constructing a pseudo-124 
OMI data set out of a fine-scale model. Using the fine-scale regional CMAQ simulations and assuming this model 125 
represents a true world, we constructed a dataset to mimic OMI instrument measurement of this modeled world. 126 

In order to construct the pseudo-OMI data, we utilized a conservative spatial regridding technique to perform a 127 
lossless conversion of gridded modeling outputs into actual OMI footprint pixels. Figure 3 demonstrates the 128 
concepts of conservative regridding. The gray grid cells are 12-km grid cells for modeling—zoomed on the Houston 129 
region as an example—and the blue lines are actual OMI pixel coverage. The blue, shaped pixel is an example of an 130 
actual OMI pixel, while the pink boxes are model grid cells overlaid by the example OMI pixel. The numbers in the 131 
grid cells are calculations of the fractional area overlaid by the OMI pixel for each cell using the Sutherland-132 
Hodman polygon-clipping algorithms available from the IDL-based Geospatial Data Processor (Kim et al., 2013); 133 
0.74 means the OMI pixel covers 74% of the corresponding grid cell. The pseudo-OMI value for the blue OMI pixel 134 
area in Figure 3 can be estimated as: 135 
 136 

𝑃𝑗 =
∑(𝑝𝑖 ∙ 𝑓𝑖,𝑗)

∑𝑓𝑖,𝑗
 (1) 

 137 
where i and j are indices for the model grid cell and OMI pixel, respectively. 𝑓𝑖,𝑗  indicates the fractional area of cell 138 

i overlaid by OMI pixel j. 139 

Figure 4 compares the spatial distributions of CMAQ NO2 VCD (assumed to be a true world) and pseudo-OMI (pOMI) 140 
NO2 VCD, along with the difference and percentage difference, (pOMI-CMAQ)/CMAQ x 100, over the northeastern 141 
United States. It is evident that there are prominent differences between the original fine-scale modeled NO2 VCD 142 
and reconstructed pseudo-OMI distribution, especially over and near urban locations. As expected from the 143 
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smoothing effects of larger pixel sizes, pOMI shows a slightly smoothed transition from urban cores to suburban, 144 
and most of the sharp peaks near small cities are gone in the pOMI distribution. As already mentioned, this is 145 
purely a result of geometry. We can see that, for all the major cities, pOMI underestimates the actual NO2 VCD 146 
values while overestimating at the boundaries of major cities, as clearly seen in the New York, Pittsburgh, 147 
Philadelphia, Baltimore, and Washington D.C. areas. This effect is also prominent in locations with small but strong 148 
NOx emission sources, such as power plants or small cities such as Norfolk, VA. It should be noted that these 149 
discrepancies result from purely geometric effects deriving from OMI’s designed pixel sizes and are around +- 5–10x 150 
10^15 #/cm2, with 20–30 % underestimation or overestimation biases for major cities and more than 100% under- 151 
or overestimation for local cities like Norfolk and Richmond, VA. In the next section, we introduce a new 152 
approach—the conservative downscaling method—to reduce this effect of resolution due to varying OMI footprint 153 
pixel sizes. 154 

 155 

4. OMI NO2 VCD downscaling 156 

 157 
As described in the previous section, urban NO2 plumes usually have too fine of a spatial structure compared to 158 
OMI’s measuring footprints. In this section, we introduce a new approach for adjusting those geometric effects. 159 
Downscaling is a common concept in meteorological simulations, used especially in global circulation models to 160 
provide initial and boundary conditions for regional models. We use a similar concept, describing a downscaling 161 
method in data processing as a special case of spatial regridding that provides further details through the 162 
incorporation of additional information into a set of coarse-resolution data. This approach differs from simply 163 
increasing the resolution, as the raw, coarse data are restructured using a set of logics, analogous to a regional 164 
meteorological model that downscales global meteorology using its own set of physical and thermal field balances. 165 
Conceptually, we use a calculation process reversed from that used to construct the pseudo-OMI data set. 166 

Figure 5 graphically depicts the steps of conservative downscaling from OMI pixels. Figure 5a shows actual OMI NO2 167 
VCD measurements over Los Angeles on May 4, 2010, and Figure 5b shows the corresponding CMAQ NO2 VCD 168 
calculated from NAQFC modeling outputs at the same time and location. As readers can easily see, OMI footprint 169 
pixels are much bigger (~650 km

2
) than are CMAQ grid cells (12x12 = 144 km

2
). As a result, an OMI pixel can overlay 170 

more than 10 CMAQ grid cells, as demonstrated in Figure 5b (black box representing the OMI pixel). We collected 171 
those CMAQ pixel values and then normalized them so that the total value of each grid cell sums to one. We call 172 
this a spatial-weighting kernel (Figure 5c), and we apply this weighting kernel to the original OMI measurement. As 173 
a result, we generate a reconstructed OMI pixel with finer structure but without any loss of original quantity. 174 
Summing the reconstructed pixels gives the original OMI pixel measurement. It should be noted that we strictly 175 
apply this method conservatively; theoretically, if there are no missing or duplicated pixels, the quantity of the 176 
original data is numerically preserved. This method can be summarized as fusing a satellite-measured “quantity” 177 
with modeled “spatial information”; the strength of the modeled NO2 field does not at all affect the result.  178 

As expected, the accuracy of this method indeed depends on the model’s performance, especially regarding its 179 
wind-field simulation and inputs of emission source locations, so this method clearly has its own limitation. 180 
Considering the uncertainties resulting from emission source locations, the air-quality community has had an 181 
excellent archive of geographical information about the geophysical locations of emission sources thanks to the 182 
efforts of U.S. EPA, although the strengths of these sources are somewhat highly uncertain. As just described, 183 
however, the downscaling method is not affected by emission strength, so we do not think that the uncertainty 184 
associated with known emission source is very high. On the other hand, the use of downscaling method can be 185 
limited when there are uncertainties in emission inventory information such as unknown emission sources or 186 
removal or known sources. Wind field is important for simulating NO2 plume transport. With the short lifetime of 187 
NO2, especially during summer, the spatial distribution of NO2 plumes is strongly determined by the location of 188 
emission sources. Improving information about emission-source locations would somewhat improve the model, 189 
but it is more important to note that the downscaling method tends to convert the error characteristics. Near 190 
urban cores, OMI’s coarse footprint resolution always causes unidirectional, systematic biases, with 191 
underestimation near urban cores and overestimation at the urban boundary. Using the downscaling method, 192 
these systematic biases from resolution are converted to random bias from wind-field error. Since these biases are 193 
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random, they may be corrected by averaging over a certain time period, unlike the systematic bias resulting from 194 
resolution. 195 

4.1.  2010 CalNex campaign case 196 

We applied the downscaling technique to compare OMI and downscaled OMI with aircraft-borne measurements 197 
from the California Research at the Nexus of Air Quality and Climate (CalNex) campaign. The CalNex field study was 198 
conducted in California from May to July 2010 and focused on atmospheric-pollution and climate-change issues, 199 
including an emission inventory, atmospheric transport and dispersion, atmospheric chemical processing, cloud-200 
aerosol interaction, and aerosol radiative effects (Ryerson et al., 2013). Here, we compared NO2 VCD observations 201 
from the campaign’s P3 flight with corresponding OMI measurements using both the standard and downscaling 202 
methods. More detailed descriptions regarding data preparation and a discussion of the influence of 203 
environmental inhomogeneity and urban NO2 plumes are provided by Judd et al. (2015) 204 

Figure 6 shows scatter-plot comparisons between the P3 measurements and OMI NASA standard product (Figure 205 
6a), OMI KNMI product (Figure 6b), and OMI KNMI downscaled (Figure 6c) for three days: 4, 7, and 16 May 2010. 206 
As reported, the OMI NO2 VCD tends to underestimate near the Los Angeles urban area. The KNMI retrieval 207 
showed a slightly better comparison with slope = 0.73 and R = 0.85, while the downscaled product clearly showed 208 
the best agreement with the P3 measurements, R = 0.88 and slope = 1.0. Deviations still remain from a true one-to-209 
one line even with the downscaling method; these are possibly caused by errors in wind field simulation. We 210 
expect these random errors to average out as the amount of available data increases. The downscaling method 211 
seems to work even with daily time-scale data sets. 212 

Figure 7 compares OMI NO2 VCD spatial distributions for the original KNMI products with downscaled products for 213 
4 May 2010, the day when the downscaling method gave the most dramatic changes in the spatial distribution. In 214 
the original retrieval, OMI pixels were coarse and mostly smoothed out over Los Angeles. However, by applying the 215 
downscaling technique, the adjusted OMI data show a shape much closer to the urban boundary and enhanced 216 
NO2 VCD values at the center of Los Angeles, agreeing very well with the P3 aircraft measurements. On 7 May, the 217 
downscaling method reproduced several peak values very well but failed to generate a clean spot at the edge of 218 
Los Angeles. On 16 May, the changes from downscaling are not dramatic due to generally low NO2 concentrations 219 
due to less urban traffic on Sunday (e.g. the weekend effect), but the downscaling method still showed slight 220 
enhancement (shown in supplementary plots). 221 

4.2.  Comparison with NAQFC 222 

Comparing modeled NO2 VCD to satellite-observed NO2 VCD has been a popular way to evaluate the NOx emission 223 
inventory. Since modeled NO2 VCD and satellite NO2 VCD have different optical and vertical properties, some 224 
researchers have used additional processing to fairly compare satellite and modeled column densities. In this 225 
section, we performed vertical and spatial adjustment by applying Averaging Kernel (AK) information in conjunction 226 
with the downscaling technique. First, we compared NAQFC NO2 VCD with and without AK to OMI NO2 VCD with 227 
and without downscaling processing.  228 

The sensitivity of the instrument to tropospheric tracer density is highly height-dependent. Since the measured 229 
tracer profile may have large systematic errors as a result, the retrieved tracer columns should be interpreted with 230 
proper additional information (Eskes and Boersma, 2003). An AK stores an instrument’s relative sensitivity to the 231 
abundance of the target species for each layer throughout the atmospheric column (Bucsela et al., 2008) and can 232 
be applied to a modeled atmospheric column for a fair comparison with satellite retrievals. For each OMI DOMINO 233 
product pixel, 34 layers of AKs are provided. We first converted total AK to tropospheric AK, AKtrop, by applying the 234 
total air mass factor (AMF) and tropospheric AMF, and we then applied AKtrop to model layers before vertically 235 
integrating, as described by Herron-Thorpe et al. (2010). When multiple OMI pixels overlaid a model grid cell, we 236 
conducted the conservative spatial remapping method explained above. 237 

Figure 8 compares the monthly averaged NO2 VCD distributions for CMAQ without and with AK (Figure 8a & Figure 238 
8b, respectively) and for OMI NO2 VCD without and with downscaling (Figures 8c & 8d, respectively). In general, 239 
AK-applied CMAQ NO2 VCD tends to be slightly lower than CMAQ NO2 VCD without AK information. On the other 240 
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hand, while OMI NO2 VCD without DS shows a much smoother pattern, the DS-applied OMI reconstructs the sharp 241 
spatial structures near urban areas. DS-applied OMI NO2 VCD is evidently able to construct sharp gradients near 242 
cities, and especially near middle-size cities. 243 

Figure 9 compares CMAQ and OMI NO2 VCDs using AK and DS methods together. Figure 9a shows a scatter-plot 244 
comparison between CMAQ and OMI NO2 VCDs at U.S. Environmental Protection Agency Air Quality System (AQS) 245 
surface-monitoring site locations during September 2013. In this comparison, CMAQ NO2 VCDs are much higher 246 
compared to OMI NO2 VCDs, implying that the CMAQ simulation possibly overestimates NOx emissions. Figure 9c 247 
compares OMI and CMAQ NO2 VCD with AK information applied; estimated CMAQ NO2 VCD is reduced, showing 248 
better agreement with OMI NO2 VCD. Readers may notice that high CMAQ pixels are shifted to the left. On the 249 
other hand, applying the DS method to OMI shifts OMI pixels vertically (Figure 9b). Finally, in Figure 9d, both AK 250 
and DS methods are applied; this comparison shows the best agreement between OMI and CMAQ NO2 VCD pixels. 251 
Its correlation coefficient R = 0.89 and the slope of line fit is 0.59. Clearly, the application of the AK and DS methods 252 
not only improved the satellite-model comparison in the high NO2 concentration range but also significantly 253 
improved the comparison in the low NO2 range (i.e., 0–10x10

15
 molecules/cm

2
), implying that this method can help 254 

interpret NOx emission in major and mid-size cities. We have conducted same analyses for all summer months in 255 
2013 & 2014, and results are consistent. 256 

The differences in spatial distributions between monthly averaged OMI and CMAQ NO2 VCDs during September 257 
2013 are shown in Figure 10. Positive values indicate that CMAQ NO2 VCD is higher than OMI VCD, which should 258 
likely be interpreted as an overestimation of the NOx emission inventory used in the CMAQ modeling. The 259 
difference between the original OMI and CMAQ NO2 VCDs show strong positive values over most urban locations 260 
(Figure 10a). Applying AK (Figure 10b) and DS (Figure 10c) reduce positive biases for major and middle-to-small 261 
cities, showing the best agreement when both AK and DS are included. NO2 VCD is still overestimated over major 262 
cities—New York, Philadelphia, Detroit, and Chicago—as is expected from the continuous trend of NOx emission 263 
reduction, but they are much weaker than in the original comparison. Slight overestimations over Baltimore, 264 
Washington D.C., Richmond, and Norfolk have almost disappeared We also notice broad underestimation of NO2 265 
VCD over Pennsylvania and West Virginia, which might be related to recent changes in this region, but detailed 266 
analysis is beyond the scope of this study.  Another interesting feature is that there are spots of underestimation 267 
over small cities or local power plants; we therefore suspect the DS method slightly overweights urban emissions 268 
due to the lack of soil NOx emissions in the current modeling system. 269 

 270 

5. Conclusion 271 

 272 
This study reports that satellite footprint sizes might cause a considerable effect on the measurement of fine-scale 273 
urban NO2 plumes. Comparing OMI NO2 VCDs over North American urban cities to a 12-km CMAQ simulation from 274 
NOAA NAQFC, we found that OMI footprint-pixel sizes are too coarse to resolve urban plumes, resulting in possible 275 
underestimation (and overestimation of model NO2 VCD) over the urban core and overestimation outside. In order 276 
to quantify this effect of resolution, we first conducted a perfect-model experiment. Pseudo-OMI data were 277 
constructed using fine-scale outputs of a model simulation, assuming that the fine-scale model output is a true 278 
measurement. To match the footprint coverage from real OMI pathways, we conducted conservative spatial 279 
regridding with the corresponding fine-scale model outputs to generate a set of pseudo OMI pixels. 280 

When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, 281 
with 20–30 % underestimation over major cities and up to 100% bias over smaller urban areas. We then introduced 282 
conservative downscaling of OMI NO2 VCD using spatial information from the fine-scale model to adjust the spatial 283 
distribution, also applying Averaging Kernel (AK) information to adjust the vertical structure. Four-way comparisons 284 
were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results 285 
show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are 286 
applied, with correlation coefficient R = 0.89.  287 

These results should be considered when using satellite data in the evaluation of emission inventories and 288 
translating these data into decision-making around emission policy. Table 1 shows a summary of the comparisons 289 
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between OMI and CMAQ NO2 VCDs described in Figure 8 and Figure 9. When CMAQ without AK and OMI with DS 290 
are compared, the percentage difference is (6.43-3.61)/3.61*100 = 78%, implying that the current emission 291 
inventory likely overestimates NO2 VCD. Comparing between OMI with DS and CMAQ without AK or between OMI 292 
without DS and CMAQ with AK still implies that the current emission inventory is possibly overestimating. However, 293 
when both vertical and spatial profiles are adjusted using the AK and DS methods, a slight underestimation is found, 294 
-7%, in modeled NO2 VCD over AQS monitoring locations, implying that the current inventory possibly 295 
underestimates emissions. This may represent an important implication for how spatial information should be 296 
considered when investigating fine-scale phenomena such as urban NO2 plumes. 297 

Without question, satellite observations are very useful with their large coverage supplementing sparse surface-298 
monitoring sites. Interpretation of satellite-based measurement, however, should be performed cautiously with 299 
consideration of the instrument’s characteristics, especially when translating results into policy-making. We expect 300 
our current study to provide a reference for the uncertainty of satellite-based information regarding local or 301 
regional pollutants, especially until we have the measurement data at more enhanced resolution that will be 302 
provided by future satellites, such as Tropospheric Emissions: Monitoring of Pollution (TEMPO), Tropospheric 303 
Monitoring Instrument (TROPOMI), and Geostationary Environmental Monitoring Spectrometer (GEMS).  304 

 305 

Appendix A: Conservative spatial regridding method 306 

 307 

For the spatial regridding of satellite data, the IDL-based Geospatial Data Processor (IGDP) performs 308 

‘conservative spatial regridding’ based the exact calculation of overlapped areas using the polygon 309 

clipping algorithm. This method differs from traditional interpolation method since it handles the 310 

geospatial data (e.g. satellite data) as “polygon with area” instead of “(dimensionless) pixels”. This 311 

method reconstructs raw data pixels (e.g. satellite data) into target domain grid cells, by calculating 312 

fractional weighting of each overlapping portions between data pixels and domain grid cells. If the raw 313 

pixel data is in density units (e.g. concentration), the grid cell concentration can be calculated as a 314 

weighted average of data pixels and fractions (Figure 11). 315 

 316 

𝑓𝑖,𝑗 =
𝐴𝑟𝑒𝑎(𝑃𝑖 ∩ 𝐶𝑗)

𝐴𝑟𝑒𝑎(𝐶𝑗)
 

𝐶𝑗 =
∑𝑃𝑖 · 𝑓𝑖,𝑗
∑𝑓𝑖,𝑗

 

where i and j are indices of data pixel, P,  and grid cells, C. 𝑓𝑖,𝑗  is the overlapping fractions, and 317 

∑𝑓𝑖,𝑗=1 if no missing pixels are involved in grid cell 𝐶𝑗. 318 

If the satellite pixel data is in mass units, equations for the conservative remapping are slightly different. 319 

We need to calculate fractions of overlapped area to raw data pixel size, instead of grid cell size. 320 

 321 

𝑔𝑖,𝑗 =
𝐴𝑟𝑒𝑎(𝑃𝑖 ∩ 𝐶𝑗)

𝐴𝑟𝑒𝑎(𝑃𝑗)
 

𝐶𝑗 =∑𝑃𝑖 · 𝑔𝑖,𝑗 

where 𝑔𝑖,𝑗 is the fraction of overlapped area to the data pixel size.  322 



8 

 

Detailed information on the polygon clipping algorithms is described in Kim et al.,( 2013). 323 

 324 

Appendix B: IDL routines for downscaling method 325 

 326 

Per the request of anonymous reviewer, we provide sample IDL routines of conservative spatial 327 

regridding and downscaling of OMI and CMAQ NO2 VCDs in the supplementary materials with brief 328 

descriptions. Users will be able to download and test sample codes, and further modify the codes for 329 

their own interest. 330 

 331 
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OMI/xDS 

(mean = 3.61) 
OMI/DS 

(mean = 5.00) 

CMAQ/xAK (mean = 
6.43) 

S = 0.28 
R = 0.79 

(6.43-3.61)/3.61*100 = 78.1 % 

S = 0.45 
R = 0.87 

(6.43-5)/5*100 = 28.6 % 

CMAQ/AK (mean = 4.65) 
S = 0.39 
R = 0.87 

(4.65-3.61)/3.61*100 = 28.8%  

S = 0.59 
R = 0.89 

(4.65-5)/5*100 = -7.0 % 

Table 1. Comparison of OMI and CMAQ NO2 VCD monthly averages (Sep. 2013) at AQS sites. 443 

 444 
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 446 
Figure 1. Size distribution of OMI pixel footprint (blue) and its cumulative percentile (red) during September 447 
2013. 448 

  449 



14 

 

 450 
Figure 2. Comparison of OMI footprint-pixel size and actual coverage using (a) 25%, (b) 50%, (c) 75%, and (d) 100% 451 
of available pixels on July 1, 2011. 452 

 453 
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 455 
Figure 3. Calculation of pseudo-OMI (pOMI) data. Blue boxes are actual OMI pixel footprints and the gray cells 456 
are 12-km grid cells. Fraction of cells overlapped by an OMI pixel are shown, and pOMI (sky blue) data are 457 
estimated by a weighted average of the corresponding grid cells (pink). 458 
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 460 
Figure 4. Monthly mean distribution of (a) CMAQ, (b) pOMI NO2, (c) difference (pOMI-CMAQ), and (d) 461 
percentage difference (pOMI-CMAQ)/CMAQ*100 during September 2013.  462 

  463 
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 464 
Figure 5. Example of downscaling method. (a) Original OMI NO2 VCD, (b) 12-km CMAQ NO2 VCD, (c) spatial 465 
weighting kernel, and (d) adjusted OMI NO2 VCD using spatial weighting kernel. 466 
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 468 
Figure 6. Scatter plots of P3 and OMI NO2 VCD for (a) OMI standard products, (b) OMI KNMI, and (c) OMI KNMI 469 
with downscaling for May 4, 7 & 16,2010. 470 
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 472 
Figure 7 Spatial distribution of P3 NO2 VCDs (circles) and OMI NO2 VCDs for original KNMI product (A), and 473 
downscaled OMI (B) for 4 May 2010.  474 
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 475 
Figure 8. Spatial distributions of (a) CMAQ NO2 VCD without AK and (b) with AK; (c) OMI NO2 VCD without 476 
downscaling and (d) with downscaling during September 2013. 477 
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 479 
Figure 9. Comparison of OMI and CMAQ NO2 VCD for (a) OMI and CMAQ with AK, (b) downscaled OMI and 480 
CMAQ with AK, (c) OMI and CMAQ with AK, and (d) downscaled OMI and CMAQ with AK during September 2013. 481 
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 484 
Figure 10. Comparisons of OMI and CMAQ NO2 VCD spatial distributions in the northeast U.S. region during 485 
September 2013. 486 
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 489 
Figure 11 Example of "Conservative spatial regridding" method using variable-pixel linear 490 

reconstruction algorithm. 491 
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