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Abstract 1 

A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set 2 

(VBS) approach has been coupled with microphysics and radiative schemes in the WRF/Chem 3 

model. The new chemistry option called “RACM/MADE/VBS/AQCHEM” was evaluated on a 4 

cloud resolving scale against ground-based and aircraft measurements collected during the 5 

IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. The day-to-6 

day variability and the diurnal cycle of ozone (O3) and nitrogen oxides (NOx) at the surface are 7 

captured by the model. Surface aerosol mass concentrations of sulphate (SO4), nitrate (NO3), 8 

ammonium (NH4), and organic matter (OM) are simulated with correlations larger than 0.55. 9 

WRF/Chem captures the vertical profile of the aerosol mass concentration in both the planetary 10 

boundary layer (PBL) and free troposphere (FT) as a function of the synoptic condition, but the 11 

model does not capture the full range of the measured concentrations. Predicted OM concentration 12 

is at the lower end of the observed mass concentrations. The bias may be attributable to the missing 13 

aqueous chemistry processes of organic compounds and to uncertainties in meteorological fields. A 14 

key role could be played by assumptions on the VBS approach such as the SOA formation 15 

pathways, oxidation rate and dry deposition velocity of organic condensable vapours. Another 16 

source of error in simulating SOA are the uncertainties in the anthropogenic emissions of primary 17 

organic carbon. Aerosol particle number concentration (condensation nuclei, CN) is overestimated 18 

by a factor 1.4 and 1.7 within PBL and FT, respectively. Model bias is most likely attributable to 19 

the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation rate. 20 

Simulated cloud condensation nuclei (CCN) are also overestimated, but the bias is more contained 21 

with respect to that of CN. The CCN efficiency, which is a characterization of the ability of aerosol 22 

particles to nucleate cloud droplets, is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, 23 

respectively. The comparison with MODIS data shows that the model overestimates the aerosol 24 

optical thickness (AOT). The domain averages (for one day) are 0.38±0.12 and 0.42±0.10 for 25 

MODIS and WRF/Chem data, respectively. Droplet effective radius (Re) in liquid phase clouds is 26 

underestimated by a factor of 1.5, cloud liquid water path (LWP) is overestimated by a factor 1.1-27 

1.6. The consequence is the overestimation of average liquid cloud optical thickness (COT) from 28 

few percent up to 42%. Predicted cloud water path (CWP) in all phase displays a bias in the range 29 

+41-80%, whereas the bias of COT is about 15%. In sensitivity tests were we excluded SOA, the 30 

skills of the model in reproducing the observed patterns and average values of the microphysical 31 

and optical properties of liquid and all phase clouds decreases. Moreover, the run with SOA 32 

(NOSOA) shows convective clouds with an enhanced content of liquid and frozen hydrometers, and 33 

stronger updrafts and downdrafts. Considering that the previous version of WRF/Chem coupled 34 
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with a modal aerosol module predicted very low SOA content (SORGAM mechanism) the new 1 

proposed option may lead to a better characterization of aerosol-cloud feedbacks. 2 

3 



4 
 

1 Introduction 1 

It is well recognized that aerosol particles have a fundamental role in the climate system. They 2 

directly alter the budget of the radiation that reaches the Earth surface by scattering and absorbing 3 

the incoming sunlight (Haywood and Boucher, 2000), and they indirectly affect cloud properties 4 

and precipitation patterns, because they act as cloud condensation nuclei (CCN) (Rosenfeld et al., 5 

2008; Lohmann and Feichter, 2005). Some aerosol species as black and brown carbon or mineral 6 

dust heat the atmosphere absorbing the solar radiation. The local warming may increase the 7 

atmospheric stability, leading to a decrease in cloud cover through the so called semi-direct effect 8 

(Hansen et al., 1997). The global mean radiative forcing associated due to aerosols, as a result 9 

of changes in anthropogenic emissions since pre-industrial times, is highly 10 

uncertain and is estimated to be -0.9 W/m2, with an uncertainty range of 11 

-1.9 W/m2 to -0.1 W/m2 (Boucher et al., 2013).  12 

Experimental evidence of the influence of aerosols on cloud macrophysical and microphysical 13 

properties have been shown in several works (Klarke and Kapustin, 2010; Christensen  and 14 

Stephen, 2011; Koren et al., 2011; Ten Hoeve et al., 2011; Li et al., 2012). Several modelling 15 

studies show that aerosol particles have a strong impact not only on the climatic spatial-temporal 16 

scale, but also at short range on the regional scale (Baklanov et al., 2013). At regional scale, online 17 

coupled mesoscale meteorology-chemistry models are useful tools to take into account aerosol 18 

feedback effects on both meteorology and atmospheric composition (Zhang et al., 2008; Baklanov 19 

et al., 2013). WRF/Chem, which is the model used in this study, is one of such models (Grell et al., 20 

2005; Fast et al., 2006; Chapman et al., 2009). In this work we present and evaluate some 21 

developments of WRF/Chem for a better simulation of direct and indirect aerosol feedback.  22 

The introduction of the aerosol-cloud-radiation feedback leads to non-linear chains and loops of 23 

interactions between meteorological and chemical processes that are inhomogeneous in space and 24 

time (Baklanov et al., 2013). Furthermore, the prediction of meteorological variables significantly 25 

improves when the direct and indirect aerosol effects are taken into account in numerical 26 

simulation. For example, Yang et al. (2011) found that the inclusion of aerosol feedback produces 27 

significant benefits in the simulated optical and microphysical properties of marine stratocumulus, 28 

and these improvements positively affect the simulation of the boundary layer structure and energy 29 

budget. Yu et al. (2013) reported an improvement of the simulation of shortwave and longwave 30 

cloud forcing when the aerosol feedback is added to the model.  31 

Recent studies conducted with global models, predict an important contribution of secondary 32 

organic aerosol (SOA) to direct and indirect aerosol feedback. O’Donnell et al. (2011) calculated an 33 
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annual mean direct and indirect shortwave forcing of -0.31 W/m
2
 and +0.23 W/m

2
, respectively. 1 

Biogenic SOA (BSOA) seems to play an important role on aerosol-cloud-radiation interaction. 2 

Scott et al. (2014) find that BSOA contribute for 4-21% to the global annual mean of CCN and 2-3 

5% to global mean of cloud droplet concentration. They also attribute to BSOA a global mean 4 

indirect radiative forcing ranges from -0.77 W/m
2
 to +0.01 W/m

2
. 5 

Previous studies over USA and Europe demonstrated that the “traditional” configuration of 6 

WRF/Chem (Grell et al., 2005) using the Secondary Organic Aerosol Model (SORGAM) (Shell et 7 

al., 2001), presents a negative bias of simulated PM2.5 mass, mostly attributable to a scarce 8 

production of SOA (Grell at al., 2005; McKeen et al. 2007; Tuccella et al., 2012). Therefore, an 9 

updated “chemistry option” with a more sophisticated treatment of SOA, fully coupled with 10 

radiative and microphysics modules, is highly desirable. In section 2 of this work, we describe the 11 

developments of WRF/Chem code carried out in order to simulate the direct and indirect effects 12 

with the new SOA parameterization (based on the Volatility Basis Set, VBS, approach) recently 13 

implemented in the model by Ahmadov et al. (2012). In section 3, we describe the measurements 14 

used to evaluate the model. In section 4, we evaluate the performance of the updated model through 15 

comparison with satellite data and with meteorological and chemical constituent measurements 16 

performed in the frame of the European Integrated project on Aerosol Cloud Climate and Air 17 

quality interaction (EUCAARI) (Kulmala et al., 2011). The aim of the section 5 is to address the 18 

two following questions: (1) Does the introduction of SOA particles interacting with radiation and 19 

cloud processes improve the numerical prediction of cloud fields? (2) What is the potential impact 20 

of SOA particles on cloud development? The final remarks are given in section 6. 21 

22 
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2 WRF/Chem model 1 

2.1 Description and upgrade 2 

A pre-release of version 3.4 of Weather Research and Forecasting model with Chemistry model 3 

(WRF/Chem) (Grell et al., 2005) was used in this study. WRF/Chem is a community model that has 4 

many options for gas chemistry and aerosols. One of these has been updated in order to include a 5 

new chemistry option for simulation of direct and indirect effects with an updated parameterization 6 

for SOA production. The modifications introduced by Fast et al. (2006), Chapman et al. (2009), and 7 

Ahmadov et al. (2012) are the basis of our work. The technical details of the implementation are 8 

summarized in the Appendix A. 9 

The gas-phase mechanism used is an updated version of the Regional Atmospheric Chemistry 10 

Mechanism (RACM) (Stockwell et al., 1997). The inorganic aerosols are treated with the Modal 11 

Aerosol Dynamics Model for Europe (MADE) (Ackermann et al., 1998). The updated 12 

parameterization for SOA production is based on the volatility basis set (VBS) approach (Ahmadov 13 

et al., 2012). MADE/VBS model has three log-normal modes: Aitken, accumulation and coarse. 14 

The species treated are the sulphate (SO4
=
), nitrate (NO3

+
), ammonium (NH4

+
), elemental carbon 15 

(EC), primary organic matter (POM), secondary organic aerosol (SOA, anthropogenic and 16 

biogenic), chloride (Cl), sodium (Na), unspeciated PM2.5 (that includes the fine fraction of sea-salt 17 

and soil dust), aerosol water, unspeciated coarse fraction of PM10, soil dust and sea salt. 18 

SOA parameterization implemented by Ahmadov et al. (2012) is based on a four bins volatility 19 

basis set, with saturation concentration of 1, 10, 100, and 1000 µg/m
3
 at 300 K, respectively. VOCs 20 

are oxidized by reactions with hydroxyl radical (OH), ozone (O3), and nitrate radical (NO3). 21 

Oxidized VOCs are anthropogenic (alkanes, alkenes, toluene, xylene, and cresol) and biogenic 22 

(isoprene, monoterpenes, and sesquiterpenes). In each bin, organic mass is produced for two 23 

different regimes, high and low NOx. In the former, organic peroxy radicals react with nitrogen 24 

oxide (NO), conversely in the latter organic peroxy radicals react with other organic peroxy 25 

radicals. The organic matter produced is partitioned into aerosol and gas phase assuming a pseudo-26 

ideal partition. Organic condensation vapours (OCV) produced by the oxidation of VOCs may be 27 

oxidized by reacting with OH, consequently reducing the vapour pressure and shifting mass from 28 

high volatility bins to lower ones. The default oxidation rate (or aging factor) used in the model is 29 

1.0×10
-11

 cm
3
/molec./s for both anthropogenic and biogenic OCVs. The aging factor is one the key 30 

uncertainties in SOA formation in the VBS approach. Other two factors important factors of 31 
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uncertainty are those related to the SOA formation pathways and to the dry deposition velocity of 1 

OCVs. The latter is assumed to be 25% of the dry deposition velocity of nitric acid (HNO3).    2 

The implementation of aerosol-cloud-radiation interaction within RACM/MADE/VBS follows the 3 

methods described by Fast et al. (2006) and Chapman et al. (2009).We modified the WRF/Chem 4 

code by preparing the inputs for the modules devoted to calculation of the aerosol optical properties 5 

and the aerosol activation, starting from the mass of each aerosol type as predicted by new 6 

chemistry package. In the approach of Fast et al. (2006), the three modes of the lognormal 7 

distribution are divided into 8 bins, and at each chemical constituent of the aerosol mass is 8 

associated a complex refractive index. The refractive index is calculated for each bin with a volume 9 

averaging. Mie theory is used to find the scattering and absorption efficiencies. Aerosol optical 10 

thickness (AOT), single scattering albedo and asymmetry parameter calculated with the optical 11 

package developed by Barnard et al. (2010), are used as input to the radiative scheme (Goddard and 12 

RRTMG). Aerosol direct effect on longwave radiation is included following Zhao et al. (2010). 13 

Aerosol-clouds interaction is a complex problem that involves the activation and resuspension of 14 

the aerosol particles, aqueous chemistry and wet removal. Following Chapman et al. (2009), 15 

aerosols within cloud drops are treated as "cloud borne". Aerosols that do not activate as cloud 16 

droplets are treated as "interstitial". In WRF/Chem the activation process is based on the 17 

parameterization developed by Abdul-Razzak et al. (2000, 2002). The number and mass 18 

concentration of the activated aerosols are calculated for each mode. The activation of aerosols is 19 

based on a maximum supersaturation determined from a gaussian spectrum of updraft velocities and 20 

bulk hygroscopicity of each aerosol compound for all lognormal modes of particles. Bulk 21 

hygroscopicity is based on the volume weighted average of the hygroscopicity of each aerosol 22 

component. In addition to the activated aerosols at environmental conditions, the CCN spectrum is 23 

also determined, i.e. the aerosol particles acting as CCN at some given maximum supersaturations 24 

(0.02, 0.05, 0.1, 0.2, 0.5, and 1%) are calculated.   25 

Within the dissipating clouds, the droplets evaporate and the cloud borne aerosols are resuspended 26 

to the interstitial state. Cloud borne aerosols and dissolved trace gases may be modified by aqueous 27 

chemistry. In this chemistry option, cloud chemistry is modelled using the scheme of Walcek and 28 

Taylor (1986). Wet deposition of trace gases and aerosols is treated in and below clouds. Within 29 

clouds the aerosols and trace gases dissolved in the water are collected by rain, graupel and snow. 30 

Below clouds the wet scavenging by precipitation is parameterized using the approach of Easter et 31 

al. (2004).  32 
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The simulation of the activation, resuspension and wet scavenging of the aerosol particles requires a 1 

prognostic treatment of the cloud droplets. The prognostic treatment of the clouds droplet takes into 2 

account the losses due to collision, coalescence, collection and evaporation, and the source due to 3 

nucleation. The Lin and Morrison microphysics schemes in WRF/Chem version 3.4 include the 4 

prognostic treatment of the cloud droplet number concentration. The source due to nucleation is 5 

parameterized following Ghan et al. (1997). Both microphysical schemes take into account the 6 

autoconversion of cloud drops to rain dependent on the cloud droplet number. Therefore, aerosol 7 

activation affects both the rain rate and the liquid water content. The droplet number concentration 8 

affects the calculation of the cloud droplet effective radius and cloud optical thickness (COT). The 9 

interaction of clouds with the incoming shortwave radiation is done by linking the microphysics to 10 

the radiation scheme. The reader should note that the contribution to SOA concentration by cloud 11 

chemistry is missing and the interaction of aerosol with ice nuclei is not taken into account in this 12 

version of the model. 13 

2.2 Model configuration 14 

The simulations were conducted over three 1-way nested domains centred on The Netherlands, as 15 

shown in Figure 1. The coarse domain (D1) has 30 km horizontal resolution, domain 2 (D2) 10 km, 16 

and  domain 3 (D3) is cloud resolving at 2 km resolution. In our runs we used 67 vertical levels 17 

extending up to 50 hPa.  18 

The main physical and chemical parameterizations used are listed in Table 1. The model setup is the 19 

same for all three domains, except that no cumulus parameterization is used for D3. Wet scavenging 20 

and cloud chemistry from both parameterized updraft and resolved clouds are taken into account in 21 

D1 and D2. However in these domains the sub-grid cloud processes involve only the interstitial 22 

aerosol, i.e. the aerosol-cloud coupling is not considered in convective parameterization. Therefore, 23 

the indirect effects are well resolved for domains with resolution less than 10 km in the version of 24 

WRF/Chem used in this work.  25 

As mentioned in Section 2.1, two key uncertainties in SOA production are deposition velocity and 26 

aging factor of OCVs. The first is assumed to be 25% (this value is called “deposition factor” in 27 

WRF/Chem) of dry deposition velocity of HNO3, the second is set to 1.0×10
-11

 cm
3
/molec./s. 28 

Ahmadov et al. (2012) showed that reducing the aging factor of OCVs by 50%, daily average 29 

concentration of SOA decreases by 20%, and an increase of the dry deposition velocity of OCVs by 30 

a factor 4 the SOA concentration decreases by 50%. Deposition factor and aging are tunable 31 

parameters. After some sensitivity tests, we chose the default value for deposition factor and 32 
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5.0×10
-11

 cm
3
/molec./s as aging of OCVs, because this combination minimizes the model bias with 1 

observations.   2 

We simulated the period from 14 to 30 May 2008. We chose this period because aerosol and cloud 3 

state-of-art measurements were available to evaluate the model (see Section 3). Moreover, during 4 

this period anticyclonic and cyclonic meteorological conditions were observed which allows the 5 

evaluation of the model under varying conditions. The initial and boundary meteorological 6 

conditions for D1 are provided by the European Centre for Medium range Weather Forecast 7 

(ECMWF) analyses with a horizontal resolution of 0.5° every 6 hours. The chemical boundary 8 

conditions of D1 are taken from output of the global Model for Ozone and Related Chemical 9 

Tracers (MOZART) (Emmons et al., 2010). MOZART output has been converted to 10 

RACM/MADE/SOA-VBS species by using the “mozbc” interface that may be downloaded from 11 

the www.acd.ucar.edu/wrf-chem website. 12 

A series of 30-h simulations were performed on each day starting at 00 UTC, with the first 6 h 13 

discarded as model spin up for meteorology. Meteorology of D1 is reinitialized from global 14 

analysis, while initial and boundary meteorology conditions for D2 and D3 are taken from D1 and 15 

D2, respectively. For all three domains, the chemical initial state is restarted from previous run, 16 

while the chemical boundary conditions of D2 and D3 are taken from D1 and D2, respectively. The 17 

first 13 days of May 2008 are also simulated to spin-up the chemistry. 18 

2.3 Emissions 19 

Anthropogenic emissions data are taken from TNO 2007 inventory (Kuenen et al., 2014). TNO is a 20 

gridded European inventory with resolution of 0.125°x0.0625°. It provides the anthropogenic 21 

emissions of NOx, NMVOC, NH3, SO2, CO, primary PM2.5 and PM10. EC and primary OC 22 

emissions are taken from a specific TNO database that is part of the EUCAARI project (Kulmala et 23 

al., 2011). These EC and OC emissions are size resolved, they are separated for particles less than 1 24 

μm, particles in the range of 1–2.5 μm and 2.5–10 μm.  25 

Horizontal and vertical interpolation, temporal disaggregation, NMVOC speciation, and 26 

aggregation of emissions into WRF/Chem species is done following Tuccella et al. (2012), with 27 

minor updates described in Curci et al. (2014a). In order to prevent spurious concentration of 28 

aerosol particles, the distribution of aerosol emissions into WRF/Chem modes is based on the low 29 

emission scenario of Elleman and Covert (2010). The 10% of the emitted aerosol mass is attributed 30 

to Aitken mode, and the 90% to the accumulation mode. 31 
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Biogenic emissions are calculated on line with Model of Emissions of Gases and Aerosols from 1 

Nature (MEGAN) (Guenther et al., 2006). Dust and sea salt emissions from soil and seawater are 2 

calculated on line in the simulations. 3 

4 
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3 Measurements 1 

We evaluated model performances in D3 against ground and aircraft based data collected in May 2 

2008 during the Intensive Cloud Aerosol Measurement Campaign (IMPACT) in the frame of the 3 

EUCAARI project (Kulmala et al., 2009). Model results were also evaluated against MODIS 4 

satellite data. 5 

An overview of the synoptic conditions of May 2008 over Central Europe is given by Hamburger et 6 

al. (2011). The first 15 days of May are characterized by an anticyclonic block, while the period 7 

from 16 to 31 is dominated by westerly wind and passage of several fronts. The days from 17 to 20 8 

May are referred as “scavenged background situation” (Mensah et al., 2012), because they are 9 

dominated by northerly wind from North Sea associated to a low aerosol mass loading, due to wet 10 

scavenging. The period starting from 23 May is dominated by long range transport of dust from 11 

Sahara desert (Roelofs et al., 2010; Begue et al., 2014).   12 

3.1 Ground based measurements  13 

Meteorological and aerosol ground based measurements used in this study are collected in Cabauw 14 

(The Netherlands) at CESAR observatory Cabauw (Figure 1). CESAR observatory is a tower 15 

located at 51° 57’N, 4° 54’ E, and -0.7 m a.s.l, at about 50 km south of Amsterdam. Measurements 16 

performed at CESAR observatory are typical of North-West Europe, and are representative of 17 

maritime and continental conditions depending on the wind direction (Mensah et al., 2012). 18 

Standard meteorological variables are collected at 2 m, 10 m, 20 m, 40 m, 80 m, 140 m, and 200 m 19 

height. Besides, in this study we used the measurements of temperature and relative humidity 20 

profiles obtained with radiometer, and aerosol speciation from aerosol mass spectrometry (AMS) 21 

collected at 60 m (Mensah et al., 2012). 22 

The model is also compared to ozone (O3), nitrogen oxide (NOx), nitric dioxide (NO2), nitric oxide 23 

(NO), ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), and sulphur dioxide (SO2) 24 

measurements issued by Cabauw Zijdeweg EMEP station (NL0011R). O3 is measured with an 25 

ultraviolet absorbing ozone instrument, NOx, NO and NO2 with a chemiluminescence monitor, and 26 

NH3, HNO3, HONO and SO2 with an online ion chromatograph.    27 

Although Cabauw supersite provides very detailed measurements, it could not be enough to 28 

characterize the model performance near the surface. Therefore, WRF/Chem is also compared to 29 

daily PM10 data from 63 stations (10 rural, 25 suburban, and 28 urban) of AIRBASE network and to 30 

daily inorganic aerosol measurements issued at Bilthoven (NL0008R), Kollumerward (NL0009R), 31 

http://www.nilu.no/projects/CCC/sitedescriptions/nl/nl0011.html
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Vredepeel (NL00010R), and De Zilk (NL00091R) EMEP stations. SO4 and NH4 measurements are 1 

also perfomed at all these sites while NO3 measurements are available only at De Zilk. 2 

3.2 Aircraft measurements   3 

During May 2008, the French ATR-42 research aircraft performed 22 research flights (RF). In this 4 

work we used 14 RF to evaluate the model. Their tracks are reported in Figure 1, while flight 5 

number, take-off and landing time are reported in Table S1. RF50, RF55, RF56, RF57, RF58, RF61 6 

and RF62 were conducted around Cabauw supersite, in order to study the origin and characteristic 7 

of air masses collected at Cabauw. Other RFs were aimed at the study of aerosol properties along a 8 

quasi-Lagrangian flight track, with west-east and north-south transects. ATR-42 was equipped with 9 

instrumentation suitable for aerosol-cloud interaction measurements. We used the measurements 10 

from a condensation particle counter (CPC), the CPC3010 with a cutoff size of 15 nm, a Cloud 11 

Condensation Nuclei Counter (CCNC) for CCN number concentration measurements, and an AMS. 12 

During the campaign a scanning mobility particle sizer (SMPS) was used to measure the number 13 

size distribution of aerosol particles with diameter in the range of 0.02-0.5 µm, while the size 14 

distribution of aerosol particles larger than 100 nm was sampled with a passive cavity aerosol 15 

spectrometer probe (PCASP). SMPS and PCASP measurements were combined in order to 16 

calculate the PM2.5 concentration using an average aerosol density of 1.7 g/m
3
. A more exhaustive 17 

and detailed description of the whole campaign and instrumentation is given by Crumeyrolle et al. 18 

(2013).  19 

3.3 Satellite measurements 20 

The model was also evaluated with MODIS-Aqua aerosol and cloud data. The Level 2 products 21 

used here are MYD04 and MYD06 collection 051 for aerosol and clouds, respectively. For ease of 22 

comparison with model output, both satellite and model data were regridded onto a common lat-lon 23 

regular grid. Model output is sampled at same time and location of each MODIS pixel, and then 24 

data are averaged in space and time over the same grid. In this study the horizontal spacing of the 25 

common grid is 4 km. 26 

27 
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4 Model evaluation 1 

Model results are compared to ground based and aircraft observations, as detailed in section 3. The 2 

statistical indices used are the Pearson’s correlation coefficient (r), mean bias (MB), normalized 3 

mean bias (NMB) and normalized mean gross error (NMGE). The indices are defined in the 4 

Appendix and reported in Table 2. 5 

4.1 Meteorology 6 

Figure 2 shows the observed and modelled time series of hourly vertical profiles of temperature and 7 

relative humidity at Cabauw supersite. WRF/Chem reproduces the day-to-day variation of 8 

temperature, before, after, and during the wet period. As shown by statistical indices (Table 2), 9 

within the first 200 m, the model reproduces the temperature with a correlation of 0.93-0.95 and a 10 

mean bias of about -0.5°C. Looking at the free troposphere, we may realize that the model 11 

underestimates the height of the 0°C isotherm (the black line on Figure 2a) in the first days of 12 

simulation and during wet period by about 200-300 m (i.e., the model is colder than observed by 1-13 

1.5 °C). Whereas immediately after the passage of the cold front, the temperature rise in the 14 

simulation is slower than the observed one. The model performances in simulating surface 15 

temperature are consistent with other European studies (e.g., Zhang et al., 2013a; Brunner et al., 16 

2014). For example, Brunner et al. (2014) compared several meteorology-chemistry coupled models 17 

with annual simulations at continental scale, and found that on Central Europe the predicted surface 18 

temperature shows a correlation with observations in the range of 0.95-0.98, whereas the bias 19 

ranges from -1 to 0.1°C.  20 

The model reproduces the vertical structure of relative humidity (Figure 2b) over the whole period, 21 

but it has the tendency to overestimate (underestimate) the higher (lower) observed values. This 22 

behaviour is more evident during scavenging days, when the relative humidity between 1000-2000 23 

m is overestimated on average by 40%, but sometimes up to 60%. Errors of this magnitude in 24 

simulating the vertical profile of RH were already found in previous works (Misenis and Zhang, 25 

2011; Luo and Yu, 2011). Nevertheless, the model correlation and mean bias are 0.84 and +3.4% 26 

below 1000 m of altitude, 0.50 and +13% in the range of 1000-2000 m, 0.78 and +6.4% between 27 

2000-3000 m. These values are comparable with those found by Fast et al. (2014) in the comparison 28 

of WRF/Chem simulations to aircraft data. They have shown correlations in the interval of 0.49-29 

0.70, while the bias from -7 to +0.1%. Near the surface, the relative humidity is simulated with a 30 

correlation of 0.87-0.92 and a positive MB of 3-4% (+6-8%).  31 
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The biases of the temperature and relative humidity could be due to a misrepresentation of soil (and 1 

sea) temperature and soil moisture or by misrepresentation of the clouds and rain. These two 2 

problems are tightly coupled via land surface-atmosphere interaction. The errors in the simulation 3 

of surface moisture and energy budget influences the fluxes of latent heat and moisture in the 4 

atmosphere, affecting the local circulation, convective available potential energy (CAPE), cloud 5 

formation and rain pattern (Pielke, 2001; Holt et al., 2006). Moreover, WRF/Chem tends to fail 6 

simulating the thermodynamic variables near to coastline, because the uncertainties of land use data 7 

may play an important role (Misenis and Zhang, 2010). Initial and boundary meteorological 8 

conditions may also play an important role. Bao et al. (2005) demonstrated that meteorological 9 

prediction is sensitive to used input data. They showed that varying the inputs used as initial and 10 

boundary conditions, the mean daily model bias ranges from -2.71 to -0.65 K for the temperature 11 

and from -0.81 to 0.50 g/kg for vapour water content. 12 

In Figure 3 we compare the time series of observed and predicted wind speed and direction at 13 

several heights of Cabauw Tower. WRF/Chem captures the diurnal trend of wind speed, but it 14 

overestimates the wind speed during night. Generally, we found the higher correlation at 10 and 200 15 

m (0.78 and 0.76 respectively) and higher NMB between 20 and 40 m (+30-40%). The wind 16 

direction is captured at all altitude levels of Cabauw tower, except of 18May when WRF/Chem 17 

does not reproduce some rapid variations most likely due to local effects. The simulation of wind 18 

direction tends to improve with height. Indeed, the correlation coefficient increases from 0.52 to 19 

0.73 at 10 and 200 m, respectively, and the MB decreases from 27° below 40m to 17° at 200 m. The 20 

performance in simulating the surface wind speed are consistent with those reported by Brunner et 21 

al. (2014) in Central Europe. They have shown a correlation for 10 m wind speed in the range of 22 

0.53-0.73 and a mean bias of 1-1.8 m/s. It is well recognized that WRF tends to overestimate the 23 

wind near the surface (e.g. Misenis and Zhang, 2010; Ngan et al., 2013; Brunner et al., 2014), but 24 

the bias of the simulated wind speed could be also explained with uncertainties in the large-scale 25 

pattern of analysis used as input. Bao et al. (2005) showed that varying the meteorological inputs, 26 

the mean daily model bias may range from -1.53 to -0.28 m/s and from -1.43 to 0.01 m/s for the u 27 

and v component of the wind, respectively. 28 

4.2 Surface gas phase and aerosol mass 29 

Figure 4 displays the comparison between the observed and modelled hourly time series and 30 

average diurnal cycles of O3, NOx, NO2, NO, NH3, HNO3, HONO and SO2 near the surface. 31 
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WRF/Chem reproduces the day to day variations of O3, capturing its decrease during scavenging 1 

period due to low photolysis rate caused by cloud presence, recovery in the following days, and a 2 

new decrease starting from 25 May. The average daily cycle is well reproduced with a morning 3 

minimum and an underestimated maximum in the afternoon. The model simulates the O3 with a 4 

correlation of 0.72 and systematic negative bias on average about 3.4 µg/m
3
. This bias is observed 5 

in the afternoon and the evening, and is most likely due to the titration in these hours caused by 6 

higher NOx concentration than observed. 7 

WRF/Chem simulates the NOx, NO and NO2 time series with a correlation of 0.70, 0.65, and 0.66 8 

respectively. The timing of NOx daily cycle is reproduced. Indeed, the model captures the morning 9 

and evening peaks as well as diurnal minimum of NO2. The mean bias of modelled NO2 is +1.25 10 

µg/m
3 
(+20%) and occurs in the afternoon and evening hours. Moreover WRF/Chem reproduces the 11 

morning peak and diurnal decrease of NO, but the daily cycle is affected by an average positive bias 12 

of 0.28 µg/m
3
, with the average morning maximum overestimated of about 2 µg/m

3
 (+33%).  13 

Ammonia is reproduced with a correlation of 0.43. WRF/Chem underestimates the NH3 during the 14 

scavenging days and from 28 to 31 May. The model captures the daily cycle shape of NH3 15 

concentration average, but the modelled NH3 concentrations are constantly underestimated. The 16 

negative mean bias over the whole period is on average about -4.75 µg/m
3 

(-28%). WRF/Chem 17 

reproduces the observed HNO3 with a poor correlation. The measured mean diurnal cycle is flat, 18 

conversely the model predicts a nocturnal minimum and diurnal maximum. The origin of model 19 

bias in simulating NH3 and HNO3 is discussed below, together with a discussion on inorganic 20 

aerosols.  21 

The nitrous acid concentrations are not well captured by the model and are underestimated by 95%. 22 

This bias could be partly explained by the inefficiency of NO oxidation, the only important reaction 23 

known to form HONO. Lin et al. (2014), indeed, demonstrated that the major sources of HONO are 24 

some unknown reactions that consume nitrogen oxides and hydrogen oxide radicals.  25 

The model reproduces the measured SO2 with a correlation of 0.48 and a positive bias of 0.68 26 

µg/m
3
 (+90%). The overprediction is most likely attributable to anthropogenic emissions. SO2 is 27 

emitted mainly from isolated and elevated large point sources (Figure S1) that are immediately 28 

mixed in the model cell leading to overestimation outside of the local plume (Stern et al., 2008). 29 

This is demonstrated, for example, by the larger NMGE for SO2 than NOx (116% and 45%, 30 

respectively). NOx is emitted near the surface by traffic and domestic heating. Therefore, NOx 31 

emissions are subjected to a stronger temporal modulation than SO2 point sources. 32 
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The different uncertainties found for the involved species may depend on the choice of the chemical 1 

mechanism. Knote et al. (2014) compared several chemical mechanisms within a box model 2 

constrained by the same meteorological conditions and emissions, and found that the prediction of 3 

the O3 diurnal cycle differs by less than 5% among the different mechanisms. Larger differences 4 

were found for other species. For example, the key radicals exhibit differences up to 40% for OH, 5 

25% for H2O2 and 100% for NO3 among the selected mechanisms. 6 

Figure 5 shows the simulated and observed time series and diurnal cycle of aerosol sulphate, nitrate, 7 

ammonium, and organic matter, at CESAR observatory. WRF/Chem simulates the measured SO4, 8 

NO3, NH4 with a correlation of 0.56, 0.68, and 0.66, respectively.  9 

WRF/Chem captures the daily variations of SO4 and its decrease during scavenging days. The shape 10 

of diurnal cycle is also reproduced, with the nighttime minimum and diurnal maximum. The mass 11 

concentration of SO4 is overpredicted for the whole period with a mean bias of 1.04 µg/m
3
 (+90%). 12 

The modelled SO4 overestimation is directly attributable to SO2 concentration overprediction. 13 

Another potential source of the surplus of simulated SO4 is related to an excessive production 14 

within the clouds. Indeed, during scavenging days, the particulate sulphate is overestimated while 15 

the predicted SO2 does not show a bias in respect to the measurements. The overestimation of SO4, 16 

moreover, explains in part the negative bias of predicted NH3. The excess of particle sulphate 17 

consumes too much ammonia (Meng et al., 1997) 18 

NO3 is reproduced with a positive bias of 1 µg/m
3
 (+72%). Looking at diurnal cycle, the modelled 19 

nitrate is on average biased high in the daytime, with a peak in the afternoon. This maximum 20 

appears to be correlated with HNO3 maximum. Really, the HNO3 peak is caused by evaporation of 21 

particulate nitrate formed in the upper PBL (where the conditions of lower temperature and higher 22 

relative humidity are favourable to NO3 formation), and mixed towards the surface by vertical 23 

mixing (Curci et al., 2014a; Aan de Brugh et al., 2012). Therefore, the unrealistic afternoon peak of 24 

modelled nitric acid should result from a too rapid relaxation of aerosol-gas partitioning to 25 

thermodynamic equilibrium (Aan de Brugh et al., 2012).   26 

The behaviour of the simulated NH4 is related to modelled trend of NO3. It is biased high by 0.66 27 

µg/m
3
 (+66%). The NH4 overestimation is related to NH3 underprediction (Meng et al., 1997). 28 

Similar performances are found in reproducing inorganic aerosols at other Dutch EMEP sites (see 29 

Section 3.1). Daily SO4 is simulated with an average correlation (3 stations) of 0.66 and a positive 30 

bias of 35%. WRF/Chem simulates NH4 with a correlation of 0.82 (4 stations) and a bias of +43%. 31 

Predicted daily NO3 (measured at only one station) is overestimated by 15%.     32 
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Organic matter is reproduced with a correlation coefficient of 0.75. WRF/Chem reproduces the 1 

right concentration during dry period, the decrease in the wet days, and following recovery. The 2 

mean bias is negative by about 0.4 µg/m
3
 and it is attributable to days from 23 to 26 May. The 3 

discussion about the origins of OM bias is given in section 4.3, where we will discuss the model 4 

evaluation with aircraft data. 5 

The reader should consider that aerosol composition measurements performed with the AMS are 6 

representative of particles with diameter between roughly 100-700 nm, whereas the model is 7 

evaluated with aerosol concentration representative of PM2.5. Therefore, a bias could be present in 8 

the comparison. This means that the bias found for inorganic aerosols could be smaller than that 9 

reported above, conversely the OM bias could be larger of that found. 10 

The model evaluation performed so far is representative of few points in the domain and does not 11 

include other aerosol components like black carbon or primary PM. This could limit our 12 

understanding of the model behaviour. In order to overcome this shortcoming, WRF/Chem is also 13 

compared to daily PM10 measurements of AIRBASE network (Figure S2). The model captures the 14 

daily variations of PM10, the PM10 decrease during scavenging days, the consequent recovery to 15 

reach back the background PM10 concentration and the PM10 enhancement during long-range 16 

transport period. Indeed, the correlations are of 0.72, 0.73, 0.75 in rural, suburban, and urban zones, 17 

respectively. Model bias at rural stations is important in the last days of May 2008, indeed in these 18 

days (28-30 May) it is about -15 µg/m
3
 (-30%). Conversely, at suburban and urban stations, the 19 

model presents a bias for the most part of the days of about 3-4 µg/m
3
 (5-10%) that could partly 20 

explained by the missing source of resuspension due to traffic. 21 

The results obtained here are statistically consistent with other modelling studies over Europe (e.g., 22 

Lecœur and Signeur, 2013; Zhang et al., 2013b; Balzarini et al., 2014). For example, the results of 23 

European annual simulations of Balzarini et al. (2014) exhibited a correlation of 0.48, 0.60 and 0.56 24 

for surface SO4, NO3 and NH4, respectively. During EUCAARI campaign, Athanasopoulou et al. 25 

(2013) reported a mean correlation of surface OM with observations of 0.56 and a mean bias of -0.5 26 

µg/m
3
, whereas Fountoukis et al. (2014) simulates the OM at Cabauw on May 2008 with a bias of 27 

0.3 µg/m
3
. Moreover, with regards to surface PM10, our performances are comparable to those 28 

found for example by Im et al. (2014) over Europe with annual simulations in terms of correlation, 29 

but are higher in terms of bias. Comparing PM10 concentrations from several models, Im et al. 30 

(2014) found correlations of 0.18-0.86 and 0.07-0.82, and bias of about -40% and -50% for rural 31 

and urban sites, respectively. This improvement is most likely due to the very high resolution used 32 
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in this study with respect to the 23 km of Im et al. (2014), since the anthropogenic emissions 1 

inventory used is the same here and in Im et al. (2014) study. 2 

4.3 Aloft aerosol mass concentration  3 

The comparison of WRF/Chem to aircraft data is done interpolating the model output point by point 4 

along the flight track. Observed and modelled aircraft data are presented by using the box plots for 5 

planetary boundary layer (PBL) and free troposphere (FT) (see Figure 6). The height of the PBL 6 

was lower than 1600 m during the whole campaign (Crumeyrolle et al., 2013). Therefore, we 7 

considered for PBL and FT concentrations the data below and above 1600 m up to 3000-4000 m, 8 

respectively. This rough approximation of PBL height could affect the comparison of the model to 9 

data.  10 

Figure 6 displays the observed and modelled box plots of the mass concentration of SO4, NO3, NH4, 11 

and OM for PBL and FT. Their mean value, standard deviation, relative mass fraction, and 12 

correlation coefficients, averaged over the whole period of interest, are reported in Table 3. 13 

The average concentrations of inorganic aerosols show little absolute error (2-8%) with respect to 14 

the observations in the PBL, while the NO3 and NH4 mean concentration presents a bias of +14% 15 

and +20% (+0.3 and +0.2 µg/m
3
), respectively, in the FT. The mean OM mass is biased low by a 16 

factor 2 and 3 in the PBL and FT, respectively. The correlation coefficients of SO4, NO3, NH4, and 17 

OM are 0.39, 0.47, 0.43, 0.67 in the PBL and 0.23, 0.44, 0.42, 0.53 in the FT. These performances 18 

are comparable with those found with WRF/Chem (but with a different chemistry package) in 19 

California by Fast et al. (2014). They reported an absolute mean bias of about 0.01-0.2, 0.03-0.6, 20 

0.1-0.45, 0.2-0.57 µg/m
3
 and a mean correlation of 0.42, 0.45, 0.44, and 0.72 for SO4, NO3, NH4, 21 

and OM, respectively.   22 

Although the predicted aerosol mass of each species is within the range of the observed values for 23 

most of the flights used in this study (see Figure 4), the model does not capture the full range of the 24 

measured concentrations. This assertion is made quantitative by the standard deviations reported in 25 

Table 3. The predicted standard deviations for each species are lower than observed. In the PBL, the 26 

observed and modelled standard deviations differ by 4-10% for inorganic ions and 55% for OM. In 27 

the FT, the differences are higher than in the PBL. The model predicts standard deviations lower 28 

than 10-40% for inorganic particles and lower than 65% for organic matter with respect to the 29 

measurements.  30 

For the purpose of this analysis, it is also interesting to explore how the model reproduces the 31 

relative fraction of aerosol mass species with altitude (see Table 3). WRF/Chem overpredicts the 32 
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relative fraction of the SO4 and NO3 by few percent in the PBL and about 10% in FT, while the 1 

relative mass of NH4 is overestimated by 3% along the whole profile. The relative amount of OM is 2 

underpredicted by about 20% in both PBL and FT. The decrease of relative amount of NO3 and 3 

increase of SO4 with altitude is captured by the model. The modelled relative mass of NH4 and OM 4 

is near constant with altitude as well as in the observations.  5 

Looking at the individual flights, it is possible to note how the model captures the aerosol mass 6 

trend as a function of the synoptic frame in both the PBL and FT, during the dry period, scavenging 7 

days, and dust period characterized by southerly wind and passage of several fronts. The FT is a 8 

layer mainly affected by long range transport and cloud contamination. Therefore, the relative small 9 

bias in simulating aerosol inorganic mass in FT means that the model resolves quite correctly the 10 

large scale transport and processes related to clouds.  11 

Nevertheless, it should be noted that SO4 is overestimated for 8 out of 14 RFs, while NO3 and NH4 12 

are underpredicted for 7-8 out of 14 RF. This SO4 overprediction is attributable to the SO2 excess 13 

and to a potential overproduction within the cloud chemistry scheme. The negative bias of NO3 and 14 

NH4 could be explained by a low NH3 regime, that limits the formation of the ammonium-nitrate.    15 

The simulated OM concentration is always at lower end of the observed variability. Several factors 16 

may explain this systematic bias. First of all, our simulations do not include the processing of 17 

organic compounds in aqueous chemistry. SOA may be produced in the clouds (Hallquist et al., 18 

2009). Modelling studies suggest that the contribution of cloud chemistry to SOA budget is almost 19 

as much as the mass formed from the gas phase (Ervens et al., 2011). OM prediction is also affected 20 

by meteorological errors. Bei et al. (2012) found that the uncertainties in meteorological initial 21 

conditions have significant impact on the simulations of the peaks, horizontal distribution and 22 

temporal variation of SOA. The same authors demonstrated that the spread of the simulated peaks 23 

can reach up to 4.0 μg/m
3
. Other uncertainties may be related to the VBS formulation. SOA 24 

formation pathways is one these, indeed halving the SOA yields the concentration of SOA 25 

decreases by 30% (Ahmadov et al., 2012). Moreover, the assumption on the deposition velocity of 26 

the OCVs may play an important role in the uncertainties of SOA production. The OCV deposition 27 

velocity in the version of the VBS implemented in WRF/Chem by Ahmadov et al. (2012) is 28 

proportional to the deposition velocity of the HNO3. The proportionality constant is a tunable 29 

parameter and in this work is set to the default value of 0.25. WRF/Chem prediction of SOA mass 30 

is very sensitive to the choice of the proportionality constant (Ahmadov et al., 2012). Previous 31 

studies have shown that SOA concentration is highly sensitive to the treatment of the deposition 32 

velocity of OCV (Bessagnet et al., 2010; Knote et al., 2014b). Finally we note that OM bias could 33 
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be partially explained by the uncertainties in the anthropogenic emissions (e.g. bias or spatial 1 

distribution) of primary organic carbon and in the factor 1.6 used to convert them to primary OM 2 

(POM) (Turpin and Lim, 2001). The reader should also consider that the uncertainties in POM 3 

simulation affect the SOA formation. Indeed, the partition between OCV and SOA used in VBS 4 

approach depends on the total OM (Equation 1 of Ahmadov et al., 2012), thus if POM is 5 

underpredicted the resulting SOA could be underestimated. 6 

In order to have a more complete overview of the model skill in reproducing the upper air aerosol 7 

mass concentration, we compare also the observed and modelled PM2.5. Figure 7 shows measured 8 

and predicted box plots of the PM2.5 concentration in PBL and FT. Modelled PM2.5  is in the range 9 

of the observed values within the PBL expect during wet scavenging period when it is at the lower 10 

end of the observations. In FT conversely, predicted PM2.5 is at the lower end of the observed 11 

profiles for the most part of the flights. The comparison between modelled and observed PM2.5 12 

concentration within PBL and FT show good correlations (0.75 and 0.80, respectively). 13 

Model correlation with observations is high, 0.75 and 0.80 in PBL and FT, respectively. The 14 

absolute mean bias if of -7 µg/m
3
 (30-35%) in both PBL and FT.  15 

Although the box plot and statistical summary (Table 3) provide significant information on the 16 

model performances, the model skills in reproducing vertical profiles of aerosol properties need to 17 

be evaluated. Therefore, we also look at model vertical profiles along the flight tracks. As an 18 

example, we have chosen the 14 May 2008 (RF50) for two reasons: first, there is a relatively large 19 

contribution of OM, SOA (70-85% of OM), and CCN (see Figure 10), and second, it is a day of 20 

high pressure, thus the interpretation of the results is not complicated by cloud processes. Figure 8 21 

displays the comparison of modelled vertical profiles of PM2.5, SO4, NO3, NH4 and OM along the 22 

flight track and measurements. WRF/Chem captures several features present in the aircraft 23 

observations. Both observed and modelled PM2.5 exhibit a maximum in a layer between 500 and 24 

about 2000 m. Model predicts the inhomogeneity of chemical secondary species of PM2.5 displayed 25 

also in the observations: SO4 and OM concentrations are relatively homogeneous within the PBL, 26 

whereas NO3 and NH4 show enhanced concentrations in the upper levels of the PBL. For 27 

completeness, we note that primary PM2.5 components (not shown) have the maximum close to the 28 

surface (first 500 m) and are diluted throughout the PBL. These results are qualitatively similar to 29 

those found by Curci et al. (2015) above Milan (Italy).            30 
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4.4 Aloft aerosol particles  1 

The comparison of WRF/Chem output with aircraft measurements of the number concentration of 2 

condensation nuclei (CN) and of cloud condensation nuclei (CCN) at 0.2% of supersaturation is 3 

done by using the boxplots as for aerosol mass. In this case the modelled and measured data are 4 

smoothed by using a 10 seconds running mean. 5 

Figure 9 reports the comparison of observed and modelled CN within PBL and FT. The measured 6 

and predicted average, standard deviation, and correlation of CN number over the whole period of 7 

our analysis are reported in Table 3. 8 

The model resolves the decrease of a factor 5-6 of CN concentration between the PBL and the FT. 9 

The differences in simulated concentrations between land and sea (RF51 and 52) are also captured 10 

by the modelling system. Nevertheless, WRF/Chem overestimates, on average, the observed CN by 11 

a factor 1.4 within PBL and 1.7 within the FT. The bias is less pronounced above the sea during the 12 

(RF51 and RF52), where the anthropogenic sources are less important. Moreover, it should be noted 13 

that in some cases, for example during the RF56, 57 and 58, the predicted CN are completely 14 

outside the range of the observed values. In these cases the predicted CN are biased high by about a 15 

factor of 2-3. Predicted CN concentration shows a higher variability than measured, especially in 16 

the free troposphere where the difference of modelled standard deviation is biased high by 155%. 17 

Anyway, the modelled CN concentration correlates well with the observed one (0.40 and 0.74 in 18 

PBL and FT, respectively).These values are consistent with the 0.61 found by Luo and Yu (2011) 19 

studying the new particle formation and its contribution to CN with a version of WRF/Chem 20 

including an advanced aerosol microphysical model.  21 

Figure 10 shows the comparison of observed and modelled CCN at 0.2% of supersaturation. The 22 

measured and predicted average and standard deviation of CCN are showed in Table 3. The bias of 23 

simulated CCN0.2 appears more contained with respect to CN prediction, especially in the free 24 

troposphere. Figure S3 shows the comparison of the modelled vertical profile of CCN along the 25 

flight track of 14 May and observed CCN aboard the ATR42. WRF/Chem predicts relatively 26 

homogeneous profile of CCN in the PBL also shown by observations.  27 

The aerosol particles that mostly contribute to CCN number are those of accumulation and coarse 28 

modes, and accumulation and coarse mode particles are also the major contributor to PM2.5 mass 29 

concentrations. Since PM2.5 is underestimated and CCN overestimated, CCN bias cannot depend on 30 

model errors in PM2.5. The major uncertainties in predicted CCN arise from aerosol nucleation rate 31 

and primary emissions (Lee et al., 2013). Direct emission of aerosol particles is the key factor for 32 

CCN production in the PBL and near particle sources (Spracklen et al., 2006), and account for 55% 33 
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of the total global production (Merikanto et al., 2009). On the other hand, nucleation and 1 

subsequent growth up to CCN size is an important mechanism of CCN formation in many parts of 2 

the atmosphere (Sotiropoulou et al., 2006). Using several nucleation parameterizations, Pierce and 3 

Adams (2009) showed that CCN on average varies by up to 12% within the PBL. At the same time, 4 

they also found that varying by a factor of 3 the primary emissions, the CCN mean changes by 40% 5 

in the PBL. On the basis of these argumentations and the correlation between predicted and 6 

observed CN being larger in the FT than in PBL (i.e. far from anthropogenic sources), we may 7 

speculate that the errors in the CCN prediction arise mainly from the uncertainties in the primary 8 

emissions of the aerosol particles and in their distribution  in the lognormal modes.  9 

The analysis of CCN efficiency reveals other interesting features in the model behaviour. The CCN 10 

efficiency is given by CCN/CN ratio and represents the ability of aerosol particles to nucleate cloud 11 

droplets (Andreae and Rosenfeld, 2008). CCN efficiency observed during the studied RFs is in the 12 

range of 0.02-0.33 for PBL and 0.18-0.41 in the FT, while the model predicts values of 0.03-0.17 13 

and 0.04-0.18 for PBL and FT, respectively. In other words, WRF/Chem underestimates the CCN 14 

efficiency by a factor of 1.5 and 3.8 within the PBL and FT, respectively. Moreover, the modelled 15 

CCN efficiency, contrary to the observation, shows almost the same range of values within the PBL 16 

and within the FT. 17 

The so calculated and modelled CCN efficiencies could be underestimated. In general, the CCN 18 

efficiency should be computed with the aerosol population with size larger than the minimum 19 

activation diameter (Asmi et al., 2012). The latter depends on the aerosol type and ranges from 20 

about 50 to 125 nm. We calculated the observed CCN/CN ratio with the measurements of CPC 21 

3010 which gives the total number of particles larger than 15 nm, and modelled CCN fraction is 22 

calculated with total particle number given by the sum of the three modes of the lognormal 23 

distribution (Aitken, accumulation and coarse). In order to better characterize the relationship 24 

between CCN and corresponding aerosol population in the model, predicted CCN efficiency was 25 

also calculated with particles of the accumulation and coarse modes (the most favored particles to 26 

act as CCN) and it was qualitatively compared to observed efficiency during the IMPACT 27 

campaign computed with particles larger than 100 nm.  Observed values of CCN efficiency are in 28 

the range of 0.28-0.4 and 0.38-0.6 in the PBL and FT (Crumeyrolle et al., 2013), respectively. The 29 

simulated CCN fraction calculated with the particles of the accumulation and coarse modes, is 30 

always underestimated with respect to the observations, and it is in the range of 0.17-0.3 in PBL and 31 

0.23-0.36 in FT. The model deficiency in simulating the CCN/CN ratio could be attributable to the 32 
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uncertainties in geometrical diameter and bulk hygroscopicity of the lognormal modes, and updraft 1 

velocity that lead to error in the prediction of minimum activation diameter of each mode.   2 

4.5 Comparison with MODIS data 3 

WRF/Chem output was also compared to aerosol optical thickness (AOT), cloud microphysical and 4 

optical properties retrieved by MODIS-Aqua. 5 

Figure 11 shows the comparison between the AOT at 550 nm measured by MODIS and the 6 

corresponding AOT predicted by the model during the high pressure period on 14 May 2008. 7 

WRF/Chem reproduces the spatial distribution of observed AOT, such as the lowest values in the 8 

southern part of the domain or the highest values around Cabauw, but underestimates the strong 9 

gradient between eastern boundary and the centre of the domain. The model overestimates the 10 

regional mean of AOT, indeed the domain averages are 0.38±0.12 and 0.42±0.10 for MODIS and 11 

WRF/Chem data, respectively. Unfortunately, good coverage of the D3 domain by MODIS was 12 

achieved only on one day (14 May 2008), this does not allow us to have a general overview of 13 

model skill in predicting AOT. In general, model intercomparisons revealed that a large part of the 14 

uncertainties in simulating the AOT arises from the assumption on the mixing state. For example, 15 

AOT computed with external mixing is larger by 30-35% of that calculated with internal mixing 16 

assumption (Curci et al., 2014b). For typical atmospheric particle sizes and in the visible 17 

wavelength range, the AOT is then expected to be lower under internal mixing assumption (that is 18 

the assumption done in this work). Moreover, a 10% error in predicting AOT may be attributable to 19 

the choice of species density, refractive index, and hygroscopic growth factor (Curci et al., 2014b).  20 

As the WRF microphysics scheme accounts for aerosols only within liquid clouds, comparison 21 

among predicted cloud optical and microphysical properties with MODIS data was done separately 22 

for liquid, excluding mixed clouds. Top liquid cloud effective radius (Re) was calculated from 23 

liquid water content (LWC) and cloud droplet number concentration predicted by WRF/Chem. 24 

Liquid water path (LWP) was calculated by vertically integrating liquid cloud mixing ratios (water 25 

and rain water), while liquid cloud optical thickness (COT) was estimated from LWC and Re. Since 26 

MODIS L2 data provide the total cloud water path (CWP), combined effective radius for all cloud 27 

types and total (water and ice) cloud optical thickness (COT), the observed contribution to the 28 

liquid water cloud was separated by using the retrieved top cloud phase, i.e. were discarded mixed 29 

clouds.  30 

The comparison between the predicted and observed Re, LWP and liquid COT was done in the 31 

scavenging background and long-range transport periods in the days when MODIS cloudy pixel 32 
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coverage was larger than 60%. Figure 12 shows the comparison of the averaged values for 17-19 1 

May 2008 period (1P). The same comparison has been done on averaged values for 25-27 (2P) and 2 

28-30 May (3P) and are reported in the Supplement (Figures S4 and S5). WRF/Chem reproduces 3 

several features of the liquid cloud systems during 1P: the liquid cloud distribution, the maximum 4 

values of Re close to the coast, maximum of LWP and liquid COT on the centre and at North-East 5 

of the domain. However, model results present a larger spatial extension of liquid water cloud 6 

highest values off the Dutch and Belgian coast not observed in the MODIS data.  During 2P the 7 

structure of the cloud system is not completely reproduced by the model. Although Re value 8 

magnitude is captured above the sea, WRF/Chem underestimates the cloud droplet dimension on 9 

the land. Therefore LWP and liquid COT structure on the sea is resolved by the model, whereas on 10 

the land they are too small compared to the observations. Finally, the model reproduces the average 11 

structure of the cloud system in 3P, but LWP and liquid COT are overestimated on the Western part 12 

of the domain. 13 

As shown in Table 4, Re values averaged over the entire domain is underestimated by the model by 14 

a factor of about 1.5 during all three periods of interest. LWP, values averaged over the entire 15 

domain, is also overestimated in all three cases by a factor of 1.1, 1.3 and 1.6 for 1P, 2P, and 3P, 16 

respectively. The Re (LWP) underprediction (overestimation) may be due to the overestimation of 17 

droplet number concentration that stems from overestimation of CN. Another reason that could 18 

explain the positive bias of modelled LWP, is the inefficient autoconversion of cloud water to rain, 19 

typical of the Morrison microphysical scheme (Saide et al., 2012). The consequence of the negative 20 

(positive) of Re (LWP) is the overestimation of average liquid COT by few percent for 1P and 3P, 21 

and 42% for 3P. 22 

The biases found here are quite different from the WRF/Chem study by Yang et al. (2011) on the 23 

modelling of marine stratocumulus in Southeast Pacific. They have shown a bias of +30% in 24 

reproducing the COT, while LWP was underestimated by a factor 1.3. The reader should note that 25 

in Yang et al. (2011) the aerosol model adopted was different from the one used here and SOA 26 

formation was not included at all.      27 

Figure 13 displays the distribution functions (DF) of Re, LWP and liquid COT for 1P. The DF for 28 

2P and 3P are reported in the Supplement (Figure S6 and S7). In all three periods analysed, the 29 

model captures the frequency of large droplets (Re>18-20 µm), underestimates the number of small 30 

droplets (8-10<Re<18-20 µm), and overestimates the frequency of very small cloud droplets (Re<8-31 

10 µm) by more 30%. Whereas DF of the observed Re presents the maximum in the range of 8-13 32 

µm, modelled DF shows the maximum values in correspondence of the droplets with size less than 33 
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7-8 µm. WRF/Chem captures the shape of the distribution functions of LWP and liquid COT, but 1 

underestimates the maximum and overestimates the higher and lower end of the distributions. Both 2 

variables show a variability higher than the observations. The predicted standard deviations (Table 3 

4) are about 2-3 and 1.5 times larger than those observed for LWP and liquid COT, respectively. 4 

This probably stems from the large variability in simulated CCN. 5 

Now it is interesting to analyse the model behaviour in reproducing the total CWP and COT given 6 

by contribution of all cloud phases. Modelled CWP was calculated by vertically integrating all 7 

cloud mixing ratio (water, rainwater, ice, snow and graupel). Predicted COT is given by the 8 

contribution of the liquid water and ice. The contribution of the liquid water was calculated as 9 

described above for liquid water cloud. The contribution of ice phase to COT was calculated 10 

following Ebert and Curry (1992). 11 

Figure 14 displays the comparison between observed and predicted CWP and COT in P1, whereas 12 

the same figures for P2 and P3 are reported in the Supplement (Figures S8 and S9). Although for all 13 

three cases, the model reproduces with good approximation the shape and localizations of the cloud 14 

systems, CWP and COT are systematically overestimated (except COT in P2). As shown in Table 15 

5, the predicted domain average of CWP presents, indeed, a bias of 62%, 41%, and 80% for P1, P2 16 

and P3, respectively, whereas the bias of COT is about 15% in P1 and P3.  17 

At this point of the analysis, although the aerosol-cloud interaction is a very complex nonlinear 18 

process, we are able to relate the model error in aerosol particles to the uncertainties in cloud 19 

prediction. The overestimation of CN leads to overprediction of the CCN. Higher number of CCN 20 

means clouds with higher number of cloud droplets, higher water content, smaller droplets and 21 

clouds optically deeper.   22 

In addition to the uncertainties in aerosol particle simulation, one typical source of error in the 23 

prediction of cloud fields, are the choices related to the model setup. For example Otkin and 24 

Greenwald (2008) found a strong sensitivity of cloud properties while evaluating the response of 25 

WRF model to the permutation of several PBL and cloud microphysical schemes. Moreover, the 26 

same authors have shown that the low level clouds are sensitive to PBL parameterization, whereas 27 

the upper level clouds are sensitive to both PBL and microphysics schemes. 28 

One element that may affect the model-satellite comparison are the uncertainties associated to the 29 

retrieval. For example, in South-Pacific stratocumulus, MODIS overestimates the droplet effective 30 

radius by 13-20% with respect to concomitant in situ measurements (Painemal and Zuidema, 2011; 31 

King et al., 2013). The overestimation of COT by MODIS results in the overestimation of CWP 32 

(King et al., 2013). Henrich et al. (2010) have shown systematic differences between MODIS data 33 
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and in situ observations. Indeed, analysing a system of thin cumulus clouds during EUCAARI 1 

campaign, they also found that MODIS overestimates the droplet effective radius by a factor 2-3 2 

and COT is 2-3 times lower than in situ measurements.   3 

4 
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5 Impact of SOA particles on cloud prediction 1 

The last part of this study focused on the evaluation of the impact of SOA on the simulation of 2 

cloud fields. We performed sensitivity simulations during P1, P2 and P3 without the SOA 3 

(NOSOA), and compared them to the reference run (CTRL) discussed so far. NOSOA runs are 4 

carried out only in the higher resolution domain (D3).  The simulations of all three periods are 5 

initialized at 00 UTC with the same meteorological and chemical input data used for CTRL, except 6 

chemical initial conditions that are restarted by previous NOSOA run. Each period is preceded by 7 

30 hours of simulation used as spin-up for D3 chemistry. The sensitivity simulation is performed 8 

zeroing the arrays pertaining to SOA. Thus, the SOA fields  are not affected by incoming SOA from 9 

domain boundaries or by local production. We did not perform the sensitivity tests with SORGAM 10 

option because this model produces very little SOA mass concentrations (Grell at al., 2005; 11 

McKeen et al. 2007; Tuccella et al., 2012). Therefore, we may assume that simulations with 12 

SORGAM and without SOA (in VBS option) are roughly equivalent. The advantage of this 13 

assumption is that the model is forced with same initial meteorological conditions and boundary 14 

meteorological and chemical conditions of the CTRL simulation. The use of SORGAM would 15 

require to run the model on all three domains, leading to different results on D2 which is used to 16 

initialize D3. Finally, this would introduce dependencies on the D3 input data making the 17 

comparison not directly comparable to the CTRL run.    18 

The comparisons of Re, LWP and liquid COT simulated of CTRL and NOSOA runs with MODIS 19 

data are reported in Figures 12, S4 and S5. In general, the average spatial pattern of these three 20 

variables is captured better by CTRL simulation with respect to NOSOA run, especially in P1. 21 

Figures 13, S6 and S7 display the comparison between DFs of the cloud properties simulated by 22 

CTRL and NOSOA runs with those retrieved with MODIS observations. The domain averages for 23 

each variable are reported in Table 4. NOSOA runs show a domain averaged Re larger than CTRL. 24 

DFs of the LWP are different between the runs, but it is not clear if there are improvements in 25 

CTRL with respect to NOSOA run. Only the domain averages allow to establish that LWP values 26 

predicted by CTRL run are closer to the observed means than NOSOA. The presence of SOA in the 27 

numerical prediction improves the DF of liquid COT with respect to NOSOA simulation in P1 and 28 

P3, whereas there are no differences during P2. NOSOA has 10% and 3% more optically thin liquid 29 

clouds (liquid COT<40) with respect to CTRL in P1 and P3, respectively.   30 

Figures 14, S8 and S9 report the comparison of modelled CWP and COT of all cloud phases predict 31 

in CTRL and sensitivity runs with MODIS data. As well as for liquid phase, including SOA aerosol 32 

particles in the runs, the WRF/Chem skills to reproduce the observed pattern of observed CWP and 33 
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COT increase. As shown in Table 5, domain averaged CWP and COT are larger up to about 50% in 1 

CTRL with respect to NOSOA.       2 

Now it is interesting to explore the impact of SOA on the vertical structure of the cloud fields. As 3 

example we chose the 17 May because around 6 UTC, a frontal system associated to a trough from 4 

North Sea crossed the Benelux area (Figure S10). In both runs, some isolated and shallow clouds 5 

form during the night. When the cold front reaches Benelux around 5-6 UTC, a low pressure centre 6 

forms (Figure S11). The winds rotate around the low pressure with speeds up to 14 m/s at 925 hPa 7 

height (Figure S12). A convective system develops around the vortex. Figure 15 shows the 8 

maximum radar reflectivity (maximum dBZ) at 6 UTC for CTRL simulation, and the difference of 9 

maximum dBZ between CTRL and NOSOA runs. In general, the echo is larger for run with SOA, 10 

i.e. the intensity of the storm is stronger in the CTRL run. Figures 16 and 17 show the vertical fields 11 

of PM2.5 mass, vertical wind, liquid and frozen hydrometeor for both runs in the cross section A 12 

displayed in Figure 15. These differences between both simulations (CTRL-NOSOA) along the 13 

cross section A, are also displayed in Figures 16 and 17. The convection appears to be stronger in 14 

the control simulation, with a larger amount of hydrometeors and stronger updrafts and downdrafts. 15 

The larger differences in the simulated fields of vertical wind and hydrometeors occur in the same 16 

location where occurs the enhancement of PM2.5 mass at cloud base (950-900 hPa), roughly at the 17 

distance of 5-15 and 40-90 km away of the origin of the cross section A (Figures 16 and 17). The 18 

results should be taken with caution because the aerosol-cloud interaction is treated only for liquid 19 

clouds, the interaction of aerosol with ice phase is still missing in the model. Although the aerosol-20 

cloud interaction is a nonlinear process, it is possible to give an interpretation of the results with the 21 

conceptual model for cloud invigoration proposed by Rosenfeld et al. (2008). The larger number of 22 

CCN in CTRL may curb the autoconversion rate of droplets to raindrops, therefore the beginning of 23 

precipitation may be delayed with respect to NOSOA. This delay leads to a larger amount of 24 

condensed water that crosses the freezing level and forms ice hydrometeors. The freezing process 25 

warms the higher layers of the cloud through release of latent heat, whereas the melting process due 26 

to falling of ice cools the lower levels. This thermodynamic disequilibrium enhances the upward 27 

transport of heat. The enhanced conversion of CAPE to kinetic energy may yield the cloud 28 

invigoration found in the CTRL simulation. 29 

  30 

31 
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6 Summary and conclusions 1 

Secondary organic aerosol particles play an important role in the aerosol-cloud-radiation interaction 2 

because they contribute to the global budget of radiation and cloud condensation nuclei (CCN). The 3 

introduction of SOA particles in numerical simulations has the potential to reduce the uncertainties 4 

on the prediction of meteorological fields and air quality. To this aim, a parameterization for SOA 5 

production based on the recent VBS approach was coupled with microphysics and radiative 6 

schemes in the WRF/Chem community model.  7 

The performance of the updated model at cloud resolving scale (2 km horizontal resolution) was 8 

evaluated using ground- and aircraft-based measurements collected during the IMPACT-EUCAARI 9 

campaign and the data from the MODIS satellite instrument. The study focuses on the Benelux 10 

area, around the supersite of Cabauw, from 14 to 30 May 2008. The analysed period was 11 

characterized by few days of high pressure (14-15 May), followed by a scavenged background 12 

situation (17-20 May), and finally by long range transport of Saharan dust with the passage of 13 

southerly fronts (23-31 May).  14 

The model reproduces the variations of meteorological variables as a function of the synoptic 15 

frame. The model broadly captures the inter- and infra-diurnal variability of O3 and NOx at the 16 

surface. The concentration of NH3 is underestimated. Concentrations of HNO3 and HONO is 17 

reproduced with poor correlation. Simulated SO2 shows a positive bias of +90%, probably due to 18 

overestimated point sources. Surface aerosol mass of SO4, NO3, NH4, and OM is simulated with a 19 

correlation larger than 0.55. Their diurnal variations as a function of the synoptic frame are resolved 20 

by the model. The bias of simulated inorganic aerosol mass is explainable together with error of 21 

SO2, NH3, and HNO3 in terms of anthropogenic emissions and the approximation to instantaneous 22 

thermodynamic equilibrium. The performances in reproducing the surface aerosol mass found here 23 

are comparable to other European studies where these variables are simulated with correlations 24 

range from 0.5-0.7 (e.g., Lecœur and Signeur, 2013; Zhang et al., 2013b; Balzarini et al., 2014 for 25 

inorganic species; Athanasopoulou et al., 2013; Fountoukis et al. 2014; Li et al., 2013; Knote et al., 26 

2011; for organic aerosols).    27 

The analysis of aircraft data reveals that WRF/Chem captures the aerosol mass trend both in the 28 

PBL and the free troposphere (FT). The predicted aloft aerosol mass of each species is within the 29 

observed values range, but the model does not capture the full range of the measured 30 

concentrations: the modelled standard deviations of aerosol mass are lower than those observed. 31 

Nevertheless, SO4 (NO3 and NH4) mass is overpredicted (underpredicted) in more than half of the 32 

flights. SO4 bias is attributable to the SO2 excess and to a potential overproduction within the cloud 33 
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chemistry scheme. The negative bias of NO3 and NH4 could be explained by a low concentration of 1 

NH3 that limits the formation of the ammonium-nitrate.  The simulated OM concentration is at 2 

lower end of the observed mass. The bias is attributable to the missing aqueous chemistry processes 3 

of organic compounds, uncertainties in meteorological fields, to assumptions on the VBS approach 4 

such as the SOA formation pathways, oxidation rate and dry deposition velocity of organic 5 

condensable vapours. Another source of error in simulating SOA are the uncertainties in the 6 

anthropogenic emissions of primary organic carbon and in the factor (1.6) used to convert them to 7 

POM. In general, the statistical analysis reveals that the predicted average concentrations of 8 

inorganic aerosols show absolute error of 2-8% in the PBL, while the NO3 and NH4 are simulated 9 

with a bias of +14% and +20% (+0.3 and +0.2 µg/m
3
), respectively, in the FT. The mean OM mass 10 

is underestimated by a factor 2 and 3 in the PBL and FT, respectively. These biases are similar to 11 

those reported by Fast et al. (2014) comparing WRF/Chem (but with a different chemistry package) 12 

to aircraft data performed over California. Indeed they found an absolute mean bias of about 0.01-13 

0.2, 0.03-0.6, 0.1-0.45, 0.2-0.57 µg/m
3
 for SO4, NO3, NH4, and OM, respectively. However, we 14 

highlighted that the comparison of aerosol composition predicted by the model with AMS 15 

measurements could be affected by a bias because the model concentrations are representative of 16 

PM2.5 particles and AMS collects aerosols with diameter only between 100-700 nm.    17 

Condensation nuclei (CN) are overestimated by a factor of 1.4 and 1.7 in the PBL and FT, 18 

respectively. However, in some cases, the predicted CN are overestimated by a factor of 3. 19 

Predicted CN show higher variability than measurements. The model correlation with observed CN 20 

is 0.40 and 0.74 in PBL and FT, respectively. These values are consistent with the 0.61 below 10 21 

km of altitude found by Luo and Yu (2011) in the Eastern United States with WRF/Chem including 22 

an advanced aerosol microphysical model. Model biases in predicting CN are attributable in large 23 

part to the uncertainties of primary particle emissions (mostly in the PBL) and to the nucleation 24 

rate.  25 

The bias of simulated CCN is more contained with respect to that of CN. The CCN efficiency 26 

(CCN/CN ratio) is underestimated by a factor of 1.5 and 3.8 in the PBL and FT, respectively. This 27 

could be due to a low number of particles in the accumulation and coarse mode or to uncertainties 28 

in the hygroscopicity of aerosol particles. CCN/CN ratio represents the ability of aerosol particles to 29 

nucleate in cloud droplets. Therefore, its misrepresentation may lead to issues in the simulation of 30 

cloud droplet number. In other words, the uncertainties in CCN efficiency is a general modelling 31 

problem that may prevent a correct representation of the amplitude of the aerosol-cloud interaction, 32 

i.e. the response of microphysical cloud properties to the variation of CCN concentrations. This 33 
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issue surely deserves and warrants further insight in the future, studies on the sensitive of the CCNs 1 

to emission distribution in the lognormal modes, aerosol hygroscopicity and updraft velocity are 2 

desirable to improve the aerosol activation in the models. 3 

The bias of simulated CN affects the prediction of droplet effective radius (Re), aerosol optical 4 

thickness (AOT), cloud water path (CWP), and cloud optical thickness (COT). The comparison 5 

with MODIS data shows that the model overestimates the AOT. The AOT averaged over the entire 6 

domain on a single day are 0.38±0.12 and 0.42±0.10 for MODIS and WRF/Chem data, 7 

respectively. The domain averaged Re of liquid cloud droplets is underestimated by a factor of 1.5 in 8 

all the periods examined in the main text. Modelled mean cloud liquid water path (LWP) is also 9 

overestimated by a factor 1.1-1.6. The consequence of the negative (positive) bias of Re (LWP) is 10 

the overestimation of average liquid COT by few percent up to 42%. CWP and COT of all cloud 11 

phases are systematically in 2 out of 3 periods analysed. Predicted domain average of CWP presents 12 

a bias that ranges from 41-80%, whereas the bias of COT is about 15% in P1 and P3. The 13 

overprediction of CWP could be due to the overestimation of droplet number concentration that 14 

results from the overestimation of CN, and to inefficient autoconversion of cloud water to rain. The 15 

reader should note that the model error found here are different from the study conducted with 16 

WRF/Chem by Yang et al. (2011) on the modelling of marine stratocumulus in Southeast Pacific 17 

where SOA formation was not included in the simulations. Those authors reported a bias of +30% 18 

in reproducing the COT, while CWP was underestimated by a factor 1.3. 19 

In summary, the model behaviour of this new chemistry option in WRF/Chem in simulating the 20 

relationship between aerosol and cloud fields may be summarized by this way. The overestimation 21 

of CN results in the overprediction of the CCN. Higher number of CCN leads to clouds with higher 22 

number of cloud droplets, higher water content, smaller droplets and clouds optically deeper. 23 

As test application of the new chemistry option, we performed a sensitivity simulation where SOA 24 

mass concentration is set to zero. The aim was to answer two questions: 25 

1. Does the introduction of SOA particles improve the numerical prediction of cloud fields? 26 

The introduction of SOA in the numerical simulations improves the predicted spatial pattern 27 

of microphysical and optical properties of cloud in liquid and all phases. NOSOA runs show 28 

an average Re larger than CTRL. The analysis of LWP distribution function does not reveal 29 

a clear difference between CTRL and NOSOA simulations during the examined periods, 30 

only the domain averages allow to establish that LWP values predicted by CTRL run are 31 

closer to the observed means than NOSOA. Conversely, including SOA in the numerical 32 

prediction improves the distribution function of liquid COT with respect to NOSOA in 2 out 33 
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of 3 cases. In these two cases, NOSOA has up to 10% more optically thin liquid clouds 1 

(COT<40) with respect to CTRL. Finally, with regards to CWP and COT (all phase), 2 

including SOA aerosol particles in the runs, the WRF/Chem improves to reproduce the 3 

observed pattern of observed CWP and COT.    4 

2. What is the impact of SOA particles on cloud development? 5 

The analysis was conducted on a convective system. The simulated radar reflectivity is 6 

larger for run with SOA, i.e. the intensity of the storm is stronger in the CTRL run. The 7 

CTRL simulation exhibits a larger amount of hydrometeors and stronger updrafts and 8 

downdrafts. The larger differences in the simulated fields of vertical wind and hydrometeors 9 

are associated to the larger differences of PM2.5 mass located at the cloud base.   10 

On the basis of the results discussed in this work, the option RACM/MADE/VBS coupled with 11 

cloud microphysics and radiation allows the WRF/Chem community to use a powerful tool for the 12 

study of the aerosol-cloud interactions, improved in terms of representation of the aerosol processes 13 

with respect  to previous versions based on the RADM/MADE/SORGAM scheme.  14 

For the future, there is still large space for improvements. For example, a more advanced treatment 15 

of deposition of organic condensable vapours is desirable. Moreover, the missing production of 16 

SOA in cloud is a gap that should also be filled. Finally, the extension of aerosol-cloud interaction 17 

to the ice-phase would lead to a complete representation of the aerosol indirect effects.   18 

19 
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Code availability  1 

The code updated, described, and evaluated here will be incorporated in the next available release 2 

of WRF/Chem. The users will be able to freely download the code from the WRF website 3 

(http://www2.mmm.ucar.edu/wrf/users/download/get_source.html). A general WRF/Chem user’s 4 

guide is also available online (http://ruc.noaa.gov/wrf/WG11/).    5 
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APPENDIX A: Technical details of coupling of VBS scheme with radiation and 1 

microphysics schemes 2 

The new chemistry option in namelist.input is chem_opt=44. It works with both Lin and Morrison 3 

microphysics scheme, Goddard and RRTM shortwave scheme, and RRTM longwave 4 

parameterization. Coupling of new scheme for SOA production with microphysics and radiative 5 

processes requires several modifications to code: 6 

1. The first step is to create a new chemistry option. The package racm_soa_vbs_aqchem_kpp 7 

(chemopt==44) has been added to /Registry/registry.chem together to some new model                        8 

variables for the cloud-borne organic aerosols, called, for example, asoa1cwi, asoa1cwj etc. 9 

2. New chemistry package is a KPP option. Therefore, we created a new subdirectory in 10 

/chem/KPP/mechanisms/racm_soa_vbs_aqchem containing the files (*.spc, *.eqn, *.kpp, 11 

and *.def) where are defined the chemical model species and constants, chemical reactions 12 

in KPP format, model description, computer language, precision and integrator. The files are 13 

the same used in racm_soa_vbs_kpp package (chemopt==108). 14 

3. The last step is to update the subroutines in chem subdirectory. In order to call necessary 15 

subroutines, the modules that we modified are: 16 

 chemics_init.F 17 

 module_input_chem_data.F 18 

 mechanism_driver.F 19 

 cloudchem_driver.F 20 

 module_sorgam_aqchem.F 21 

 module_wetscav_driver.F 22 

 module_aerosols_soa_vbs.F 23 

 aerosol_driver.F 24 

 dry_dep_driver.F 25 

 module_mixactivate_wrappers.F 26 

 emissions_driver.F 27 

 module_bioemi_megan2.F 28 

 optical_driver.F 29 

 module_optical_averaging.F 30 

 module_ctrans_grell.F 31 
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APPENDIX B: Statistical indices used in the model evaluation 1 

Let 
iObs  and iMod  be the observed and modeled values at time i, and N the number of 2 

observations. 3 

 The Pearson’s Correlation (r): 4 
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where X is a generic vector, Z(X) is its standard score, and σX is the standard deviation. 6 

 Mean Bias: 7 
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 Normalized Mean Bias (NMB): 9 

100×
-1

= ∑
1=

N

i i

ii

Obs

ObsMod

N
NMB

 

10 

 Normalized Mean Gross Error (NMGE): 11 
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TABLES 2 

Table 1. Physical and chemical parameterizations used in the simulation 3 

Physical Processes WRF/Chem parameterizations 

Cloud Microphysics Morrison 

Cumulus Cloud New Grell (D1 and D2) 

Longwave radiation RRTM 

Shortwave radiation RRTM      

PBL MYNN 

Surface Layer Monin-Obukov 

Surface  Noah LSM 

Gas-phase Chemistry Modified RACM-ESRL 

Aerosol Chemistry MADE/SOA-VBS 

Biogenic Emissions MEGAN 

 4 

5 
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Table 2. Statistical indices of the comparison of WRF/Chem to observations of temperature (T), 2 

relative humidity (RH), wind speed (WS), wind direction (WD), ozone (O3), nitrogen oxide (NOx), 3 

nitric dioxide (NO2), nitric oxide (NO), ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), 4 

sulphur dioxide (SO2), particle sulphate (SO4), particle nitrate (NO3), particle (ammonium), and 5 

particle OM, collected at Cabauw tower. 6 

Variable R MB NMB NMGE 

T (°C) at 2m 0.93 -0.66 -5.46 10.65 

T (°C) at 10m 0.93 -0.67 -5.24 9.31 

T (°C) at 20m 0.94 -0.56 -4.15 8.16 

T (°C) at 40m 0.94 -0.46 -3.24 7.21 

T (°C) at 80m 0.95 -0.32 -2.10 5.97 

T (°C) at 140m 0.95  -0.26 -1.51 5.92 

T (°C) at 200m 0.95 -0.45 -2.79 6.66 

RH (%) at 2m 0.87 3.17 6.42 11.23 

RH (%) at 10m 0.89 4.44 8.36 11.48 

RH (%) at 20m 0.91 3.04 6.33 10.50 

RH (%) at 40m 0.92 2.99 6.40 10.51 

RH (%) at 80m 0.73 -1.04 2.13 13.34 

RH (%) at 140m 0.92 2.81 6.40 11.19 

RH (%) at 200m 0.91 2.99 7.44 12.50 

WS (m/s) at 10m 0.78 0.67 27.90 35.56 

WS (m/s) at 20m 0.66 1.27 40.89 49.32 

WS (m/s) at 40m 0.67 1.26 32.64 42.04 

WS (m/s) at 60m 0.72 1.23 24.42 38.99 

WS (m/s) at 140m 0.74 1.21 28.66 41.55 

WS (m/s) at 200m 0.76 1.13 27.79 41.48 

WD (deg) at 10m 0.52 27.32 43.31 43.31 

WD (deg) at 20m  0.53 24.80 40.48 40.48 
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WD (deg) at 40m 0.60 23.59 40.34 40.34 

WD (deg) at 80m 0.67 20.22 30.34 30.34 

WD (deg) at 140m 0.71 19.21 32.01 32.01 

WS (deg) at 200m 0.73 17.18 28.46 28.46 

O3 (µg/m3) 0.72 -3.43 70.03 90.88 

NOx (µg/m3) 0.70 0.43 19.76 44.77 

NO (µg/m3) 0.65 0.28 116.08 167.59 

NO2 (µg/m3) 0.66 1.25 28.68 54.20 

NH3 (µg/m3) 0.43 -4.75 -27.72 42.94 

HNO3 (µg/m3) 0.21 -0.09 -1.22 108.65 

HONO (µg/m3) 0.05 -0.56 -95.37 95.37 

SO2 (µg/m3) 0.48 0.68 90.20 116.33 

SO4 (µg/m3) 0.56 1.04 92.2 95.4 

NO3 (µg/m3) 0.68 1.00 72.4 94.3 

NH4 (µg/m3) 0.74 0.66 63.0 67.3 

OM (µg/m3) 0.75 -0.42 3.21 29.9 

 1 

2 
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 1 

Table 3. Observed and modelled mean values, standard deviations, and relative amount (expressed 2 

as percentage) of aerosol species, number of aerosol particles, cloud condensation nuclei, over the 3 

whole period of the aircraft campaign in boundary layer and free troposphere.  4 

                        Boundary Layer                               Free Troposphere   

 Observation WRF/Chem r  Observation WRF/Chem  r 

SO4 (µg/m3) 3.1±2.4 (19%) 3.2±2.1 (24%) 0.39  2.6±2.0 (29%) 2.5±1.2 (38%)  0.23 

NO3 (µg/m3) 4.5±5.4 (28%) 4.6±5.1 (34%) 0.47  1.3±3.0 (14%) 1.5±2.7 (23%)  0.44 

NH4 (µg/m3) 2.6±2.2 (16%) 2.4±2.1 (19%) 0.43  1.4±1.5 (16%) 1.2±1.2 (19%)  0.42 

OM (µg/m3) 6.1±5.8 (37%) 3.0±2.6 (23%) 0.67  3.7±4.5 (41%) 1.3±1.4 (20%)  0.52 

PM2.5 (µg/m3) 23±13 16±10 0.75  19±17 12±9  0.80 

CN (103 #/cm3) 6.7±5.0 9.4±5.4 0.40  1.0±1.1 1.7±2.8  0.74 

CCN (103 #/cm3) 0.6±0.5 0.9±0.8 0.45  0.3±0.3 0.3±0.3  0.73 

5 
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Table 4. MODIS and modelled mean values and standard deviations of droplet effective radius at 2 

cloud top, liquid cloud water path and liquid cloud optical thickness, on 17-19, 25-27, and 28-30 3 

May 2008. 4 

 Re (µm) LWP (g/m2) COT 

 MODIS CTRL NOSOA MODIS CTRL NOSOA MODIS CTRL NOSOA 

17-19 May 10.2±3.5 7.5±3.5 8.5±4.3 230±343 242±343 208±352 32±22 33±33 21±24 

25-27 May 13.7±3.7 9.1±4.4 9.8±4.9 200±166 256±502 273±480 22±19 23±30 21±27 

28-30 May 10.7±3.9 8.4±4.1 7.8±3.6 141±128 224±327 243±447 19±14 27±27 24±30 

5 
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Table 5. MODIS and modelled mean values and standard deviations of cloud water path and cloud 2 

optical thickness of clouds in all phases, on 17-19, 25-27, and 28-30 May 2008.  3 

 
CWP (g/m2) COT 

 
MODIS-Aqua CTRL NOSOA MODIS-Aqua CTRL NOSOA 

17-19 May 207±203 336±531 218±359 26±20 30±33 19±23 
25-27 May 235±182 331±533 244±418 21±16 17±23 16±21 
28-30 May 206±201 370±714 262±523 21±16 24±26 21±27 

 4 

5 
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FIGURES 2 

 3 

 4 

Figure 1. Panel (a) shows the three nested model domains used for simulations. D1 is 30 km 5 

resolution, D2 10 km, and D3 2 km. The black star indicates the Cabauw supersite. Panel (b) is a 6 

zoom of D3 and shows the track of every flights used in this study, yellow circle represents Cabauw 7 

supersite.8 
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1 
Figure 2. Observed and simulated time series of vertical profile of the temperature (a) and relative 2 

humidity (b), observed at Cesar observatory. The black line on the temperature profile represents 3 

the 0°C isotherm.  4 

5 
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 2 

Figure 3. Observed (black lines) at Cesar Tower and simulated (red lines) time series of wind speed 3 

(a) and wind direction (b) at different height. 4 

5 
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             2 

Figure 4. Observed and simulated time series of gas-phase species (a) and their average diurnal 3 

cycle (b), at Cabauw Zijdeweg EMEP station (NL0011R).  4 

5 

http://www.nilu.no/projects/CCC/sitedescriptions/nl/nl0011.html


57 
 

 1 

 2 
Figure 5. As Figure 4, but for aerosol mass speciation at Cesar Observatory observed at 60m height. 3 

 4 

5 
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 2 
Figure 6. Box plot of SO4, NO3, NH4, and OM mass concentrations measured by AMS aboard the 3 

ATR-42 (blue) and simulated by WRF/Chem (red) within boundary layer (panel a) and free 4 

troposphere (panel b). The x-axis reports the day of May 2008 (black) and the number of the 5 

research flight (red). The whisker plots denote median, 25th and 75th percentiles, 1.5 × (inter-6 

quartile range), and outliers. The squares represent the mean values. 7 

8 
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 2 

Figure 7. Same as Figure 6 but for observed and simulated PM2.5 mass concentrations. The blue 3 

colour represents the observations will the model is displayed in red colour. 4 

5 
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 2 

Figure 8. Vertical profiles (shadow) along the flight track of 14 May (RF50) of modelled PM2.5 (a), 3 

SO4 (b), NO3 (c), NH4 (d), and OM (e). The circles are the measurements collected aboard the 4 

ATR42.5 
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 2 
 3 

Figure 9. Same as Figure 6 but for observed and simulated condensation nuclei (CN) 4 

concentrations. The blue colour represents the observations while the model is displayed in red 5 

colour. 6 

7 
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 2 
Figure 10. Same as Figure 6 but for observed and simulated cloud condensation nuclei (CCN) 3 

concentrations at 0.2% of supersaturation. The blue colour represents the observations, the model is 4 

displayed in red color. 5 

6 
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2 
                                                                        3 

Figure 11. Aerosol optical thickness at 500 nm from MODIS-Aqua (panel a) and WRF/Chem 4 

simulations (panel b) on 14 May 2008.  5 

6 
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                                                                            2 

 3 
  4 

Figure 12. 17-19 May 2008 averages of droplet effective radius at cloud top (first row), liquid water 5 

path (second row), and liquid cloud optical thickness (third row), retrieved using MODIS-aqua 6 

observations (first column), predicted by model in the references run (CTRL, second columns) and 7 

sensitivity test without SOA (NOSOA, third column).   8 

9 
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 2 

Figure 13. 17-19 May 2008 averages of observed and simulated distribution function of droplet 3 

effective radius at cloud top (a), liquid water path (b) and liquid cloud optical thickness (c). The 4 

black line represents the observations retrieved by MODIS, blue and red colours correspond to 5 

model predictions from the reference run (CTRL) and sensitivity test without SOA (NOSOA), 6 

respectively.  7 

8 
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2 
                                                                                  3 

Figure 14. As Figure 12, but for clouds in mixed phase. 4 

5 
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 2 

Figure 15. Maximum dBZ at 6 UTC of 17 May for CTRL run (a) and difference of maximum dBZ 3 

between CTRL and NOSOA simulations (b). The solid black line represents the cross section A 4 

used to plot vertical profiles reported in Figure 13.  5 

6 
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 2 

Figure 16. Vertical profile of PM2.5 mass (color) and wind (vector) for CTRL run (a), NOSOA run 3 

(b) and their differences (c). The fields are extracted along the cross section A (see Figure 12) at 6 4 

UTC of 17 May. The x-axis reports the west-east distance in km along the cross section. 5 

6 
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 2 

Figure 17. As Figure 16, but for water (color), and frozen (black contours) hydrometeors.  3 

 4 


