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Abstract 9 

 The Michaelis-Menten kinetics and the reverse Michaelis-Menten kinetics are two 10 

popular mathematical formulations used in many land biogeochemical models to describe 11 

how microbes and plants would respond to changes in substrate abundance. However, the 12 

criteria of when to use which of the two are often ambiguous. Here I show that these two 13 

kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, 14 

which is the first order approximation to the quadratic kinetics that solves the equation of 15 

enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical 16 

reaction with the law of mass action and the assumption of quasi-steady-state for the enzyme-17 

substrate complex and that the product genesis from enzyme-substrate complex is much 18 

slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. 19 

In particular, I show that the derivation of the Michaelis-Menten kinetics does not consider 20 

the mass balance constraint of the substrate, and the reverse Michaelis-Menten kinetics does 21 

not consider the mass balance constraint of the enzyme, whereas both of these constraints are 22 

taken into account in deriving the Equilibrium Chemistry Approximation kinetics. By 23 

benchmarking against predictions from the quadratic kinetics for a wide range of substrate 24 

and enzyme concentrations, the Michaelis-Menten kinetics was found to persistently under-25 

predict the normalized sensitivity !!∂lnv ∂lnk2+  of the reaction velocity !v  with respect to the 26 

maximum product genesis rate !!k2
+ , persistently over-predict the normalized sensitivity 27 

!!∂lnv ∂lnk1+  of !v  with respect to the intrinsic substrate affinity !!k1
+ , persistently over-predict 28 
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the normalized sensitivity !!∂lnv ∂ln E⎡⎣ ⎤⎦T  of !v  with respect the total enzyme concentration 1 

!
E⎡⎣ ⎤⎦T  and persistently under-predict the normalized sensitivity !!∂lnv ∂ln S⎡⎣ ⎤⎦T  of !v  with 2 

respect to the total substrate concentration 
!
S⎡⎣ ⎤⎦T . Meanwhile, the reverse Michaelis-Menten 3 

kinetics persistently under-predicts !!∂lnv ∂lnk2+  and !!∂lnv ∂ln E⎡⎣ ⎤⎦T , and persistently over-4 

predicts !!∂lnv ∂lnk1+  and !!∂lnv ∂ln S⎡⎣ ⎤⎦T . In contrast, the Equilibrium Chemistry 5 

Approximation kinetics always gives consistent predictions of !!∂lnv ∂lnk2+ , !!∂lnv ∂lnk1+ , 6 

!!∂lnv ∂ln E⎡⎣ ⎤⎦T  and !!∂lnv ∂ln S⎡⎣ ⎤⎦T , indicating that ECA-based models will be more 7 

calibratable if the modeled processes do obey the law of mass action. Since the Equilibrium 8 

Chemistry Approximation kinetics includes advantages from both the Michaelis-Menten 9 

kinetics and the reverse Michaelis-Menten kinetics and it is applicable for almost the whole 10 

range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer 11 

need to choose when to use the Michaelis-Menten kinetics or the reverse Michaelis-Menten 12 

kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust 13 

and consistent land biogeochemical models. 14 

1 Introduction 15 

 The recent recognition that the typical turnover pool based soil carbon models cannot 16 

model the priming effect has revived the interest in developing microbe explicit soil 17 

biogeochemistry models. This has been manifested in a long list of microbial models that 18 

were published in the last few years (e.g., Schimel and Weintrub, 2003; Moorhead and 19 

Sinsabaugh, 2006; Allison et al., 2010; German et al., 2012; Wang et al., 2013; Wieder et al., 20 

2013; Li et al., 2014; He et al., 2014; Riley et al., 2014; Xenakis and Williams, 2014; Tang 21 

and Riley, 2015; Sulman et al., 2015; Wieder et al., 2015). To build a microbial model, the 22 

substrate kinetics is fundamental as it describes the rate that microbes would take up a 23 

substrate and represents the first step towards describing how microbes would decompose the 24 

soil organic matter. Under the assumption that a single “master reaction” limits the growth of 25 

microbes (Johnson and Lewin, 1946), the substrate kinetics even completely determines the 26 

microbial dynamics as done in many models (e.g., the Monod model). Among the many 27 

mathematical formulations of substrate kinetics (see Tang and Riley (2013) for a review), the 28 

Michaelis-Menten (MM) kinetics is used mostly, because it succeeded in many applications 29 
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ever since its birth in the early 20th century (Michaelis and Menten, 1913). However, Schimel 1 

and Weintraub (2003) proposed in their study that the decomposition rate should vary more 2 

like an asymptotic function of enzyme abundance such that the Reverse Michaelis-Menten 3 

(RMM) kinetics would better model the soil carbon decomposition dynamics. The proposal of 4 

RMM kinetics was motivated by the empirical observation that, as enzyme concentration 5 

increases, microbial growth cannot increase continuously without a limit, therefore some 6 

dynamic feedbacks between the different components must stabilize the system. In contrast, 7 

the MM kinetics predicts that substrate degradation is proportional to enzyme concentration, 8 

and therefore, like the linear kinetics as used in Schimel and Weintraub (2003), it will predict 9 

unstable decomposition dynamics. The success by Schimel and Weintraub has led to a 10 

number of studies to use the RMM kinetics as the backbone of their microbial models, 11 

including Moorhead and Sinsabaugh (2006)’s model of litter decomposition, Drake et al. 12 

(2013)’s model for root priming, Waring et al. (2013)’s model for change in microbial 13 

community structure in soil carbon and nitrogen cycling, and Averill (2014)’s model for 14 

change in microbial allocation in soil carbon decomposition.  15 

 Wang and Post (2013) pointed out that both the MM kinetics and RMM kinetics 16 

(although the latter is empirical) are special approximations to the quadratic kinetics that 17 

exactly solves for the enzyme-substrate complex under the quasi-steady-state approximation 18 

(QSSA), which states that the enzyme-substrate complexes are in instantaneous equilibrium 19 

with enzyme and substrate concentrations (Borghans et al., 1996). They further concluded 20 

that the MM kinetics is applicable when the substrate concentration far exceeds the enzyme 21 

concentration, and the RMM kinetics is applicable when either the enzyme concentration far 22 

exceeds the substrate concentration or vice versa. The condition for the MM kinetics to be 23 

applicable as provided by Wang and Post (2013) was however much narrower than that was 24 

proposed in some earlier studies. For instance, Borghans et al. (1996) showed that the MM 25 

kinetics is a good approximation to the quadratic kinetics when enzyme concentration is far 26 

smaller than the sum of the substrate concentration and the Michaelis-Menten constant 27 

(Palsson, 1987; Segel, 1988; Segel and Slemrod, 1989). To handle enzyme-substrate 28 

interactions under high enzyme concentrations, Borghans et al. (1996) proposed the total 29 

quasi-steady-state approximation (tQSSA) and obtained a substrate kinetics that was a special 30 

case of the later proposed Equilibrium Chemistry Approximation kinetics by Tang and Riley 31 

(2013). Tang and Riley (2013) applied the law of mass action with tQSSA and derived the 32 



 4 

ECA kinetics to describe the formation of enzyme-substrate complexes in a network of an 1 

arbitrary number of enzymes and substrates.  2 

 The consistent application of mathematical formulations to describe a dynamic system 3 

is critical for the model to successfully resolve the empirical measurements that observe the 4 

dynamic system. This consistency requirement has been raised in several studies using 5 

microbe explicit models. For instance, Maggi and Riley (2009) have found the MM kinetics 6 

has to be revised to resolve the evolution of δ15N-N2O in their data of nitrification and 7 

denitrification. Druhan et al. (2012) later used Maggi and Riley (2009)’s revision to obtain an 8 

improved modeling of the δ34S data collected in the acetate-enabled uranium bioremediation 9 

at the US Department of Energy’s Rifle Integrated Field Research Challenge site. Tang and 10 

Riley (2013) showed that the MM kinetics failed to resolve the evolution of lignocellulose 11 

index during a litter decomposition experiment. I was not able to find any example of using 12 

the RMM kinetics to model kinetic isotope fractionation. However, because the RMM 13 

kinetics is a linear function of the substrate concentration, its application for modeling kinetic 14 

isotope fractionation will be doomed inevitably. Therefore, a substrate kinetics that merges 15 

the advantages from both the MM kinetics and the RMM kinetics would be a better choice for 16 

developing robust microbial models. 17 

 The call for a substrate kinetics that can consistently work across a wide range of 18 

substrate and enzyme (or more broadly competitor) concentrations becomes more imperative 19 

when land biogeochemical models are required to resolve plant-microbe interactions. In plant-20 

microbe interactions, both substrates and competitors evolve constantly and their 21 

concentration ratios could vary orders of magnitudes. For instance, when a soil is seriously 22 

nitrogen limited, the aqueous nitrogen concentration is much lower than the volumetric 23 

density of competitors and substrate uptake may follow more linearly with respect to the 24 

substrate concentration and be of an asymptotic function of competitors as described by the 25 

RMM kinetics. However when a large dose of fertilizer is added, the soil quickly becomes 26 

nitrogen saturated, such that the uptake dynamics would follow more linearly with respect to 27 

the variation of competitors (or enzymes) as represented in the MM kinetics. To consistently 28 

model the soil nitrogen dynamics that fluctuates between status of nitrogen limitation and 29 

nitrogen saturation, one therefore has to constantly choose between the MM kinetics and 30 

RMM kinetics, making a consistent mathematical formulation theoretically impossible. 31 

Therefore, an approach that includes the advantages from both the MM kinetics and RMM 32 
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kinetics will significantly advance our capability in modeling soil biogeochemical processes. 1 

Fortunately, such kinetics (aka the ECA kinetics) was already derived in Tang and Riley 2 

(2013), but my coauthor and I did not give a theoretical analysis for the relationships between 3 

MM kinetics, RMM kinetics and the ECA kinetics, nor did we explain how the parametric 4 

sensitivity would vary depending on the choice of substrate kinetics and whether the ECA 5 

kinetics is superior across the whole range of feasible kinetic parameters. Because all model 6 

calibration methods either explicitly or implicitly rely on the parametric sensitivity to tune 7 

model predictions with respect to observations (e.g. Tang and Zhuang, 2009; Zhu and 8 

Zhuang, 2014), correct parametric sensitivity of the model formulation is a requisite for 9 

delivering a robust model. An analysis of the differences in their predicted parametric 10 

sensitivities will also help reveal the pitfalls that may exist in biogeochemical models that rely 11 

on MM kinetics (Allison et al., 2010) or RMM kinetics (e.g. Averill, 2014) or combination of 12 

the two (e.g. Sihi et al., 2015), when the model is otherwise benchmarked against its 13 

equilibrium chemistry based formulation that solves the biogeochemical system exactly under 14 

the tQSSA (readers please refer to Tang and Riley (2013) for a thorough discussion on why 15 

the equilibrium chemistry formulation should be the benchmark for models based on MM 16 

kinetics, RMM kinetics and ECA kinetics).   17 

 In this study, I first review how the ECA kinetics could be derived from the quadratic 18 

kinetics and how the MM kinetics and the RMM kinetics could be derived from the ECA 19 

kinetics or directly from the equilibrium chemistry formulation of the enzyme-substrate 20 

interaction. Then I analyze how accurate the MM kinetics, the RMM kinetics and the ECA 21 

kinetics could approximate the parametric sensitivity, as one would derive from the quadratic 22 

kinetics that is exact for the one enzyme and one substrate biogeochemical reaction. Based on 23 

these analyses, I finally give recommendations on how to obtain more robust microbial 24 

models for soil biogeochemical modeling. Note, although the following analysis is for a 25 

single enzyme and single substrate system in an aqueous solution, the results are applicable to 26 

a wide range of problems, including predator-prey, microbial growth, Langmuir adsorption 27 

and any process that can be appropriately formulated as an equilibrium binding problem 28 

(Tang and Riley, 2013).  29 
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2 The Mathematical relationship between different kinetics 1 

 Below I first review how one could obtain the quadratic kinetics under the QSSA for a 2 

biogeochemical reaction that involves one enzyme and one substrate. Then I show how one 3 

could derive the ECA kinetics, the MM kinetics and the RMM kinetics. 4 

 The biogeochemical reaction of the system is 5 

!!
E + S⇔

k1
−

k1
+

ES→
k2
+

E +P  (1) 

where !E , !S , !ES  and !P   are, respectively, enzyme, substrate, enzyme-substrate complex and 6 

product. The three kinetic parameters are intrinsic substrate affinity !!k1
+  (m3 mol-1 s-1), 7 

backward enzyme-substrate dissociation constant !!k1
−  (s-1) and product genesis rate !!k2

+  (s-1). 8 

 By the law of mass action, the governing equations for biogeochemical reaction (1) are 9 

!!
d E⎡⎣ ⎤⎦
dt

= −k1
+ S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦+ k1

− +k2
+( ) ES⎡⎣ ⎤⎦  (2) 

!!
d S⎡⎣ ⎤⎦
dt

= −k1
+ S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦+k1

− ES⎡⎣ ⎤⎦  
(3) 

!!
d ES⎡⎣ ⎤⎦
dt

= k1
+ S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦− k1

− +k2
+( ) ES⎡⎣ ⎤⎦  (4) 

!!
d P⎡⎣ ⎤⎦
dt

= k2
+ ES⎡⎣ ⎤⎦  (5) 

Here and below, I use ⎡⎣ ⎤⎦  to designate the concentration (mol m-3) of a given state variable.  10 

 Under the QSSA, Eq. (4) is approixmated as 11 

!
S⎡⎣ ⎤⎦ E⎡⎣ ⎤⎦ = KES ES⎡⎣ ⎤⎦  (6) 

where  !!KES = k1
− +k2

+( ) k1+  (mol m-3) is the Michaelis-Menten constant.  12 

 For a small temporal window when the amount of the product is negligible, it holds 13 

that 
! 
P⎡⎣ ⎤⎦≪ ES⎡⎣ ⎤⎦+ S⎡⎣ ⎤⎦ = S⎡⎣ ⎤⎦T , then !

ES⎡⎣ ⎤⎦  
could be solved from Eq. (6) under the constraints 14 
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!
ES⎡⎣ ⎤⎦+ E⎡⎣ ⎤⎦ = E⎡⎣ ⎤⎦T  (7) 

!
ES⎡⎣ ⎤⎦+ S⎡⎣ ⎤⎦ = S⎡⎣ ⎤⎦T  (8) 

  By solving 	
E⎡⎣ ⎤⎦  from Eq. (7), 	

S⎡⎣ ⎤⎦  from Eq. (8), and entering the results into Eq. (6), 1 

one then obtains the quadratic equation 2 

!! ES
⎡⎣ ⎤⎦

2
− KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( ) ES⎡⎣ ⎤⎦+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T =0  (9) 

 Therefore, if one applies the quadratic formula to Eq. (9) and takes the physically 3 

meaningful solution, !
ES⎡⎣ ⎤⎦  

is then found as 4 

!!

ES⎡⎣ ⎤⎦ =
KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )

2 1− 1−
4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (10) 

2.1 The Equilibrium Chemistry Approximation kinetics 5 

 To obtain the ECA formulation of the enzyme-substrate complex, one assumes 6 

!! 
ε =

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2
≪1  (11) 

 Then by substitution of the first order approximation 	 1−4ε ≈ 1−2ε( )  (e.g. Cha and 7 

Cha, 1965) into the square root term of Eq. (10), the ECA formulation of 
 !
ES⎡⎣ ⎤⎦  

is obtained 8 

!
ES⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T

 	(12) 

The application of Eq.  (12) implies 9 

!!
d S⎡⎣ ⎤⎦T
dt

= −k2
+ ES⎡⎣ ⎤⎦  (13) 
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which together with the QSSA forms the tQSSA (Borghans et al., 1996). Note Eq. (13) is 1 

more than a restatement of Eq. (5). Rather, Eq. (13) describes the temporal trend of the total 2 

substrate concentration instead of the temporal trend of the free substrate concentration, as 3 

done in the QSSA based MM kinetics shown below.   4 

2.2 The Michaelis-Menten kinetics 5 

 The MM kinetics can be derived in two different approaches. In the first approach, by 6 

assuming 
! 
KES + S⎡⎣ ⎤⎦T ≫ E⎡⎣ ⎤⎦T , Eq.  (12) gives the MM formulation of !

ES⎡⎣ ⎤⎦  7 

!
ES⎡⎣ ⎤⎦ ≈

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + S⎡⎣ ⎤⎦T

 (14) 

 In the second approach, one solves !
ES⎡⎣ ⎤⎦  from Eq. (6) and (7) and obtains 8 

!
ES⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦
KES + S⎡⎣ ⎤⎦

 (15) 

Note 
!
S⎡⎣ ⎤⎦ = S⎡⎣ ⎤⎦T − ES⎡⎣ ⎤⎦ < S⎡⎣ ⎤⎦T , and because !

ES⎡⎣ ⎤⎦  is a monotonically increasing function of 9 

!
S⎡⎣ ⎤⎦ , !

ES⎡⎣ ⎤⎦  
computed from Eq. (14) will be greater than that from Eq. (15). However, almost 10 

all existing applications do not differentiate between Eqs. (14) and  (15). The strict application 11 

of Eq. (14) requires the substrate evolution to be computed by the tQSSA form Eq. (13), 12 

whereas under the QSSA the strict application of Eq. (15) requires 13 

!!
d S⎡⎣ ⎤⎦
dt

= −k2
+ ES⎡⎣ ⎤⎦  (16) 

When !
S⎡⎣ ⎤⎦  is low, or when enzyme concentration 

!
E⎡⎣ ⎤⎦T  

is high, equating !
S⎡⎣ ⎤⎦  to 

!
S⎡⎣ ⎤⎦T  and 14 

ignoring the contribution of 
!
E⎡⎣ ⎤⎦T  in calculating the enzyme-substrate complex !

ES⎡⎣ ⎤⎦  will 15 

cause significant error in computing the parametric sensitivities as I will show in section 3.  16 

 The sufficient condition 
! 
KES + S⎡⎣ ⎤⎦T ≫ E⎡⎣ ⎤⎦T  (which always leads to ! ε ≪1 , the 17 

sufficient condition to derive the ECA kinetics) for the MM kinetics to be applicable was well 18 

recognized in early studies; however, it was often misinterpreted as 
! 
S⎡⎣ ⎤⎦T ≫ E⎡⎣ ⎤⎦T  (see a 19 
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discussion in Borghans et al. (1996)). Yet, more importantly, I note that the derivation of the 1 

MM kinetics does not take into account the mass balance constraint for substrate (Eq. (8)). As 2 

I will show in section 3, the negligence of mass balance constraint for substrate will lead to 3 

poor predictions of parametric sensitivity by the MM kinetics when benchmarked with the 4 

quadratic kinetics. 5 

2.3 The reverse Michaelis-Menten kinetics 6 

 There are also two approaches to derive the RMM kinetics. In the first approach, one 7 

assumes 
! 
KES + E⎡⎣ ⎤⎦T ≫ S⎡⎣ ⎤⎦T , then from Eq.  (12), obtains the RMM formulation of !

ES⎡⎣ ⎤⎦  8 

!
ES⎡⎣ ⎤⎦ ≈

E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦T

 (17) 

 In the second approach, one solves !
ES⎡⎣ ⎤⎦  from Eqs. (6) and (8)  9 

!
ES⎡⎣ ⎤⎦ =

E⎡⎣ ⎤⎦ S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦

 (18) 

Note 
!
E⎡⎣ ⎤⎦ = E⎡⎣ ⎤⎦T − ES⎡⎣ ⎤⎦ < E⎡⎣ ⎤⎦T , and because !

ES⎡⎣ ⎤⎦  is a monotonically increasing function of 10 

!
E⎡⎣ ⎤⎦ , !

ES⎡⎣ ⎤⎦  
calculated from Eq. (17) will be greater than that from Eq. (18). Like the MM 11 

kinetics, existing applications have treated Eq. (17) and (18) as equivalent. 12 

 Here the condition 
! 
KES + E⎡⎣ ⎤⎦T ≫ S⎡⎣ ⎤⎦T  (which always leads to ! ε ≪1 , the sufficient 13 

condition to derive the ECA kinetics) for the RMM kinetics to hold is more general than the 14 

condition 
! 
E⎡⎣ ⎤⎦T ≫ S⎡⎣ ⎤⎦T  proposed in Wang and Post (2013). I also note that the derivation of 15 

the RMM kinetics does not take into account the mass balance constraint for enzyme (Eq. 16 

(7)). This negligence of the mass balance constraint for enzyme will lead the RMM kinetics to 17 

predict poor parametric sensitivities when benchmarked with the quadratic kinetics.  18 

3 Parametric sensitivity analyses 19 

 I below analyze the sensitivities of the reaction velocity with respect to the four 20 

parameters as predicted by the four kinetics. The four parameters are (1) maximum product 21 
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genesis rate !!k2
+ ; (2) intrinsic substrate affinity !!k1

+ ; (3) the total enzyme concentration 
!
E⎡⎣ ⎤⎦T  1 

and (4) the total substrate concentration 
!
S⎡⎣ ⎤⎦T . The reaction velocities predicted by the four 2 

different kinetics are, respectively, for the quadratic kinetics, 3 

!!

vQD =
k2
+ KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )

2 1− 1−
4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 (19) 

for the ECA kinetics, 4 

!!
vECA =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (20) 

for the MM kinetics, 5 

!!
vMM =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + S⎡⎣ ⎤⎦T

 (21) 

and, for the RMM kinetics 6 

!!
vRMM =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
KES + E⎡⎣ ⎤⎦T

 (22) 

 In evaluating the parametric sensitivity, I made the conventional assumption that 7 

!! k1
− ≪k2

+  to obtain a better presentation of the results (although excluding this assumption will 8 

not change the conclusion below). This assumption leads to !!KES = k2
+ k1

+ , which states that 9 

the apparent substrate affinity !!1 KES  is a linearly decreasing function of !!k2
+ , a relationship 10 

that has been used to characterize the K-r tradeoff (e.g. Litchman et al., 2008). Because !KES  is 11 

a function of !!k2
+ , the intrinsic affinity !!k1

+  better describes the substrate affinity for the 12 

enzymes.  13 

 In addition, to simplify the presentation, I define 
!
y = KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T  and 14 

!!x = 4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T y2 . Since the derivations for the MM and RMM kinetics related parametric 15 

sensitivities could be derived from the ECA predictions straightforwardly, I only provide 16 
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details to derive the results for the quadratic and ECA related parametric sensitivities 1 

(Appendix A and B). Nevertheless, to help the readers to visualize the differences in the 2 

predicted parametric sensitivities by using different kinetics, I have summarized the 3 

comparison in four different figures: Figure 1 for !!k2
+ , Figure 2 for !!k1

+ , Figure 3 for 
!
E⎡⎣ ⎤⎦T , and 4 

Figure 4 for 
!
S⎡⎣ ⎤⎦T . All sensitivities are evaluated over the 2D normalized substrate-enzyme 5 

concentration domain ! 0.001,1000⎡⎣ ⎤⎦× 0.001,1000⎡⎣ ⎤⎦ , with both 
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  normalized 6 

by !KES . In addition, because the quadratic kinetics is exact under the QSSA, its predictions 7 

are used to benchmark the predictions made by the ECA kinetics, MM kinetics and RMM 8 

kinetics (see (d) panels in the figures). For comparison between predictions by the ECA 9 

kinetics and the quadratic kinetics, I plotted the normalized sensitivities as 2D functions of the 10 

normalized substrate 
!
S⎡⎣ ⎤⎦T KES  

and 
!
E⎡⎣ ⎤⎦T KES  

(see (a) and (b) panels in the figures),
 
and 11 

evaluated their differences using the index 
!
aQD −aECA( ) aQD +aECA( )  (see (c) panels in the 12 

figures), where the subscripts QD and ECA indicate, respectively, sensitivities predicted by 13 

the quadratic kinetics and the ECA kinetics.  14 

 In all the analyses below, I represent the parametric sensitivity using the normalized 15 

form 		∂lnv ∂ln s  to remove the unit dependency of the results. The normalized sensitivity 16 

represents the relative change of reaction velocity 	v  in response to a relative change in 17 

parameter 	s , where 	s  could be any of the four parameters being analyzed. 18 

3.1 Reaction velocity vs. !!k2
+  19 

 The normalized sensitivity of the reaction velocity vs. !!k2
+  are, respectively, for the 20 

quadratic kinetics, 21 

!!

k2
+

vQD

∂vQD
∂k2

+ =1+ KES

y
−
KES

y
1− 1− x( )−1 1− x( )−1 2 x  (23) 

for the ECA kinetics, 22 

!!

k2
+

vECA

∂vECA
∂k2

+ =1− KES

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (24) 
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for the MM kinetics,  1 

!!

k2
+

vMM

∂vMM
∂k2

+ =1− KES

KES + S⎡⎣ ⎤⎦T
 (25) 

and, for the RMM kinetics, 2 

!!

k2
+

vRMM

∂vRMM
∂k2

+ =1− KES

KES + E⎡⎣ ⎤⎦T
 (26) 

 From above, it is observed that both the MM kinetics and the RMM kinetics predict a 3 

less variable and lower parametric sensitivity than does the ECA kinetics, because the ECA 4 

kinetics predicts a more variable and larger denominator in the second term (in Eq.(24)) as 5 

compared to that by the MM kinetics (Eq. (25)) and the RMM kinetics (Eq. (26)). Large 6 

deviations between predicted sensitivities by the MM kinetics and the ECA kinetics are 7 

expected at high enzyme concentrations, whereas large deviations between predictions by the 8 

RMM kinetics and the ECA kinetics are expected at high substrate concentrations. Predicted 9 

sensitivities by the MM kinetics and RMM kinetics are also smaller than that by the quadratic 10 

kinetics (green and black dots in Figure 1d). In contrast, the ECA kinetics consistently 11 

captures the variability of the normalized sensitivity, with some over-estimation (but the 12 

relative difference is no greater than 5%) under moderate enzyme and substrate 13 

concentrations (Figure 1c), where the normalized sensitivity is, however, small or moderate 14 

(Figure 1a).  15 

3.2 Reaction velocity vs. !!k1
+   16 

 The normalized sensitivity of the reaction velocity vs. !!k1
+  are, respectively, for the 17 

quadratic kinetics,  18 

!!

k1
+

vQD

∂vQD
∂k1

+ = −
KES

y
+
KES

y
1− x( )−1 2 1− 1− x( )−1 x  (27) 

for the ECA kinetics,  19 

!!

k1
+

vECA

∂vECA
∂k1

+ =
KES

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (28) 
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for the MM kinetics, 1 

!!

k1
+

vMM

∂vMM
∂k1

+ =
KES

KES + S⎡⎣ ⎤⎦T
 (29) 

and, for the RMM kinetics,  2 

!!

k1
+

vRMM

∂vRMM
∂k1

+ =
KES

KES + E⎡⎣ ⎤⎦T
 (30) 

 From Eqs. (28)-(30), it is inferred that both the MM kinetics and the RMM kinetics 3 

predict a less variable and higher normalized sensitivity with respect to !!k1
+  than does the ECA 4 

kinetics. Large difference between predicted sensitivities by the ECA kinetics and the MM 5 

kinetics are expected at high enzyme concentrations, whereas large difference between 6 

predicted sensitivities by the ECA kinetics and the RMM kinetics are expected at high 7 

substrate concentrations. The predicted sensitivities by the MM kinetics and the RMM 8 

kinetics are also lower than that by the quadratic kinetics (Figure 2d), whereas the ECA 9 

kinetics predicts consistent parametric sensitivity for the wide range of enzyme and substrate 10 

concentrations (Figure 2). The under-predicted sensitivity by the ECA kinetics is significant 11 

only at high substrate and high enzyme concentrations (Figure 2c), where the parametric 12 

sensitivity is close to zero (Figure 2a and Figure 2b).  13 

3.3 Reaction velocity vs. 
!
E⎡⎣ ⎤⎦T  14 

 The normalized sensitivity of the reaction velocity vs. 
!
E⎡⎣ ⎤⎦T  are, respectively, for the 15 

quadratic kinetics 16 

!!

E⎡⎣ ⎤⎦T
vQD

∂vQD
∂ E⎡⎣ ⎤⎦T

=
E⎡⎣ ⎤⎦T
y

+
E⎡⎣ ⎤⎦T
y

1− 1− x( )−1 1− x( )−1 2 × 2 S⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (31) 

for the ECA kinetics 17 

!!

E⎡⎣ ⎤⎦T
vECA

∂vECA
∂ E⎡⎣ ⎤⎦T

=1−
E⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (32) 

for the MM kinetics 18 
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!!

E⎡⎣ ⎤⎦T
vMM

∂vMM
∂ E⎡⎣ ⎤⎦T

=1  (33) 

and, for the RMM kinetics,  1 

!!

E⎡⎣ ⎤⎦T
vRMM

∂vRMM
∂ E⎡⎣ ⎤⎦T

=1−
E⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T
 (34) 

 From above, it is observed that the MM kinetics predicts a constant normlzied 2 

sensivity of the reaction vecloity with respect to the total enzyme concentrtion 
!
E⎡⎣ ⎤⎦T . The 3 

RMM kinetics predicts the normalized sensitivity as a monotonically decreasing function of 4 

the normalized enzyme concentration 
!
E⎡⎣ ⎤⎦T KES . The predicted sensitivity by the ECA 5 

kinetics is a function of both the normalized substrate concentration 
!
S⎡⎣ ⎤⎦T KES  and the 6 

normalized enzyme concentration 
!
E⎡⎣ ⎤⎦T KES . Compared to predictions by the quadratic 7 

kinetics, the MM kinetics persistently over-estimates the parametric sensitivity (green dots in 8 

Figure 3d), whereas the RMM kinetics persistently under-estimates the parametric sensitivity 9 

(black dots in Figure 3d). The ECA predicted sensitivity is largely consistent with that by the 10 

quadratic kinetics (Figure 3), albeit with some significant deviation in regions of very high 11 

substrate and enzyme concentrations (Figure 3c), where the parametric uncertainty is 12 

moderate or low (Figure 3a and Figure 3b). 13 

3.4 Reaction velocity vs. 
!
S⎡⎣ ⎤⎦T  14 

 The normalized sensitivity of the reaction velocity vs. 
!
S⎡⎣ ⎤⎦T  are, respectively, for the 15 

quadratic kinetics 16 

!!

S⎡⎣ ⎤⎦T
vQD

∂vQD
∂ S⎡⎣ ⎤⎦T

=
S⎡⎣ ⎤⎦T
y

+
S⎡⎣ ⎤⎦T
y

1− 1− x( )−1 1− x( )−1 2 × 2 E⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (35) 

for the ECA kinetics 17 
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!!

S⎡⎣ ⎤⎦T
vECA

∂vECA
∂ S⎡⎣ ⎤⎦T

=1−
S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T
 (36) 

for the MM kinetics, 1 

!!

S⎡⎣ ⎤⎦T
vMM

∂vMM
∂ S⎡⎣ ⎤⎦T

=1−
S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T
 (37) 

and, for the RMM kinetics,  2 

!!

S⎡⎣ ⎤⎦T
vRMM

∂vRMM
∂ S⎡⎣ ⎤⎦T

=1  (38) 

 Because 
!
S⎡⎣ ⎤⎦T  and 

!
E⎡⎣ ⎤⎦T  are symmetric in the quadratic kinetics and the ECA kinetics, 3 

the predicted normalized sensitivity of the reaction velocity with respect to the total substrate 4 

concentration 
!
S⎡⎣ ⎤⎦T  mirrors that of 

!
E⎡⎣ ⎤⎦T  along the lower left to upper right diagonal (Figure 5 

3 vs. Figure 4). Such symmetric relationships also exist in predictions by the MM kinetics and 6 

the RMM kinetics, however, the MM kinetics persistently under-predicts the normalized 7 

sensitivity of the reaction velocity with respect to 
!
S⎡⎣ ⎤⎦T , and the RMM kinetics predicts a 8 

constant sensitivity (Eq. (38)). The ECA kinetics once again predicts consistent parametric 9 

sensitivity when compared with the quadratic kinetics. 10 

4 Discussions and conclusions 11 

 From the above analyses, I showed that the ECA kinetics is a better approximation to 12 

the quadratic kinetics, which, obtained from the law of mass action and the quasi-stead-state 13 

approximation, is the exact solution to the governing equation of substrate-enzyme 14 

interaction. In contrast, the Michaelis-Menten kinetics and the reverse Michaelis-Menten 15 

kinetics are inferior in approximating the quadratic kinetics over the wide range of enzyme 16 

and substrate concentrations. The worse performances of the MM kinetics than the ECA 17 

kinetics in approximating the quadratic kinetics stems from the negligence of mass balance 18 

constraint of the substrate during the derivation of the MM kinetics; while the worse 19 

performance of the RMM kinetics in approximating the quadratic kinetics is caused by the 20 

negligence of mass balance constraint of the enzyme during the derivation of the RMM 21 

kinetics. The failure to consider the mass balance constraints for both enzyme and substrate 22 
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during their derivations caused the MM kinetics and the RMM kinetics to predict significantly 1 

biased normalized sensitivity of the reaction velocity with respect to the two kinetic 2 

parameters !!k1
+  and !!k2

+ , the total enzyme concentration 
!
E⎡⎣ ⎤⎦T  and the total substrate 3 

concentration 
!
S⎡⎣ ⎤⎦T . Although being a first order approximation to the quadratic kinetics 4 

under the assumption that !! E
⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T ≪ KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )2 , because it considers the mass 5 

balance for both substrate and enzyme, the ECA kinetics predicts consistent parametric 6 

sensitivity with that by the quadratic kinetics over the wide range of normalized substrate and 7 

enzyme concentrations.  8 

 In modeling complex soil biogeohcmeical dynamics, the consistency between used 9 

kinetics and equilibrium chemistry formulation of the relationships between enzymes, 10 

substrates and enzyme-substrate complexes might be critical (Tang and Riley, 2013), but it 11 

has been unfortunately under-appreciated in many previous studies. In Tang and Riley (2013), 12 

it was shown that for a system involving three microbes competitively decompose three 13 

carbon substrates, the MM kinetics failed wildly even with industrious calibration (see their 14 

Figure 12). In an earlier study, Moorhead and Sinsabaugh (2006) have to prescribe the 15 

relative decomposition between lignin and cellulose in order to resolve the lignocellulose 16 

index dynamics. The ECA kinetics was able to consistently resolve the lignin-cellulose 17 

dynamics during the litter decomposition by that it explicitly considers the mass balance 18 

constraints for each of the substrates and enzymes (or, effectively, abundance of competitors; 19 

Tang and Riley, 2013). The success of ECA kinetics and the failure of MM kinetics in studies 20 

referred above can both be traced back to their capability in approximating the actual 21 

parametric sensitivities of the specific dynamic system. Because all model calibration 22 

techniques rely on model’s parametric sensitivity to obtain improved agreement between 23 

model predictions and measurements, wrong parametric sensitivity as formulated in the 24 

adopted substrate kinetics would result in a non-calibratable or poorly calibratable model, 25 

which could be manifested as systematic model biases or completely unreasonable model 26 

predictions. This explained well why the MM kinetics based model in Tang and Riley (2013) 27 

failed wildly even with intensive Bayesian model calibration. 28 

 Therefore if the ecological dynamics involved in substrates processing by microbes 29 

does approximately obey the law of mass action and the total-quasi-steady-state 30 

approximation (as it is already implied in any microbe explicit model that uses the MM 31 
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kinetics or the RMM kinetics), then the analytically tractable ECA kinetics is a much more 1 

powerful and mathematically more consistent tool than the popular MM kinetics and RMM 2 

kinetics that are currently used in many microbial models. Indeed, a recent application (Zhu 3 

and Riley, 2015) indicated that by representing plant-microbe competition of soil mineral 4 

nitrogen using the ECA kinetics, the predicted global nitrogen dynamics became much more 5 

consistent with that inferred from the δ15N isotopic data (Houlton et al., 2015). The ECA 6 

kinetics was also found to satisfyingly model the plant-microbe competitions for phosphorus 7 

and mineral nitrogen at several fertilized sites (Zhu et al., 2015) and predicted consistent 8 

vertical nitrogen uptake profile measured at an alpine meadow ecosystem (Zhu et al. in prep). 9 

Theoretically, because either the MM kinetics or the RMM kinetics works only in a small 10 

subdomain of the parameters that are used in the original quadratic kinetics, models based on 11 

MM kinetics or RMM kinetics may likely have much lower predictive capability than that is 12 

implied in the mechanisms that the models are trying to represent (e.g. the law of mass action, 13 

which is the foundation to all substrate kinetics). I therefore recommend modelers to use the 14 

ECA kinetics to describe the substrate uptake processes in modeling microbe regulated 15 

biogeochemical processes. As I showed above, with the same number of parameters as one 16 

would use with either the MM kinetics or the RMM kinetics, the ECA kinetics achieved better 17 

accuracy in approximating the exact quadratic kinetics for a biogeochemical reaction that 18 

involves a single enzyme and a single substrate. The superior performance of ECA is also true 19 

for systems that involve many substrates and many enzymes (Tang and Riley, 2013), which 20 

are much more common in the natural environment that we are trying to model. Last and 21 

more importantly, the ECA kinetics could save the modelers from the pain of when to use the 22 

MM kinetics or the RMM kinetics to represent a soil that fluctuates between status of nutrient 23 

limitation and nutrient saturation, for which neither the MM kinetics nor the RMM kinetics is 24 

(but ECA is) theoretically consistent with the law of mass action, the best theory we have for 25 

modeling biogeochemical reactions. 26 

 27 

Appendix A: Derivation of parametric sensitivities (Eqs. (23), (27), (31) and (35)) for 28 

the quadratic kinetics  29 

 Using the definition of 
!
y = KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T  and !!x = 4 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T y2 , one has the 30 

following results 31 
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!!
vQD =

k2
+ y
2 1− 1− x( )

      
(A-1) 1 

!!

∂x
∂k1

+ =
8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )3
KES

k1
+ =

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
y3

KES

k1
+

    

(A-2) 2 

  !!

∂x
∂k2

+ = −
8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + E⎡⎣ ⎤⎦T + S⎡⎣ ⎤⎦T( )3
1
k1
+ = −

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T
y3

1
k1
+

                          

(A-3) 3 

!!

∂x
∂ E⎡⎣ ⎤⎦T

=
4 S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )2
−

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )3
=
4 S⎡⎣ ⎤⎦T
y2

− 2x
y

  

(A-4) 4 

!!

∂x
∂ S⎡⎣ ⎤⎦T

=
4 E⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )2
−

8 E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

KES + S⎡⎣ ⎤⎦T + E⎡⎣ ⎤⎦T( )3
=
4 E⎡⎣ ⎤⎦T
y2

− 2x
y

  

(A-5) 5 

 
!!
∂ 1− x
∂k1

+ = −12 1− x( )−1 2 ∂x
∂k1

+       (A-6) 6 

!!
∂ 1− x
∂k2

+ = −12 1− x( )−1 2 ∂x
∂k2

+        (A-7) 7 

!!

∂ 1− x
∂ E⎡⎣ ⎤⎦T

= −12 1− x( )−1 2 ∂x
∂ E⎡⎣ ⎤⎦T  

     (A-8) 8 

!!

∂ 1− x
∂ S⎡⎣ ⎤⎦T

= −12 1− x( )−1 2 ∂x
∂ S⎡⎣ ⎤⎦T

      (A-9) 9 

 
!!
∂ y
∂k1

+ =
∂KES

∂k1
+ = −

KES

k1
+        (A-10) 10 
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!!
∂ y
∂k2

+ =
∂KES

∂k2
+ = 1

k1
+                  (A-11) 1 

!!

∂ y
∂ E⎡⎣ ⎤⎦T

= ∂ y
∂ S⎡⎣ ⎤⎦T

=1         (A-12) 2 

Then from Eq. (A-1), one has 3 

!!

∂vQD
∂k2

+ = y
2 1− 1− x( )+ k2+2 1− 1− x( ) ∂ y∂k2

+ −
k2
+

2 y ∂ 1− x
∂k2

+     (A-13) 4 

By substitution of Eqs. (A-3), (A-7) and (A-11) into (A-13), and use the definition of !
vQD  5 

from Eq. (A-1), one obtains 6 

!!

∂vQD
∂k2

+ = y
2 1− 1− x( )+ KES

2 1− 1− x( )− KES

2 1− x( )−1 2 x

=
vQD
k2
+ 1+ KES

y
−
KES

y
1− 1− x( )−1 1− x( )−1 2 x⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪    

(A-14) 7 

which, after some  rearrangements, gives Eq. (23) in the main text. 8 

 Similarly, from Eq. (A-1), one has 9 

!!

∂vQD
∂k1

+ =
k2
+

2 1− 1− x( ) ∂ y∂k1
+ −

k2
+ y
2

∂ 1− x
∂k1

+      (A-15) 10 

which, after using Eqs. (A-2), (A-6) and (A-10), leads to 11 

!!

∂vQD
∂k1

+ = −12KES
2 1− 1− x( )+ 12KES

2 1− x( )−1 2 x

=
vQD
k1
+ −

KES

y
+
KES

y
1− x( )−1 2 1− 1− x( )−1 x⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    

(A-16) 12 

By multiplying  !!k1
+ vQD  to both side of Eq. (A-16), one easily obtains Eq. (27). 13 

 Take the partial derivative with respect to 
!
E⎡⎣ ⎤⎦T  in Eq. (A-1), one obtains 14 
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!!

∂vQD
∂ E⎡⎣ ⎤⎦T

=
k2
+

2 1− 1− x( ) ∂ y
∂ E⎡⎣ ⎤⎦T

−
k2
+ y
2

∂ 1− x
∂ E⎡⎣ ⎤⎦T

   (A-17) 1 

which, when combined with Eqs. (A-4), (A-8), and (A-12), becomes 2 

!!

∂vQD
∂ E⎡⎣ ⎤⎦T

=
k2
+

2 1− 1− x( )+ k2+2 1− x( )−1 2 2 S⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
vQD
E⎡⎣ ⎤⎦T

E⎡⎣ ⎤⎦T
y

+
E⎡⎣ ⎤⎦T
y

1− 1− x( )−1 1− x( )−1 2 × 2 S⎡⎣ ⎤⎦T
y

− x
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪    

(A-18) 3 

from which, after some rearrangement, one finds Eq. (31). 4 

 Note, because switching the order of 
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  in Eq. (A-1) does not change the 5 

definition of !
vQD , Eq. (35) could be derived from Eq. (31) by simply swapping 

!
E⎡⎣ ⎤⎦T  and 6 

!
S⎡⎣ ⎤⎦T . 7 

Appendix B: Derivation of parametric sensitivities (Eqs. (24), (28), (32) and (36)) for 8 

the Equilibrium Chemistry Approximation kinetics  9 

 Using the definitions of !x  and !y , !vECA  is  10 

!!
vECA =

k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y
      (B-1) 11 

From Eq. (B-1), one has 12 

!!

∂vECA
∂k2

+ =
E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y
−
k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y2
∂ y
∂k2

+     (B-2) 13 

which, when combined with Eq. (A-11), becomes 14 

!!

∂vECA
∂k2

+ =
vECA
k2
+ −

vECA
k2
+

KES

y
      (B-3) 15 

The by dividing both sides of Eq. (B-3) with !!vECA k2
+ , one obtains Eq. (24). 16 

 Similarly, from Eq. (B-1), one has 17 
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!!

∂vECA
∂k1

+ = −
k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y2
∂ y
∂k1

+      (B-4) 1 

Then by aid of Eq. (A-10), one finds 2 

!!

∂vECA
∂k1

+ =
vECA
k1
+

KES

y
      (B-5) 3 

which gives Eq. (28) by multiplying !!k1
+ vECA  to both sides. 4 

 For 
!
E⎡⎣ ⎤⎦T , one can derive from Eq. (B-1)  5 

!!

∂vECA
∂ E⎡⎣ ⎤⎦T

=
k2
+ S⎡⎣ ⎤⎦T
y

−
k2
+ E⎡⎣ ⎤⎦T S⎡⎣ ⎤⎦T

y2
∂ y

∂ E⎡⎣ ⎤⎦T
      (B-6) 6 

which, when combined with Eq. (A-12), leads to 7 

!

∂vECA
∂ E⎡⎣ ⎤⎦T

=
vECA
E⎡⎣ ⎤⎦T

−
vECA
y

      (B-7) 8 

One then, by dividing both sides of Eq. (B-7) with 
!
vECA E⎡⎣ ⎤⎦T , obtains Eq. (32). 9 

 By using the symmetry between 
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  in the definition of !vECA , Eq. (36) 10 

could be obtained by swapping  
!
E⎡⎣ ⎤⎦T  and 

!
S⎡⎣ ⎤⎦T  in Eq. (32). 11 
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Figure 2. 2 
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Figure 3. 2 
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Figure 4. 2 
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