
To the editor 
Dear editor, 
 Following the reviewers’ comments, I have carefully revised the manuscript. I 
now believe the manuscript is more transparent and friendly to the readers. In the 
following, I have attached my point-to-point responses to the reviewers’ comments. Also 
included in the submission are (1) a clean revision with all changes incorporated and (2) a 
tracking change revision indicating where changes were made.  
 I sincerely appreciate your efforts in handling my manuscript. I am looking 
forward to hearing back from you soon. 
 
Sincerely, 
Jinyun 
jinyuntang@lbl.gov 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Response to reviewer 1 
Comment 1: The study speaks strongly via solid mathematical derivations for replacing 
the MM and RMM formulations by ECA kinetics. Evidence of testing the application of 
ECA in modeling plant-microbe interactions was discussed through recently published 
work by Zhu et al (2015) and the author himself. Other potential literature in microbial 
models may also need to be considered (i.e. Li J, G. Wang et al 2014; Manzoni S, G. 
Pineiro et al 2012). Except a few typos that need to be corrected, the current paper 
deserves a rapid publication so that it is expected to motivate more studies to emerge in 
order to advance the soil biogeochemical model development. 
Response: Thanks very much for your positive comments. I corrected the typos in the 
revised manuscript. 
 
Comment 2: Possible typos: Equation 21: denominator [E]T should be [S]T Figure 4 
caption: enzyme should be changed to substrate. 
Response: Sorry for the typos that I missed in the proof reading, now they are corrected 
in the revised manuscript. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Response to Dr. Thomas Wutzler 
Overall comments: J.Y. Tang in this paper show the relationship between the recently 
introduced Equilibrium Chemistry Approximation (ECA) kinetics with commonly used 
other formulation of substrate kinetics. This is an important topic and valuable to the 
modelling community, as this substrate kinetics is central to soil organic matter 
modelling. 
 While I strongly suggest publishing the paper, I give some constructively meant 
critiques that hopefully help to convey the message of the paper better to the reader. 
Response: I sincerely appreciate your positive comments. I addressed your comments 
point by point in the following. 
 
Comment 1: Note that GM journal also addresses readers that do not have a very strong 
mathematical background. Please, give some more aid, so that the readers can follow the 
derivations (Some suggestion are given in the specific section below) 
Response: I revised the manuscript by following your specific suggestions below. 
  
Comment 2: Both the abstract and the main part of the paper present a mathematical 
treatment without sufficient user-aid on how to interpret the results. Why are the 
parametric sensitivities important? What does it mean for modelling the processes? 
Response: Correct parametric sensitivity is important for model calibration and model 
interpretation. All calibration techniques (either explicitly or implicitly) rely on the 
parametric sensitivity to adjust parameter values and wrong parametric sensitivity would 
mislead empirical measurements to do incorrect measurements. I added this discussion in 
the revised manuscript. 
 
Comment 3: Beware of confounding the concepts of microbial uptake and enzyme 
kinetics (e.g. p. 7680 ll line 14). The ECA, as I understood it, deals with enzymatic 
breakdown of soil organic matter (SOM) into smaller compounds. The Monod-
Description of microbial uptake of these components has a different more empirical 
background. While with the assumption of enzymatic breakdown to be the limiting step, 
models can apply ECA also for microbial growth, the two concepts should be kept clear. 
Response: Sorry I missed some nuance for this part in the paper. As described in Tang 
and Riley (2013), ECA is derived for generic purposes including, but are not limited to, 
enzymatic breakdown of SOM, microbial growth and predator-prey relationships, with 
appropriate setting up of the stage. The use of enzymatic reaction in the paper is just for a 
convenience of presentation. I clarified this nuance in the revised manuscript (P5. L25-
29). 
 
Comment 4: ECA are based on total concentrations including the enzyme-substrate 
complex. Most SOM models are formulated on a more abstract level. How to deal with 
this practically? What are the consequences when total concentrations would be replaced 
by modelled pure concentrations or by pools in mass units? Under which conditions is 
this is viable?  
Response: I below explain briefly this technical nuance, but more details can be found 
through the examples in Tang and Riley (2013). In most applications, the total substrate 
concentration is equivalent to the free substrate concentration as used in the Monod 



kinetics. However, as I explained in the paper, when free substrate concentration is very 
low, application of the Monod kinetics or the MM kinetics violates their condition of 
validity. When total concentrations are replaced by modeled pure concentrations or by 
pools in mass units, the ECA kinetics only requires all units of substrates, affinity 
parameters and enzymes (or microbes) are consistently defined. The major difference 
(between ECA and MM) occurs when one applies ECA for modeling microbial DOC 
uptake in presence of mineral surface adsorption. In ECA, the total DOC concentration 
means the total of adsorbed and free DOC, whereas in the MM kinetics, only free DOC is 
used. As shown in Tang and Riley (2013; Figure 6), this difference in treatment would 
lead the MM kinetics to predict very inaccurate decomposition dynamics. 
 
Comment 5: The introduction is written well, and the importance becomes clear. 
The main message of the paper to me is that ECA for one substrate-one enzyme is a 
mass-balanced approximation of the general QSS (quasi steady state) solution and that 
generalizes both MM and RMM. The derivation (from eq. 11 to 12), however, is too 
condensed to understand without more mathematical efforts. Did you generate the Taylor 
series at E=0 and S=0? Did you truncate second order terms of E and S? 
What does it mean to truncate for ε? 
Response: The ECA is a mass-balanced approximation for arbitrary number of enzymes 
(or competitors in general) and substrates, and this paper focuses on the one-substrate-
one-enzyme example to analytically tease apart the differences and connections between 
ECA, MM and RMM because such analytical analysis is not possible for the most 
general case involving many substrates and many enzymes. In the derivation, the Taylor 
expansion is performed with respect to ε, and the first order approximation is defined 
with respect to ε. I made it logic from Eq. (11) to Eq. (12) more straightforward in the 
revised manuscript (P7. L7-8)  
 
Comment 6: Can you, please, extend the explanation of the points at the end of section 
2.1? To what and how is Eq. 12 applied? Is eq. 13 not just a re-statement of eq. 5? In 
what way does this form the tQSSA? 
Response: I did my best in the revised manuscript to clarify this (P8. L1-4). To put it 
simple, the QSSA means taking the temporal derivative of Eq. (4) to zero. The total 
substrate concentration means adding together the free substrate and enzyme-substrate 
complex. Therefore, tQSSA means adding Eq. (3) and Eq. (4) together. Mathematically, 
Eq.(13) is equivalent to a restatement of Eq. (5), yet, they mean different things. A more 
detailed analysis of such difference lies in the perturbation analysis of the tQSSA, 
however, that is very lengthy and involved, but if interested the paper by Borghans et al. 
(1996) and some references they cited explained it very well.  
 
Comments 7: Maybe also move the equations of the parametric sensitivity analysis to the 
appendix and focus in the main text on the figures and their interpretation for modelling. 
Why were the sensitivities normalized? Especially why multiplied by the rates? How are 
these normalized sensitivities interpreted? 
Response: I too have struggled in deciding where I should put those equations, but I 
finally decided to include them in the main text to satisfying the requirements from both 
readers enjoy mathematical rigorousness and readers that are less math-oriented. The 



normalization follows from the tradition in analyzing chemical kinetics. Such 
normalization assures that all parametric sensitivities are not unit-dependent. 
Mathematically, the normalized parametric sensitivity indicates the relative change in 
dependent variable (reaction velocity here) in response to the relative change in the free 
parameter. 
 
Comment: Section 3.2. can be shortened by noting that the sensitivities are 1- the 
sensitivities of 3.1. I could not follow derivation from eq. B2 to B3. When I insert vECA 
and KES in the second term on the right of B3, I arrived at a result different from B2. (to 
editor: I did not check Taylor expansion of eq. 10 nor Appendix A) 
Response: As for the length of section 3.2 and section 3.1., I decide to put them as they 
are, so readers can understand both without referring to each other. For mathematical 
derivation, I double-checked the math, it is correct. 
 
2 Specific comments 
Comment: P.7670 L.1: suggest aid: By inserting [E] solved from (7) and [S] from (8) 
into (6) one arrives at the following quadratic equation. 
Response: Per your suggestion, I added these manipulation details in the revised 
manuscript (P7. L1-2).  
 
Comment: P.7670 L.9, L12: Some more details are required. 
Response: I made it clear that the Taylor expansion is done with respect to ε (P7. L7-8). I 
also added a reference to help readers understand the mathematics, although the details 
for more generic case can be found in Tang and Riley (2013). 
 
Comment: P. 7671: L15: What does the error in parametric sensitivities mean for 
modelling? 
Response: They could either mean the model will fail in calibration (see example of litter 
decomposition in Tang and Riley (2013)) or the model interpretation are incorrect.  
 
P.7675 L.8: term predictions refer to sensitivities or reaction rates? 
Response: They refer to sensitivity. I removed this ambiguity in the revision. 
  
Comment: P.7675 L.14: Color scale in Fig. 1 goes to -9% instead of 5% in the text. 
What is the difference? 
Response: Note -0.09 is the value normalized with respect to the sum of parametric 
sensitivity from both the ECA approximation and exact solution; therefore 5% is about 
(half of 9%) the actual relative difference.  
 
Comments: Figs (1-3d) are hard to understand. Why do you apply log in single 
variables in the derivatives instead of log(sensitivity). Also with so much overplotting the 
figure is obscured. Where does the spread come from? 
Response: I was comparing the parametric sensitivity calculated by the three 
approximations to the true parametric sensitivity as calculated from the exact solution. 
This comparison tells how well the MM, RMM and ECA kinetics approximate the exact 
solution. The spread comes from the poor performances of the MM and RMM kinetics. I 



also have redrawn the plots to have a clearer visual.  
 
Comments: Two Typos after eq. B3 (Then, refer to eq. B3 instead of B2) 
Response: Typos corrected.  
 
Comments: P.7680 L.13. Important sentence, but very long. Can be broken up. 
Response: I broke it up. 
 
 
References 

Tang, J. Y., and W. J. Riley (2013), A total quasi-steady-state formulation of substrate uptake 
kinetics in complex networks and an example application to microbial litter de- composition, 
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Response to Prof. J. Schimel 
Overall comments: In this paper, Tang has followed up on his earlier work assessing the 
nature of microbial kinetics to use in microbially explicit biogeochemical models. The 
earlier generations of microbially implicit models assumed first-order kinetics for 
substrate movement from a source pool to a sink pool (dC/dt = k*C). The models (e.g. 
CENTURY) are powerful and simple, but they have limitations that researchers have 
been trying to overcome with newer models that treat microbes as actual drivers of 
processes, drivers whose population and characteristics can change dynamically and so 
must be represented explicitly. 
 The challenge Tang notes is that authors have used different kinetic expressions 
in such models, depending on whether the model assumes that substrates are mobile and 
can saturate the enzyme active site (leading to Michaelis-Menten kinetics) or whether 
substrates are immobile and enzymes can saturate potential reaction sites (leading to 
reverse Michaelis-Menten kinetics). In an earlier paper, Tang and Riley had shown that 
these two formulations were really end members of a more general model which can shift 
between those states and doesn’t require an assumption of either enzymes or substrates 
being a functionally immobile entity. That is the ECA model. In this paper, they further 
develop the analysis of these different approaches to modeling microbial kinetics. This is 
unquestionably a useful activity. I really appreciate developing a single integrated 
expression that isn’t as constrained as any of the equations that place greater constraints 
in the assumptions. 
Response: Many thanks for your positive comments. We’ll keep doing the good work. 
 
Comment 1: Despite that, I have some questions as to the utility of getting deeply 
mechanistic in the derivation of fundamental chemical kinetics for these expressions.  
Response: I addressed you comments point by point below, and some of those 
discussions are integrated into the revised manuscript where I found it appropriate. 
 
Comment 2: First, classical kinetics deals in activities, not concentrations, and assumes 
that the activity of any material that is not dissolved is equal to 1. Yet, many of the 
decomposition reactions involving exo-enzymes are likely mixed phase, in which the 
substrate is not in solution, the enzyme may be, and the products certainly are. So at least 
for applying to a real-world situation, does the shift between single phase (dissolved or 
vapor) and mixed phase (some in solution, some not) change how we should view the real 
mechanistic interpretation of these expressions? It should, I think, as it converts a true 
mechanistic model into an empirical approximation of one in which we can use 
concentration terms that are per gram soil, for example.  
Response: Thanks for raising this question and I will take this opportunity to clarify the 
goal of my manuscript. Yes, classical kinetics deals with activities, not concentration; 
however, the substrate uptake process as we are dealing with in soil biogeochemical 
modeling can be conceptualized as analogues to the predator-prey relationship, or, more 
generally, the resource competition problem. This generalization allows us to directly 
deal with the concentrations even though such generalization does make the solution to 
the problem slightly more empirical. Specifically, the prey-searching rate and prey-
attacking rate together establish a dynamic equilibrium between prey and predator 
concentrations. This is analogous to the binding process between substrates and enzymes, 



and could be achieved without referring to the phase of existence for either the enzymes 
or substrates. Therefore, mathematically, as we discussed in the ECA paper (Tang and 
Riley, 2013), the problem can be formulated into the equilibrium chemistry form. Such 
analogy is also supported by the derivation of MM kinetics even for a single molecule 
enzyme (where substrate is unlimited and the definition of phase for enzyme becomes ill-
defined; English et al., 2006). Because of the equilibrium binding as implied behind the 
conceptual model, we can establish the relationships between MM, RMM and ECA 
kinetics as I attempted in this manuscript.  
 
Comment 3: Second, in a physically constrained, diffusion-limited system, are these 
simple concentration-defined rate expressions accurate or appropriate? I suspect that 
they all “work” to capture the overall dynamics of major organic matter components in 
soil and plant litter (using bulk concentration), but maybe not because they meet the 
assumptions of the actual chemical models. 
Response: As I explained in the response to comment 2, when diffusion is unlimited, the 
adoption of the equilibrium binding is eligible. When diffusion limitation comes into 
place, the control of diffusivity can be incorporated accordingly to derive a revised 
kinetics (e.g., Tang and Riley, 2013). Application of such revised kinetics in marine 
ecosystems has indicated very successful results (Bonachela et al., 2011).  
 
Comment 4: That latter issue underlies a slight misrepresentation of the Schimel and 
Weintraub model’s development of reverse M-M kinetics (page 7665, line 21). The 
author’s statement that Schimel and Weintraub explored straight M-M kinetics is 
inaccurate (though unimportant). S&W didn’t get that far! Rather they explored linear 
kinetics and noted that if the reaction rate expression was linear on enzyme 
concentration (dC/dt = k * [Enz] * [Substrate]) the system was inherently unstable and 
would always either explode or crash. 
Response: Sorry for this misinterpretation, I corrected it in the revision. 
 
Comment 5: They proposed reverse-MM kinetics because it offered a mathematically 
simple equation to generate an asymptotic response; calling it reverse-MM kinetics gave 
a plausible rationale for using the equation, but the important thing was to get the needed 
general asymptotic shape. There was no fundamental chemical mechanism suggested in 
their use of the equation (even if one can be derived). With any mechanism to produce a 
system in which, as the enzyme pool increases, the activity per unit enzyme decreases, the 
system becomes potentially stable as it avoids the problem that if an enzyme returns more 
C over it’s lifetime than it cost to produce the enzyme then the enzyme pool would 
continue to grow and accelerate decomposition (and vice versa as if the enzyme never 
paid for itself, it would run down). There must be a variable marginal return on 
investment, but there can be multiple mechanisms that produce that pattern. It could be 
that as there are more enzymes, microbes become more likely to target them as a 
substrate, it may involve increased growth of “cheaters” as enzyme activities increase 
and the bioavailable substrate pool grows, it may even involve increasing diffusion path 
lengths and so slowing the link between enzyme production and substrate recovery. The 
model imperative of non-linear kinetics need not, in fact, ever involve the explicit reverse 
M-M assumption of enzymes competing for binding to potential reaction sites on 



substrates (and so may not have a real Kes term in the sense implied by Tang’s ECA 
model). In fact, multiple specific mechanisms may well be involved in creating the overall 
non-linearity that is required for model (and actual system) stability. 
Response: Thanks for this detailed explanation of how RMM was motivated. 
Interestingly, the motivation that “it [RMM] avoids the problem that if an enzyme returns 
more C over it’s lifetime than it cost to produce the enzyme then the enzyme pool would 
continue to grow and accelerate decomposition” clearly points to the deficit of the MM 
kinetics resulting from its incomplete consideration of the substrate limitation as I 
discussed in the manuscript (which implies that if enzymes have a small turnover, the 
system will become unstable as enzyme concentration increases). Therefore, it seems that 
the mechanism, which works, for enzyme-substrate system could be (conceptually) 
scaled up to the overall system of carbons and microbes, indicating the scaling power of 
ECA as a first-principle based mathematical theory. This scaling property also seems to 
support the hypothesis that a single rate limiting “master reaction” controls the overall 
response of microbial activity (Johnson and Lewin, 1946), which is implied in the Monod 
kinetics. Therefore, considering the benefit from process scaling, I suggest approaches 
such as that used in deriving ECA should be preferred, even though the parameters in the 
derived equations are up-scaled versions of those measured in a tube. 
 
Comment 6: Such phenomena leave me uncertain just how useful a pure chemical 
kinetic derivation of these equations really is as they may describe the rough behavior of 
the system that is produced by several mechanisms working in parallel (or at odds with 
each other), such that the parameters that drive the equations are not clean chemical rate 
or equilibrium constants, but empirical terms to give the right rough shape to the overall 
responses. To some degree this is analogous to the difference between Michaelis-Menten 
enzyme kinetics and Monod microbial growth kinetics. The equations have identical 
structures but are fundamentally different: M-M kinetics is derived from 1st principles, 
while Monod growth has no such basis. The half-saturation constant in Monod growth is 
purely empirical. Would that be the case with the Kes term in Equation 12 in the ECA 
model if it were integrated into a soil C model? I think so. Might that make it a more 
difficult term to consider and apply? Maybe because to use the model in a 
biogeochemical model, it would have to be the empirically derived term rather than a 
real “affinity constant” that could be evaluated in a test-tube. But because it is an 
interaction term for the enzyme-substrate reaction it might be more sensitive to whether 
the non-linearity is being driven by substrate movement to the enzyme or to enzyme 
movement to the substrate. Please note, I’m not saying that would necessarily be the case 
(at least to within the bounds of experimental variation) but it remains a possibility. 
Such issues should be addressed more clearly by the authors, who I think somewhere 
should note the difference between a rate expression that is derived from fundamental 
chemical kinetics and one that may look the same but is only as an empirical 
approximation to force the model system to behave in reasonable, non-linear, patterns. I 
don’t think that any such discussion need be long or involved, but I think it should be 
present. 
Response: I share your sympathy towards the complexity of the soil organic carbon 
decomposition problem that we are trying to model. However, I think adopting an 
approach as close as possible to the first principles is more valuable than a more 



empirical approach, although they both require significant level of genius to work 
appropriately and sometimes may even appear similar (such as the MM kinetics and 
Monod kinetics). Compared to the empirical approach, the first-principle based approach 
would allow a more consistent and probably more mechanistic explanation to how the 
complexity of SOM decomposition could be scaled up and resolved by incrementally 
adding new identifiable processes one after another. For instance, the ECA approach 
would allow a consistent combination of microbe-substrate binding and substrate-mineral 
surface binding, such that it would naturally predict that k-strategist would be favored 
over the r-strategist with the increase of mineral adsorption, therefore both modelers and 
experimentalists could have a better clue to explain the measurements. Similarly, as we 
showed in Tang and Riley (2015), such combination enabled our model to explain many 
behaviors that are empirically observed, but otherwise require significant recalibration of 
the empirical approach for different experimental configurations or sometimes call for 
additional ad hoc parameterizations (e.g., the CENTURY-BGC module as we 
implemented in CLM4.5 requires a parameterization of decreasing decomposition rate 
with depth, which however will become ridiculous that by simply putting the same soil at 
different depth under same soil physical conditions will produce different respiration 
rates). Further, even it is arguable that the assumption underlines both the MM kinetics 
and Langmuir isotherm, or more generally, the law of mass action, are empirical, they all 
can be organized with a single statement, that there are two processes involved in the 
substrate uptake by consumers, i.e. find (or bind) the substrate and assimilate it. This 
simple assumption allows the consistent scaling of all mechanisms that are contributing 
to the SOM decomposition dynamics, therefore avoiding the necessity to propose a new 
empirical relationship when something new fails the model, such as replacing the MM 
kinetics with the RMM kinetics for enzyme degradation of SOM, because RMM is 
asymptotically more stable.  
 
 
Comment: Minor points: 
7665, 16: This may be a linguistic battle I’ll lose, but "uptake" is not a verb. Microbes 
take up a substrate. 
7677, 6: "normalized" there’s a typo 
7679, 15: "very critical"? I’d delete “very.” 
Response: Thanks for your careful examination. I corrected these issues. 
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Abstract 9 

 The Michaelis-Menten kinetics and the reverse Michaelis-Menten kinetics are two 10 

popular mathematical formulations used in many land biogeochemical models to describe 11 

how microbes and plants would respond to changes in substrate abundance. However, the 12 

criteria of when to use which of the two are often ambiguous. Here I show that these two 13 

kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, 14 

which is the first order approximation to the quadratic kinetics that solves the equation of 15 

enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical 16 

reaction with the law of mass action and the assumption of quasi-steady-state for the enzyme-17 

substrate complex and that the product genesis from enzyme-substrate complex is much 18 

slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. 19 

In particular, I show that the derivation of the Michaelis-Menten kinetics does not consider 20 

the mass balance constraint of the substrate, and the reverse Michaelis-Menten kinetics does 21 

not consider the mass balance constraint of the enzyme, whereas both of these constraints are 22 

taken into account in deriving the Equilibrium Chemistry Approximation kinetics. By 23 

benchmarking against predictions from the quadratic kinetics for a wide range of substrate 24 

and enzyme concentrations, the Michaelis-Menten kinetics was found to persistently under-25 

predict the normalized sensitivity !!∂lnv ∂lnk2+  of the reaction velocity !v  with respect to the 26 

maximum product genesis rate !!k2
+ , persistently over-predict the normalized sensitivity 27 

!!∂lnv ∂lnk1+  of !v  with respect to the intrinsic substrate affinity !!k1
+ , persistently over-predict 28 
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 2 

the normalized sensitivity !!∂lnv ∂ln E⎡⎣ ⎤⎦T  of !v  with respect the total enzyme concentration 1 

!
E⎡⎣ ⎤⎦T  and persistently under-predict the normalized sensitivity !!∂lnv ∂ln S⎡⎣ ⎤⎦T  of !v  with 2 

respect to the total substrate concentration 
!
S⎡⎣ ⎤⎦T . Meanwhile, the reverse Michaelis-Menten 3 

kinetics persistently under-predicts !!∂lnv ∂lnk2+  and !!∂lnv ∂ln E⎡⎣ ⎤⎦T , and persistently over-4 

predicts !!∂lnv ∂lnk1+  and !!∂lnv ∂ln S⎡⎣ ⎤⎦T . In contrast, the Equilibrium Chemistry 5 

Approximation kinetics always gives consistent predictions of !!∂lnv ∂lnk2+ , !!∂lnv ∂lnk1+ , 6 

!!∂lnv ∂ln E⎡⎣ ⎤⎦T  and !!∂lnv ∂ln S⎡⎣ ⎤⎦T , indicating that ECA-based models will be more 7 

calibratable if the modeled processes do obey the law of mass action. Since the Equilibrium 8 

Chemistry Approximation kinetics includes the advantages from both the Michaelis-Menten 9 

kinetics and the reverse Michaelis-Menten kinetics and it is applicable for almost the whole 10 

range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer 11 

need to choose when to use the Michaelis-Menten kinetics or the reverse Michaelis-Menten 12 

kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust 13 

and consistent land biogeochemical models. 14 

1 Introduction 15 

 The recent recognition that the typical turnover pool based soil carbon models cannot 16 

model the priming effect has revived the interest in developing microbe explicit soil 17 

biogeochemistry models. This has been manifested in a long list of microbial models that 18 

were published in the last few years (e.g., Schimel and Weintrub, 2003; Moorhead and 19 

Sinsabaugh, 2006; Allison et al., 2010; German et al., 2012; Wang et al., 2013; Wieder et al., 20 

2013; Li et al., 2014; He et al., 2014; Riley et al., 2014; Xenakis and Williams, 2014; Tang 21 

and Riley, 2015; Sulman et al., 2015; Wieder et al., 2015). To build a microbial model, the 22 

substrate kinetics is fundamental as it describes the rate that microbes would take up a 23 

substrate and represents the first step towards describing how microbes would decompose the 24 

soil organic matter. Under the assumption that a single “master reaction” limits the growth of 25 

microbes (Johnson and Lewin, 1946), the substrate kinetics even completely determines the 26 

microbial dynamics as done in many models (e.g., the Monod model). Among the many 27 

mathematical formulations of substrate kinetics (see Tang and Riley (2013) for a review), the 28 

Michaelis-Menten (MM) kinetics is used mostly, because it succeeded in many applications 29 
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 3 

ever since its birth in the early 20th century (Michaelis and Menten, 1913). However, Schimel 1 

and Weintraub (2003) proposed in their study that the decomposition rate should vary more 2 

like an asymptotic function of enzyme abundance such that the Reverse Michaelis-Menten 3 

(RMM) kinetics would better model the soil carbon decomposition dynamics. The proposal of 4 

RMM kinetics was motivated by the empirical observation that, as enzyme concentration 5 

increases, microbial growth cannot increase continuously without a limit, therefore some 6 

dynamic feedbacks between the different components must stabilize the system. In contrast, 7 

the MM kinetics predicts that substrate degradation is proportional to enzyme concentration, 8 

and therefore, like the linear kinetics as used in Schimel and Weintraub (2003), it will predict 9 

unstable decomposition dynamics. The success by Schimel and Weintraub has led to a 10 

number of studies to use the RMM kinetics as the backbone of their microbial models, 11 

including Moorhead and Sinsabaugh (2006)’s model of litter decomposition, Drake et al. 12 

(2013)’s model for root priming, Waring et al. (2013)’s model for change in microbial 13 

community structure in soil carbon and nitrogen cycling, and Averill (2014)’s model for 14 

change in microbial allocation in soil carbon decomposition.  15 

 Wang and Post (2013) pointed out that both the MM kinetics and the RMM kinetics 16 

(although the latter is empirical) are special approximations to the quadratic kinetics that 17 

exactly solves for the enzyme-substrate complex under the quasi-steady-state approximation 18 

(QSSA), which states that the enzyme-substrate complexes are in instantaneous equilibrium 19 

with enzyme and substrate concentrations (Borghans et al., 1996). They further concluded 20 

that the MM kinetics is applicable when the substrate concentration far exceeds the enzyme 21 

concentration, and the RMM kinetics is applicable when either the enzyme concentration far 22 

exceeds the substrate concentration or vice versa. The condition for the MM kinetics to be 23 

applicable as provided by Wang and Post (2013) was however much narrower than that was 24 

proposed in some earlier studies. For instance, Borghans et al. (1996) showed that the MM 25 

kinetics is a good approximation to the quadratic kinetics when the enzyme concentration is 26 

far smaller than the sum of the substrate concentration and the Michaelis-Menten constant 27 

(Palsson, 1987; Segel, 1988; Segel and Slemrod, 1989). To handle enzyme-substrate 28 

interactions under high enzyme concentrations, Borghans et al. (1996) proposed the total 29 

quasi-steady-state approximation (tQSSA) and obtained a substrate kinetics that was a special 30 

case of the later proposed Equilibrium Chemistry Approximation kinetics by Tang and Riley 31 

(2013). Tang and Riley (2013) applied the law of mass action with tQSSA and derived the 32 
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 4 

ECA kinetics to describe the formation of enzyme-substrate complexes in a network of an 1 

arbitrary number of enzymes and substrates.  2 

 The consistent application of mathematical formulations to describe a dynamic system 3 

is critical for the model to successfully resolve the empirical measurements that observe the 4 

dynamic system. This consistency requirement has been raised in several studies using 5 

microbe explicit models. For instance, Maggi and Riley (2009) have found the MM kinetics 6 

has to be revised to resolve the evolution of δ15N-N2O in their data of nitrification and 7 

denitrification. Druhan et al. (2012) later used Maggi and Riley (2009)’s revision to obtain an 8 

improved modeling of the δ34S data collected in the acetate-enabled uranium bioremediation 9 

at the US Department of Energy’s Rifle Integrated Field Research Challenge site. Tang and 10 

Riley (2013) showed that the MM kinetics failed to resolve the evolution of lignocellulose 11 

index during a litter decomposition experiment. I was not able to find any example of using 12 

the RMM kinetics to model the kinetic isotope fractionation. However, because the RMM 13 

kinetics is a linear function of the substrate concentration, its application for modeling kinetic 14 

isotope fractionation will be doomed inevitably. Therefore, a substrate kinetics that merges 15 

the advantages from both the MM kinetics and the RMM kinetics would be a better choice for 16 

developing robust microbial models. 17 

 The call for a substrate kinetics that can consistently work across a wide range of 18 

substrate and enzyme (or more broadly competitor) concentrations becomes more imperative 19 

when the land biogeochemical models are required to resolve plant-microbe interactions. In 20 

plant-microbe interactions, both substrates and competitors evolve constantly and their 21 

concentration ratios could vary orders of magnitudes. For instance, when a soil is seriously 22 

nitrogen limited, the aqueous nitrogen concentration is much lower than the volumetric 23 

density of competitors and substrate uptake may follow more linearly with respect to the 24 

substrate concentration and be of an asymptotic function of competitors as described by the 25 

RMM kinetics. However when a large dose of fertilizer is added, the soil quickly becomes 26 

nitrogen saturated, such that the uptake dynamics would follow more linearly with respect to 27 

the variation of competitors (or enzymes) as represented in the MM kinetics. To consistently 28 

model the soil nitrogen dynamics that fluctuates between status of nitrogen limitation and 29 

nitrogen saturation, one therefore has to constantly choose between the MM kinetics and 30 

RMM kinetics, making a consistent mathematical formulation theoretically impossible. 31 

Therefore, an approach that includes the advantages from both the MM kinetics and RMM 32 
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 5 

kinetics will significantly advance our capability in modeling soil biogeochemical processes. 1 

Fortunately, such kinetics (aka the ECA kinetics) was already derived in Tang and Riley 2 

(2013), but my coauthor and I did not give a theoretical analysis for the relationships between 3 

MM kinetics, RMM kinetics and the ECA kinetics, nor did we explain how the parametric 4 

sensitivity would vary depending on the choice of substrate kinetics and whether the ECA 5 

kinetics is superior across the whole range of feasible kinetic parameters. Because all model 6 

calibration methods either explicitly or implicitly rely on the parametric sensitivity to tune 7 

model predictions with respect to observations (e.g. Tang and Zhuang, 2009; Zhu and 8 

Zhuang, 2014), correct parametric sensitivity of the model formulation is a requisite for 9 

delivering a robust model. An analysis of the differences in their predicted parametric 10 

sensitivities will also help reveal the pitfalls that may exist in biogeochemical models that rely 11 

on MM kinetics (Allison et al., 2010) or RMM kinetics (e.g. Averill, 2014) or the 12 

combination of the two (e.g. Sihi et al., 2015), when the model is otherwise benchmarked 13 

against its equilibrium chemistry based formulation that solves the biogeochemical system 14 

exactly under the tQSSA (readers please refer to Tang and Riley (2013) for a thorough 15 

discussion on why the equilibrium chemistry formulation should be the benchmark for models 16 

based on MM kinetics, RMM kinetics and ECA kinetics).  17 

 In this study, I first review how the ECA kinetics could be derived from the quadratic 18 

kinetics and how the MM kinetics and the RMM kinetics could be derived from the ECA 19 

kinetics or directly from the equilibrium chemistry formulation of the enzyme-substrate 20 

interaction. Then I analyze how accurate the MM kinetics, the RMM kinetics and the ECA 21 

kinetics could approximate the parametric sensitivity, as one would derive from the quadratic 22 

kinetics that is exact for the one enzyme and one substrate biogeochemical reaction. Based on 23 

these analyses, I finally give recommendations on how to obtain more robust microbial 24 

models for soil biogeochemical modeling. Note, although the following analysis is for a 25 

single enzyme and single substrate system in an aqueous solution, the results are applicable to 26 

a wide range of problems, including predator-prey, microbial growth, Langmuir adsorption 27 

and any process that can be appropriately formulated as an equilibrium binding problem 28 

(Tang and Riley, 2013).  29 
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 6 

2 The Mathematical relationship between different kinetics 1 

 Below I first review how one could obtain the quadratic kinetics under the QSSA for a 2 

biogeochemical reaction that involves one enzyme and one substrate. Then I show how one 3 

could derive the ECA kinetics, the MM kinetics and the RMM kinetics. 4 

 The biogeochemical reaction of the system is 5 

!!
E + S⇔

k1
−

k1
+

ES→
k2
+

E +P  (1) 

where !E , !S , !ES  and !P   are, respectively, enzyme, substrate, enzyme-substrate complex and 6 

product. The three kinetic parameters are intrinsic substrate affinity !!k1
+  (m3 mol-1 s-1), 7 

backward enzyme-substrate dissociation constant !!k1
−  (s-1) and product genesis rate !!k2

+  (s-1). 8 

 By the law of mass action, the governing equations for biogeochemical reaction (1) are 9 

!!
d E⎡⎣ ⎤⎦
dt

= −k1
+ S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦+ k1

− +k2
+( ) ES⎡⎣ ⎤⎦  (2) 

!!
d S⎡⎣ ⎤⎦
dt

= −k1
+ S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦+k1

− ES⎡⎣ ⎤⎦  
(3) 

!!
d ES⎡⎣ ⎤⎦
dt

= k1
+ S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦− k1

− +k2
+( ) ES⎡⎣ ⎤⎦  (4) 

!!
d P⎡⎣ ⎤⎦
dt

= k2
+ ES⎡⎣ ⎤⎦  (5) 

Here and below, I use ⎡⎣ ⎤⎦  to designate the concentration (mol m-3) of a given state variable.  10 

 Under the QSSA, Eq. (4) is approixmated as 11 

!
S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦ = KES ES⎡⎣ ⎤⎦  (6) 

where  !!KES = k1
− +k2

+( ) k1+  (mol m-3) is the Michaelis-Menten constant.  12 

 For a small temporal window when the amount of the product is negligible, it holds 13 

that 
! 
P⎡⎣ ⎤⎦≪ ES⎡⎣ ⎤⎦+ S⎡⎣ ⎤⎦ = S⎡⎣ ⎤⎦T , then !

ES⎡⎣ ⎤⎦  
could be solved from Eq. (6) under the constraints 14 



 7 

!
ES⎡⎣ ⎤⎦+ E⎡⎣ ⎤⎦ = E⎡⎣ ⎤⎦T  (7) 

!
ES⎡⎣ ⎤⎦+ S⎡⎣ ⎤⎦ = S⎡⎣ ⎤⎦T  (8) 

  By solving 	
E⎡⎣ ⎤⎦  from Eq. (7), 	

S⎡⎣ ⎤⎦  from Eq. (8), and entering the results into Eq. (6), 1 

one then obtains the quadratic equation 2 

!! ES
⎡⎣ ⎤⎦

2
− KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( ) ES⎡⎣ ⎤⎦+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T =0  (9) 

 Therefore, if one applies the quadratic formula to Eq. (9) and takes the physically 3 

meaningful solution, !
ES⎡⎣ ⎤⎦  

is then found as 4 

!!

ES⎡⎣ ⎤⎦ =
KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )

2 1− 1−
4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (10) 

2.1 The Equilibrium Chemistry Approximation kinetics 5 

 To obtain the ECA formulation of the enzyme-substrate complex, one assumes 6 

!! 
ε =

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2
≪1  (11) 

 Then by substitution of the first order approximation 	 1−4ε ≈ 1−2ε( )  into the square 7 

root term of Eq. (10), the ECA formulation of 
 !
ES⎡⎣ ⎤⎦  

is obtained 8 

!
ES⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T

 	(12) 

The application of Eq.  (12) implies 9 

!!
d S⎡⎣ ⎤⎦T
dt

= −k2
+ ES⎡⎣ ⎤⎦  (13) 

which together with the QSSA forms the tQSSA (Borghans et al., 1996). 10 
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 8 

2.2 The Michaelis-Menten kinetics 1 

 The MM kinetics can be derived in two different approaches. In the first approach, by 2 

assuming 
! 
KES + S⎡⎣ ⎤⎦T ≫ E⎡⎣ ⎤⎦T , Eq.  (12) gives the MM formulation of !

ES⎡⎣ ⎤⎦  3 

!
ES⎡⎣ ⎤⎦ ≈

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + S⎡⎣ ⎤⎦T

 (14) 

 In the second approach, one solves !
ES⎡⎣ ⎤⎦  from Eq. (6) and (7) and obtains 4 

!
ES⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦
KES + S⎡⎣ ⎤⎦

 (15) 

Note 
!
S⎡⎣ ⎤⎦ = S⎡⎣ ⎤⎦T − ES⎡⎣ ⎤⎦ < S⎡⎣ ⎤⎦T , and because !

ES⎡⎣ ⎤⎦  is a monotonically increasing function of 5 

!
S⎡⎣ ⎤⎦ , !

ES⎡⎣ ⎤⎦  
computed from Eq. (14) will be greater than that from Eq. (15). However, almost 6 

all existing applications do not differentiate between Eqs. (14) and  (15). The strict application 7 

of Eq. (14) requires the substrate evolution to be computed by the tQSSA form Eq. (13), 8 

whereas under the QSSA the strict application of Eq. (15) requires 9 

!!
d S⎡⎣ ⎤⎦
dt

= −k2
+ ES⎡⎣ ⎤⎦  (16) 

When !
S⎡⎣ ⎤⎦  is low, or when enzyme concentration 

!
E⎡⎣ ⎤⎦T  

is high, equating !
S⎡⎣ ⎤⎦  to 

!
S⎡⎣ ⎤⎦T  and 10 

ignoring the contribution of 
!
E⎡⎣ ⎤⎦T  in calculating the enzyme-substrate complex !

ES⎡⎣ ⎤⎦  will 11 

cause significant error in computing the parametric sensitivities as I will show in section 3.  12 

 The sufficient condition 
! 
KES + S⎡⎣ ⎤⎦T ≫ E⎡⎣ ⎤⎦T  (which always leads to ! ε ≪1 , the 13 

sufficient condition to derive the ECA kinetics) for the MM kinetics to be applicable was well 14 

recognized in early studies; however, it was often misinterpreted as 
! 
S⎡⎣ ⎤⎦T ≫ E⎡⎣ ⎤⎦T  (see a 15 

discussion in Borghans et al. (1996)). Yet, more importantly, I note that the derivation of the 16 

MM kinetics does not take into account the mass balance constraint for substrate (Eq. (8)). As 17 

I will show in section 3, the negligence of mass balance constraint for substrate will lead to 18 
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 9 

poor predictions of parametric sensitivity by the MM kinetics when benchmarked with the 1 

quadratic kinetics. 2 

2.3 The reverse Michaelis-Menten kinetics 3 

 There are also two approaches to derive the RMM kinetics. In the first approach, one 4 

assumes 
! 
KES + E⎡⎣ ⎤⎦T ≫ S⎡⎣ ⎤⎦T , then from Eq.  (12), obtains the RMM formulation of !

ES⎡⎣ ⎤⎦  5 

!
ES⎡⎣ ⎤⎦ ≈

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦T

 (17) 

 In the second approach, one solves !
ES⎡⎣ ⎤⎦  from Eqs. (6) and (8)  6 

!
ES⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦ S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦

 (18) 

Note 
!
E⎡⎣ ⎤⎦ = E⎡⎣ ⎤⎦T − ES⎡⎣ ⎤⎦ < E⎡⎣ ⎤⎦T , and because !

ES⎡⎣ ⎤⎦  is a monotonically increasing function of 7 

!
E⎡⎣ ⎤⎦ , !

ES⎡⎣ ⎤⎦  
calculated from Eq. (17) will be greater than that from Eq. (18). Like the MM 8 

kinetics, existing applications have treated Eq. (17) and (18) as equivalent. 9 

 Here the condition 
! 
KES + E⎡⎣ ⎤⎦T ≫ S⎡⎣ ⎤⎦T  (which always leads to ! ε ≪1 , the sufficient 10 

condition to derive the ECA kinetics) for the RMM kinetics to hold is more general than the 11 

condition 
! 
E⎡⎣ ⎤⎦T ≫ S⎡⎣ ⎤⎦T  proposed in Wang and Post (2013). I also note that the derivation of 12 

the RMM kinetics does not take into account the mass balance constraint for enzyme (Eq. 13 

(7)). This negligence of the mass balance constraint for enzyme will lead the RMM kinetics to 14 

predict poor parametric sensitivities when benchmarked with the quadratic kinetics.  15 

3 Parametric sensitivity analyses 16 

 I below analyze the sensitivities of the reaction velocity with respect to the four 17 

parameters as predicted by the four kinetics. The four parameters are (1) maximum product 18 

genesis rate !!k2
+ ; (2) intrinsic substrate affinity !!k1

+ ; (3) the total enzyme concentration 
!
E⎡⎣ ⎤⎦T  19 

and (4) the total substrate concentration 
!
S⎡⎣ ⎤⎦T . The reaction velocities predicted by the four 20 

different kinetics are, respectively, for the quadratic kinetics, 21 



 10 

!!

vQD =
k2
+ KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )

2 1− 1−
4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (19) 

for the ECA kinetics, 1 

!!
vECA =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (20) 

for the MM kinetics, 2 

!!
vMM =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + S⎡⎣ ⎤⎦T

 (21) 

and, for the RMM kinetics 3 

!!
vRMM =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦T

 (22) 

 In evaluating the parametric sensitivity, I made the conventional assumption that 4 

!! k1
− ≪k2

+  to obtain a better presentation of the results (although excluding this assumption will 5 

not change the conclusion below). This assumption leads to !!KES = k2
+ k1

+ , which states that 6 

the apparent substrate affinity !!1 KES  is a linearly decreasing function of !!k2
+ , a relationship 7 

that has been used to characterize the K-r tradeoff (e.g. Litchman et al., 2008). Because !KES  is 8 

a function of !!k2
+ , the intrinsic affinity !!k1

+  better describes the substrate affinity for the 9 

enzymes.  10 

 In addition, to simplify the presentation, I define 
!
y = KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T  and 11 

!!x = 4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T y2 . Since the derivations for the MM and RMM kinetics related parametric 12 

sensitivities could be derived from the ECA predictions straightforwardly, I only provide 13 

details to derive the results for the quadratic and ECA related parametric sensitivities 14 

(Appendix A and B). Nevertheless, to help the readers to visualize the differences in the 15 

predicted parametric sensitivities by using different kinetics, I have summarized the 16 
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comparison in four different figures: Figure 1 for !!k2
+ , Figure 2 for !!k1

+ , Figure 3 for 
!
E⎡⎣ ⎤⎦T , and 1 

Figure 4 for 
!
S⎡⎣ ⎤⎦T . All sensitivities are evaluated over the 2D normalized substrate-enzyme 2 

concentration domain ! 0.001,1000⎡⎣ ⎤⎦× 0.001,1000⎡⎣ ⎤⎦ , with both 
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  normalized 3 

by !KES . In addition, because the quadratic kinetics is exact under the QSSA, its predictions 4 

are used to benchmark the predictions made by the ECA kinetics, MM kinetics and RMM 5 

kinetics (see (d) panels in the figures). For comparison between predictions by the ECA 6 

kinetics and the quadratic kinetics, I plotted the normalized sensitivities as 2D functions of the 7 

normalized substrate 
!
S⎡⎣ ⎤⎦T KES  

and 
!
E⎡⎣ ⎤⎦T KES  

(see (a) and (b) panels in the figures),
 
and 8 

evaluated their differences using the index 
!
aQD −aECA( ) aQD +aECA( )  (see (c) panels in the 9 

figures), where the subscripts QD and ECA indicate, respectively, sensitivities predicted by 10 

the quadratic kinetics and the ECA kinetics.  11 

 In all the analyses below, I represent the parametric sensitivity using the normalized 12 

form 		∂lnv ∂ln s  to remove the unit dependency of the results. The normalized sensitivity 13 

represents the relative change of reaction velocity 	v  in response to a relative change in 14 

parameter 	s , where 	s  could be any of the four parameters being analyzed. 15 

3.1 Reaction velocity vs. !!k2
+  16 

 The normalized sensitivity of the reaction velocity vs. !!k2
+  are, respectively, for the 17 

quadratic kinetics, 18 

!!

k2
+

vQD

∂vQD
∂k2

+ =1+ KES

y
−
KES

y
1− 1− x( )−1 1− x( )−1 2 x  (23) 

for the ECA kinetics, 19 

!!

k2
+

vECA

∂vECA
∂k2

+ =1− KES

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (24) 

for the MM kinetics,  20 
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!!

k2
+

vMM

∂vMM
∂k2

+ =1− KES

KES + S⎡⎣ ⎤⎦T
 (25) 

and, for the RMM kinetics, 1 

!!

k2
+

vRMM

∂vRMM
∂k2

+ =1− KES

KES + E⎡⎣ ⎤⎦T
 (26) 

 From above, it is observed that both the MM kinetics and the RMM kinetics predict a 2 

less variable and lower parametric sensitivity than does the ECA kinetics, because the ECA 3 

kinetics predicts a more variable and larger denominator in the second term (in Eq.(24)) as 4 

compared to that by the MM kinetics (Eq. (25)) and the RMM kinetics (Eq. (26)). Large 5 

deviations between predicted sensitivities by the MM kinetics and the ECA kinetics are 6 

expected at high enzyme concentrations, whereas large deviations between predictions by the 7 

RMM kinetics and the ECA kinetics are expected at high substrate concentrations. Predicted 8 

sensitivities by the MM kinetics and RMM kinetics are also smaller than that by the quadratic 9 

kinetics (green and black dots in Figure 1d). In contrast, the ECA kinetics consistently 10 

captures the variability of the normalized sensitivity, with some over-estimation (but the 11 

relative difference is no greater than 5%) under moderate enzyme and substrate 12 

concentrations (Figure 1c), where the normalized sensitivity is, however, small or moderate 13 

(Figure 1a).  14 

3.2 Reaction velocity vs. !!k1
+   15 

 The normalized sensitivity of the reaction velocity vs. !!k1
+  are, respectively, for the 16 

quadratic kinetics,  17 

!!

k1
+

vQD

∂vQD
∂k1

+ = −
KES

y
+
KES

y
1− x( )−1 2 1− 1− x( )−1 x  (27) 

for the ECA kinetics,  18 

!!

k1
+

vECA

∂vECA
∂k1

+ =
KES

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (28) 

for the MM kinetics, 19 
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 13 

!!

k1
+

vMM

∂vMM
∂k1

+ =
KES

KES + S⎡⎣ ⎤⎦T
 (29) 

and, for the RMM kinetics,  1 

!!

k1
+

vRMM

∂vRMM
∂k1

+ =
KES

KES + E⎡⎣ ⎤⎦T
 (30) 

 From Eqs. (28)-(30), it is inferred that both the MM kinetics and the RMM kinetics 2 

predict a less variable and higher normalized sensitivity with respect to !!k1
+  than does the ECA 3 

kinetics. Large difference between predicted sensitivities by the ECA kinetics and the MM 4 

kinetics are expected at high enzyme concentrations, whereas large difference between 5 

predicted sensitivities by the ECA kinetics and the RMM kinetics are expected at high 6 

substrate concentrations. The predicted sensitivities by the MM kinetics and the RMM 7 

kinetics are also lower than that by the quadratic kinetics (Figure 2d), whereas the ECA 8 

kinetics predicts consistent parametric sensitivity for the wide range of enzyme and substrate 9 

concentrations (Figure 2). The under-predicted sensitivity by the ECA kinetics is significant 10 

only at high substrate and high enzyme concentrations (Figure 2c), where the parametric 11 

sensitivity is close to zero (Figure 2a and Figure 2b).  12 

3.3 Reaction velocity vs. 
!
E⎡⎣ ⎤⎦T  13 

 The normalized sensitivity of the reaction velocity vs. 
!
E⎡⎣ ⎤⎦T  are, respectively, for the 14 

quadratic kinetics 15 

!!

E⎡⎣ ⎤⎦T
vQD

∂vQD
∂ E⎡⎣ ⎤⎦T

=
E⎡⎣ ⎤⎦T
y

+
E⎡⎣ ⎤⎦T
y

1− 1− x( )−1 1− x( )−1 2 × 2 S⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (31) 

for the ECA kinetics 16 

!!

E⎡⎣ ⎤⎦T
vECA

∂vECA
∂ E⎡⎣ ⎤⎦T

=1−
E⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (32) 
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!!

E⎡⎣ ⎤⎦T
vMM

∂vMM
∂ E⎡⎣ ⎤⎦T

=1  (33) 

and, for the RMM kinetics,  1 

!!

E⎡⎣ ⎤⎦T
vRMM

∂vRMM
∂ E⎡⎣ ⎤⎦T

=1−
E⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T
 (34) 

 From above, it is observed that the MM kinetics predicts a constant normlzied 2 

sensivity of the reaction vecloity with respect to the total enzyme concentrtion 
!
E⎡⎣ ⎤⎦T . The 3 

RMM kinetics predicts the normalized sensitivity as a monotonically decreasing function of 4 

the normalized enzyme concentration 
!
E⎡⎣ ⎤⎦T KES . The predicted sensitivity by the ECA 5 

kinetics is a function of both the normalized substrate concentration 
!
S⎡⎣ ⎤⎦T KES  and the 6 

normalized enzyme concentration 
!
E⎡⎣ ⎤⎦T KES . Compared to predictions by the quadratic 7 

kinetics, the MM kinetics persistently over-estimates the parametric sensitivity (green dots in 8 

Figure 3d), whereas the RMM kinetics persistently under-estimates the parametric sensitivity 9 

(black dots in Figure 3d). The ECA predicted sensitivity is largely consistent with that by the 10 

quadratic kinetics (Figure 3), albeit with some significant deviation in regions of very high 11 

substrate and enzyme concentrations (Figure 3c), where the parametric uncertainty is 12 

moderate or low (Figure 3a and Figure 3b). 13 

3.4 Reaction velocity vs. 
!
S⎡⎣ ⎤⎦T  14 

 The normalized sensitivity of the reaction velocity vs. 
!
S⎡⎣ ⎤⎦T  are, respectively, for the 15 

quadratic kinetics 16 

!!

S⎡⎣ ⎤⎦T
vQD

∂vQD
∂ S⎡⎣ ⎤⎦T

=
S⎡⎣ ⎤⎦T
y

+
S⎡⎣ ⎤⎦T
y

1− 1− x( )−1 1− x( )−1 2 × 2 E⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (35) 

for the ECA kinetics 17 
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!!

S⎡⎣ ⎤⎦T
vECA

∂vECA
∂ S⎡⎣ ⎤⎦T

=1−
S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (36) 

for the MM kinetics, 1 

!!

S⎡⎣ ⎤⎦T
vMM

∂vMM
∂ S⎡⎣ ⎤⎦T

=1−
S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T
 (37) 

and, for the RMM kinetics,  2 

!!

S⎡⎣ ⎤⎦T
vRMM

∂vRMM
∂ S⎡⎣ ⎤⎦T

=1  (38) 

 Because 
!
S⎡⎣ ⎤⎦T  and 

!
E⎡⎣ ⎤⎦T  are symmetric in the quadratic kinetics and the ECA kinetics, 3 

the predicted normalized sensitivity of the reaction velocity with respect to the total substrate 4 

concentration 
!
S⎡⎣ ⎤⎦T  mirrors that of 

!
E⎡⎣ ⎤⎦T  along the lower left to upper right diagonal (Figure 5 

3 vs. Figure 4). Such symmetric relationships also exist in predictions by the MM kinetics and 6 

the RMM kinetics, however, the MM kinetics persistently under-predicts the normalized 7 

sensitivity of the reaction velocity with respect to 
!
S⎡⎣ ⎤⎦T , and the RMM kinetics predicts a 8 

constant sensitivity (Eq. (38)). The ECA kinetics once again predicts consistent parametric 9 

sensitivity when compared with the quadratic kinetics. 10 

4 Discussions and conclusions 11 

 From the above analyses, I showed that the ECA kinetics is a better approximation to 12 

the quadratic kinetics, which, obtained from the law of mass action and the quasi-stead-state 13 

approximation, is the exact solution to the governing equation of substrate-enzyme 14 

interaction. In contrast, the Michaelis-Menten kinetics and the reverse Michaelis-Menten 15 

kinetics are inferior in approximating the quadratic kinetics over the wide range of enzyme 16 

and substrate concentrations. The worse performances of the MM kinetics than the ECA 17 

kinetics in approximating the quadratic kinetics stems from the negligence of mass balance 18 

constraint of the substrate during the derivation of the MM kinetics; while the worse 19 

performance of the RMM kinetics in approximating the quadratic kinetics is caused by the 20 

negligence of mass balance constraint of the enzyme during the derivation of the RMM 21 

kinetics. The failure to consider the mass balance constraints for both enzyme and substrate 22 
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during their derivations caused the MM kinetics and the RMM kinetics to predict significantly 1 

biased normalized sensitivity of the reaction velocity with respect to the two kinetic 2 

parameters !!k1
+  and !!k2

+ , the total enzyme concentration 
!
E⎡⎣ ⎤⎦T  and the total substrate 3 

concentration 
!
S⎡⎣ ⎤⎦T . Although being a first order approximation to the quadratic kinetics 4 

under the assumption that !! E
⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T ≪ KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2 , because it considers the mass 5 

balance for both substrate and enzyme, the ECA kinetics predicts consistent parametric 6 

sensitivity with that by the quadratic kinetics over the wide range of normalized substrate and 7 

enzyme concentrations.  8 

 In modeling complex soil biogeohcmeical dynamics, the consistency between used 9 

kinetics and equilibrium chemistry formulation of the relationships between enzymes, 10 

substrates and enzyme-substrate complexes might be critical (Tang and Riley, 2013), but it 11 

has been unfortunately under-appreciated in many previous studies. In Tang and Riley (2013), 12 

it was shown that for a system involving three microbes competitively decompose three 13 

carbon substrates, the MM kinetics failed wildly even with industrious calibration (see their 14 

Figure 12). In an earlier study, Moorhead and Sinsabaugh (2006) have to prescribe the 15 

relative decomposition between lignin and cellulose in order to resolve the lignocellulose 16 

index dynamics. The ECA kinetics was able to consistently resolve the lignin-cellulose 17 

dynamics during the litter decomposition by that it explicitly considers the mass balance 18 

constraints for each of the substrates and enzymes (or, effectively, abundance of competitors; 19 

Tang and Riley, 2013). The success of ECA kinetics and the failure of MM kinetics in studies 20 

referred above can both be traced back to their capability in approximating the actual 21 

parametric sensitivities of the specific dynamic system. Because all model calibration 22 

techniques rely on model’s parametric sensitivity to obtain improved agreement between 23 

model predictions and measurements, wrong parametric sensitivity as formulated in the 24 

adopted substrate kinetics would result in a non-calibratable or poorly calibratable model, 25 

which could be manifested as systematic model biases or completely unreasonable model 26 

predictions. This explained well why the MM kinetics based model in Tang and Riley (2013) 27 

failed wildly even with intensive Bayesian model calibration. 28 

 Therefore if the ecological dynamics involved in substrates processing by microbes 29 

does approximately obey the law of mass action and the total-quasi-steady-state 30 

approximation (as it is already implied in any microbe explicit model that uses the MM 31 
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kinetics or the RMM kinetics), then the analytically tractable ECA kinetics is a much more 1 

powerful and mathematically more consistent tool than the popular MM kinetics and RMM 2 

kinetics that are currently used in many microbial models. Indeed, a recent application (Zhu 3 

and Riley, 2015) indicated that by representing plant-microbe competition of soil mineral 4 

nitrogen using the ECA kinetics, the predicted global nitrogen dynamics became much more 5 

consistent with that inferred from the δ15N isotopic data (Houlton et al., 2015). The ECA 6 

kinetics was also found to satisfyingly model the plant-microbe competitions for phosphorus 7 

and mineral nitrogen at several fertilized sites (Zhu et al., 2015) and predicted consistent 8 

vertical nitrogen uptake profile measured at an alpine meadow ecosystem (Zhu et al. in prep). 9 

Theoretically, because either the MM kinetics or the RMM kinetics works only in a small 10 

subdomain of the parameters that are used in the original quadratic kinetics, models based on 11 

MM kinetics or RMM kinetics may likely have much lower predictive capability than that is 12 

implied in the mechanisms that the models are trying to represent (e.g. the law of mass action, 13 

which is the foundation to all substrate kinetics). I therefore recommend modelers to use the 14 

ECA kinetics to describe the substrate uptake processes in modeling microbe regulated 15 

biogeochemical processes. As I showed above, with the same number of parameters as one 16 

would use with either the MM kinetics or the RMM kinetics, the ECA kinetics achieved better 17 

accuracy in approximating the exact quadratic kinetics for a biogeochemical reaction that 18 

involves a single enzyme and a single substrate. The superior performance of ECA is also true 19 

for systems that involve many substrates and many enzymes (Tang and Riley, 2013), which 20 

are much more common in the natural environment that we are trying to model. Last and 21 

more importantly, the ECA kinetics could save the modelers from the pain of when to use the 22 

MM kinetics or the RMM kinetics to represent a soil that fluctuates between status of nutrient 23 

limitation and nutrient saturation, for which neither the MM kinetics nor the RMM kinetics is 24 

(but ECA is) theoretically consistent with the law of mass action, the best theory we have for 25 

modeling biogeochemical reactions. 26 

 27 

Appendix A: Derivation of parametric sensitivities (Eqs. (23), (27), (31) and (35)) for 28 

the quadratic kinetics  29 

 Using the definition of 
!
y = KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T  and !!x = 4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T y2 , one has the 30 

following results 31 
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!!
vQD =

k2
+ y
2 1− 1− x( )

      
(A-1) 1 

!!

∂x
∂k1

+ =
8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )3
KES

k1
+ =

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
y3

KES

k1
+

    

(A-2) 2 

  !!

∂x
∂k2

+ = −
8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )3
1
k1
+ = −

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
y3

1
k1
+

                          

(A-3) 3 

!!

∂x
∂ E⎡⎣ ⎤⎦T

=
4 S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )2
−

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )3
=
4 S⎡⎣ ⎤⎦T
y2

− 2x
y

  

(A-4) 4 

!!

∂x
∂ S⎡⎣ ⎤⎦T

=
4 E⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )2
−

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )3
=
4 E⎡⎣ ⎤⎦T
y2

− 2x
y

  

(A-5) 5 

 
!!
∂ 1− x
∂k1

+ = −12 1− x( )−1 2 ∂x
∂k1

+       (A-6) 6 

!!
∂ 1− x
∂k2

+ = −12 1− x( )−1 2 ∂x
∂k2

+        (A-7) 7 

!!

∂ 1− x
∂ E⎡⎣ ⎤⎦T

= −12 1− x( )−1 2 ∂x
∂ E⎡⎣ ⎤⎦T  

     (A-8) 8 

!!

∂ 1− x
∂ S⎡⎣ ⎤⎦T

= −12 1− x( )−1 2 ∂x
∂ S⎡⎣ ⎤⎦T

      (A-9) 9 

 
!!
∂ y
∂k1

+ =
∂KES

∂k1
+ = −

KES

k1
+        (A-10) 10 
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!!
∂ y
∂k2

+ =
∂KES

∂k2
+ = 1

k1
+                  (A-11) 1 

!!

∂ y
∂ E⎡⎣ ⎤⎦T

= ∂ y
∂ S⎡⎣ ⎤⎦T

=1         (A-12) 2 

Then from Eq. (A-1), one has 3 

!!

∂vQD
∂k2

+ = y
2 1− 1− x( )+ k2+2 1− 1− x( ) ∂ y∂k2

+ −
k2
+

2 y ∂ 1− x
∂k2

+     (A-13) 4 

By substitution of Eqs. (A-3), (A-7) and (A-11) into (A-13), and use the definition of !
vQD  5 

from Eq. (A-1), one obtains 6 

!!

∂vQD
∂k2

+ = y
2 1− 1− x( )+ KES

2 1− 1− x( )− KES

2 1− x( )−1 2 x

=
vQD
k2
+ 1+ KES

y
−
KES

y
1− 1− x( )−1 1− x( )−1 2 x⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪    

(A-14) 7 

which, after some  rearrangements, gives Eq. (23) in the main text. 8 

 Similarly, from Eq. (A-1), one has 9 

!!

∂vQD
∂k1

+ =
k2
+

2 1− 1− x( ) ∂ y∂k1
+ −

k2
+ y
2

∂ 1− x
∂k1

+      (A-15) 10 

which, after using Eqs. (A-2), (A-6) and (A-10), leads to 11 

!!

∂vQD
∂k1

+ = −12KES
2 1− 1− x( )+ 12KES

2 1− x( )−1 2 x

=
vQD
k1
+ −

KES

y
+
KES

y
1− x( )−1 2 1− 1− x( )−1 x⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    

(A-16) 12 

By multiplying  !!k1
+ vQD  to both side of Eq. (A-16), one easily obtains Eq. (27). 13 

 Take the partial derivative with respect to 
!
E⎡⎣ ⎤⎦T  in Eq. (A-1), one obtains 14 
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!!

∂vQD
∂ E⎡⎣ ⎤⎦T

=
k2
+

2 1− 1− x( ) ∂ y
∂ E⎡⎣ ⎤⎦T

−
k2
+ y
2

∂ 1− x
∂ E⎡⎣ ⎤⎦T

   (A-17) 1 

which, when combined with Eqs. (A-4), (A-8), and (A-12), becomes 2 

!!

∂vQD
∂ E⎡⎣ ⎤⎦T

=
k2
+

2 1− 1− x( )+ k2+2 1− x( )−1 2 2 S⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
vQD
E⎡⎣ ⎤⎦T

E⎡⎣ ⎤⎦T
y

+
E⎡⎣ ⎤⎦T
y

1− 1− x( )−1 1− x( )−1 2 × 2 S⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪    

(A-18) 3 

from which, after some rearrangement, one finds Eq. (31). 4 

 Note, because switching the order of 
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  in Eq. (A-1) does not change the 5 

definition of !
vQD , Eq. (35) could be derived from Eq. (31) by simply swapping 

!
E⎡⎣ ⎤⎦T  and 6 

!
S⎡⎣ ⎤⎦T . 7 

Appendix B: Derivation of parametric sensitivities (Eqs. (24), (28), (32) and (36)) for 8 

the Equilibrium Chemistry Approximation kinetics  9 

 Using the definitions of !x  and !y , !vECA  is  10 

!!
vECA =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y
      (B-1) 11 

From Eq. (B-1), one has 12 

!!

∂vECA
∂k2

+ =
E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y
−
k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y2
∂ y
∂k2

+     (B-2) 13 

which, when combined with Eq. (A-11), becomes 14 

!!

∂vECA
∂k2

+ =
vECA
k2
+ −

vECA
k2
+

KES

y
      (B-3) 15 

The by dividing both sides of Eq. (B-3) with !!vECA k2
+ , one obtains Eq. (24). 16 

 Similarly, from Eq. (B-1), one has 17 
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!!

∂vECA
∂k1

+ = −
k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y2
∂ y
∂k1

+      (B-4) 1 

Then by aid of Eq. (A-10), one finds 2 

!!

∂vECA
∂k1

+ =
vECA
k1
+

KES

y
      (B-5) 3 

which gives Eq. (28) by multiplying !!k1
+ vECA  to both sides. 4 

 For 
!
E⎡⎣ ⎤⎦T , one can derive from Eq. (B-1)  5 

!!

∂vECA
∂ E⎡⎣ ⎤⎦T

=
k2
+ S⎡⎣ ⎤⎦T
y

−
k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y2
∂ y

∂ E⎡⎣ ⎤⎦T
      (B-6) 6 

which, when combined with Eq. (A-12), leads to 7 

!

∂vECA
∂ E⎡⎣ ⎤⎦T

=
vECA
E⎡⎣ ⎤⎦T

−
vECA
y

      (B-7) 8 

One then, by dividing both sides of Eq. (B-7) with 
!
vECA E⎡⎣ ⎤⎦T , obtains Eq. (32). 9 

 By using the symmetry between 
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  in the definition of !vECA , Eq. (36) 10 

could be obtained by swapping  
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  in Eq. (32). 11 
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Figure 1. (a) ECA kinetics predicted normalized sensitivity of the reaction velocity with 2 
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+ ; (b) predictions by the quadratic kinetics; (c) 3 
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Figure 2. Similar as Figure 1, but the sensitivity is evaluated against the intrinsic substrate 8 
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Figure 3. Similar as Figure 1, but the sensitivity is evaluated against the total enzyme 10 
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Figure 4. Similar as Figure 1, but the sensitivity is evaluated against the total substrate 12 
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Figure 2. 2 
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Figure 3. 2 
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Figure 4. 2 
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