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Abstract

This paper introduces the Weather Research and Forecasting Model with chemistry/Data
Assimilation Research Testbed (WRF-Chem/DART) chemical transport forecasting/data as-
similation system together with the assimilation of “compact phase space retrievals” of
satellite-derived atmospheric composition products. WRF-Chem is a state-of-the-art chem-5

ical transport model. DART is a flexible software environment for researching ensemble
data assimilation with different assimilation and forecast model options. DART’s primary
assimilation tool is the ensemble adjustment Kalman filter. WRF-Chem/DART is applied to
the assimilation of Terra/Measurement of Pollution in the Troposphere (MOPITT) carbon
monoxide (CO) trace gas retrieval profiles. Those CO observations are first assimilated as10

quasi-optimal retrievals (QORs). Our results show that assimilation of the CO retrievals:
(i) reduced WRF-Chem’s CO bias in retrieval and state space, and (ii) improved the CO
forecast skill by reducing the Root Mean Square Error (RMSE) and increasing the Coeffi-
cient of Determination (R2). Those CO forecast improvements were significant at the 95 %
level.15

Trace gas retrieval data sets contain: (i) large amounts of data with limited information
content per observation, (ii) error covariance cross-correlations, and (iii) contributions from
the retrieval prior profile that should be removed before assimilation. Those characteristics
present challenges to the assimilation of retrievals. This paper addresses those challenges
by introducing the assimilation of “compact phase space retrievals” (CPSRs). CPSRs are20

obtained by preprocessing retrieval datasets with an algorithm that: (i) compresses the re-
trieval data, (ii) diagonalizes the error covariance, and (iii) removes the retrieval prior profile
contribution. Most modern ensemble assimilation algorithms can efficiently assimilate CP-
SRs. Our results show that assimilation of MOPITT CO CPSRs reduced the number of
observations (and assimilation computation costs) by ∼35 % while providing CO forecast25

improvements comparable to or better than with the assimilation of MOPITT CO QORs.
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1 Introduction

There is increased international interest in chemical weather forecasting (Kukkonen et al.,
2012; MACC-II Final Report). Such forecasts rely on coupled forecast model/data assimila-
tion systems that ingest a combination of remotely sensed and in situ atmospheric composi-
tion observations together with conventional meteorological observations. Generally the re-5

motely sensed observations come in the form of trace gas retrievals. Examples include car-
bon monoxide (CO) total and partial column or profile retrievals from the Terra/Measurement
of Pollution in the Troposphere (MOPITT) and Metop/Infrared Atmospheric Sounding Inter-
ferometer (IASI) instruments. The associated data sets are characterized by large numbers
of observations with limited information per observation. Such remotely sensed data has10

been assimilated in various settings (e.g. Bei et al., 2008; Herron-Thorpe et al., 2012; Klo-
necki et al., 2012; and Gaubert et al., 2014), but there have been only a few papers ad-
dressing data compression strategies. Two such papers were Joiner and Da Silva (1998)
and Migliorini et al. (2008). This research is inspired by their research and introduces an
efficient assimilation strategy that reduces the number of MOPITT CO retrieval observa-15

tions by ∼35 %. Greater reductions are possible, for example with IASI CO and ozone (O3)
retrievals, and depend on the number of: (i) levels in the retrieval profile and (ii) linearly
independent pieces of information in the retrieval profile.

Joiner and Da Silva (1998) first proposed the idea of using information content to reduce
the number of retrieval observations. They suggested projecting retrievals onto the eigen-20

vectors of the observation error covariance matrix and zeroing those coefficients with little
or no information. Their approach evolved from one-dimensional retrieval algorithms (e.g.
Twomey, 1974; Smith and Woolf, 1976; and Thompson, 1992).

Retrievals are often obtained using the optimal estimation method of Rodgers (2000) to
obtain solutions to the “retrieval equation”25

yr = Ayt + (I−A)ya + ε (1)

where yr is the retrieval profile, A is the averaging kernel, yt is the true atmospheric profile
(unknown), I is the identity matrix, ya is the retrieval prior profile, and ε is the measurement

3



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

error in retrieval space with error covariance Em – the measurement error covariance in
retrieval space. Joiner and Da Silva (1998) proposed projecting Eq. (1) onto the trailing left
singular vectors from the singular value decomposition (SVD) of: (i) (I−A) (their Method
1) or (ii) the smoothing error Es = (A− I)Pp(A− I)T where Pp is the retrieval prior error
covariance (their Method 2). Those projections removed the components of the retrieval5

that the instrument could not measure with sufficient sensitivity. They called that approach
“null-space filtering.”

Joiner and da Silva (1998) recognized that when the retrieval was strongly constrained
by the retrieval prior profile the assumptions underlying null-space filtering were invalid. For
such retrievals, they proposed filtering based on an eigen-decomposition of Em (their PED10

retrievals). Their analysis showed that PED retrievals were well-conditioned and indepen-
dent of the retrieval prior profile.

Migliorini et al. (2008) noted that the Joiner and DaSilva (1998) filtering depended on their
truncation criteria and was therefore somewhat arbitrary. They also showed it was possible
to achieve similar filtering results with an alternative approach that used a more well-defined15

truncation criterion. Migliorini et al. (2008) rearranged Eq. (1) to obtain

yr− (I−A)ya = Ayt + ε. (2)

Following their terminology we call the left side of Eq. (2) a “quasi-optimal” retrieval (QOR).
Migliorini et al. (2008) noted that Em was unlikely to be diagonal and likely to be poorly
conditioned. To address those issues, they applied a SVD transform to Eq. (2) based on20

the leading left singular vectors of Em (similar to that proposed by Anderson, 2003) – this
step provided diagonalization of Em and used a well-determined truncation cutoff. They also
applied a scaling based on the inverse square root of the associated singular values – this
step improved numerical conditioning.

Migliorini et al. (2008) continued to reduce the dimension of Ayt (i.e., the number of ob-25

servations) by neglecting those elements whose variability was smaller than the measure-
ment error standard deviation (unity in their rotated and scaled system). They proposed
identifying those elements with an eigen-decomposition of the covariance of Ayt. Since
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that covariance is generally unknown, they replaced it with the forecast error covariance
and showed that the resulting dimension was approximately equal to the number of inde-
pendent linear functions that could be measured to better than noise level.

A more recent paper, Migliorini (2012) shows that retrievals can be transformed to rep-
resent only the portion of the state that is well constrained by the original radiance mea-5

surements when two requirements are satisfied: (i) the radiance observation operator is
approximately linear in a region of state space centered on the retrieval and with a ra-
dius on the order of the retrieval error, and (ii) the prior information used to constrain the
retrieval does not underrepresent the variability of the state. Migliorini (2012) proves that
when those conditions are met the assimilation of radiances is equivalent to the assimila-10

tion of retrievals. The Migliorini (2012) analysis shows that it is possible to use information
from the retrieval algorithm to compress information in the transformed retrievals

In this paper, we propose an approach that achieves results similar to: (i) Migliorini et
al. (2008) without needing to approximate the covariance of Ayt, and (ii) Migliorini (2012)
without needing information about the retrieval algorithm. Our goal is to compress the re-15

trievals and remove those components that are not dependent on the measurements. In
so doing we expect to make the assimilation of retrievals more computationally efficient.
The rest of this paper is organized as follows: Sect. 2 introduces “compact phase space
retrievals,” and Sect. 3 introduces the WRF-Chem/DART regional chemical weather fore-
cast/data assimilation system. Section 4 discusses our experimental design including the20

study period, model domain, initial/boundary conditions, and relevant WRF-Chem/DART
parameter settings. Section 5 discusses the observations that were assimilated in the vari-
ous experiments described in Sect. 6. The results from those experiments are presented in
Sect. 7, and we end with a summary of our thoughts and conclusions in Sect. 8.

2 Assimilation of compact phase space retrievals25

We can rewrite Eq. (2) as

yr− (I−A)ya− ε = Ayt. (3)
5
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In Eq. (3) the averaging kernel A is singular and has low rank. Therefore the information
content for each component of Ayt is relatively small, and the assimilation is inefficient
because one must assimilate the entire profile to get the same information as can be com-
pressed into a number of processed observations equal to the rank of A. To compress
Eq. (3) we propose transforming it with the leading left singular vectors from a SVD of the5

averaging kernel i.e., A = USVT . We denote the truncated system with the subscript zero
so that A0 = U0S0VT0 , the truncated averaging kernel is obtained by setting the trailing sin-
gular values (i.e., singular values that were less than 1.0× 10−4) and vectors to zero. The
transformed system has the form

UT
0 (yr− (I−A)ya− ε) = S0V

T
0 yt. (4)10

Migliorini et al. (2008) showed that subtracting (I−A)ya from Eq. (3) removes all contribu-
tion from the retrieval prior profile. Equations (3) and (4) confirm their result because the
leading left singular vectors of A span its range so the left side of Eq. (3) should project
completely onto UT

0 . Following that transform Em becomes UT
0 EmU0 which may still be

non-diagonal and poorly conditioned. Therefore, we apply an SVD transform and inverse15

scaling similar to that used by Migliorini et al. (2008). If the SVD of UT
0 EmU0 has the form

UT
0 EmU0 = ΦΣΨT , the transformed and conditioned form of Eq. (4) is

Σ−1/2ΦTUT
0 (yr− (I−A)ya− ε) = Σ−1/2ΦTS0V

T
0 yt. (5)

Our approach compresses Eq. 3) so that the dimension of the “compact phase space
retrieval" (CPSR) profile on the left side of Eq. (5) is identical to the number of independent20

functions linear functions of the atmospheric profile to which the instrument is sensitive.
This method is different from that of Migliorini et al. (2008) because it compresses the
quasi-optimal retrieval observations based on a linear independence analysis and relies on
the assimilation system to decide how much weight to give the observations. Migliorini et
al. (2008)’s approach reduces the number of observations based on an uncertainty analy-25

sis independent of the assimilation system. Our approach identifies all linearly independent
information contained in the QOR profile (through projection of the QOR profile onto the left
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non-zero singular vectors of the averaging kernel). Migliorini et al. (2008)’s approach may;
(i) discard some linearly independent information because the left non-zero singular vec-
tors of the observation error covariance are not necessarily a basis for the space of QORs;
and (ii) discard some linearly independent information through their uncertainty analysis.
Finally, our approach relies on two transforms: (i) a compression transform (based on the5

left non-zero singular vectors of the averaging kernel, and (ii) a diagonalization transform
(based on the left non-zero singular vectors of the compressed observation error covari-
ance). Migliorini et al. (2008)’s approach uses two diagonalization transforms − the first
based on the observation error covariance and the second based on the transformed fore-
cast error covariance in observation space. Our diagonalization transform is analogous to10

their first diagonalization transform except we apply it to the compressed observation error
covariance, and they apply it to the “untransformed” observation error covariance. As in
Migliorini et al. (2008), the final form of our observation error covariance is the truncated
identity matrix.

The assimilation of CPSRs should produce results similar to the assimilation of QORs15

except for: (i) the effect of assimilation sub-processes like horizontal localization and infla-
tion, and (ii) differences in the observation error due to the CPSR compression transform.
The QOR and CPSR observation errors are different because the compression transform
projects the errors onto the leading left singular vectors of the averaging kernel and retains
only those components that lie in the range of the averaging kernel.20

In summary the steps for obtaining CPSRs from trace-gas retrievals are as follows (as-
suming the retrieval equation has the same form as Eq. 2):

– Obtain the retrieval and retrieval prior profiles, the averaging kernel, and the observa-
tion error covariance for a particular horizontal location.

– Subtract the retrieval prior term (I−A)ya from the retrieval profile yr. This yields the25

QOR as defined by Eq. (3).

– Perform a SVD of the averaging kernel. Form a transform matrix from the left singular
vectors associated with the non-zero singular values. Left multiply the QOR by the
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transpose of the transform matrix. This yields the truncated QOR profile as defined by
Eq. (4).

– Left multiply the observation error covariance by the transpose of the transform matrix.
Right multiply that matrix product by the transform matrix. This yields the truncated
observation error covariance.5

– Perform a SVD of the truncated observation error covariance. Scale the left singular
vectors with the inverse square root of their respective singular values. Left multiply
the truncated QOR profile by the transpose of the scaled left singular vector matrix.
This yields the CPSR profile as defined by Eq. (5).

– As a check left multiply the truncated observation error covariance by the transpose of10

the scaled left singular vector matrix. Right multiply that matrix product by the scaled
left singular vector matrix. The result should be an identity matrix with rank equal to
the number of non-zero CPSRs from the previous step.

– Assimilate the non-zero CPSRs with unitary error variance.

3 WRF-Chem/DART – a regional chemical transport/data assimilation system15

The Weather Research Forecasting Model with chemistry/Data Assimilation Research
Testbed (WRF-Chem/DART) system is the WRF-Chem chemical transport model (www2.
acd.ucar.edu/wrf-chem) coupled with the DART (www.image.ucar.edu/DAReS/DART) en-
semble adjustment Kalman filter (Anderson, 2001, 2003) data assimilation system. WRF-
Chem/DART is an extension of WRF/DART (www.cawcr.gov.au and references therein).20

WRF-Chem is the National Center for Atmospheric Research (NCAR) regional Weather
Research and Forecasting (WRF) model (www.wrf-model.org) with chemistry. WRF-Chem
is a regional model that predicts conventional weather together with the emission, trans-
port, mixing, and chemical transformation of atmospheric trace gasses and aerosols. WRF-
Chem is collaboratively developed and maintained by the National Oceanic and Atmo-25

8
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spheric Administration/Earth System Research Laboratory (NOAA/ESRL), Pacific North-
west National Laboratory (PNNL), and NCAR/Atmospheric Chemistry Observation and
Modeling Laboratory (ACOM). WRF-Chem is documented in Grell et al. (2004), discussed
in Kukkonen et al. (2012), and has been applied in various research settings (e.g., Pfister
et al., 2011, 2013).5

DART (Anderson et al., 2009) is a community resource for ensemble data assimilation
(DA) research developed and maintained by the NCAR/Data Assimilation Research Section
(DAReS). DART is a flexible software environment for studying the interaction between dif-
ferent assimilation methods, observation platforms, and forecast models. WRF-Chem and
DART are state-of-the-art tools for studying the impact of assimilating trace gas retrievals10

on conventional and chemical weather analyses and forecasts.

4 Study period, domain, initial conditions, boundary conditions, emissions, and
initial ensemble generation

We conducted continuous cycling experiments with WRF-Chem/DART for the period of
00:00 UTC, 1 June 2008 to 00:00 UTC, 1 July 2008 with 6 h cycling (00:00 UTC, 06:00 UTC,15

12:00 UTC, and 18:00 UTC). To facilitate a large number of experiments, we used a reduced
ensemble of 20 members and a horizontal resolution of 100 km (101× 41 grid points). We
used 34 vertical levels with a model top at 10 hPa and ∼15 levels below 500 hPa. WRF-
Chem ran with the Model for Ozone and Related Chemical Tracers (MOZART-4) chemistry
and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model aerosol op-20

tions (Colarco et al., 2009; Emmons et al., 2010). Ideally for chemical transport forecast
experiments we would like an ensemble size of at least 40 members, a horizontal resolu-
tion of no larger than 20 km, and a vertical grid with at least 50 levels. We expect our small
ensemble/coarse resolution cycling results, as they pertain to the assimilation of QORs and
CPSRs, will apply to larger ensembles with higher resolutions. However, as the vertical reso-25

lution increases, the sensitivity to vertical localization may increase (because as the model’s
vertical resolution increases: (i) the vertical solution becomes less smooth and may exhibit

9
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greater vertical variability and (ii) the fidelity of vertical localization becomes greater) so that
tuning of the vertical localization length may be necessary. For our experiments we used
a three-dimensional Gaspari-Cohn type localization with a localization radius half-width of
3000 km in the horizontal and 8 km in the vertical. We conducted sensitivity experiments
to determine the appropriate localization settings. Results from the horizontal tests are not5

discussed. Results from selected vertical localization tests are discussed briefly in Sec. 7.5.
We used NCEP Global Forecast Model (GFS) 0.5◦ six-hour forecasts for the WRF-Chem

initial/boundary conditions. Our model domain extends from ∼176 to ∼50◦ W and from
∼7 to ∼54◦ N. We used the WRF Preprocessing System (WPS) to interpolate the GFS
forecasts to our domain and generate the deterministic boundary conditions. We used10

the WRF Data Assimilation System (WRFDA) (http://www2.mmm.ucar.edu/wrf/users/wrfda/
Docs/user_guide_V3.7/WRFDA_Users_Guide.pdf) to generate the initial meteorology en-
semble.

For the chemistry initial and lateral boundary conditions, we used global simulations from
the NCAR MOZART-4 model. The fire emissions came from the Fire Inventory from NCAR15

(FINNv1; Wiedinmyer et al., 2011), and the Model of Emissions of Gases and Aerosols
from Nature (MEGAN; Guenther et al., 2012) calculated the biogenic emissions as part
of the WRF-Chem forecast. The anthropogenic emissions were based on the US Envi-
ronmental Protection Agency’s (EPA’s) 2005 National Emissions Inventory (NEI-2005). We
used or adapted existing ACOM/WRF-Chem utilities (https:www2.acd.ucar.edu/wrf-chem/20

wrf-chem-tools-community) to generate the initial chemistry ensembles with a Gaussian
distribution from a specified mean and standard deviation. That distribution was truncated
at the tails to include 95 % of the distribution. Similar utilities were used to generate the
emission ensembles. We excluded the distribution tails to avoid the potential for the ex-
treme values to cause numerical problems in the chemistry algorithms. Although we rec-25

ognize that the assimilation cycling results may be sensitive to the emission perturbation
horizontal correlation lengths (e.g. Pagowski et al., 2012), that issue was not particularly
relevant to our study so we set the horizontal and vertical correlation lengths to zero.

10
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5 Meteorology observations and satellite trace gas retrievals

At each cycle time, depending on the experiment we assimilated meteorology and/or chem-
istry observations with the DART Ensemble Adjustment Kalman Filter (EAKF) and then
advanced the analysis ensemble to the next cycle time with WRF-Chem. The 6 h forecast
ensemble was then used as the first guess for the next ensemble DA step.5

We assimilated conventional meteorological observations and CO trace gas retrievals
from MOPITT. The meteorological observations were NCEP Automated Data Processing
(ADP) upper air and surface observations (PREPBUFR observations). They included air
temperature, sea level pressure, surface winds, dew point temperature, sea surface tem-
perature, and upper level winds from various observing platforms. We refer to those obser-10

vations as the “MET OBS.”
We also assimilated MOPITT partial column/profile CO retrievals. MOPITT is an instru-

ment flying on NASA’s Earth Observing System Terra spacecraft. MOPITT’s spatial reso-
lution is 22 km at nadir, and it sees the earth in 640 km wide swaths. MOPITT uses gas
correlation spectroscopy to measure CO in a thermal-infrared (TIR) band near 4.7 µm and15

a near-infrared (NIR) band near 2.3 µm. TIR radiances are sensitive to CO in the mid- and
upper-troposphere while NIR measures the CO total column. Worden et al. (2010) and
Deeter et al. (2011, 2012, and 2013) have shown that the sensitivity to CO in the lower
troposphere is significantly greater for retrievals exploiting simultaneous TIR and NIR than
for retrievals based on TIR alone. MOPITT started data collection in March 2000. We used20

the MOPITT v5 TIR/NIR products described in Deeter et al. (2013). We refer to the MOPITT
observations as the “CHEM OBS.”

The retrieval error covariance Er associated with each MOPITT CO retrieval profile is pro-
vided as part of the data product. That error covariance is derived by the retrieval process
based on a specified a priori error covariance Ea. Under the optimal estimation theory of25

Rodgers (2000) Er is related to Ea through the averaging kernel A by Er = (I−A)Ea. The
measurement error in retrieval space Em is also related to Ea and A by Em = (I−A)EaAT .
Generally for retrieval data sets, Ea, Er, and Em are non-diagonal.

11
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6 Experimental design

We conducted two basic experiments: (i) a control experiment where we assimilated only
MET OBS (MET DA); and (ii) a chemical data assimilation experiment where we assimilated
MET OBS and MOPITT CO partial column retrievals in the form of QORs (MOP QOR). In
addition we conducted an experiment where we converted the CHEM OBS to CPSRs and5

assimilated the CPSRs (MOP CPSR). We also conducted sensitivity experiments where
we: (i) zeroed the observation error covariance cross-correlations (as opposed to using a
SVD transformation for diagonalization), and (ii) applied vertical localization. Those exper-
iments are denoted MOP NROT and MOP LOC respectively. The suite of experiments is
summarized in Table 1.10

For all experiments we used: (i) DART horizontal and vertical localization – Gaspari-
Cohn localization with a localization radius half-width of 3000 km in the horizontal and 8
km in the vertical, (ii) DART prior adaptive inflation, (iii) no posterior inflation, (iv) full inter-
action between all observations and all state variables – i.e., MET OBS update chemistry
state variables and CHEM OBS update meteorology state variables (joint assimilation of15

MET and CHEM OBS), (v) DART clamping (i.e., the imposition of a minimum threshold) on
chemistry state variables to constrain the posterior ensemble members to be positive, and
(vi) the reported MOPITT retrieval error covariance as the observation error covariance to
account for unrepresented error sources such as representativeness error.

For the MOP QOR experiment, the MOPITT CO retrievals were converted to QORs using20

an algorithm similar to that described by Migliorini et al. (2008) except we did not perform
their second forecast error covariance based filtering.

12
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7 Results

7.1 The control and chemical data assimilation experiments

The MET DA and MOP QOR experiments are intended to identify the impact of assimilating
chemistry observations. Figure 1a shows shaded contours of CO in parts per billion (ppb)
at ∼1000 hPa from the 6 h forecast valid at 00:00 UTC, 29 June 2008 and compares the5

MET DA and MOP QOR experiments. It shows that over the course of MOP QOR the
assimilation of CO retrievals reduced the: (i) positive CO bias found in polluted areas of MET
DA (i.e., metropolitan areas with high CO emissions – San Francisco, Los Angeles, Chicago,
and the northeast US), and (ii) negative CO bias found in nonpolluted areas in MET DA
(Hawaii, east Pacific, southeast US, and Baja). The MET DA biases could result from model10

errors such as: (i) emission errors – CO emissions too high in polluted areas and too low
in nonpolluted areas, (ii) transport errors – insufficient CO transport away from polluted
areas and insufficient transport toward nonpolluted areas, and/or (iii) chemistry errors – CO
destruction is too weak in polluted areas and too strong in nonpolluted areas. The MET DA
biases could also result from initial/boundary conditions errors that were corrected by the15

assimilation of MOPITT CO in MOP QOR.
Figure 1b shows the assimilated CO retrievals for the 18:00 UTC, 28 June 2008 update

cycle in the upper panel and the corresponding increments in the lower panel. Comparison
of those panels shows that the assimilation step adjusted the CO concentrations primar-
ily along the satellite observation paths, which is a consequence of assimilating sparse20

observations. The DA adjustments in Fig. 1b are generally consistent with the differences
between MOP QOR and MET DA in Fig. 1a (CO increases in nonpolluted areas – east of
San Francisco, the southeast US, and Baja). However, that is a general statement because
the MOP QOR – MET DA differences are partially related to the impact of assimilating CO
observations during the preceding assimilation cycle and partially related to the impact of25

assimilating all the CO observations since the beginning of the cycling experiment (∼100
cycles). Consequently, there are locations where the signs of the MOP QOR – MET DA
differences are different from the signs of the increments (e.g. southwest of Lakes Michigan
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and Huron and over the Ohio River Valley and San Francisco Bay). The sense of those
sign differences is not an indication of relative forecast accuracy but that the: (i) impact
from assimilating CO during the preceding cycle was similar to that from assimilating CO
throughout the cycling experiment (same signs), and (ii) impact from assimilating CO dur-
ing the preceding cycle was different to that from assimilating CO throughout the cycling5

experiment (different signs).
Figure 2 shows time series of the domain average CO from the MET DA and MOP QOR

experiments in retrieval and state space. The dots represent the retrieval space results
where the cool colors (blue and black) show the forecasts, and the warm colors (red and
magenta) show the analyses. The green dots represent the MOPITT retrievals. The solid10

lines show state space results. Figure 2 has several interesting results. First, MET DA had
a negative bias of∼10 ppb in retrieval space. Second, assimilation of MOPITT CO reduced
that bias by ∼5 ppb. Finally, in state space MOP QOR increased the mean CO by ∼5 ppb.
As discussed below, those results are consistent with Fig. 1 which shows a large number
of nonpolluted areas in MET DA with a negative bias and a small number of polluted areas15

with a positive bias.
Figure 3 shows vertical profiles of the time (00:00 UTC, 25 June 2008 to 00:00 UTC,

29 June 2008) and horizontal domain average CO in retrieval space. It shows that the
MOPITT profile had greater vertical variability (moderate CO near the surface, low CO in
the mid-troposphere (500–400 hPa), high CO in the upper troposphere (300–200 hPa), and20

low CO near the tropopause (200–100 hPa)) than the MET DA and MOP QOR profiles.
It also shows that the assimilation of MOPITT CO had positive impacts throughout the
troposphere with greatest improvement in the upper troposphere. Figure 3 shows that there
were differences in the MOP QOR/MET DA bias reduction between: (i) the upper and lower
troposphere (greater magnitude negative bias reduction in the upper troposphere and lesser25

magnitude positive bias reduction in the lower troposphere), and (ii) the forecast and the
analysis (greater bias reduction in the analysis than in the forecast). Those results expand
our understanding of the bias in Figs. 1 and 2. In Fig. 3 the forecast and analysis show
greater bias reduction in the upper troposphere. That suggests that the domain averages in
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Fig. 2 were dominated by bias reductions in the upper troposphere. Figure 3 also suggests
that bias reductions in the lower troposphere were dominated by the reduction of the positive
bias in the polluted areas of Fig. 1. Those results suggest that the following model errors
(as opposed to initial/boundary conditions errors) caused the biases: (i) the near surface
biases were likely caused by the CO emissions being too high in polluted areas and too5

low in nonpolluted areas, (ii) the positive biases in the lower mid-troposphere (∼600 hPa)
were likely caused by erroneously large vertical CO fluxes from the near surface to the
lower mid-troposphere and/or too little CO destruction, and (iii) the negative biases in the
upper troposphere were likely caused by erroneously small vertical CO fluxes and/or too
much CO destruction. We reach the conclusion regarding model error versus IC/BC error10

because Fig. 3 shows that the bias reduction in the lower troposphere is greater for the
analyses than for the forecasts. That suggests the following the assimilation MOPITT CO
in MOP QOR the CO IC/BCs have improved relative to MET DA. Then during the course
of model integration the bias increases. Thus, we conclude that model error is a more likely
cause of the bias.15

Lastly, we tested the null hypothesis that the difference between the MET DA and MOP
QOR time series results was zero (H0: MOP QOR − MET DA = 0) against an alternative
hypothesis that the difference was not zero (HA: MOP QOR − MET DA 6= 0). We used the
retrieval space time series from Fig. 2 and the large sample parametric test for the difference
between two means from a normal distribution. The test statistic was Z = Y 1−Y 2√

σ2
1
n1

−
σ2
2
n2

where20

Y 1, σ21 , and n1 denote the sample mean, sample variance, and number of samples for the
MOP QOR experiment; Y 2, σ22 , and n2 denote the analogous sample statistics for the MET
DA experiment; and n1 = n2 = 104. The rejection criteria was |Z|> zα/2 where α = 0.05
and zα/2 = 1.96 for a two-tailed test at the 95 % confidence level. We were able to reject
the null hypothesis. Based on that result we conclude that assimilation of MOPITT CO25

retrievals significantly changed the WRF-Chem/DART CO forecasts and analyses. When
measured against MOPITT, those changes were a significant improvement.
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7.2 Assimilation of compact phase space retrievals (CPSRs)

Next we study the assimilation of CPSRs as described in Sect. 2 but first review some
CPSR attributes. Figure 4a shows vertical profiles of CPSR characteristics averaged for
the MOPITT retrieval domain at 18:00 UTC, 28 June 2008. The blue curves represent the
MOPITT CO retrievals (MOP-Ret). Those curves have reduced vertical structure due to the5

units (log10(VMR) as opposed to VMR). After conversion from log10(VMR) to VMR, MOP-
Ret has greater vertical structure and resembles the MOPITT profiles in Fig. 3. The black
curves represent the MOPITT CO QORs (MOP-QOR) as defined by Eq. (3). MOP-QOR
differs from MOP-Ret in that it has maxima near the surface and upper troposphere and
a minimum in the middle troposphere. The green curves represent the truncated profiles10

which are obtained by: (i) projecting the full retrieval profile or the QOR profile onto the
leading left singular vectors of the associated averaging kernel to get the projection co-
efficients (e.g., cr = UT

0 yr where cr is the projection coefficient vector for the full retrieval
and cqor = UT

0 (yr− (I−A)ya− ε) = UT
0 yqor, where cqor is the coefficient vector for the

QOR profile – see Eq. (4) in Sect. 2), and (ii) performing the inverse projection by multi-15

plying the leading singular vectors by their respective projection coefficients and summing
those dot-products (e.g., ŷr = U0cr is the truncated retrieval profile – denoted MOP-Trc and
ŷqor = U0cqor is the truncated QOR profile – denoted QOR-Trc). The forward transform in
(i) is analogous to the first part of the CPSR transform in Eq. (4). The inverse transform in
(ii) brings the result of forward transform in (i) back to state space. The inverse transform is20

not part of the CPSR algorithm.
In Fig. 4a the residuals are defined as the difference between the full and truncated pro-

files (e.g., yr− ŷr is the full retrieval residual – denoted MOP-Res and yqor− ŷqor is the
QOR residual – denoted QOR-Res). If the full profiles project completely onto the leading
singular vectors, the residuals are zero. The upper panel of Fig. 4a shows that the trans-25

form in (i) has the greatest impact near the surface and the upper troposphere and the least
impact in the middle troposphere. When the truncation residuals are nonzero, the original
profiles contain components that are not in the range of the averaging kernel. That always
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indicates a contribution from the retrieval prior term ((A− I)ya. However a zero residual
does not always indicate that the contribution from the retrieval prior term has been re-
moved. For QOR residuals, the retrieval prior term contribution is completely removed. For
the retrieval residuals, the retrieval prior term contribution may not be completely removed.
When components of the retrieval prior term lie in the range of the averaging kernel, they5

cannot be removed by the transform in (i) and are therefore not included in the residual.
For example in the upper panel of Fig. 4a the similarity between MOP-Trc and QOR-Ret
shows that the MOPITT retrieval was strongly influenced by the retrieval prior and that most
of the prior contribution was removed by the transform in (i). That also shows that most
of the prior contribution was not in the range of the averaging kernel. However not all was10

outside the range, and the difference between MOP-Trc and QOR-Ret shows that most was
inside the range. This analysis shows that the influence of the retrieval prior term cannot be
completely removed by projecting the retrieval onto the range of the averaging kernel. The
results show that it is necessary to use the Migliorini et al. (2008) quasi-optimal subtraction
in Eq. (2) to remove the retrieval prior contribution. Comparison of QOR-Ret and QOR-Trc15

in the lower panel of Fig. 4a shows that QOR-Ret lies completely within the range of the
averaging kernel. That result was expected from the discussion of Eqs. (3) and (4).

In summary Fig. 4a shows the state space impacts from applying the Migliorini et
al. (2008) quasi-optimal subtraction and the CPSR transform in (i). It also shows that the
quasi-optimal subtraction was necessary to remove the influence of the retrieval prior. Thus20

in CPSRs the quasi-optimal subtraction removes the influence of the retrieval prior and
projection onto the leading singular vectors of the averaging kernel provides the data com-
pression.

In Fig. 4a the average number of leading singular vectors was ∼2.3. CPSRs reduced the
number of observations by ∼7.7 per MOPITT profile. After thinning there were ∼30 00025

MOPITT profiles per assimilation cycle. That implies a CPSR reduction of ∼281 000 re-
trievals or ∼80 % per cycle. On application the actual reduction was less because the num-
ber of non-retrieval observations was not reduced. As an example when assimilating MET
OBS and CHEM OBS we found a reduction of ∼35 % in the computation cost. That is
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a wall clock time reduction based on NCAR’s 1.5-petaflop high-performance IBM Yellow-
stone computer with 32 tasks, and 8 tasks per node. We expect similar reductions for other
computing configurations.

In Fig. 4b we examine the vertical structure of the CPSRs. The upper panel shows the
retrieval domain average of the MOPITT averaging kernel profiles from 18:00 UTC, 28 June5

2008. The lower panel shows the domain average of the leading left singular vectors from
SVDs of the averaging kernel profiles in the upper panel. Comparison of the upper and
lower panels shows that while the singular vector and averaging kernel profiles are similar it
is not possible to associate a specific singular vector profile with a specific averaging kernel
profile or with a group of profiles. However like the averaging kernel of singular vectors show10

the sensitivity of the associated CPSR to the true CO profile. The first singular vector shows
positive sensitivity to the entire CO profile with greater sensitivity in the lower and middle
troposphere and greatest sensitivity in the upper middle troposphere. The second singular
vector shows positive sensitivity in the lower troposphere and negative sensitivity in the
upper troposphere. Lastly the third singular vector resembles the first singular vector with15

greatest positive sensitivity in the upper middle troposphere but with negative sensitivity in
the lower and upper troposphere. Those characteristics are consistent with the MOPITT
TIR and NIR joint sensitivities documented by Worden et al. (2010) and Deeter et al. (2011,
2012, and 2013). It should be noted that the sign of the singular vectors in the Fig. 4b is
arbitrary because the left and right singular vectors can be jointly multiplied by negative20

one and still qualify as singular vectors. However, when multiplied by one sign the singular
vector may have physical meaning, and when multiplied by the other it may not. For our
application, the sign that made the vertical structure of the singular vectors most similar to
that of the averaging kernel had physical meaning. Therefore, in Fig. 4b we chose the sign
that made the singular vector profile most consistent with the averaging kernel profiles.25

To test the benefit of assimilating CPSRs we converted the MOPITT CO retrievals to
CPSRs and repeated the MOP QOR experiment (called MOP CPSR). Those results are
shown in Figs. 5–7. Conceptually the MOP CPSR results should be similar to the MOP
QOR results in Figs. 1–3. Practically, the results are different due to: (i) the effect of DA sub-
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processes like horizontal localization and inflation, and (ii) differences in the observation
error caused by the CPSR compression transform. Comparison of the contour maps in
Figs. 1a and 5a shows that MOP CPSR provided similar adjustments to MOP QOR but
they were of greater magnitude and larger area (the MET DA result was not plotted in
Fig. 5a because it would be the same as in Fig. 1a). The general trend from Fig. 1a that5

the assimilation of CO retrievals reduced the positive CO bias in polluted areas and the
negative bias in nonpolluted areas appears in Fig. 5a. Comparison of Figs. 1b and 5b shows
that MOP CPSR generally assimilated the same CO retrievals as MOP QOR, but the CPSR
increments were of greater magnitude and more widely dispersed. Comparison of the time
series plots in Figs. 2 and 6 shows that there were slightly greater bias reductions for MOP10

CPSR than MOP QOR. MOP CPSR reduced the CO negative bias in retrieval space by
∼8 ppb and increased the mean CO in state space by ∼10 ppb. Those improvements are
also seen from a comparison of the vertical profiles in Figs. 3 and 7, which shows that
MOP CPSR produced greater bias reductions for the forecast and analysis throughout the
troposphere. As in MOP QOR the MOP CPSR improvements were greater in the upper15

troposphere than in the lower troposphere. The MOP CPSR results from Fig. 7 provide
further support for our suggestion that the domain average bias reductions in Figs. 2 and 6
were due to bias reductions in the upper troposphere because the greater bias reductions
in the upper troposphere of Fig. 7 (compared to Fig. 3) provided greater bias reductions in
Fig. 6 (compared to Fig. 2). In summary Figs. 5–7 confirm our analysis of Figs. 1–3 and20

show that assimilation of CPSRs produced results that were similar to or better than those
from the assimilation of QORs at two-thirds the computational cost. We also conducted
significance testing for MOP CPSR similar to that for MOP QOR and were able to reject
the null hypothesis that there was no difference between the MOP CPSR and MET DA time
series in Fig. 6.25

7.3 Verification against MOPITT retrievals

We calculated verification statistics (bias, root mean square error (RMSE), and Coefficient
of Determination (R2)) for the 6 h forecasts from all experiments based on the time series
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results in Figs. 2 and 6. Those statistics are plotted in Fig. 8. Generally Fig. 8 shows that
the assimilation of MOPITT CO improved model performance for all metrics when com-
pared against the MOPITT retrievals. Figure 8 also shows that RMSE was dominated by
the bias and that the differences in the statistics for the different treatments (assimilating
QORs, CPSRs, cross-covariance zeroing, and vertical localization) were generally negligi-5

ble except for cross-covariance zeroing. We now discuss the cross-covariance zeroing and
vertical localization experiments.

7.4 Observation error covariance diagonalization through zeroing of the
cross-correlations

One method used to diagonalize the observation error covariance is zeroing of the cross-10

correlations (see the Introduction to Migliorini et al., 2008). The uncertainty of the error
covariance and the practice of adjusting the observation error variance to tune ensemble
DA strategies are used to justify the zeroing. As noted by Anderson (2001) and applied by
Migliorini et al. (2008), a more aesthetic and mathematically correct approach is to apply
a variance maximizing rotation based on a SVD of the error covariance. In this section we15

compare those two error covariance diagonalization methods. Recall that MOP QOR used
an SVD-based rotation to diagonalize the error covariance. We conducted a companion ex-
periment MOP NROT where we used cross-correlation zeroing. The assimilation/forecast
plots are not shown because it is not a central theme of this paper. However, we include
the verification statistics in Fig. 8. Significance testing and scores from assimilation of MO-20

PITT CO show that SVD-based diagonalization produced significantly greater forecast skill
compared to cross-correlation zeroing. Based on that result we conclude that the second
SVD-based rotation is a necessary step in our definition of CPSRs.

7.5 Vertical localization and phase space retrievals

Ensemble data assimilation generally uses localization to remove spurious correlations that25

may occur from under-sampling. Localization limits the horizontal and vertical spatial scales
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on which the observations impact the posterior. Vertical localization may be inappropriate
when assimilating phase space retrievals because ∼80 % of the vertical variation in the
retrieval is described by the first leading singular vector of the averaging kernel (the basis
function for the phase space transform) and that vector is nearly independent of height
(see Fig. 4b). Nevertheless if vertical localization is appropriate then the question becomes5

“how to do it” because phase space retrievals are not associated with a unique vertical
location. One solution assumes that phase space retrievals are associated with the level
of maximum sensitivity in the transformed averaging kernel i.e., the averaging kernel after
applying the compression and diagonalization transforms discussed in Sec. 2. We applied
such localization to MOP QOR (in the MOP LOC experiment) and found that results from10

the two experiments were similar. Therefore we do not present the assimilation/forecast
plots but include the verification statistics in Fig. 8. Comparison of the verification scores in
Fig. 8 for MOP LOC with those from the other experiments (MOP QOR and MOP CPSR)
shows that vertical localization did not substantially alter the results. We experimented with
different vertical localization lengths and found similar results. We are unsure whether this15

is a general result and are continuing to investigate vertical localization.

8 Summary and conclusions

In this paper we incorporated WRF-Chem into DART and assimilated MOPITT CO trace
gas retrievals. We also introduced the assimilation of “compact phase space retrievals”
(CPSRs). CPSRs are preprocessed trace gas retrievals that have: (i) the influence of the20

retrieval prior removed, (ii) data compression, (iii) SVD-based error covariance diagonaliza-
tion, and (iv) unit error variance scaling. We showed that assimilation of CPSRs is an effi-
cient alternative to assimilation of quasi-optimal retrievals (QORs) that provided substantial
reductions in computation time (∼35 %) without degrading the analysis fit or forecast skill.

We presented results from month-long (00:00 UTC, 1 June 2008 to 18:00 UTC, 31 June25

2008) cycling experiments where we assimilated conventional meteorology and MOPITT
CO retrievals. For MOP QOR the time series plots in Fig. 2 showed that MET DA had
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a negative bias of ∼10 ppb. The assimilation of MOPITT CO in MOP QOR reduced that
bias by ∼5 ppb. The vertical profile plots in Fig. 3 showed that assimilation of MOPITT CO
improved the CO analysis fit and forecast skill throughout the troposphere when compared
to MET DA. We also used traditional skill metrics (bias, RMSE, and R2) to quantify the
impact of assimilating CO retrievals. Those results showed that bias dominated the RMSE5

and that assimilation of CO retrievals improved WRF-Chem performance. Specifically, MOP
QOR significantly improved the WRF-Chem CO forecast skill for all three metrics.

Next we focused on making the assimilation of retrievals computationally efficient and in-
troduced “compact phase space retrievals.” CPSRs advance the work of Joiner and DaSilva
(1998) and Migliorini et al. (2008) by describing an easily applied methodology to achieve10

data compression for phase space retrievals. Conceptually, the assimilation of QORs and
CPSRs should yield similar results except for the effects of: (i) assimilation sub-processes
like localization and inflation and (ii) different observation errors due to the CPSR com-
pression transform. Nevertheless, our CPSR approach is different from that of Migliorini et
al. (2008): (i) we perform two transforms − a compression transform and a diagonaliztion15

transform, they perform two diagonalization transforms; (ii) we identify and assimilate all
linearly independent information observed by the instrument, they may discard linearly in-
dependent information − some because their transform vectors are not necessarily a basis
for the space of QORs and some because their uncertainty analysis discards some infor-
mation that lies in the range of their transformed averaging kernel; (iii) our diagonalization20

transform is analogous to their first diagonalization transform except we diagonalize the
compressed observation error covariance and they diagonalize the “untransformed” obser-
vation error covariance; and (iv) we rely on the assimilation system to decide how much
weight to give the transformed observations and require no information from the forecast
ensemble, and they use the forecast ensemble to decide which observations to discard.25

MOP CPSR maps in Fig. 5 showed that assimilation of CPSRs placed CO hot spots in
the same locations as MOP QOR but they were of greater magnitude and larger area. The
time series and vertical profile plots showed that those differences generally represented
analysis and forecast improvements. Skill metrics for MOP CPSR showed that when com-
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pared to MOP QOR, the assimilation of CPSRs slightly improved the forecast skill for all
metrics, and when compared to MET DA it significantly improved the forecast skill for all
metrics. Based on those results we conclude that the assimilation of CPSRs performed as
well or better than the assimilation of QORs at a substantially reduced computational cost
(∼35 % reduction in computation time).5

Collectively our analysis of the MOP QOR and CPSR results in Figs. 1–3 and 5–7 sug-
gested that: (i) in the lower troposphere MET DA had a negative CO bias in polluted areas
and a positive bias in nonpolluted areas (Figs. 1 and 5) and (ii) bias reductions in the do-
main average retrieval space CO were due to reductions in the negative CO bias in the
upper troposphere (Figs. 2, 3, 6, and 7). We proposed three causes for the CO biases: (i)10

emission errors – overestimation of CO emissions in polluted areas and underestimation in
nonpolluted areas, (ii) transport errors – too much CO transport from the near surface to
the lower troposphere and too little transport from the lower to upper troposphere, and (iii)
chemistry errors – too little CO destruction in the near surface and lower troposphere and
too much destruction in the upper troposphere.15

We expect that CPSRs have the potential for broad operational application. CPSRs can
be easily obtained from retrievals derived from any optimal estimation algorithm. They can
be used to assimilate retrievals with correlated or uncorrelated errors for any sequential
assimilation methodology (both Kalman filter and variational based algorithms). Due to their
ease of derivation, flexibility, and potential for large reductions in assimilation computation20

time, CPSRs should facilitate the efficient assimilation of dense geostationary observations.
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Table 1. Summary of the WRF-Chem/DART Forecast/Data Assimilation Experiments.

Experiment Assimilate Assimilate Assimilate Use error Use
meteorology MOPITT MOPITT covariance vertical
observations CO QORs CO CPSRs zeroing localization

MET DA Yes No No No No
MOP QOR Yes Yes No No No
MOP CPSR Yes No Yes No No
MOP NROT Yes Yes No Yes No
MOP LOC Yes Yes No No Yes
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Figure 1. (a) Shaded contours of CO in ppb for the MOP QOR (upper panel) and MET DA (middle
panel) experiments for the first model level above the surface (∼1000 hPa) from the 6 h forecast valid
on 18:00 UTC, 28 June 2008. The lower panel shows the difference contours for those experiments
(MOP QOR – MET DA). The shaded area represents the WRF-Chem domain. (b) The upper panel
shows the assimilated MOPITT CO retrievals between the surface and 900 hPa for 18:00 UTC, 28
June 2008. The lower panel shows the associated assimilation increment.
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Figure 2. Time series of the domain average CO from the MOP QOR and MET DA experiments.
The red and magenta dots show the domain average CO in retrieval space for the MOP QOR and
MET DA analyses denoted in the legend by "A". The blue and black dots show the domain average
CO in retrieval space for the MOP QOR and MET DA forecasts denoted in the legend by "F". The
green dots show the domain average MOPITT CO retrievals. They are the same in both panels and
are included for reference. The solid lines show the domain average CO in model space with the
same color scheme as used for the analyses and forecasts in retrieval space. The solid lines are the
same in both panels are also included for reference.
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Figure 3. Vertical profiles of time/horizontal domain average CO from the MOP QOR and MET DA
experiments for 00:00 UTC, 25–29 June 2008. The results are in MOPTT retrieval space. The red
profiles represent the MOPITT retrievals. Otherwise the color of the lines corresponds to the legend.
“Forecast” is the assimilation prior, and “Analysis” is the assimilation posterior.
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Figure 4. (a) Horizontal domain average of the full and truncated terms in the retrieval equation for
18:00 UTC, 28 June 2008. MOP-Ret, MOP-Trc, and MOP-Res are the MOPITT retrieval, truncated
retrieval, and residual profiles respectively. QOR-Ret is the MOPITT QOR profile, QOR-Trc is the
truncated MOPITT QOR profile, and QOR-Res is the MOPITT QOR residual profile. (b) Horizontal
domain average of the MOPITT averaging kernel profiles in the upper panel and leading left singular
vectors of those averaging kernels in the lower panel for 18:00 UTC, 28 June 2008.
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Figure 5. (a) Same as Fig. 1a except for the MOP CPSR experiment and the middle panel from
Fig. 1a, the MET DA experiment is not plotted. (b) Same as Fig. 1b except for the MOP CPSR
experiment.
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Figure 6. Same as Fig. 2 except for the MOP CPSR experiment.
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Figure 7. Same as Fig. 3 except for the MOP CPSR experiment.
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Figure 8. Verification statistics for all experiments in MOPITT retrieval space. The blue curve is the
bias (model – observation). The red curve is the root mean square error (RMSE), and the magenta
curve is the Coefficient of Determination. The experiments are described in the text and summarized
in Table 1.
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