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Abstract. This article discusses the problem of identifying extreme climate events such as intense

storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits

the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific

implementations of the spatial search algorithm are compared: the commonly used grid point search

algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search5

algorithm is defined independently of the spatial discretization associated with a particular data set.

Results from the two algorithms are compared for the application of tropical cyclone detection, and

shown to produce similar results for the same set of storm identification criteria. Differences between

the two algorithms arise for some storms due to their different definition of search regions in physical

space. The physical space associated with each Stride Search region is constant, regardless of data10

resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe

in the same manner. Stride Search’s ability to search high latitudes is demonstrated for the case of

polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid

point search of the same data, and the relative speed up associated with Stride Search increases as

resolution increases.15

1 Introduction

The identification of extreme events in climate data sets is a fundamental objective of many climate

scientists. Data sets may be a reanalysis product or a particular model’s output, and an extreme

event may be any event classified as an important deviation from a subjective normal state – loosely,

a “storm.” End-users of climate data and model developers alike frequently investigate prevalent20
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storm tracks, intensity, or formation areas within a given data set, e.g., Williamson (1981); Hodges

(1994); Vitart et al. (1997). Annual means and statistical averages regarding the frequency of a

particular type of storm in a particular region are another frequent subject of study, e.g., Sinclair

(1994); Blender et al. (1997); Raible and Blender (2004); Bracegirdle and Gray (2008); Kleppek

et al. (2008). Individual storms’ structures are often investigated to evaluate how well a model cap-25

tures realistic physical features, e.g., Nordeng and Rasmussen (1992); Walsh et al. (2007); Reed and

Jablonowski (2011); Føre et al. (2012). Common to all such efforts is the need to search data sets for

quantifiable, objective storm identification criteria.

Identification criteria are defined as a small set of variables that together give a basic character-

ization of storm’s location, intensity, and size (Williamson, 1981; Hodges, 1994). Each variable is30

paired with a threshold value used to filter the data into a small number of categories. The particular

variables and their appropriate threshold values vary greatly by application, and many studies have

proposed and compared different sets of criteria; see Raible et al. (2008) and Neu et al. (2013) for a

discussion of extratropical cyclone criteria. Walsh et al. (2007) and Horn et al. (2014) provide similar

analyses for tropical cyclones.35

The basic storm detection algorithm consists of two stages (Hodges, 1994). First, a spatial search

loops over all time steps in a data set and collects detection points where the spatially defined iden-

tification criteria are met or exceeded. Second, a temporal correlation procedure correlates detection

points across adjacent time steps to construct storm tracks and apply temporally defined identifica-

tion criteria.40

In comparison to the number of studies concerned with identification criteria, literature regarding

the analysis of spatial search algorithms is relatively sparse in the climate community. Such a dis-

cussion is of heightened importance due the growth of climate data sets in both size and number.

As models and reanalysis products increase spatial and temporal resolution, and as ensembles are

more commonly used forecasting tools, the need to efficiently and accurately search climate data45

sets is also increasing. Of equal concern to an algorithm’s performance is its ability to produce re-

peatable, objective analysis of data (Hodges, 1994), regardless of the data layout and resolution.

Contemporary models can incorporate advanced features such as variable resolution using unstruc-

tured grids (e.g. Zarzycki and Jablonowski (2014)) and frequently employ different representations

of the sphere than a traditional latitude-longitude grid (e.g. Putnam and Lin (2007); Neale et al.50

(2012); Skamarock et al. (2012)). An ideal search algorithm would be agnostic to such details.

In such an ideal world, the choice of search algorithm would not affect the statistics associated

with a particular data set. In practice, however, we find that just as a change to the identification

criteria of a particular storm type can change the statistics found in a particular data set (Raible

et al., 2008; Horn et al., 2014), the way that data set is divided and searched – independently of the55

identification criteria – can also affect the statistics.
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One contributing factor is that some of the variables used to identify storms, such as vorticity, have

a dependence on the scale of the data (Sinclair, 1997; Walsh et al., 2007). This dependence may also

vary with location depending on the layout of the data set. On a uniform latitude-longitude grid, for

example, the spatial scale of adjacent grid points varies with latitude. A search algorithm that does60

not account for this variation may inadvertently allow non-physical artifacts related to data resolution

and grid type to influence its output. Researchers may interpolate a dataset to a different type of grid

(Sinclair, 1994; Bracegirdle and Gray, 2008), employ a spatial smoothing procedure (Sinclair, 1997),

or adjust threshold values as data resolution changes (Walsh et al., 2007) to alleviate some of these

problems. We propose an alternative approach that separates the definition of an extreme event from65

its discrete representation in a data set.

The goal of this work is to provide an algorithm that allows identification criteria to be defined

independently of the spatial resolution and layout of the data. The “Stride Search” algorithm facili-

tates searching data given on general unstructured grids as well as uniform latitude-longitude grids

without alteration, and provides improved performance over the commonly used grid point search70

algorithm. Additionally, Stride Search treats all regions of the globe in the same manner, which

allows users to search all latitudes including the poles efficiently. By decoupling the choice of iden-

tification criteria from the resolution and layout of the data, we aim to provide a robust objective

search algorithm.

2 Storm detection algorithms75

Basic descriptions of the two-stage storm detection algorithm are given as Algorithm 1, the spatial

search, and Algorithm 2, the temporal correlation procedure. The majority of this work focuses on

the spatial search strategy used to define Algorithm 1, which requires the most computational effort

(Prabhat et al., 2012). Its input is a search domain and a set of per time step storm identification

criteria, as well as the data. A key step in the algorithm is the division of the search domain into a80

set of search sectors (line 4); we will discuss this process in more detail in the following sections.

For each file and each time step, the algorithm compares the data within each sector to the storm

identification criteria. If the criteria are met, a storm is recorded to the list L at the current time step.

Identification criteria, particularly those used with a spatial search, are highly application depen-

dent. Ideally storm detection software should be flexible enough to allow users to easily define iden-85

tification criteria relevant to their area of study and should not be limited to any specific geographic

region. In other words, users should be able to easily modify the implementation of Algorithm 1,

line 7, in code.

The output of the spatial search (Algorithm 1) is a list of candidate storms. This list may contain

false positives due to noisy data, topographic effects, or ambiguity within the identification criteria.90

The second step of storm detection and tracking, the temporal correlation problem, handles these
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Algorithm 1 Spatial search algorithm

Input: search domain R, storm identification criteria (spatial), data

Output: List of potential storms, L, organized by increasing time step

1: set L = empty list

2: for all files in data set do

3: nT = number of time steps per file

4: Divide search domain into search sectors

5: for i= 1 to nT do

6: for all search sectors at time step i do

7: if sector meets or exceeds identification criteria then

8: set li = storm data at time step i

9: add li to L

10: end if

11: end for

12: end for

13: end for

issues. The temporal correlation algorithm’s task is to identify the same storm across adjacent time

steps. It does so by building storm tracks and is outlined by Algorithm 2. Users define a maximum

travel speed Umax appropriate to the type of storm under investigation. The algorithm uses that

speed to define Dmax = Umax ·∆t, the maximum possible distance a storm may travel per time step.95

Beginning with a storm entry in the spatial search output list L at time step i, the algorithm searches

all storms detected at time step i+ 1. Any storms at time step i+ 1 separated by a distance less than

Dmax from the storm at time step i are marked as candidate successors. If zero candidates are found,

the track is ended at time step i. If one candidate is found, that candidate is linked to its predecessor

at time step i and the algorithm continues to build the track by looking for candidates at time step100

i+2. If several candidates are found at time step i+1, the algorithm chooses the closest candidate to

the entry at time step i and disregards the others. Track building proceeds until either zero candidates

are found at the next time step or the data are exhausted.

The tracking algorithm (Algorithm 2) is sensitive to its two input parameters Umax and tmin.

Choosing a value of tmin too low may not eliminate enough false positives, but choosing a value of105

tmin too high may eliminate weak cyclones that did exist but did not intensify enough to last long.

The effects of choosing a too high or too low value for Umax are more subtle. A value of Umax that

is too low can cause storm tracks to fragment into several disjoint pieces. By contrast, choosing an

unrealistically high value for Umax could cause the tracking algorithm to merge two storms that are

in reality separate entities.110

Storm tracks provide a natural mechanism to count storms and to dismiss false positives. Tracks

that consist of only one point, indicating a storm whose duration was only 1 time step may be dis-
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Algorithm 2 Temporal correlation algorithm

Input: List L of potential storms from spatial search output, max storm travel speed Umax, minimum duration

tmin, other storm identification criteria (temporal)

Output: List T of storm tracks

1: set T = empty list

2: NT = total number of time steps in data set

3: for i= 1 to NT do

4: for all elements li ∈ L at time step i do

5: start new track t at li

6: continue = True

7: j = i

8: while continue do

9: examine all lj+1 ∈ L at time step j+ 1 for possible successors to storm lj

10: if successor found then

11: add lj+1 to track t

12: j = j+ 1

13: else

14: continue = False

15: end if

16: end while

17: if track t meets or exceeds identification criteria then

18: add t to T

19: end if

20: end for

21: end for

missed as noise. Tracks that persist for many time steps but do not move may possibly be regarded as

topographic effects, particularly if the identification criteria use data that are sensitive to topography,

such as geopotential height surfaces.115

Storm tracks also provide a straightforward method of applying additional identification criteria.

A study concerned with identifying regions of cyclogenesis may reject any storms that do not in-

tensify along their track. Temporal criteria may also be used to perform more detailed classification

of candidate storms. For example, a vorticity criterion or a vertical wind speed criterion may detect

strong convection due to thunderstorms. To make a distinction between typical summertime after-120

noon thunderstorms and more persistent mesoscale convective complexes, a temporal criterion may

be used to neglect storms that do not persist for longer than 12 hours.
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2.1 Grid point search

Most storm detection studies of climate data use software that implements Algorithm 1 as a grid point

search. The Geophysical Fluid Dynamics Laboratory’s TSTORMS (1997) software, for example,125

has become the prevalent tool for tropical cyclone detection in high resolution climate data (Vitart

et al., 1997; Vitart and Stockdale, 2001; Knutson et al., 2008; Zhao et al., 2009; Prabhat et al., 2012;

Zarzycki and Jablonowski, 2014). Grid point searches have also been employed by other studies of

mid-latitude extratropical cyclones (Blender et al., 1997; Geng and Sugi, 2001; Wernli and Schwierz,

2006; Kleppek et al., 2008; Raible et al., 2008).130

Grid point searches are designed for the common case where data are given on a uniform latitude-

longitude grid with resolution ∆λ (in radians) so that grid points (λj ,θi) are located at

λj = j∆λ, j = 0, . . . ,nlon− 1, (1a)

θi =−π
2

+ i∆λ, i= 0, . . . ,nlat− 1, (1b)

where λ is longitude, θ is latitude, nlon = 2π/∆λ is the number of longitudinal grid points, and135

nlat = nlon/2 + 1 is the number of latitude grid points.

In a grid point search algorithm, each grid point (λj ,θi) in the search domain is a search sector

center. Sector Kij centered at grid point (λj ,θi) is defined as

Kij = {(λj±k,θi±l)} k, l = 0, . . . ,n− 1, (2)

where n is a user-specified parameter that corresponds to the scale of a storm in latitude-longitude140

space. Thus, each sector is a (2n+ 1)× (2n+ 1) square in grid point space.

To set up a grid point search, users define the search domain by defining a minimum and maximum

latitude, θmin and θmax, and a maximum and minimum longitude λmin and λmax. In this work we

assume λmin = 0 and λmax = 2π, while θmin and θmax can vary by application. Users must also

select a value for n that relates the spatial scale of the storms they wish to detect to the resolution of145

the data ∆λ. Figure 1(a) shows grid point search sectors along the equator with n= 2 for data with

resolution ∆λ= 10◦. The sectors are 5× 5 boxes in grid point space and span approximately 5600

km × 5600 km on the Earth.

For each sector, the software collects data from the (2n+1)×(2n+1) points centered at (λj ,θi).

The collected data are compared against the storm identification criteria. If the criteria are met or150

exceeded in the sector, the algorithm checks if (λj ,θi) is the location of the storm within that sector.

If so, the algorithm records the storm to its output list. If not, the algorithm cycles to the next grid

point, say (λj+1,θi), and begins again. In Figure 1(a) the blue, horizontally striped sector is cen-

tered at (λj ,θi) = (150E, 0N) and the next two consecutive sectors are shown by the red, vertically

striped sector centered at (λj+1,θi) = (160E, 0N) and black, diagonally striped sector whose center155

is (λj+2,θi) = (170E, 0N).
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(a) Grid point search sectors

(b) Stride Search sectors

Figure 1. Adjacent search sectors along the equator. Black dots represent data points with resolution ∆λ=

10◦. Blue sector (horizontal striping) center is λ= 150E, θ = 0N. Red (vertical striping) and black (diagonal

striping) sectors are the next two consecutive searches; (a) grid point search, n= 2; (b) Stride Search, s= 2220

km.
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Centering a sector at each grid point in the search domain yields a robust algorithm. It ensures

that the entire search domain will be covered and that the same storm will not be recorded twice.

Even though a single storm may trigger the identification criteria in several sectors, only the sector

whose center corresponds to the storm location will be recorded to output. While the robustness of160

the grid point search algorithm is an advantage, it comes at the cost of redundant work. The same

data points are accessed multiple times because the algorithm only advances one grid point at a time

and the overlap of adjacent sectors is considerable.

The data access required by a grid point search and the overlap of adjacent sectors is also il-

lustrated by Figure 1(a). All three sectors read the data from grid points in the region {(λ,θ) :165

150E≤ λ≤ 170E,20S≤ θ ≤ 20N}. For visual clarity we have not plotted the sectors at (λj−1,θi)

or (λj ,θi±1), which would also overlap a majority of the same grid points.

2.2 Stride Search

Instead of squares in grid point space, Stride Search sectors are circles on the surface of an Earth-

sized sphere. The sectors are defined using the geodesic distance function170

distG
(
(λ1,θ1),(λ2,θ2)

)
= aarccos

(
cosθ1 cosθ2 cos(λ2−λ1) + sinθ1 sinθ2

)
, (3)

where a is the radius of the Earth. Users select an application-dependent spatial scale s in units of

distance such that a maximum of one storm can be located within any spherical circle of radius s. The

search domain is divided into a collection of circles on the sphere, each with the same geodesic radius

s. Stride Search sectors, illustrated in Figure 1(b) for s= 2220 km, are defined by the following175

procedure.

The number Slat = s/a defines the arc length corresponding to the user-specified scale s. We refer

to Slat as the latitude stride and use it to define lines of constant latitude

θI = θmin +SlatI, I = 0, . . . ,Nθ, (4)

where Nθ = b(θmax− θmin)/Slatc+ 1. The set θI divides the search domain into latitudinal strips180

of width ≈ s. We also define a longitude stride for each θI ,

S
(I)
lon = min

(
s

acosθI
,2π

)
, I = 0, . . . ,Nθ, (5)

so that S(I)
lon are the arc lengths along each latitude circle θI that approximately span a geodesic

distance s in the longitudinal (zonal) direction. The minimum function in (5) accounts for the case

where θI is either pole. The longitude stride defines points λIJ along each latitude line θI , where185

J = (j− 1)S
(I)
lon for j = 1, . . . ,N

(I)
λ , creating N (I)

λ = b2π/S(I)
lonc longitude points along each θI .

Each point (λIJ ,θI) defines the center of search sector KIJ , where KIJ is the set of all points on

the sphere lying within a distance s of (λIJ ,θI),

KIJ =
{

(λ,θ) : distG
(
(λ,θ),(λIJ ,θI)

)
≤ s
}
. (6)
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We note that the definition of the Stride Search sectors is determined entirely by the application-190

related spatial scale s and is therefore independent of resolution of the data, ∆λ. By construction,

sector KIJ overlaps its neighbors KI±1,J and KI,J±1 by approximately one radius s in physical

space. This is a sufficient condition to ensure that the entire search domain will be covered by the

circular search sectors.

Figure 1(b) shows three consecutive circular sectors with s= 2220 km. This value of s corre-195

sponds to an arc length of ≈ 20◦, and was chosen to match the scale of the sectors in Figure 1(a).

The blue, horizontally striped circle is centered at (λIJ ,θI) = (150E, 0N). The red, vertically striped

sector is centered at (λI,J+1,θI) = (170E, 0N) and the center of the black, diagonally striped sector

is located at (λI,J+2,θI) = (170W, 0N). Since each Stride Search sector is separated from its imme-

diate neighbors by either a latitude stride or a longitude stride, the overlap between adjacent sectors200

is much reduced compared to a grid point search. The Stride Search algorithm therefore covers a

much larger geographic area with the same number of search sectors.

Stride Search setup is completed by defining the sectors KIJ in terms the available data. Com-

putationally, this involves creating a class and/or methods that identify and link each sector to the

data points enclosed by its geographic boundary. Sectors used with high resolution data sets auto-205

matically link to more grid points than the same-sized sectors used with lower resolution data. For

uniform longitude-latitude grids, Equations (1) apply and the process is straightforward. For unstruc-

tured grids the mesh’s connectivity information may include a node adjacency list or topological data

structures such as edges and faces. Any of these may be used to determine a sector’s enclosed data

points. In the absence of such connectivity information a kd-tree algorithm (e.g., Samet (2006)) may210

be used.

Reduced overlap between adjacent sectors leads to improved performance by decreasing the num-

ber of redundant data accesses and by reducing the total number of sectors. However, it also creates

a new issue. Since each sector is searched independently, several sectors may detect and record the

same storm to the linked-list, as illustrated by Figure 2. Before the storms detected by Stride Search215

can be saved to output, duplicate entries must be removed.

Duplicates are removed by again referencing the user-specified scale s. Each pair of entries in

the linked-list are compared; if a pair are separated by a distance less than s, they are considered

duplicates and the less intense entry is deleted. In Figure 2, this is demonstrated with pressure data.

Each of the three search sectors have exceeded the storm identification criteria and independently220

locate their minimum pressure. The blue (left) sector finds a minimum of 988 hPa, the red (middle)

finds 982 hPa, and the black (right) finds 984 hPa. These three entries are clearly separated by a

distance less than s, as they are all contained within the red (middle) circle. The duplicate removal

procedure will delete the blue (left) and black (right) entries because compared to the red (middle)

entry they have higher pressures and are less intense. Only the red 982 hPa entry will be saved to225

output. In general the list of detected storms at a particular time step, duplicates included, is much
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982 hPa

988 hPa 984 hPa

s

Figure 2. Duplicate detections of the same storm using the Stride Search algorithm. Each sector (blue/left,

red/middle, and black/right) locates its minimum sea level pressure (corresponding squares). Duplicate entries

are removed prior to the output stage; only the red 982 hPa entry will remain.

smaller than the spatial size of the data and the time required by the duplicate removal procedure is

negligible.

3 Data description

To demonstrate and test Stride Search we use data produced by the the spectral element dynamical230

core of the Community Atmosphere Model, CAM-SE (Neale et al., 2012; Dennis et al., 2012). The

model uses a cubed sphere grid and high resolution experiments set 240 elements per face of the cube

for a total of 3,110,402 horizontal grid points. This results in a horizontal resolution of ∆λ≈ 0.125◦

(Worley et al., 2011; Dennis et al., 2012). Due to well-known issues regarding the tuning of physical

parameterizations within climate models, this high resolution simulation may produce high intensity235

storms with unrealistically high frequencies (Reed and Jablonowski, 2011; Dennis et al., 2012).

The original goals of the high resolution experiments of Worley et al. (2011) and Dennis et al.

(2012) were to demonstrate the parallel scaling of CAM-SE, to document its required run time

and related statistics in various high performance computing environments, and to demonstrate the

model’s capability to produce well-resolved features like tropical cyclones that cannot be represented240

well in low resolution experiments. Here, we choose this data because its high resolution ensures

that small-scale storms will exist, which provides a good testing environment for storm detection

algorithms. The fact that there may be an unrealistically high number of storms in the data is a

benefit in this case.

The data set contains 5 years of simulated data that used CAM5 physics and pre-industrial (year245

1850) initial conditions. Instead of additional model components, the CAM-SE atmospheric dynam-

ical core is coupled to a set of land, ocean, and sea ice data that also correspond to the year 1850

to provide its boundary conditions (Dennis et al., 2012). The land, ocean, and sea ice boundary

conditions are periodic, with period 1 year, and simply repeat throughout the 5-year atmospheric

simulation.250
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The model’s native cubed sphere data were interpolated to a uniform latitude-longitude grid with

nlon = 1024 for a resolution of ∆λ= 0.35◦ using the regridding software provided by the Earth

System Modeling Framework (Balaji et al., 2014). To facilitate a timing experiment (presented in

the next section), we also interpolate 3 months of data to resolutions of ∆λ= 2◦,1◦,0.5◦ and 0.25◦.

4 Tropical cyclones255

In this section we apply both Stride Search and TSTORMS to the problem of tropical cyclone de-

tection. Our aim is to validate Stride Search by comparison with TSTORMS, which has a proven

record. We also discuss the subtle differences between the two algorithms that lead to differences in

their final results that may be of importance to climate researchers.

While there are many different combinations of variables available to define a tropical cyclone260

(Walsh et al., 2007; Horn et al., 2014), to provide both codes with a common set of identification

criteria we choose the TSTORMS default. A tropical cyclone is identified within search sector Kij

if the following four criteria are met (Vitart et al., 1997):

1. There is a cyclonic vorticity maximum greater than a threshold value, τζ :

max
i,j∈Kij

[
sgn(θi) · ζ850(λj ,θi)

]
> τζ , (7)265

where ζ850 is the relative vorticity at the 850 hPa level.

2. The distance between the cyclonic vorticity maximum and the sector’s sea level pressure min-

imum is less than a threshold value τD1
:

dist
(
(λζ ,θζ),(λP ,θP )

)
< τD1

, (8)

where (λζ ,θζ) and (λP ,θP ) are the locations of sector Kij’s vorticity maximum and sea level270

pressure minimum, respectively.

3. The difference between the vertically averaged temperature’s maximum value and its sector

average exceeds a threshold τT :

max
i,j∈Kij

T (λj ,θi)−Avg
Kij

(T )> τT , (9)

where T is defined as275

T (λ,θ) =
1

2

(
T500(λ,θ) +T200(λ,θ)

)
, (10)

and T500 and T200 are the temperatures the 500 hPa and 200 hPa pressure levels, respectively.

To maintain consistency between both codes, the sector average Avg
Kij

(T ) is approximated as a

simple arithmetic average,

Avg
Kij

(T ) =
1

NKij

∑
{T (λj ,θi) : (λj ,θi) ∈Kij}, (11)280
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τζ τD1 τT τD2

TSTORMS 8.5× 10−4 s−1 4◦ 2 K 2◦

Stride Search 8.5× 10−4 s−1 450 km 2 K 225 km
Table 1. Threshold values used for tropical cyclone detection.

where NKij is the number of data points in sector Kij .

4. The distance between the maximum vertically averaged temperature and the sea level pressure

minimum is less than a threshold value τD2
:

dist
(
(λT ,θT ),(λP ,θP )

)
< τD2

, (12)

where (λT ,θT ) is the location of the sector maximum of T .285

Differences between the two algorithms’ detections arise due to the differences in the algorithms

themselves. For computing the collocation criteria, Equations (8) and (12), TSTORMS uses the

angular distance function

distA
(
(λ1,θ1),(λ2,θ2)

)
=
√

(λ2−λ1)2 + (θ2− θ1)2. (13)

For TSTORMS, whose intended application is in tropical regions, this is a simple and effective290

strategy because angular distance is a reasonable proxy for geodesic distance near the equator. Stride

Search uses the geodesic distance function (3). Users of TSTORMS must specify τD1 and τD2 in

angular units, while users of Stride Search must use units of length. The arithmetic averages of the

vertically averaged temperature (11) will be different from one algorithm to the other, because their

sectors will contain a different number of data points. As a result criteria 2, 3, and 4 may behave295

differently for each algorithm.

4.1 Spatial search results

We apply both algorithms to the data described in Section 3. We set TSTORMS n= 12, Stride

Search s= 450 km, and use the threshold values shown in Table 1 for Equations (7), (8), (9), and

(12).300

Results from an arbitrarily chosen 3 months of data, July 18 to October 18 of simulation year 4,

are plotted in Figure 3. Each dot represents a storm detected at one time step. All 6-hourly time steps

over the entire three months are shown, colored by the windspeed-dependent hurricane categories

defined by the Saffir-Simpson intensity scale.

Both algorithms produce qualitatively similar results. Visually they appear to agree nearly per-305

fectly on the identifiable storm tracks and intensities. They both have false positives over land and in

the Southern Ocean. Stride Search produces more false positives, particularly in the Southern Ocean,

than TSTORMS. This is due to the fact that Stride Search sectors – especially at higher latitudes –
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Figure 3. Spatial search results, northern hemisphere summer simulation year 4. Each dot is a storm detected

at one time step; colors correspond to the categories of the Saffir-Simpson hurricane scale.

typically contain more data points than TSTORMS sectors. The larger number of points per sec-

tor reduces the sector average of the vertically averaged temperature, Equation (11), compared to a310

TSTORMS sector at the same location. Thus, the warm core temperature excess criterion (9) is more

easily achieved using Stride Search than TSTORMS for the same value of τT . For both codes, false

positives are eliminated by the temporal correlation algorithm discussed in the next section. How-

ever, the consequences of this different behavior of criterion (9) between the codes will propagate

into the storm tracks and final output.315

4.2 Temporal correlation results

In this section we apply the temporal correlation algorithm, Algorithm 2, to the spatial search results.

Since tropical cyclones are inherently maritime events (Cotton and Anthes, 1989), at this stage we

also apply a land mask to remove any tracks whose origins are not over water.

In Figure 4 we show the storm tracks that correspond to the spatial search output of Figure 3 with320

parameters Umax = 15 m · s−1 and tmin = 2 days. These results show that the temporal correlation

algorithm succeeds in eliminating false positives and gives a better representation of the storms

within the data set than the raw output from the spatial search algorithm. Table 2 presents the final

storm counts for each algorithm for the three month data set separated by hurricane category. Again,

both algorithms produce nearly identical results which validates the present work.325

Table 2 shows that Stride Search detects two fewer category 1 storms and one additional category

2 storm than TSTORMS. Looking for differences between the panels of Figure 4, we see that the
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Figure 4. Storm tracks, northern hemisphere summer, simulation year 4. Each track is colored by the hurricane

category corresponding to the maximum wind speed achieved during its lifetime.

cat 0 cat 1 cat 2 cat 3 cat 4 cat 5 total

max. wind (m · s−1) |u|< 33 33≤ |u|< 43 43≤ |u|< 50 50≤ |u|< 58 58≤ |u|< 70 |u| ≥ 70

TSTORMS 1 7 4 5 8 3 28

Stride Search 1 5 5 5 8 3 27
Table 2. Storm count by hurricane category for northern hemisphere summer simulation year 4; this table

corresponds to the storm tracks shown in Figure 4.

category 1 storms correspond to a storm in the western Pacific off the east coast of Japan near (150E,

050W) and a storm in the north central Atlantic near (050W, 20N).

Comparing the panels, we see that Stride Search classified the western Pacific storm as category330

2, which accounts for two of the three differences between rows in Table 2. Viewing the data, we

note that the Stride Search track for this particular storm is 4 timesteps longer than the corresponding

TSTORMS track. During its final data points in the Stride Search output its temperature excess was

decreasing and very close to the detection threshold. Since the TSTORMS sector average of T is

higher than the Stride Search sector average of T , the storm did not pass criterion 3 (Equation 9) at335

the end of its life cycle in TSTORMS. We also find that this storm only achieved a category 2 wind

speed at the very end of its life cycle, after the point in time where TSTORMS had stopped detecting

it, which explains why Stride Search counts the storm as a category 2 and TSTORMS does not.

A similar explanation holds for the Atlantic storm. We see that TSTORMS counts the same storm

twice, once as a category 1 and once as a category 2, while Stride Search shows only one longer340
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Figure 5. Storm tracks. The ultimate output of each algorithm for the entire 5-year data set. Coloring as in

Figure 4.

category 2 track. This is again due to the difference in the computation of the temperature excess

between the two codes. This particular storm weakened in its early days to the point where its

temperature excess was not sufficient for TSTORMS to detect it before finally intensifying into a

category 2 storm. This creates a hole in the TSTORMS track that does not show up in the Stride

Search results because the temperature excess criterion is not as strict in Stride Search as it is in345

TSTORMS.

We point out that this is not a weakness of the TSTORMS software – our choice of τT = 2K

was somewhat aribtrary and choosing a lower threshold value τT for TSTORMS would remedy

this problem for this particular cyclone. Rather, we stress that these differences arise simply due to

the differences in the definition of both algorithm’s search sectors. To investigate these differences350

further we tested Stride Search using a midpoint rule quadrature approximation of the sector average

of the average vertical temperature, Equation (11), and found similar results. We therefore chose to

use the arithmetic average to keep the tropical cyclone identification criteria the same between the

two codes.

Unfortunately, differences in specific storm tracks between each algorithm become more difficult355

to sort by cause as the size of the data set grows. Figure 5 shows the storm tracks produced by each

algorithm for the entire data set, using the same identification criteria and threshold values as our

previous discussion. Since the temperature excess criterion is more easily achieved by Stride Search,

we would expect Stride Search to identify more storms than TSTORMS, particularly in the lower-

intensity storm categories. We might also expect TSTORMS to count too many storms because, for360
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cat 0 cat 1 cat 2 cat 3 cat 4 cat 5 total

max. wind (m · s−1) |u|< 33 33≤ |u|< 43 43≤ |u|< 50 50≤ |u|< 58 58≤ |u|< 70 |u| ≥ 70

TSTORMS 4 59 78 87 87 41 356

Stride Search 7 75 82 86 83 43 376
Table 3. Storm counts by hurricane category for the entire 5-year data set; this table corresponds to the storm

tracks shown in Figure 5.

these threshold values, some storms may be split into multiple tracks. Both of these predictions may

be born out in the data, which is tabulated in Table 3. Stride Search does indeed detect more category

0, 1, and 2 storms. TSTORMS also finds a higher number of high intensity (category ≥ 3) storms

than Stride Search, possibly due to track splitting. Without investigating differences in individual

tracks, which is impractical for large data sets, one can only state that since the identification criteria365

used by both codes were identical, the different results can only be due to differences at the level of

the algorithms’ design.

4.3 Performance and timing

As discussed previously, climate data sets are large and expected to increase in size as climate mod-

els run at high resolutions with ∆λ < 0.5◦. Storm detection algorithms must be both accurate and370

efficient. In this section we document the dependence of each search algorithm’s run time on the

resolution of its input data set.

Differences in the structure of the two algorithms result in notable differences in the number of

search sectors and the number of times each grid point is accessed in memory per time step. In the top

row of Table 4 we present the total number of search sectors required by each algorithm to search the375

tropical domain, θmin = 40S, θmax = 40N for each data resolution. For TSTORMS this is equivalent

to the number of grid points in the domain, hence the number of search sectors increases by a factor

of four as the data resolution is halved. The number of Stride Search sectors remains constant across

all data resolutions. For data on a uniform latitude-longitude grid, the number of points in a Stride

Search sector grows as a function of latitude. The maximum points per sector listed for Stride Search380

are an upper bound that depends on the search domain, specifically θmin and θmax and the spatial

scale s. For TSTORMS, the max points per sector are a function of the user-specified parameter n

and are equal to (2n+ 1)× (2n+ 1).

In the last row of the table the total number of per time step data accesses required by each

algorithm are given; these numbers are the product of the number of sectors and the number of points385

per sector. This number provides an indication of the cost of each algorithm. The smaller number

of sectors and reduced overlap between sectors in the Stride Search algorithm result in many fewer

data accesses (by orders of magnitude) than the grid point search used by TSTORMS.
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TSTORMS Stride Search

∆λ 2◦ 1◦ 0.5◦ 0.25◦ 2◦ 1◦ 0.5◦ 0.25◦

number of sectors 7.29E3 2.92E4 1.17E5 4.66E5 1616 1616 1616 1616

max points per sector 25 49 169 625 49 143 437 1575

max data accesses 1.82E5 1.43E6 1.97E7 2.92E8 7.91E4 2.31E5 7.06E5 2.55E6
Table 4. Numbers of sectors, maximum data points per sector, and total number of data accesses per time

step to search tropical domain θ ∈ [40S,40N] vs. data resolution. TSTORMS used n= {2,3,6,12} for the

corresponding ∆λ, and Stride Search used s= 450 km.

Both TSTORMS and the current implementation of Stride Search are written in Fortran and run

in serial on a single thread. As a timing experiment, we run both codes on three months of data that390

were interpolated to resolutions of ∆λ= 2◦,1◦,0.5◦,0.25◦, as described in Section 3. Each data set

contains 360 time steps evenly spread across three NetCDF files. We choose s= 450 km for Stride

Search and set the TSTORMS parameter n= 2,3,6,12 for the corresponding ∆λ. The total wall

clock time required for each algorithm to search each data set, including I/O, is recorded and the

average time per time step is computed by dividing the total by 360. We repeat each experiment395

three times for each resolution and average the results to produce Figure 6.

Figure 6(a) shows the average wall clock time required by each algorithm to search one time

step of data as a function of the data resolution ∆λ. The plot shows results from experiments run

on a standard desktop workstation using GNU’s Fortran compiler. The same tests were run on one

node of Sandia’s Red Sky High Performance Computing cluster using the Intel Fortran compiler400

and produced similar results. Both algorithms appear to scale at the expected rate of O(∆λ−2)

as ∆λ→ 0, but for each resolution Stride Search is faster. The speed advantage of Stride Search

over TSTORMS improves as resolution increases. Figure 6(b) shows the speedup due to Stride

Search, defined as the ratio of the TSTORMS average wall clock time per data time step to the

Stride Search average wall clock time per data time step. Stride Search is approximately 15% faster405

for the ∆λ= 2◦ data and this ratio increases as ∆λ→ 0. Stride Search is 2.5 times faster for the

∆λ= 0.25◦ data.

5 Polar search

A key motivation for developing Stride Search was to provide a detection algorithm capable of

searching all latitudes, including polar regions. The Arctic and Antarctic climates become increas-410

ingly frequent subjects of study due to recent significant changes in these environments (Stocker

et al., 2013), and a detection algorithm capable of searching data near the poles is necessary. Grid

point searches have been used at midlatitudes up to ≈ 60N and 60S (König et al., 1993; Raible and

Blender, 2004), but users must exercise care when choosing the sector size parameter n at high lati-
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Figure 6. Timing results. (a) Average wall clock time required to search one timestep of data. (b) Speedup due

to Stride Search.

tudes. A grid point search near the poles may have to use sectors whose physical size are no longer415

representative of the physical features of the storms it is meant to locate.

Figure 7(a) shows three consecutive grid point search sectors along θ = 60N. As in Figure 1,

the grid of data points has resolution ∆λ= 10◦ and we have used the same n= 2 to set up 5× 5

grid point search sectors. The blue (horizontal stripes) sector is centered at (λj ,θi) = (150E, 60N)

and the red (vertical stripes) and black (diagonal stripes) sectors are at (λj+1,θi) = (160E, 60N)420

and (λj+2,θi) = (170E, 60N), respectively. Each grid point search sector spans a distance of 5 grid

points in latitude, or approximately 5600 km south to north.

The square grid point search sectors may appear correct in the left plot of Figure 7(a), a Mercator

projection, but the problem with them is clear in the polar stereographic projection to the right. The

southern boundary of each sector lies along the 40N latitude circle, where 5 grid points in longitude425

span 4000 km east to west. But the northern boundary of each sector, along 80N, spans only about

1000 km east to west. Users can choose higher values of n at higher latitudes to ensure the sectors

will have sufficient zonal extent to capture the desired feature, but the square sectors will still have

different spatial scales in the longitude direction compared to the latitude direction. As we have
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(a) Grid point search sectors

(b) Stride Search sectors

Figure 7. Search sectors along 60N. Black dots represent data points with resolution ∆λ= 10◦. Blue sector

center is λ= 150E, θ = 60N. Red and black sectors are the next two consecutive searches; (a) TSTORMS,

n= 2; (b) Stride Search, s= 2500 km.

seen already in Section 4, the definition of search sector size can impact the final output of a search430

algorithm, independently of the identification criteria.

The constant geodesic radius of Stride Search sectors removes this dependence on the data. Fig-

ure 7(b) shows three Stride Search sectors along θ = 60N, with s= 2500 km. The blue (horizontally

striped) sector is centered at (λJ ,θI) = (150E, 60N). The red (vertically striped) and black (diago-

nally striped) sectors are at (λj+1,θi) = (170W, 60N) and (λj+2,θi) = (130W, 60N), respectively.435

The longitude stride along θ = 60N is twice as large as the longitude stride along the equator, so the

three consecutive sectors in Figure 7(b) cover twice as many longitude lines than the three sectors in

Figure 1(b). The shapes of each sector in the left plot are due to the effects of the Mercator projec-

tion. All sectors are still circles on the sphere, as shown in the polar stereographic projection (right).

Stride Search sectors – even one centered at the pole – have the same geographic size regardless440
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of latitude, and are therefore capable of searching polar regions as effectively as midlatitude and

tropical regions.

As an example application, we consider polar lows. Polar lows are distinct from mid-latitude low

pressure systems due to their different developmental forcing and a typical lack of associated fronts

(Montgomery and Farrell, 1992; Rasmussen and Turner, 2003). They contribute to the break-up of445

sea ice which has significant implications for the polar climate.

Individual polar lows may develop a barotropic structure more similar to tropical cyclones than

to baroclinic midlatitude storms (Nordeng and Rasmussen, 1992; Føre et al., 2012). These partic-

ularly interesting polar lows are typically smaller in diameter and duration than tropical cyclones,

and therefore require a high resolution model such as the one described in Section 3 to resolve. A450

companion study will investigate the Arctic climatology of variable resolution climate models and

their ability to simulate “hurricane-like” polar lows (Roesler et al., In prep.). Here, our goal is to test

Stride Search’s ability to locate such a small-scale high latitude storm.

A set of objective identification criteria for polar lows are given by Bracegirdle and Gray (2008),

which we adapt to the Stride Search algorithm. Storm intensity is measured with vorticity and pres-455

sure and, as was the case with the tropical cyclone identification criteria, a collocation requirement is

applied. New to this application is a criterion that identifies regions of increased instability associated

with cold air outbreaks over relatively warm ocean water.

Stride Search records a polar low in sector Kij if the following criteria are met:

1. A sea level pressure minimum of sufficient intensity exists,460

min
i,j∈Kij

Psl(λj ,θi)< τP , (14)

where Psl is sea level pressure and τP is the pressure threshold.

2. A cold air outbreak exists,

min
i,j∈Kij

[θ700(λj ,θi)−SST (λj ,θi)]≤ τT , (15)

where θ700 is the potential temperature at the 700 hPa level, SST is the sea surface temperature,465

and τT is the cold air outbreak threshold.

3. A cyclonic vorticity maximum of sufficient strength exists,

max
i,j∈Kij

[sgn(θi)ζ(λj ,θi)]> τζ . (16)

4. The vorticity maximum must be collocated with the pressure minimum,

dist
(
(λP ,θP ),(λζ ,θζ)

)
< τD. (17)470

Stride Search set up uses a sector radius s= 500 km, and search region boundaries θmin = 45N, and

θmax = 90N. Threshold values are set at τP = 980 hPa, τT = 7 K, τζ = 2.0× 10−4 s−1 and τD =

20



200 km. To the temporal correlation algorithm we add a minimum duration tmin = 12 hours and set

Umax = 20 m · s−1.

The data include only temperature (not potential temperature) and do not include the 700 hPa475

pressure level. The required θ700 data are approximated as

θ700 =
1

2
(θ850 + θ500) , (18)

where θ850 = T850
(
1000
850

)0.286
and θ500 = T500

(
1000
500

)0.286
.

Results from the entire 5-year data set are presented in Figure 8, separated by season. Storm tracks

are colored by their maximum strength on the U.S. National Weather Service’s maritime warning480

scale (Bowditch, 2002); gale force storms (black) have maximum wind speeds 17.5≤ umax < 24.5

m · s−1, storm force (blue) has 24.5≤ umax < 33 m · s−1, and hurricane force storms (red) have

maximum wind speeds greater than 33 m · s−1. The results show the expected seasonal variation

of storm frequencies, with the maximum number of storms and the maximum intensity of storms

occurring in the winter (DJF) months. Spring (MAM) months show more activity over the pole than485

the fall (SON) months, and there are few storms in the summer (JJA).

Once storm tracks are built users may investigate individual storms more easily. To fulfill our goal

of finding a “hurricane-like" polar low near the pole we search the storm tracks for storms that get

within 5 degrees of the pole, then plot the vorticity associated with each storm. Since the size of the

storm track list is much smaller than the size of the dataset, we quickly find the polar low shown490

in Figure 9, from 12:00 UTC December 25, simulation year 3. At the plotted time step the storm is

located at (017.0E, 86.5N). Spatial scale is illustrated by the 1000 km line segment. The plot shows

the 850 hPa relative vorticity of the storm and we note how similar its structure is to the typical

tropical cyclone. The diameter of the storm’s core is approximately 200 km and the diameter of the

whole storm, including its vorticity bands, is approximately 500 km. Due to its small spatial scale495

this storm would not be resolved in low resolution data. Additionally, it is located very close to the

pole. This storm therefore demonstrates the capability of Stride Search to find specific features in

high resolution data, even in polar regions.

6 Conclusions

We have introduced the Stride Search algorithm for detection of extreme events within climate data500

sets. The algorithm is defined independently of a data set’s layout and resolution, and depends only

on the spatial scale associated with a user’s intended application. Stride Search was designed to be a

flexible algorithm, capable of searching data sets for a variety of extreme events while treating phys-

ical space the same for different data sets. Extreme events must be described by a set of quantifiable

identification criteria and a representative spatial scale. As examples we have shown detections of505

two different varieties of cyclonic storms: tropical cyclones and polar lows. The capability to search
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Figure 8. Northern hemisphere polar low storm tracks by season; (a) DJF, (b) MAM, (c) JJA, (d) SON. Tracks

are colored by the NOAA warning category corresponding to their lifetime maximum wind speed.

polar latitudes in exactly the same manner as tropical- and mid-latitudes is a new feature introduced

by Stride Search, and was the primary motivation for its development.

To validate Stride Search we compare its output to the output of TSTORMS, the current stan-

dard tool for tropical cyclone detection. We show that Stride Search performs faster than TSTORMS510

and its relative speed up increases as the data resolution increases. The final output of both algo-

rithms, tropical cyclone tracks, generally agree. However, due to their different definitions of spatial

search sectors, results between the two codes can differ in some cases even when both use the same

identification criteria and threshold values.

Our results show that the storm track statistics associated with a particular climate data set can515

depend not only on the storm identification criteria, as is widely reported in the literature (e.g.,
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Figure 9. An example polar low on Dec. 25, simulation year 3, located at (017.0E, 86.5N) with structural

similarities to a tropical cyclone. The center of the plot is the north pole and the perimiter is the 80N latitude

circle.

Bracegirdle and Gray (2008); Raible et al. (2008); Horn et al. (2014)), but also on the spatial search

algorithm used to produce the storm tracks. Since the Stride Search algorithm is defined indepen-

dently of data layout and resolution, we posit that it may provide a more objective analysis tool and

be less sensitive to differences in spatial discretizations between data sets. Further experiments are520

necessary to investigate this claim; they should include variable resolution data, data defined on dif-

ferent types of spherical meshes, and sensitivity analyses covering a range of identification criteria

and threshold values.

We anticipate that extending Stride Search to other, more specialized applications such as locating

multi-centered cyclones (Hanley and Caballero, 2012) and atmospheric rivers (Ralph et al., 2004;525

Prabhat et al., 2012) will be straightforward. The software uses the object-oriented design capabil-

ities provided by modern Fortran (Adams et al., 2009) and is intended to allow users to extend its

data types to new applications.

Finally, we note that the performance of both Stride Search and TSTORMS software may be

improved via parallelization. It is already common to take advantage of temporal parallelism by530

applying the spatial search algorithm to multiple time steps and multiple files concurrently using

several compute nodes. This may be implemented with customized run scripts or dedicated software
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such as NASA’s Portable Distributed Script (PoDS) software (Kouatchou and Oloso, 2014), GNU

Parallel (Tange, 2011), and the Toolkit for Extreme Climate Analysis (Prabhat et al., 2012). However,

there also remains a significant amount of unexploited parallelism in the storm detection problem,535

as individual search sectors at the same time step may be distributed across intranode threads. We

mark the parallel development of the Stride Search software as an additional item for future work.

7 Code availability

A basic implementation of Stride Search written in Fortran for data on uniform latitude-longitude

grids is available at https://github.com/pbosler/StrideSearch. The code is available open-source and540

distributed under the GPL-2.0 license. Development of a C++ implementation and support for un-

structured grids are ongoing projects.
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