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Abstract 12 

UV/Vis satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulphur dioxide 13 

(SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric 14 

composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-15 

down constraints on emissions. However, because models and satellite measurements do not 16 

represent the exact same geophysical quantities, the process of confronting model fields with 17 

satellite measurements is complicated by representativeness errors, which degrade the quality 18 

of the comparison beyond contributions from modelling and measurement errors alone. Here 19 

we discuss three types of representativeness errors that arise from the act of carrying out a 20 

model-satellite comparison: (1) horizontal representativeness errors due to imperfect 21 

collocation of the model grid cell and an ensemble of satellite pixels called superobservation, 22 

(2) temporal representativeness errors originating mostly from differences in cloud cover 23 

between the modelled and observed state, and (3) vertical representativeness errors because of 24 

reduced satellite sensitivity towards the surface accompanied with necessary retrieval 25 

assumptions on the state of the atmosphere. To minimize the impact of these 26 

representativeness errors, we recommend that models and satellite measurements be sampled 27 

as consistently as possible, and our paper provides a number of recipes to do so. A practical 28 

confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model 29 
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(CTM) with Ozone Monitoring Instrument (OMI) tropospheric NO2 retrievals suggests that 1 

horizontal representativeness errors, while unavoidable, are limited to within 5-10% in most 2 

cases and of random nature. These errors should be included along with the individual 3 

retrieval errors in the overall superobservation error. Temporal sampling errors from 4 

mismatches in cloud cover, and, consequently, in photolysis rates, are on the order of 10% for 5 

NO2 and HCHO, and systematic, but partly avoidable. In the case of air pollution applications 6 

where sensitivity down to the ground is required, we recommend that models should be 7 

sampled on the same mostly cloud-free days as the satellite retrievals. The most relevant 8 

representativeness error is associated with the vertical sensitivity of Ultraviolet-visible 9 

(UV/Vis) satellite retrievals. Simple vertical integration of modelled profiles leads to 10 

systematically different model columns compared to application of the appropriate averaging 11 

kernel. In comparing OMI NO2 to GEOS-Chem NO2 simulations, these systematic 12 

differences are as large as 15-20% in Summer, but, again, avoidable. 13 

1 Introduction 14 

Chemistry transport models (CTMs) are increasingly being evaluated with satellite column 15 

retrievals from UV/Vis solar backscatter satellite instruments. Satellite retrievals of trace gas 16 

concentrations constitute a rich source of information on key tropospheric species such as 17 

nitrogen dioxide (NO2), sulphur dioxide (SO2), and formaldehyde (HCHO) that is beginning 18 

to be exploited on an ever-larger scale. Ultraviolet-visible (UV/Vis) satellite observations are 19 

being used to: 20 

• evaluate the capability of models to simulate atmospheric concentrations of various 21 

species (e.g. Uno et al. [2007], Herron-Thorpe et al. [2010], Huijnen et al. [2010a]), 22 

• drive data assimilation experiments aimed at improving estimates of the atmospheric 23 

state (e.g. Wang et al. [2011], Inness et al. [2013], Miyazaki et al. [2014]), 24 

• provide constraints on uncertain model inputs such as emission inventories through 25 

inverse modelling (e.g, Wang et al. [2007], Müller et al. [2008], Mijling and van der A 26 

[2012], Barkley et al. [2013]), and to identify new emissions sources (for instance 27 

newly built power plants [Zhang et al., 2009]), 28 

• test processes influencing the lifetime of crucial chemical species (e.g. Schaub et al., 29 

2007; Lamsal et al., 2010; Beirle et al., 2011; Stavrakou et al., 2013), or, more 30 
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broadly, the chemical regime of the atmosphere (e.g. Martin et al., 2004; Duncan et 1 

al., 2010) 2 

When comparing model simulations to satellite measurements, both modelling errors and 3 

measurement errors are usually taken into account. Measurement errors are often reasonably 4 

well characterized (e.g. Boersma et al., 2004; De Smedt et al., 2008; Lee et al., 2009), but 5 

modelling errors are more difficult to establish, because of the large number of uncertain 6 

model processes, uncertain boundary (e.g. emissions) and initial conditions, and unresolved or 7 

misrepresented aspects of atmospheric physics and chemistry. Modelling errors are best 8 

characterized by comparing model simulations to observations. Unfortunately, the 9 

observations available for such comparisons are mostly limited in vertical range and regional 10 

coverage such as in the case of ground-based networks, or they are merely sporadic in space 11 

and time, such as for aircraft campaigns. Satellite data records are based on robust retrieval 12 

methods, provide global coverage, and cover decadal time spans. Satellite data has recently 13 

been successfully used for dedicated modelling error studies (e.g. Lin et al., 2012; Stavrakou 14 

et al., 2013). 15 

When using satellite data, modellers need to be aware that most UV/Vis-retrievals generally 16 

contain little information on the vertical distribution of a species (the exception is 17 

stratospheric ozone profile retrieval in the far UV of the spectrum, but this species will not be 18 

considered in this study). Here we focus on the application of tropospheric UV/Vis retrievals, 19 

and we limit ourselves to retrievals of tropospheric species NO2, SO2, and HCHO for 20 

comparison with models. These species are all relatively short-lived and their retrievals are 21 

generally based on differential optical absorption spectroscopy (DOAS, Platt and Stutz 22 

[2008]). DOAS retrievals in the UV/Vis match relevant absorption cross section spectra to the 23 

solar backscatter spectrum measured by the satellite instrument in order to infer the column 24 

integral (slant column density, expressed in molecules cm-2) of a species along the effective 25 

atmospheric photon path. The subsequent retrieval step requires the conversion of the slant 26 

column density into a vertical column density, and this conversion depends on knowledge 27 

(assumptions) of the state of the atmosphere, e.g. on the presence of clouds and aerosols, the 28 

vertical distribution of the species, and surface properties. When these assumptions are very 29 

different from the atmospheric state modelled by a chemistry transport model (CTM), this 30 

will lead to inflated differences between modelled (by, say, CTM 1) and retrieved columns 31 

(aided by CTM 2). Such differences, however, can be avoided or in any case minimized, if the 32 
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user of satellite data accounts for the representativeness and averaging kernels of the satellite 1 

data while interpreting model simulations. Representativeness here is defined as the context in 2 

which the satellite measurement holds, i.e. the horizontal coverage, the temporal 3 

representativeness, and the vertical information content of the retrieval. It is the goal of this 4 

study to provide guidelines on how users can take the representativeness of the UV/Vis 5 

column retrievals into account when comparing CTM simulations to satellite retrievals, and 6 

by how much the model-retrieval differences would inflate if aspects of representativeness are 7 

neglected. 8 

In Sect. 2, we introduce the definitions and terminology for sources of error in the comparison 9 

of models and observations, and relate these to what is common practice in the data 10 

assimilation community. In doing so, we follow the notation proposed by Ide et al. [1997], 11 

also used in relevant work by Rodgers and Connor [2003] and Migliorini et al. [2008]. 12 

Section 3 will give an overview of the common features shared by various UV/Vis retrievals 13 

with an emphasis on the assumptions made in the retrieval approach that are relevant to 14 

modellers and other data users, and it provides a recipe for constructing an appropriate 15 

observation operator. Section 4 introduces the TM5 and GEOS-Chem models that we will 16 

evaluate to demonstrate the nature and magnitude of representativeness errors. In Sect. 5, we 17 

discuss the error budgets associated with a confrontation of CTM simulations with satellite 18 

measurements, and, in particular, how the representativeness errors contribute to that budget. 19 

Section 6 presents the result of a practical assessment of representativeness errors made when 20 

comparing global CTM simulations of tropospheric NO2 to satellite measurements from the 21 

Ozone Monitoring Instrument, and provides recommendations on how to minimize these.  22 

2 Comparing models and UV/Vis satellite measurements 23 

2.1 UV-VIS satellite retrievals 24 

Over the last two decades, tropospheric NO2, SO2, and HCHO columns have been retrieved 25 

from measurements by the GOME, SCIAMACHY, OMI and GOME-2 (on Metop-A and 26 

Metop-B) satellite sensors. The retrievals generally use a two-step approach, based on the 27 

DOAS-technique. In step 1, the reflectance spectra measured by the satellite instruments are 28 

modelled with a fitting routine that accounts for the spectral signatures from trace gas 29 

absorption, inelastic scattering, and (broadband) Rayleigh, Mie, and surface scattering. For 30 

each of the above species, spectral regions are selected where the absorption structures are 31 
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most distinct, and spectral interference from other species is minimal. The species’ slant 1 

column density is then calculated from the inferred absorption in combination with 2 

knowledge of the species’ absorption cross-section. Before converting the slant column 3 

densities into tropospheric vertical columns, background corrections may be required to 4 

account for the fact that a portion of the slant column has originated from the species’ 5 

absorption of light in the stratosphere. 6 

In step 2 of the retrieval, the tropospheric slant column densities are converted into vertical 7 

column estimates, using a radiative transfer (forward) model and forward model parameters, 8 

that influence the retrieval. For DOAS UV/Vis retrievals, forward model parameters typically 9 

include the sensor viewing geometry, and best estimates of the surface albedo, terrain height, 10 

cloud and aerosol properties (or an effective representation thereof), as well as the a priori 11 

vertical distribution of the species (𝐱𝐚) of interest. The radiative transfer calculations are 12 

expressed as so-called air mass factors, defined as the (forward) modelled ratio of slant (NS) 13 

and vertical columns (NV), given the set of forward model parameters: 𝑀 = 𝑁! 𝑁!. 14 

Tropospheric air mass factors have been shown to be very sensitive to choices for surface 15 

albedo, for cloud correction, and for a priori vertical distribution, and, consequently, air mass 16 

factor uncertainties are large, and dominate the retrieval error budget for tropospheric 17 

columns (e.g. Boersma et al. [2004], Millet et al. [2006], Lee et al. [2009]).  18 

Data users need to be aware of the important role played by clouds in UV/Vis-retrievals. With 19 

the exception of elevated plumes resulting from volcanoes, lightning, and aircraft, most 20 

tropospheric NO2, SO2, and HCHO generally resides in the lower atmosphere, close to their 21 

surface sources. Clouds thus typically obscure the absorbing species from (satellite) view, 22 

leading retrieval groups to advise against the use of their satellite data when taken under 23 

cloudy conditions. Trace gas retrievals under cloudy situations suffer from larger errors (e.g. 24 

Schaub et al. [2006]), because the detectable fraction corresponds to the column above the 25 

cloud, leaving a so-called ‘ghost column’ below the cloud to be added somehow. Because 26 

ghost columns are generally taken from climatology or a CTM, they do not contribute to the 27 

measured information in any way, so that inclusion of columns under cloudy situations 28 

compromises a model – satellite comparison, unless the averaging kernels are taken into 29 

account [Schaub et al., 2006]. In data assimilation systems, cloudy measurements still provide 30 

valuable information on the abundance and vertical information of trace gases above the 31 



 6 

cloud, for instance for constraints on e.g. lightning-produced NO2 [Boersma et al., 2005] and 1 

in recent cloud-slicing techniques [Choi et al., 2014; Belmonte-Rivas et al., 2015].  2 

DOAS UV/Vis nadir retrievals are characterized by a vertical sensitivity that generally 3 

reduces with increasing atmospheric pressure, and require an a priori vertical profile of the 4 

species 𝐱𝐚 to interpret the slant column (e.g. Palmer et al. [2001]; Richter et al. [2006]). 5 

Because Rayleigh scattering of sunlight is more effective in the UV, fewer photons reach the 6 

lower atmosphere in the spectral range where SO2 has distinct absorption spectral features 7 

(300-330 nm), compared to the spectral windows for HCHO (340-360 nm) or NO2 (400-500 8 

nm). This implies that the measurement sensitivity to species in the lower atmosphere is 9 

lowest for SO2, followed by HCHO, and highest for NO2. The contribution of the a priori 10 

profile to the retrieved column increases with decreasing sensitivity of the measurement. 11 

Uncertainty in the species a priori vertical profile thus propagates stronger for SO2 (up to 22% 12 

error [Lee et al., 2009]), and somewhat less for NO2 (10-15% error, e.g. Hains et al. [2010]; 13 

Vinken et al. [2014]).  14 

This a-priori profile error contribution to model-satellite comparisons can be eliminated by 15 

application of the averaging kernel to the model output (Eskes and Boersma [2003]; Boersma 16 

et al. [2004]; Rodgers and Connor [2003]). The averaging kernel for UV/Vis retrievals 17 

describes the relationship between the true column and the estimated, or retrieved column 𝑦! 18 

where the hat denotes that the retrieval represents an estimated value of the true column: 19 

𝑦! = A∙𝐱𝐭𝐫𝐮𝐞       (1) 20 

with A the averaging kernel whose discretized elements can be described as 𝐴! =
!!

!(!!)
  , with 21 

ml the scattering weights [Palmer et al., 2001], or box air mass factors for layer l (see Eskes 22 

and Boersma [2003], and Boersma et al. [2004] for more detail). Note that the retrieval 23 

problem has been linearised around 𝐱𝐚 = 0, related to the weak absorber character of the 24 

species, which implies that the a-priori state does not explicitly appear in Eq. (1). 25 

2.2 Model evaluation with UV/Vis satellite retrievals 26 

A comparison between satellite measurements 𝑦! (e.g. the retrieved tropospheric NO2 27 

columns within a model grid cell), and the model state 𝐱𝐦 (e.g. the modelled vertical NO2 28 

distribution in the troposphere), in the form of measurement-minus-model departures (d) is 29 

expressed as: 30 
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𝑑 = 𝑦! − 𝐇𝐱𝐦      (2) 1 

with 𝐇 the observation operator that describes the relation between the observed data and the 2 

modelled state. Apart from the observation errors (𝜎! in the following) and the modelling 3 

errors (𝜎!), we also need to take into account representativeness errors (𝜎!) associated with 4 

the fact that model simulations and satellite measurements provide different representations of 5 

a geophysical quantity. We generalise the representativeness errors as the errors introduced in 6 

a satellite-to-model evaluation by an incorrect description of the relation between the grid-cell 7 

mean concentrations and the satellite retrieval(s), i.e. we can think of them as errors in the 8 

observation operator 𝐇. In data assimilation, representativeness errors are normally included 9 

in the observation errors (e.g. Jones et al., [2003]; Miyazaki et al., [2012]). 10 

Substantial representativeness error may arise when the observation operator 𝐇 is simplified 11 

and the model is not sampled in a manner fully consistent with the satellite observation. We 12 

can identify three types of representativeness errors associated with model-satellite 13 

comparisons: 14 

-­‐ Spatial representativeness errors. Such errors will arise because models provide a 15 

spatially smoothed representation of the atmospheric state, whereas satellite 16 

measurements provide ‘snapshots’, and often resolve variability at scales (pixels) 17 

smaller than the model grid cell. 18 

-­‐ Temporal representativeness errors. In applications focusing on clear-sky situations 19 

such as emission estimates, failure to sample the model for the same clear-sky 20 

conditions and overpass time as the satellite measurements, will lead to systematic 21 

sampling errors. 22 

-­‐ Vertical representativeness errors. Because the sensitivity of the UV/Vis satellite 23 

retrievals is altitude-dependent (Palmer et al., [2001]), UV/Vis retrievals should be 24 

regarded as estimates of the state weighted by the averaging kernel (Eskes and 25 

Boersma [2003]). Neglecting the averaging kernel or vertical sensitivity of the 26 

retrieval in the comparison will inevitably introduce additional representativeness 27 

errors to the comparison in Eq. (2).  28 

To minimize these representativeness errors in comparing CTMs and satellite measurements, 29 

we recommend to follow the recipe given in Section 3.2. 30 
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This recipe on how to compare a CTM with satellite observations is a set of mathematical 1 

operations on satellite and model data. This is particularly relevant for short-lived species that 2 

have a high spatial and diurnal variability such as NO2, SO2, and HCHO (e.g. Boersma et al. 3 

[2008], Vrekoussis et al. [2009], Barkley et al. [2013]). Details of the approach may differ 4 

(e.g. spatial interpolation of the model state to the location of the pixel, averaging over 5 

different model times close to the satellite measurement time, replacing the a priori profile 6 

with the model profile in the retrieval), as long as the general principle of consistent sampling 7 

is observed. We advise against a comparison of the original satellite column (retrieved with a 8 

priori profile 𝐱𝐚) to the model column 𝑥! because in that case differences between the a priori 9 

and modelled vertical profiles would inflate the overall error 𝑑, see Sect. 6 and 10 

recommendations in Sect. 2.3 of Boersma et al. [2004], and Duncan et al. [2014]. 11 

3 Theoretical model evaluation error budget 12 

3.1 Sources of errors in evaluating CTMs with UV/Vis retrievals 13 

A comparison between model simulations and satellite retrievals begins with a comparison of 14 

their theoretical capabilities. A model-satellite comparison will be influenced by: 15 

1. modelling errors 𝜎!, related to an incomplete knowledge and description of the 16 

atmospheric state 𝐱𝐦,  17 

2. retrieval errors 𝜎!, because of instrument noise and uncertainty in the (external) 18 

forward model parameters, and  19 

3. representativeness errors 𝜎!, arising from fundamental differences between the-20 

atmospheric sampling by models and satellites, i.e. errors in the observation operator 21 

𝐇.  22 

Assuming that these error terms are independent, the error analysis for a satellite-model 23 

column difference 𝑦! − 𝐇𝐱𝐦  can be written as: 24 

𝜎 = 𝜎!! + 𝜎!! + 𝜎!! !/!     (3) 25 

with 𝜎!! the best estimate for the (relative) column retrieval errors, 𝜎!!  for the (relative) 26 

modelling error, and 𝜎!! the contribution to the error arising from the act of carrying out the 27 

comparison itself (i.e. from errors in the observation operator). Some studies (e.g. Jones et al. 28 

[2003]) include representativeness errors in the observation errors. Below we will show that 29 
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representativeness errors may contribute substantially to the overall error in satellite-model 1 

confrontations.  2 

The retrieval, modelling, and representativeness errors will all have systematic and random 3 

components. In principle, one would like to distinguish between the random and systematic 4 

contributions, but in practice this is very complicated, because many systematic contributions 5 

to retrieval and model errors are only weakly correlated in space and time. Examples of subtle 6 

systematic retrieval effects are errors in individual albedo values with a small spatial 7 

correlation length but with 100% correlation in time (for instance because residual cloud 8 

effects in the albedo climatology are strongly variable from one location to the other 9 

[Kleipool et al., 2008]). When averaged over a larger region such as the spatial extent of a 10 

coarse model grid cell, the impact of such errors tends to reduce. Likewise, models will suffer 11 

from systematic errors in for instance the description of vertical transport. In particular 12 

circumstances, such as strong, small-scale convective activity, such errors tend to be acute, 13 

but in an average sense, such as comparisons aggregated over a month and a region, we may 14 

expect these errors to be smaller.  15 

3.2 Recipe  for minimizing representativeness errors16 

1. The first step in comparing satellite observations to model simulations is to ensure that the 17 

satellite measurements are spatially representative for the area of the model grid cell. This is 18 

achieved by calculating the weighted average of all individual retrievals 𝑦!!! within the 19 

superobservation model grid cell over the entire area covered by all (valid) retrievals, where 20 

the weight is given by the pixel area 𝑤! (in km2): 21 

𝑦!! =
∑ !!!!!

!
!
∑ !!!

      (4). 22 

If the model grid cell happens to be smaller than the satellite pixel, Eq. (4) will reduce 23 

to  𝑦!! = 𝑦!!! for grid cells that are completely overlapped by a single satellite pixel (w1=1).  24 

2. The second step is to sample the CTM field sequence 𝐱𝐦[𝑡], here expressed as a discrete 25 

series of periodic fields with t an integer, when model time t is closest to the satellite overpass 26 

time to.  27 

𝐱𝐦 = 𝐱𝐦[𝑡]𝛿[𝑡], with 𝛿[𝑡] = !0, 𝑡 ≠ 𝑡!   
1, 𝑡 = 𝑡!   

   (5) 28 
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The model sequence is sometimes also sampled with somewhat looser criteria, by requiring 1 

that the absolute model-satellite time difference stays within 1-2 hours (e.g. Martin et al. 2 

[2003]). 3 

3. The third step is to apply the averaging kernel on the model vertical distribution 𝐱𝐦 to 4 

𝑦! that can be directly compared to the observed state 𝑦! : obtain the model estimate 5 

𝑦!=𝑨 𝐱𝐦 = ∑ 𝐴!𝑆!𝑥!,!!
!!     (6) !6 

where 𝑆! are the components at the l-th vertical layer of an operator that executes a mass-7 

vertical interpolation or integration followed by a conversion to sub-columns conserving 8 

(molec. cm-2) in case the model vertical distribution 𝑥!,! . The  is not yet given in those units9 

product of the mathematical expressions (5) and (6) forms the observation operator H in Eq. 10 

(2), which describes the relation between the superobservation and the modelled state.  11 

3.3 Representativeness errors in evaluating CTMs with UV/Vis retrievals 12 

The total representativeness error 𝜎! is composed of horizontal representativeness errors, 13 

(temporal model) sampling errors, and vertical smoothing errors, and these three contributions 14 

may be assumed to be largely uncorrelated: 15 

𝜎! = 𝜎!! + 𝜎!! + 𝜎!! !/!     (7) 16 

For an appropriate comparison between model simulations and satellite retrievals, it is 17 

important to sample the CTM as closely as possible to the satellite’s sampling of the 18 

atmosphere (see Sect. 3.2). These may seem like trivial conditions for comparison, yet one or 19 

more of these conditions are often violated. 20 

4 Data used in this study 21 

4.1 Satellite data 22 

In this study, we use tropospheric NO2 retrievals from the Dutch OMI NO2 (DOMINO) 23 

algorithm v2.0 [Boersma et al., 2011]. These retrievals proceed along the lines discussed 24 

above, with spectral fitting of NO2 in the 405-465 nm window [van Geffen et al., 2014], data 25 

assimilation of the NO2 slant columns in the TM4 chemistry transport model [Williams et al., 26 

2009] to estimate the stratospheric background [Dirksen et al., 2011], and final conversion of 27 

the tropospheric slant columns with air mass factors based on radiative transfer calculations 28 
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with the DAK model. In the DOMINO algorithm, altitude-dependent AMFs are interpolated 1 

from pre-calculated look-up tables using the best available information on the satellite 2 

viewing geometry, surface albedo [Kleipool et al., 2008], terrain height (3km-resolution 3 

elevation data provided with Aura data). Subsequently, the local altitude-dependent AMFs are 4 

combined with the predicted local vertical NO2 distributions (from TM4), to produce the 5 

(tropospheric) air mass factors. The air mass factor step also includes a correction for the 6 

temperature-dependency of the NO2 absorption cross-section [Boersma et al., 2004], because 7 

only the 220 K cross section is used in the spectral fit. The DOMINO v2.0 data have been 8 

evaluated in a number of validation exercises (e.g. Irie et al. [2012], Ma et al. [2013], Lin et 9 

al. [2014]), showing their quality and use, although a number of relevant improvements is 10 

planned and currently being implemented (Maasakkers [2013], van Geffen et al. [2014]). 11 

DOMINO v2.0 has been used in many applications and model studies (e.g. Stavrakou et al. 12 

[2013], Castellanos et al. [2014], McLinden et al. [2014], Verstraeten et al. [2015]), which 13 

makes the data product well-suited for evaluating satellite-to-model comparisons and the 14 

errors associated with such comparisons, which is the purpose of this study. 15 

Chemistry-transport models (CTMs) are the central tools to simulate tropospheric 16 

concentrations of NO2, SO2, and HCHO, and to help interpret and use satellite measurements 17 

of these species. For the short-lived species studied here, previous studies indicate modelling 18 

biases of ±20-30% for NO2 (e.g. van Noije et al. [2006]), and 20-50% for HCHO (e.g. Dufour 19 

et al. [2009]; Williams et al. [2012]) over regions with substantial pollution. 20 

4.2 TM5 21 

We use the TM5, the global 3-D CTM version 3.0 [Huijnen et al., 2010] with a grid of 3° 22 

longitude × 2° latitudes × 34 vertical layers, and a model top at 0.1 hPa [Krol et al., 2005]. 23 

The TM5 model is used in many studies for atmospheric chemistry (e.g. Williams et al. 24 

[2014]), aerosol haze (e.g. von Hardenberg et al. [2012]), data assimilation, and inversion 25 

applications (e.g. Hooghiemstra et al. [2012]; Krol et al. [2013]). The model is driven by 26 

ERA-Interim meteorological reanalysis data from the European Centre for Medium Range 27 

Weather Forecats (ECMWF) [Dee et al., 2011] and the base time step is 1 hour. In the version 28 

used here, TM5 operates with Carbon Bond Mechanism 4 chemistry [Gery et al., 1989] to 29 

describe the production of ozone, hydrogen oxide radicals (HOx=OH+HO2) and oxidation of 30 

nitrogen oxides (NOx=NO+NO2), SO2, and volatile organic compounds (VOCs), with 40 31 

species, 64 gas-phase, and 16 photolysis reactions. In TM5, SO2 is oxidized in clouds and on 32 
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aerosols, and nighttime hydrolysis of N2O5 into nitric acid (HNO3) is parameterized with a 1 

global mean uptake coefficient of 0.02 following recommendations by Evans and Jacob 2 

[2005]. NOx emissions are from the RETRO inventory for the anthropogenic sectors 3 

(Regional Emission inventory in ASia – REAS for Asia) with a total of 33 Tg N/yr, 9 Tg N/yr 4 

from soil, 5 TgN/yr from biomass burning (from the Global Fire Emissions Database v2 5 

(GFED2) van der Werf et al. [2006]), and 6 TgN/yr for lightning. Global anthropogenic SO2 6 

emissions are taken from the AeroCom project at 108 Tg SO2/yr [Dentener et al., 2006]. 7 

Biogenic VOC emissions, including the important HCHO and its precursor isoprene, are from 8 

the ORCHIDEE database [Lathière et al., 2006], and are 10 TgC/yr for HCHO and 565 Tg 9 

C5H8/yr for isoprene. We simulated the year 2006 with a one-year spin-up. 10 

TM5 simulations of NO2 and HCHO have been evaluated by Huijnen et al. [2010] and 11 

Williams et al. [2012]. These studies indicate that tropospheric NO2 columns in TM5 are 20-12 

30% low compared to DOMINO v2.0 columns, but the model captures the seasonality, and 13 

shows realistic vertical distributions of NO2 relative to INTEX-B aircraft measurements. TM5 14 

captures the seasonality of HCHO tropospheric columns but also overestimates these columns 15 

by 0-50%, partly because of inadequate photolysis rates in the model [Williams et al., 2012]. 16 

4.3 GEOS-Chem 17 

We also use the GEOS-Chem model, v9-02i, with a grid of 2.5° longitude × 2° latitude × 47 18 

vertical layers, and the model top at 80 km. The GEOS-Chem model is a CTM in use by a 19 

large community of scientists for a wide range of applications including, shipping NOx 20 

plume-in-grid chemistry [Vinken et al., 2011], and estimating isoprene and ammonia 21 

emissions (e.g. Millet et al. [2008]; Paulot et al., [2014]). GEOS-Chem is driven by GEOS-5 22 

meteorological fields from NASA GMAO, with a time step of 30 minutes. As TM5, GEOS-23 

Chem uses a condensed O3-NOx-HOx-VOC-aerosol chemistry scheme (described in Mao et 24 

al. [2010] and references therein). The standard chemistry scheme has 66 species, and 236 25 

chemical reactions. GEOS-Chem takes into account heterogeneous chemistry on aerosol and 26 

cloud particles [Mao et al., 2010], including the uptake of N2O5 on aerosols leading to 27 

nighttime HNO3 formation following the parameterization by Evans and Jacob [2005]. 28 

Anthropogenic NOx emissions are from the global EDGAR 3.2FT2000 inventory [Olivier 29 

and Berdowski, 2000], but these are replaced by regional inventories over various continents. 30 

Other NOx emissions in GEOS-Chem include soil, lightning, biomass burning, biofuel, 31 

aircraft and ship, resulting in a global total source of 51.5 TgN/yr for 2006 (similar to TM5 32 
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with 53 TgN/yr for the same year). A two-year spin-up was performed (2004-2005), and 1 

GEOS-Chem output was stored for the year 2006. For more details on the GEOS-Chem 2 

simulation, see Vinken et al. [2014]. 3 

GEOS-Chem simulations of tropospheric NO2 columns have been evaluated before by 4 

Lamsal et al. [2010] and Lin [2012], who found, similar to the TM5 evaluation discussed 5 

above, that the model underestimates tropospheric NO2 by 20-35% (over China). Zhang et al. 6 

[2012], in a study targeting nitrogen deposition over the United States, found excellent 7 

agreement between the modelled and OMI-observed spatial distribution of tropospheric NO2, 8 

but also underestimates of 10% in the northeastern US, and 40% locally in southern 9 

California, were also evident. 10 

5 Representativeness errors 11 

5.1 Horizontal representativeness errors 12 

If the complete spatial extent of a model grid cell is covered with valid retrievals, a good 13 

comparison is straightforward because a spatially fully representative area average can be 14 

calculated. For partly covered cases, the difficulty lies in estimating the magnitude of the 15 

(horizontal representativeness) errors associated with limited coverage of a model grid cell. 16 

One way to calculate a representative grid cell average is by averaging all valid satellite 17 

observations that were taken within the boundaries of the grid cell within a given model time 18 

step, as in Eq. (3), with wi the fractional grid cell coverage defined as Apixel/Acell with Apixel the 19 

area (in km2) covered by the fraction of the satellite pixel that falls within the boundaries of 20 

the model grid cell with area Acell (in km2). In this manner, one obtains a ‘superobservation’ 21 

that may be considered as representative for the grid cell average (Dirksen et al. [2011]; 22 

Miyazaki et al. [2013]). In some model-satellite confrontations, the number of satellite 23 

retrievals is thinned out to 1 per grid cell, but we advise against such an approach in view of 24 

the strong sub-grid variations and the considerable errors in individual measurements. In 25 

many global applications, the spatial resolution of the model is coarser than the resolution of 26 

the satellite observations. 27 

We caution against applying additional weighting by the individual retrieval errors in Eq. (4). 28 

Because, by nature of the DOAS approach, retrieval errors are largest for large column values 29 

(see e.g. Boersma et al. [2004]), error weighting would skew the average to the lower values 30 

in the distribution. The measurement error for superobservations can be calculated from area-31 
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weighting the individual pixel errors σo,i to provide an area-weighted average (statistical) 1 

retrieval error 𝜎, and by accounting for a partial correlation in the errors between pixels as in 2 

Eskes et al. [2003] (see Appendix B for a derivation): 3 

     𝜎! = 𝜎 !!!
!
+ 𝑐      (8) 4 

with the second term on the right side representing the error correlation (c) between the n 5 

retrievals. Miyazaki et al. [2012] propose c=0.15, based on the consideration that errors in 6 

clouds, albedo, a priori profile, and aerosol in retrievals are typically correlated in space, but 7 

they acknowledge that the exact number is difficult to estimate.  8 

Some studies take a different approach than the superobservations proposed in Eq. (4) and 9 

interpolate the model simulations to the centre of a satellite pixel, but the difficulty with this 10 

approach is the questionable spatial representativeness of the interpolated model value, 11 

especially if the model grid cells cover a larger area than the satellite pixels.  12 

Both individual pixel errors and representativeness errors contribute to the total error in the 13 

superobservation. Following Miyazaki et al. [2012], we calculate the horizontal 14 

representativeness error 𝜎! as a function of the total fractional coverage achieved by all valid 15 

pixels by random reduction of the number of retrievals used to calculate the mean grid cell 16 

value. For homogeneous scenes with little variability of NO2, SO2, or HCHO, such errors will 17 

obviously be small. But for grid cells covering strong inhomogeneous sources of air pollution, 18 

such as megacities or coal plants, we may expect the area average to depend strongly on the 19 

spatial sampling. Figure 1 illustrates the horizontal representativeness error as a function of 20 

total fractional coverage for one polluted model grid cell, here taken over the eastern United 21 

States (greater New York City), at two resolutions, i.e. 3° × 2° (typical for a global CTM) and 22 

0.5° × 0.5° (regional CTM). To calculate the horizontal representativeness error, we randomly 23 

reduced the number of pixels n in Eq. (4) first by 1, then by 2, and so on, until there was only 24 

one pixel left, to obtain new estimates 𝑦!! . We repeated this 100 times and interpret the root 25 

mean squared difference with the original 𝑦!  as the horizontal representativeness error, which !26 

is zero in situations of full coverage. Complete coverage of the grid cell is typically achieved 27 

by more than 100 OMI pixels in the case of 3° × 2° resolution grid cells, and by ±5 pixels1 for 28 

                                                
1 Because OMI pixel sizes vary with viewing zenith angle (largest pixels at the edge of the swath), the exact 
number of pixels covering a model grid cell depends on which part of the OMI swath covers the grid cell. 



 15 

0.5° × 0.5°. The horizontal representativeness errors appear higher for the 0.5° × 0.5° than for 1 

the 3° × 2° grid cell, due to the smaller sample (n=5) size and the strong spatial gradients over 2 

the central New York area for the higher resolution model. For models with higher spatial 3 

resolution (0.5° × 0.5°), there is less tolerance for reduced area coverage over strongly 4 

inhomogeneous areas such as central New York, as indicated by the steeper 5 

representativeness error increase with reduced cover (blue dashed line in Figure 1). This 6 

reflects the more heterogeneous distribution of polluted NO2 column values for the high-7 

resolution model with a small sample (5 pixels) than for the coarse resolution with a large 8 

sample (> 100 pixels). The 3° × 2° case with complete area coverage by OMI NO2 pixels (on 9 

17 July 2006) illustrates the potential for horizontal representativeness errors. For a fractional 10 

coverage of 0.5, the horizontal representativeness error increases to 10-15%, which is still 11 

considerably smaller than the 20-30% errors in the satellite measurements themselves. For 12 

fractional coverage of 0.1 however, the representativeness error increases to 35%, a level that 13 

exceeds the theoretical NO2 retrieval error (Boersma et al., 2011) and NO2 validation errors 14 

(e.g. Irie et al., 2012). However, by averaging over multiple days, the representativeness error 15 

can be reduced further, depending on the day-to-day variability of the columns. Table S1 16 

(Supplementary Material) shows the statistics of a comparison between monthly mean 17 

observed and simulated columns over the greater eastern United States in July 2006, for 18 

different degrees of fractional coverage required.  19 

In data assimilation systems, any fractional coverage may be used as long as the horizontal 20 

representativeness error is well described and accounted for along with the observation error. 21 

This can be achieved by adding in quadrature the measurement error and representativeness 22 

error 𝜎!,!
! + 𝜎!,!

!  to represent the overall superobservation error. 23 
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 1 

Figure 1. Relative horizontal representativeness errors as a function of the covered fraction of 2 

one model grid cell in the case of OMI tropospheric NO2 columns for polluted area(s) (mean 3 

column 5 × 1015 molec.cm-2). The black line indicates the error as a function of the fractional 4 

coverage for a 3° × 2° grid cell over the area of New York City on one day (17 July 2006, 114 5 

OMI pixels). The blue asterisks indicate the mean error as a function of fractional coverage 6 

for various 0.5° × 0.5° grid cells on 17 July 2006. 7 

5.2 Temporal representativeness errors related to clouds 8 

In the case where UV/Vis satellite retrievals of the tropospheric column are used for air 9 

pollution applications (taken under cloud-free situations, see e.g. Schaub et al. [2006], Millet 10 

al. [2006], Geddes et al. [2012]), both measurements and models should be sampled under 11 

similar clear-sky situations. As long as the model appropriately simulates the effects of clouds 12 

on photolysis rates, this ensures that measurement and model represent the trace gas 13 

concentrations under similar photochemical regimes. Failure to sample the model on clear-sky 14 

days only, will introduce a bias in the modelled average. Short-lived trace gases may have a 15 
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longer lifetime against photochemical loss in situations with overhead clouds (assuming they 1 

are represented well in models), when actinic fluxes and temperatures are lower and 2 

chemistry slower than in clear-sky situations. For trace gases whose emissions reflect distinct 3 

anthropogenic patterns, it is also necessary to sample the model according to the observations, 4 

in order to properly weigh well-documented weekend (e.g. Beirle et al., 2003; Boersma et al., 5 

2009) and national holiday reductions (Lin et al., 2011) when calculating the model average. 6 

We first evaluate the TM5 model’s ability to simulate the effective cloud cover as observed 7 

by OMI at 13:30 hrs local time. Cloud cover (and cloud optical thickness) data in TM5 are 8 

hourly interpolated from 3-hourly pre-processed ECMWF fields [Huijnen et al., 2010]. Since 9 

the OMI cloud retrieval reports effective cloud fractions, based on the assumption that clouds 10 

are optically thick (optical thickness of 40, with a corresponding cloud albedo of 0.8) 11 

[Acarreta et al., 2004; Stammes et al., 2008], we converted the TM5 geometrical cloud cover 12 

into an effective fraction comparable to the OMI observations. To do so, we used the 13 

maximum-random overlap assumption [Morcrette and Jakob, 2000] to compute the total 14 

geometrical cloud cover and total cloud optical thickness from the vertically resolved cloud 15 

cover and optical thickness in TM5. We used the modelled relationship between the total 16 

cloud optical thickness for a liquid water cloud and its spherical cloud albedo in Buriez et al. 17 

[2005] to calculate the effective cloud albedo associated with each grid cell’s cloud cover. 18 

Finally, we weighted the total geometric cloud cover with the ratio of the effective cloud 19 

albedo to 0.8, the value assumed for all clouds in the OMI retrieval (Acarreta et al. 2004]; 20 

Stammes et al. [2008]). For more details we refer to the Appendix C. 21 

Figure 2 shows monthly mean effective cloud fractions as retrieved from OMI and simulated 22 

with TM5 for February and August 2006. The model was sampled within 30 minutes of the 23 

OMI overpass time of 13:30 hrs, and model and satellite were matched in space and time for 24 

further analysis. We see that TM5 captures the spatial patterns observed by OMI, with low 25 

cloud fractions over the subtropics, and high cloud fractions over the tropical ITCZ and the 26 

middle-to-high latitudes (> 40°). Largest differences occur at the edges of areas flagged as 27 

snow-covered in the OMI retrieval (February 2006), and over areas where TM5 predicts cloud 28 

optical thickness to exceed 40, such as over the tropics, where ice clouds often occur (and the 29 

relationship for water clouds from Buriez et al. [2005] is less valid).  30 

To evaluate the simulated effective cloud fractions, we report the correlation coefficient, 31 

mean bias, and root mean square error relative to the OMI-observed cloud fractions over 32 



 18 

Europe for February and August 2006. Figure 2 shows significant positive correlation 1 

between TM5 and OMI effective cloud fractions over Europe both in February (r=0.70, 2 

n=3379) and August (r=0.75, n=4665). The mean bias between TM5 and OMI is -0.08 in 3 

February and +0.02 in August, and the root mean square error is 0.23 in February and 0.20 in 4 

August. The agreement between TM5 and OMI, while far from perfect, suggests that TM5 5 

has some success in simulating the contrast between ‘cloud-free’ (fOMI<0.2) and ‘cloudy sky’ 6 

(fOMI>0.2) situations, i.e. the likelihood that OMI reports a clear-sky scene, while TM5 7 

simulates a cloudy sky, and vice versa is <20% and <14%, respectively. 8 

 9 
Figure 2. Monthly average effective cloud fraction observed from OMI (upper panels) and 10 

simulated by TM5 based on ECMWF meteorological fields (middle panels) in February (left 11 

column) and August 2006 (right). Cloud fractions have been selected only for those days and 12 
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locations that had a successful OMI O2-O2 retrieval. Grey areas indicate less than 3 successful 1 

coincidences. Bottom panels: scatterplot of daily pairs of OMI (x-axis) and TM5 cloud 2 

fractions (y-axis) in February 2006 (left) and August 2006 (right) over Europe (10° W-30° E; 3 

35°-60° N). The colours indicate the number of times a particular grid cell has been filled, 4 

where light blue corresponds to 2×, green 3×, yellow 4×, orange 5×, red 6×, and magenta to 5 

7× or more. TM5 effective cloud fractions can be expressed as -0.10 + 1.06 fOMI (February) 6 

and -0.01 + 1.07 fOMI (August).  7 

Figure 3 shows a box and whisker plot for OMI and TM5 effective cloud fractions over 8 

Europe in February and August 2006. The figure indicates that for OMI measurements of 9 

effective cloud fractions smaller than 0.2, TM5 reproduces similar small effective cloud 10 

fractions (February median OMI: 0.09, TM5: 0.06; August median OMI: 0.05, TM5: 0.04). 11 

For days and locations when OMI observes effective cloud fractions larger than 0.2 12 

(February: 0.59, August: 0.47), TM5 simulates comparable high effective cloud fractions 13 

(January: 0.49, July: 0.45), providing some confidence in the TM5 model, driven by ECMWF 14 

meteorological fields, to capture the observed effective cloud fractions. 15 

 16 

Figure 3. Box and whisker plots for OMI (black) and TM5 (red) effective cloud fractions 17 

over Europe in February 2006 (left panel) and August 2006 (right panel). The two left boxes 18 

of each panel indicate the clear sky situations when the OMI cloud fraction < 0.2. The centre 19 

line of the boxes indicate the median cloud fraction, the upper and lower edges indicate the 20 

25th and 75th percentiles and the lower and upper whiskers represent the minimum and 21 

maximum value in the sample. For February 2006, the sample consisted of 3379 pairs (737 22 

clear sky, 2642 cloudy), and for August, the sample size was 4665 (1991 clear sky, 2674 23 

cloudy). 24 
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Figure 4(a) shows a comparison of average TM5 tropospheric NO2 columns simulated under 1 

clear-sky and cloudy situations over Europe in February and August 2006. TM5 was sampled 2 

for polluted situations (cells with monthly mean NO2 columns in excess of 1.0×1015 3 

molec.cm-2) between 12:00-15:00 hrs local time, on days with clear skies and on days with 4 

cloud-cover. Under clear-sky situations, TM5 simulates tropospheric NO2 columns that are on 5 

average 15-20% lower than under cloudy circumstances, in line with in situ observations 6 

reported by Boersma et al. [2009] and Geddes et al. [2012] over Israeli and Canadian cities, 7 

respectively. Both in February and August, the clear-sky mean NO2 column is 12% below the 8 

28-day monthly mean in February and 31-day monthly mean in August. Although we cannot 9 

rule out that other effects than enhanced photochemical loss may have contributed to lower 10 

NO2 columns over the polluted grid cells (e.g. increased ventilation or deposition) on clear-11 

sky days, a comparison of NO2 columns for all European grid cells showed that the 12 

geometrical mean of the local clear-sky to cloudy column ratios was 0.74 in February and 13 

0.89 in August, suggesting that reduced clear-sky NO2 columns presented in Fig. 4 show a 14 

robust effect.  15 

The results for August 2006 indicate that clear-sky sampling of the model is also relevant for 16 

HCHO in the growing season (Fig. 4(b)). Average HCHO columns are 12% higher under 17 

clear-sky situations than on cloudy days and the clear-sky mean HCHO column is 8% higher 18 

than the all-sky monthly mean (August 2006). In winter, HCHO concentrations are generally 19 

low over Europe and differences between clear and cloudy sky are well below the detection 20 

limit of UV-Vis satellite sensors.  21 

 22 

Figure 4.(a) monthly mean tropospheric NO2 columns simulated by TM5 for polluted grid 23 

cells (with all-sky monthly means > 1.0 × 1015 molec.cm-2, n=18 in February, n=17 in 24 
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August). The blue bars represent the average of the tropospheric NO2 column sampled on 1 

days when the OMI cloud fraction was smaller than 0.2. Light blue: average for columns 2 

sampled when OMI cloud fraction > 0.2. (b): monthly mean TM5 HCHO columns for clear-3 

sky and cloudy situations (n=18 in February, for August: all-sky monthly mean > 7.5 × 1015 4 

molec.cm-2, n=12). 5 

Exclusive sampling of the model on clear-sky days is important, because photolysis rates 6 

J[NO2] in the lower troposphere are significantly higher on those days and can be simulated 7 

well by TM5 [Williams et al., 2012], so that NO2 columns will be systematically lower. The 8 

differences between HCHO columns sampled on clear-sky and cloudy days are somewhat 9 

smaller than for NO2 columns because both the formation and destruction of HCHO are 10 

driven by photochemistry. Nevertheless, the stronger summertime production of HCHO from 11 

the (OH-driven) oxidation of methane and especially isoprene outpaces the increased loss of 12 

HCHO through photolysis and oxidation [Fried et al., 1997] on clear-sky days compared to 13 

cloudy days, in line with observations (e.g. Munger et al. [1995], Cerquiera et al. [2003]).  14 

To estimate the magnitude of the temporal representativeness errors arising from the 15 

particular choice of model sampling, we evaluated the satellite-model comparison results for 16 

different sampling strategies. Again, we use the averaged ratio of satellite measurements to 17 

model simulations (𝑦!/𝑥!), and the spatio-temporal correlation coefficient, as appropriate 18 

indicators of representativeness errors. Since the model – measurement bias may well be due 19 

to unrelated systematic errors in either the CTM (emissions, chemistry) or the satellite 20 

retrievals, we are not concerned with the absolute value of the measurement-to-model ratio, 21 

but we are interested in the sensitivity of the ratio to various sampling strategies. We tested 22 

four strategies for comparing tropospheric NO2 over large polluted regions: (A) both OMI 23 

(for OMI effective cloud-fraction) and TM5 (TM5 effective cloud fraction) collocated and 24 

sampled for mostly clear-sky scenes only at the OMI overpass time of 13:30 hrs, (B) OMI and 25 

TM5 collocated and co-sampled for situations with OMI effective cloud radiance fractions < 26 

0.52, (C) OMI sampled for situations with OMI effective cloud radiance fractions < 0.5, but 27 

TM5 more loosely sampled for OMI effective cloud fractions < 0.6, and (D) OMI sampled for 28 

situations with OMI effective cloud radiance fractions < 0.5, but TM5 sampled for all days in 29 

the month (i.e. no temporal collocation except for appropriate overpass time). Strategy (A) is 30 

                                                
2 The cloud radiance fraction is defined as the relative contribution of top-of-atmosphere radiance received by 
the cloud part of the pixel. A cloud radiance fraction of 0.5 corresponds to a geometric cloud fraction of ±0.2. 
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considered to be optimal, but to our knowledge has not been applied in studies to date. 1 

Strategy (B) has been followed in numerous studies, and relies on the assumption that CTMs 2 

capture the observed cloud cover well. In spite of its erroneous co-sampling with the satellite 3 

measurements, strategy (D) has also been used frequently, and therefore we tested its impact 4 

on the temporal representativeness errors. Finally, strategy (C) holds middle ground between 5 

(B) and (D). Figure 5 shows that the model-to-measurement ratio shows substantial 6 

dependence on the comparison strategy, especially in Winter. The differences between 7 

strategies (A) and (B) are negligible, but with strategy (D) the OMI/TM5 ratio drops more 8 

than 25% below the values obtained by strategies (A) and (B). These strategies also 9 

demonstrate that strategy (D) leads to a reduced capacity of the model to explain the observed 10 

variability in the NO2 spatial patterns, with R2 dropping almost 10% (from 0.64 to 0.55 in 11 

Winter and from 0.66 to 0.59 in Summer).  12 

 13 

Figure 5. Impact of sampling strategy on monthly averaged OMI:TM5 ratio of tropospheric 14 

NO2 columns (black dots) and on spatial correlation coefficient (R2, blue dots) over the 15 

eastern United States (30°-44° N, 90°-72° W). Left panel: ratio and R2 for February 2006 16 

(n=28). Right panel: August 2006 (n=32). Grid-cells were selected in the comparison when 17 

the covered fraction exceeded 0.5. The dashed black line shows the normalized OMI:TM5 18 
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ratio for strategy (A), and the dashed grey line shows the R2 for strategy (A) as a guide to the 1 

eye. 2 

Analyses for other regions showed similar results as in Fig. 5. These results imply that for 3 

applications of satellite data such as emission estimates or model evaluations, substantial 4 

systematic errors may occur in the final estimate, if sampling strategies such as (D) are used. 5 

We therefore strongly discourage the use of such comparison strategies, as they lead to 6 

considerable temporal representativeness errors, and, thus, systematic underestimations in 7 

measurement:model ratios. 8 

5.3 Vertical representativeness errors 9 

Here we evaluate the representativeness errors introduced in a satellite-model comparison if 10 

the averaging kernel is not accounted for. To illustrate the way the kernels work, Figure 6 11 

shows GEOS-Chem NO2 vertical profiles with and without the averaging kernel applied over 12 

the Beijing grid cell on clear-sky days with excellent spatial coverage (18 February and 23 13 

August 2006). On both days, application of the kernel leads to a higher value for the model 14 

column, reflecting the relatively larger amounts of NO2 aloft in GEOS-Chem simulations 15 

compared to the a priori TM4 NO2 profiles. The lower panels show that on two other clear-16 

sky days (17 February and 31 August 2006) the kernel has only little effect on the GEOS-17 

Chem tropospheric NO2 column. On these days, the TM4 a priori and GEOS-Chem NO2 18 

profiles show similar, less pronounced vertical distributions. Nevertheless, in Figure 7 we see 19 

that, on average, for February and August 2006, the OMI averaging kernels result in increases 20 

in GEOS-Chem NO2 columns over Beijing of 15% (February) and 8% (August), and a closer 21 

agreement with OMI NO2 retrievals. This result can be understood from the stronger vertical 22 

mixing in the GEOS-Chem model compared to TM4, rather than from differences in NOx 23 

emissions or chemistry between models (NO2 amounts are quite similar between TM4 and 24 

GEOS-Chem over Beijing in 2006).  25 
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 1 

Figure 6. Vertical averaging kernel (black dashed line) and NO2 profiles simulated by GEOS-2 

Chem (blue), TM4 (red, a priori profiles in OMI NO2 retrieval), and GEOS-Chem convolved 3 

with the averaging kernel (purple) following Eq. (6); (a) 18 February 2006, (b) 23 August 4 

2006 over the Beijing grid cell (centered on 40°N, 116.25°E), (c) 17 February 2006, and (d) 5 

31 August 2006. The numbers given in blue, purple, and red indicate the tropospheric vertical 6 

NO2 columns in GEOS-Chem and TM4. 7 

The above finding does not have general validity in the sense that applying the kernel on any 8 

other model will also result in a tropospheric column increase. Applying the kernels to NO2 9 

profiles from a model with weaker vertical mixing than TM4 (rather than generally stronger 10 

vertical mixing as in the case of GEOS-Chem) is likely to reduce those columns. Figure S1 in 11 
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the Supplementary Information shows as much for the North Sea grid cell in February 2006, 1 

when GEOS-Chem exceeds TM4 NO2 concentrations below 900 hPa, and for Siberia in 2 

August 2006, when GEOS-Chem simulates a substantially enhanced tropospheric NO2 3 

column compared to TM4. 4 

 5 
Figure 7. Monthly mean averaging kernel (black dashed line) and NO2 profiles simulated by 6 

GEOS-Chem (blue), TM4 (red, a priori profiles in OMI NO2 retrieval), and GEOS-Chem 7 

convolved with the averaging kernel (purple) following Eq. (6); left panel: February 2006, 8 

right panel: August 2006 over the Beijing grid cell (centered on 40°N, 116.25°E). The 9 

numbers given in blue, purple, and red indicate the tropospheric vertical NO2 columns in 10 

GEOS-Chem and TM4. 11 

We next compare the monthly averaged GEOS-Chem tropospheric NO2 column fields for 12 

February and August 2006 with and without the kernels applied. Figure 8 shows that applying 13 

the kernel leads to substantial increases of up to 2×1015 molec. cm-2 in the columns for the 14 

polluted source regions in the northern hemisphere (eastern USA, Europe, and China). At the 15 

periphery of these regions in wintertime, and over regions with possible biomass burning in 16 

summer, we see that the smoothed columns can be lower than the original columns, indicating 17 
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that the GEOS-Chem vertical NO2 profile is more skewed towards the surface than the TM4 a 1 

priori in those situations, as confirmed by the profiles shown in Figure S1. 2 

 3 

Figure 8. Difference between monthly mean GEOS-Chem with AK (Eq. (6)) and GEOS-4 

Chem tropospheric NO2 columns without AK for February 2006 (upper panel) and August 5 

2006 (lower panel). Only grid cells with more than 3 days of better than 40% coverage of 6 

clear-sky pixels have been selected.  7 

Here we evaluate the level of agreement between the original GEOS-Chem and OMI NO2 8 

columns, compared to the level of agreement between the kernel-based GEOS-Chem and 9 

OMI NO2 column for the polluted source regions in the northern hemisphere, as the 10 

differences provide a measure of the representativeness errors that can be avoided by using 11 

the averaging kernel. Figure 9 shows the agreement between OMI and the GEOS-Chem NO2 12 

columns with and without kernel over Europe in February and August 2006. The upper panels 13 

indicate that the spatial correlation between the model and OMI tropospheric columns 14 

improves when the kernel is applied on the model NO2 profiles, especially in Summer when 15 

differences between the TM4 a priori and GEOS-Chem NO2 profile shapes are strong. 16 

Application of the kernel also results in geometric mean OMI:GEOS-Chem ratios with 17 

smaller uncertainty intervals at values of 1.15!.!"!.!" (February) and 1.24!.!"!.!" (August) compared 18 

to 1.13!.!"!.!" and 1.42!.!"!.!". We find similar results over the eastern United States and China (see 19 

Table 1 in Sect. 7). Figure 9(d) further supports the notion that application of the kernel 20 

August&2006&

February&2006&
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allows for a better-constrained evaluation of the model, as witnessed by the more peaked and 1 

narrower histogram of satellite:model ratios. We conclude that sampling the model according 2 

to the averaging kernel is especially relevant in Summer, and improves the satellite-model 3 

evaluation by removing differences between (TM4 apriori and GEOS-chem) profile shapes 4 

contributing to the discrepancies [Boersma et al., 2004]. Neglecting the kernels for GEOS-5 

Chem would lead to up to 15% stronger discrepancies between OMI and GEOS-Chem, and 6 

this portion could be wrongfully attributed in a model evaluation to e.g. too low NOx 7 

emissions, or too fast NO2 removal by chemistry or deposition. Appendix D presents an 8 

alternative to the application of the averaging kernel by providing a recipe to replace the a 9 

priori profile used in the retrieval by the profile from the CTM under evaluation. Such a 10 

recipe results in a modified retrieval that can be directly compared with the CTM under 11 

evaluation. 12 

 13 

Figure 9. Comparison between monthly average OMI and GEOS-Chem tropospheric NO2 14 

columns over Europe in February 2006 (left panels) and August 2006 (right panels); (a) 15 

scatter diagram of monthly average GEOS-Chem with AK (black circles) and GEOS-Chem 16 

without AK (grey circles) vs. OMI tropospheric NO2 columns for February 2006. The black 17 
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and grey lines indicate the geometric mean of the OMI:GEOS-Chem ratio; (b) as for (a) but 1 

for August 2006; (c) histogram of per-grid cell OMI-to-GEOS-Chem with AK tropospheric 2 

NO2 column ratios (black bars) and OMI-to-GEOS-Chem without AK ratios (grey bars) for 3 

February 2006; (d) as (c) but for August 2006. Only grid cells with more than 3 days of better 4 

than 40% coverage of clear-sky pixels have been selected. 5 

6 Combined representativeness errors 6 

To obtain an estimate of typical, overall representativeness errors in model evaluations with 7 

UV/Vis satellite measurements, we define three types of model evaluations, executed with 8 

increasing degree of detail. We again evaluate tropospheric NO2 from the GEOS-Chem model 9 

here (with OMI NO2 retrievals), as this model is sufficiently different from the TM4 model 10 

used to provide the a priori profiles in the OMI retrievals. The three types of evaluations can 11 

be characterised as advanced, common, and naïve: 12 

(A) advanced evaluation: accounting for sufficient spatial coverage and appropriate 13 

temporal representativeness, and also taking into account vertical representativeness, 14 

(B) common evaluation: as (A) but without taking into account vertical sensitivity,  15 

(C) naïve evaluation: no consideration of potential representativeness errors whatsoever, 16 

For evaluation (C), the model monthly average was based on samples from all days of the 17 

month (on OMI overpass time), irrespective of cloud coverage, and no kernel was applied (in 18 

other words a 31-day, all-sky, without AK monthly mean). We first evaluate the (avoidable) 19 

representativeness errors by comparing local OMI:GEOS-Chem ratios evaluated with 20 

approaches (A) vs. (C), and approaches (A) vs. (B). Figure 10 shows the relative difference in 21 

the local OMI:GEOS-Chem ratios for February and August 2006. We see that the systematic, 22 

avoidable errors in the OMI:GEOS-Chem ratio are largest with evaluation approach (C). The 23 

blue colours in the upper panel of Figure 10(a) indicate that, in winter, sampling the model on 24 

all (including cloudy sky) days leads to too low (by 15-20%) OMI/GEOS-Chem ratios 25 

reflecting the too high GEOS-Chem NO2 values resulting from temporal representativeness 26 

errors (cloudy-sky sampling cf. Figure 4).  27 

The similarity between the panels of Figure 10(b) shows that appropriate sampling is not as 28 

important in Summer, a season with ample clear-sky days, and, consequently, a smaller 29 

sampling error. Figure 10(b) suggests that application of the averaging kernel when sampling 30 

the model is the most important step, with the red colours indicating that failure to apply the 31 

averaging kernel leads to OMI/GEOS-Chem NO2 ratios that are too high by up to 30%. We 32 
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conclude that appropriate clear-sky sampling is mainly important in winter, but vertical 1 

smoothing is less relevant in that season. The reverse holds in Summer: with sufficient clear-2 

sky days available, application of the averaging kernel becomes essential, reflecting the fact 3 

NO2 vertical distributions are especially different between (the TM4 and GEOS-Chem) 4 

models in that season. 5 

 6 

 7 

Figure 10. Relative difference between local monthly mean OMI:GEOS-Chem NO2 column 8 

ratio’s for (a) February 2006 between method (C) and (A) (upper panel) and between method 9 

(B) and (A) (lower panel), and (b) August 2006. Relative difference defined as 100% × 10 

((C/A)-1), and 100% × ((B/A)-1). 11 
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Table 1 summarizes the results of the OMI/GEOS-Chem comparisons for the three specific 1 

regions of the United States, Europe, and China following the different evaluation 2 

approaches. In all cases, the spatial correlation between model and measurements within the 3 

regions is highest for evaluation approach (A), and generally lowest for approach (C). 4 

Wintertime OMI:GEOS-Chem ratios are too low by 15-20% with approach (C) and too high 5 

by 5-10% in Summer. Using the common approach (B), OMI/GEOS-Chem ratios are 6 

primarily biased in Summer, by +15-20% for Europe and the United States, and by -5% for 7 

China. The results in Table 1 and Figure 9 also indicate that the spread of local OMI/GEOS-8 

Chem ratios is ±30% for approach (A), smaller than for approaches (B) and (C) with spreads 9 

of ±35%, corroborating the fact that using the kernel results in a better-defined comparison 10 

between satellite measurements and model simulations. 11 

We summarize the contribution of the model sampling errors to the overall representativeness 12 

errors for the evaluation of GEOS-Chem simulations with OMI NO2 in Table 2. The table 13 

should not be interpreted as a general recommendation for all applications, but rather as a 14 

recommendation for air pollution applications such as model evaluation and inversions to 15 

estimate emissions. For instance, for data assimilation and studies of the higher atmosphere, 16 

retrievals under cloudy situations can still be used, and the main recommendation there is to 17 

apply the averaging kernel. The table shows that naïve comparison strategies (C) that do not 18 

account for appropriate temporal or vertical sampling will result in a largely systematic 19 

representativeness error of up to 25%. Following the motivated recommendations discussed 20 

above however (i.e. comparison strategy (A)) would eliminate temporal and vertical 21 

representativeness errors and limit the overall comparison error to not more than 5-10% from 22 

imperfect horizontal sampling. 23 

 24 

7 Discussion and conclusions 25 

Evaluations of chemistry-transport model simulations with UV/Vis satellite retrievals of 26 

short-lived gases, notably NO2 and HCHO, are strongly influenced by the exact comparison 27 

strategy. The characteristics of these satellite retrievals –with ground pixels typically smaller 28 

than model grid cells, clear-sky sampling needed for air pollution applications, and reduced 29 

vertical sensitivity towards the lower troposphere- require that models and retrievals are 30 

sampled as consistently as possible. This pertains to consistent sampling in space 31 

(horizontally and vertically) and in time (day-of-week, clear-sky day, time-of-day). Of these 32 
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aspects, appropriate horizontal sampling is a relatively minor, but unavoidable concern. In 1 

most model-to-satellite comparisons, we recommend using the concept of the 2 

superobservation, which has the distinct advantage of providing a grid cell average observed 3 

state along with a realistic measurement plus horizontal representativeness error. Depending 4 

on the model resolution and the satellite instrument resolution, users can impose a minimum 5 

fractional coverage (of the model grid cell area) by the ensemble of pixels to reduce 6 

horizontal representativeness errors down to levels where the measurement contribution 7 

becomes the dominant term in the superobservation error budget. 8 

Recommendations on and error estimates of the fractional coverage requirement depend on 9 

the exact method of comparing model simulations and satellite retrievals and on the spatial 10 

variability of the species of interest. Generally speaking, fractional coverage requirements 11 

may be rather loose for comparisons over regions with little spatial variability in gas 12 

concentration, for coarse-resolution model simulations, and for temporal averages over 13 

multiple days (e.g. monthly means). In contrast, total fractional coverage requirements need to 14 

be strict for comparisons over regions with strong variability in gas concentrations (i.e. SO2 15 

and NO2 source regions), on a high spatial resolution with (regional) CTMs. 16 

In these situations we recommend limiting horizontal representativeness errors to within 17 

±10% because representativeness errors are then still considerably smaller than the satellite 18 

observation error 𝜎!,!. 19 

A faithful comparison between satellite measurements and model simulations requires that 20 

models need to be sampled appropriately in time. Sampling models irrespective of 21 

photochemical regime (such as when calculating a 31-day monthly mean without collocating 22 

the model with individual measurements) gives rise to systematic temporal representativeness 23 

errors on the order of +12% for NO2 and -8% for HCHO. Such errors should (and can) be 24 

avoided, as they may misdirect interpretation of model-satellite differences, for instance by 25 

misinforming inversion studies by requiring changes in the rates of emissions, or chemical 26 

reactions to better match the observations. Our comparison of OMI O2-O2 and co-sampled 27 

TM5 cloud information indicated that a strict requirement on the TM5 model to simulate a 28 

clear-sky scene along with a mostly clear-sky OMI superobservation has little effect over 29 

omitting such a filter. In the case of TM5, driven by ECMWF ERA Interim meteorological 30 

fields, the model shows good correlation with OMI-observed cloud fractions, with little 31 

probability (<15%) of simulating false positives or negatives. 32 
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Larger systematic errors in model-satellite ratios will be introduced when model profiles are 1 

not sampled according to the averaging kernel associated with most UV/Vis satellite products. 2 

While the exact magnitude effect depends on the model under evaluation and on the a priori 3 

profiles and other assumptions used in the retrievals, our analysis showed that for a 4 

comparison between OMI and GEOS-Chem NO2, application of the averaging kernels results 5 

in up to 20% lower satellite-to-model ratios, and more coherent values of these ratios within 6 

relevant regions such as the eastern United States and Europe. The effect of applying the 7 

kernel is most relevant in Summer, when the vertical distribution of species like NO2 and 8 

HCHO is variable, and differences between the model profiles and the profiles used in the 9 

retrieval are most prominent. We strongly recommend using averaging kernels in satellite-10 

model evaluations. Use of the averaging kernel allows for a better satellite-to-model 11 

comparison, by ensuring that the model is sampled in a manner consistent with the satellite 12 

retrievals because identical assumptions are made on vertical sensitivity, and differences 13 

between the model and satellite a priori vertical distribution cancel. Here we focused on an 14 

evaluation of tropospheric NO2 simulations from the GEOS-Chem model with retrievals of 15 

tropospheric NO2 columns with substantial vertical sensitivity down to the lower troposphere. 16 

However, application of the averaging kernel will be even more relevant for model 17 

evaluations of HCHO and SO2, since these retrievals are less sensitive to the lower 18 

troposphere. Recently, retrieval scientists have also made averaging kernel information 19 

available along with the HCHO and SO2 data products (e.g. González Abad et al. [2014]; 20 

Theys et al. [2013]). 21 

For future evaluations of chemistry transport models and data assimilation with UV/Vis 22 

satellite retrievals (of NO2, HCHO, CHO-CHO, or SO2), we advocate the use of the 23 

recommendations laid out in this paper, especially with respect to the required clear-sky 24 

sampling and appropriate vertical smoothing.  25 

  26 
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Appendix A 1 

Calculating horizontal representativeness errors 2 

The horizontal representativeness error of an ensemble of satellite measurements 3 

(superobservation) for a model grid cell of any size can be calculated as follows: 4 

(1) First compute the distance from one corner coordinate to the two adjacent (not 5 

opposite) corners to obtain estimates for the ‘base’ and the ‘height’ of the pixel3. Then 6 

approximate the pixel as a parallelogram, to calculate the pixel area Ai as base × 7 

height. 8 

(2) Calculate the fractional coverage 𝑓!"# of all valid satellite pixels in the model grid cell 9 

as the ratio of the area covered by all n valid pixels to the complete area covered by 10 

the grid cell 𝐴!"##: 11 

     𝑓!"# =
!!

!
!!!
!!"##

     (A1) 12 

(3) Given the fractional coverage 𝑓!"#, the horizontal representativeness error can be read 13 

off from Figure 1 for models with 3° × 2° and 0.5° × 0.5° resolution. Figure 1(b) of 14 

Miyazaki et al. [2012] provides a similar figure for a model resolution of 2.5° × 2.5°. 15 

For example, a 0.6 fractional coverage for a 3° × 2° model grid cell corresponds to a 16 

horizontal representativeness error of ~10%. 0.6 coverage for a 0.5° × 0.5° model 17 

corresponds to a representativeness error of ~15%.  18 

Note that the recipe laid out above provides a horizontal representativeness error that is at the 19 

high end of the possible range. The variability in the complete ensemble of pixels will often 20 

be much smaller than the variability in the ensemble of pixels from Figure 1 (over New York 21 

City) or Figure 1(b) from Miyazaki et al. [2012] (which excluded situations with small NO2 22 

columns).  23 

Appendix B 24 

                                                
3 A simple distance calculation between two latitude, longitude pairs (lat1, lon1) and (lat2, lon2) is provided by 
the following Fortran90 pseudo-code: 
  
 real, intent(in) :: lat1, lon1  ! coordinates of pixel 1 
 real, intent(in) :: lat2, lon2  ! coordinates of pixel 2 

real, parameter  :: dtkm = 111.32 ! at equator 1deg equals 111.32 km 
 
 deg_to_rad = acos(-1.)/180. 

angle1 = 0.5 * (lat1-lat2)*deg_to_rad 
angle2 = 0.5 * (lon1-lon2)*deg_to_rad 
arg = (sin(angle1))2 + cos(lat1*deg_to_rad)*cos(lat2*deg_to_rad) + (sin(angle2))2 
y = dtkm * 2. * asin(sqrt(arg))*180./acos(-1.) 
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Derivation of the superobservation error 1 

If the retrieval errors within a superobservation grid cell have some degree of correlation, we 2 

cannot simply take the area-weighted average retrieval error σ (calculated as !!!!
!
!!!

!!!
!!!

) as 3 

representative for the superobservation error. The error expectation value for the ensemble of 4 

pixels composing a superobservation is written as: 5 

    𝜀!! = 𝑤!𝑤! 𝜖!𝜖!!"       (B1) 6 

with 𝜖! the individual retrieval error in pixel i, the area weights now normalized ( 𝑤! = 1! ) 7 

to facilitate notation. Now, for a partly correlated error between pixels i and j, we write: 8 

    𝜖!𝜖! = 𝜎!!  for  𝑖 = 𝑗
𝑐𝜎!𝜎!   for  𝑖   ≠ 𝑗       (B2) 9 

so that the superobservation error 𝜎!!  can be written as follows: 10 

    𝜎!! = 𝜀!! = 1− 𝑐 𝑤!!𝜎!!! + 𝑐 𝑤!𝜎!!
!  (B3) 11 

For 𝜎! = 𝜎, and 𝑤! =
!
!
 this reduces to Eq. (6): 𝜎! = 𝜎 !!!

!
+ 𝑐. 12 

Appendix C 13 

Calculating CTM-simulated effective cloud fractions 14 

We can express the modelled cloud properties into a quantity that is comparable to the 15 

effective cloud fraction provided by the OMI O2-O2 cloud retrieval, and defined as the 16 

radiometric equivalent fraction of a viewing scene covered by a Lambertian reflector with an 17 

albedo of 0.8 (corresponding to a cloud with an optical thickness of ~40) [Stammes et al., 18 

2008]. Some data products use cloud information retrieved with different approaches, but 19 

many UV/Vis trace gas retrievals use the effective cloud fraction approach. The TM5 cloud 20 

information (geometric cloud cover, and cloud optical thickness) was converted into an 21 

effective cloud fraction in a two-step approach. In the first step the maximum-random overlap 22 

assumption is used to calculate the one column-representative geometrical cloud cover 23 

𝑓!"!,!"# following practical guidelines for similar model evaluations with MODIS clouds by 24 

Quaas [2011]. The maximum-random overlap assumption implies maximum overlap for 25 

cloud cover in adjacent layers (one cloud layer is exactly on top of the other), and random 26 

overlap for (layers of) cloud cover 𝑓!   separated by at least one clear-sky layer:  27 
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    𝑓!"!,!"# =
!!!"#  (!!,!!!!)
!!!"#  (!!!!,!!!!)

!
!!!     (C1) 1 

where 𝜖!  (here 0.001) is the threshold value for which a layer is considered to be cloud-free. 2 

In the second step the albedo of the cloud is determined based on the cloud optical thickness 3 

and the sensitivity of cloud spherical albedo to cloud optical thickness modelled by Buriez et 4 

al. [2005] for a liquid water cloud4. The final step to obtain the effective (OMI equivalent) 5 

TM5 cloud fraction 𝑓!"!,!"" from the geometrical cloud fraction and the obtained cloud 6 

albedo ac proceeds as: 7 

    𝑓!"!,!"" = 𝑓!"!,!"#
!!
!.!

     (C2). 8 

Appendix D 9 

Alternatives to the application of the averaging kernel 10 

In a satellite-model comparison, the vertical sensitivity needs to be taken into account, and 11 

this can be done in alternatively by replacing the a priori profile 𝐱𝐚 from the CTM used in the 12 

retrieval, by the profile 𝐱𝐦 from the CTM used by the modeller, i.e. by re-calculating the air 13 

mass factors as follows: 14 

𝑀! 𝐱𝐦 = 𝑀(𝐱𝐚)
!!!!,!

!
!!!

!!,!
!
!!!

     (D1) 15 

with 𝑀(𝐱𝐚) the original tropospheric air mass factor used in the retrieval, and Al the elements 16 

of the averaging kernel. The new air mass factors (  𝑀!(𝐱𝐦)) need to be applied on the 17 

retrieved slant column densities (instead of 𝑀(𝐱𝐚)), to generate modified columns 𝑦!! . These 18 

modified columns can be directly compared to the model column 𝑥!, without the need to 19 

explicitly apply the averaging kernel. Such approaches have been shown to improve the 20 

consistency of the comparison considerably -- for instance by 10-20% in the case of 21 

tropospheric NO2, see Lamsal et al. [2010], Vinken et al. [2014] and Lamsal et al. [2014]. 22 

The modified averaging kernels associated with 𝑦!!  retrieved with the new a priori profiles 𝐱𝐦 23 

become: 24 

𝐀! = !(𝐱𝐚)
!!(𝐱𝐦)

𝐀      (D2) 25 

                                                
4 A 6th order polynomial fitted in close approximation to the relationship between cloud albedo ac and cloud 
optical thickness τc in Figure 2 of Buriez et al. [2005] was used for the conversion: 𝑎! = 𝑐!𝜏!!

!!!  with  
c0=0.00808, c1=0.11153, c2=-0.09734, c3=0.00052, c4=-0.0000154, c5=0.00000029, and c6=-0.0000000013. 
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Table 1. Summary of tropospheric NO2 GEOS-Chem model evaluations following recipes 1 

(A), (B), and (C) with OMI NO2 retrievals for February and August 2006. n refers to the 2 

number of grid cells used in the comparison. 3 

 R2 Geometric mean  

Model evaluation (A) (B) (C) (A) (B) (C) n 

Europe Feb 2006 0.66 0.63 0.54 1.15!.!"!.!! 1.13!.!"!.!"  0.92!.!"!.!"  120 

Europe Aug 2006 0.66 0.57 0.59 1.24!.!"!.!" 1.42!.!"!.!" 1.40!.!"!.!" 137 

US Feb 2006 0.82 0.79 0.75 1.12!.!"!.!" 1.08!.!"!.!" 0.95!.!"!.!" 41 

US Aug 2006 0.83 0.61 0.67 0.75!.!"!.!" 0.91!.!"!.!" 0.90!.!"!.!" 42 

China Feb 2006 0.58 0.57 0.54 1.00!.!"!.!" 0.99!.!"!.!" 0.86!.!"!.!" 35 

China Aug 2006 0.61 0.58 0.58 1.13!.!"!.!" 1.07!.!"!.!" 1.06!.!"!.!" 44 

 4 

Table 2. Overview of magnitude and nature of various model sampling errors, their 5 

contribution to the overall comparison error budget, and ways to avoid them. Based on the 6 

GEOS-Chem evaluation with OMI NO2 retrievals for February and August 2006. Note that 7 

these recommendations hold for air pollution applications of UV/Vis satellite retrievals such 8 

as model evaluation and top-down emission estimates. 9 

 Relative 

error 

Type of error Recommendation 

Horizontal sampling <5-10% Inevitable and 

random 

Require at least 40% coverage of 

model grid cell. 

Temporal sampling 10% Avoidable and 

systematic 

Sample model grid cells 

exclusively on clear-sky days 

Vertical sampling 20% Avoidable and 

systematic 

Apply averaging kernel on model 

vertical distribution 

Overall 

representativeness error 

10%-25%  Follow recommendations listed 

above to keep 𝜎! < 𝜎! 
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