Supplement of Geosci. Model Dev. Discuss., 8, 7541-7661, 2015
http://www.geosci-model-dev-discuss.net/8/7541/2015/
doi:10.5194/gmdd-8-7541-2015-supplement

© Author(s) 2015. CC Attribution 3.0 License.

Supplement of

ESMValTool (v1.0) — a community diagnostic and performance metrics
tool for routine evaluation of Earth System Models in CMIP

V. Eyring et al.

Correspondence tdv. Eyring (veronika.eyring@dlr.de)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Py =, EEEES S

r—meamla

Version 1.0 (v1.0)

ESMValTool v1.0 user’s and developer’s guide

Contents
Y - [ol OO TSRS PYPPUPPUPRRPON 5
Part 1 USEI'S GUILE . .eei ittt ettt ettt sttt e bt e s a e e s bt e e b e e e bt e e sateesabeeebeeeaseeesmbeesane sreeesareesanes 6
R 10N i o To [¥ ot i o T TS U PRV PPTOPRRTRR 6
1.1 (0] o [=Yot {1V =TT g Lo 1YY o] o] o - 1 o SRRSOt 6
1.2 ATCRITECEUIE ..ttt e e bt e bt e bt e b e s be e s bt e saeesanesanesaneeabes eesmnesane 6
2 SOFtWArE INSTAIIATION. ...eeeie et nb e bt reenees 7
2.1 P Bl UIS TS i i i ———————————————————————————————————————.aaaaaaes 7
2.2 ODbtaining the SOUICE COUE ...uuiiiiiiiiiiiiee ettt e e e e e et e e e e e e s e et e e e e e e e s seenatsteeeeaeeesnnreaneens 7
23 SOftWAre INSTAIlATION. ..o .tiiiiii ettt e ab e sbe e s be e s sbeeesabeesbeeenes 8
3 ESIMVaAITOO!I NAMEIISTS ..uveieiiiiiiieiiee ettt ettt ettt e ettt e s bt esabeesbeeesabeesabeesabeesbeeesabeesabeesseesnnen 8
3.1 MOre 0N the KGLOBALS-TAG......cuuiiiieiiee ettt e et e e e etre e e e ete e e e ebte e e e e abae e s esateeeeeabteeeesnreeeeenneeas 10
3.2 MOre ON the KIMODELS>-tag.....cccuiiiieeee ettt e e et e e e e e e et re e e e e s sssnsbaaeeeeeesannssranneeeeaann 10
3.3 More 0N the KDIAGNOSTICSSAE ..uuureiiiiiiiciieieeee et re e e errre e e e e e e strtre e e e e e e s snbaareeeeesennsnrneeeaeeean 12
34 Standard header for the NAMEIISTeo i 15
3.5 EXQMPIE NAMEIIST. ...ttt e e e e er et rre e e e e e e e e tabaaeeeeeeseeasbaaeeeeeeeennsrssaeees srreees 15
4 Directory structure of the ESMVaAITOO!coccuiiiiiiiiiie ettt e s e e e seaee s 16
LI 0o Yo 7 ={ U =Y 4T o I 1 LTS 17
5.1 NMI/Cfg_ dIag/ el dIaZ™ LYP cveeiceeie ettt ettt e et e e et e et e e e tae e e teeebeeeeareens 17
6 RUNNING the ESMVAITOON ettt e e e et ee e e e e e e ettt r e e e e e e e e s abraaeeeeeeesnsnaaeeaaaaanns 17
6.1 The acknowledgements 10 file ... e e e s e e e e e e e e e 19
6.2 Model and 0bservational dataccoceiiiieiiiee e e 20
Y | R B 11V Lo oY= ok U 1o [PSR 21
7 Writing a diagnostic SCript OF @ MELIICS SEL...iiiiiiiiiiiiiie e et e e et e e s srre e e e sbeeeeesntaeeeeans 21
7.1) =T e T e IR =T 0¥ o] - | USSPt 21
7.2 (7 o =YV {1 Vot o T o -3 PR 23
7.3 o] T gY =4 AU Vo ot f o] o TSP EPPS 23
7.4 Fio Lo o= a1 Y A o T = o [PPSR 24
74.1 reformat_Scripts/recognIiZed_VarS.dal...........ccoiiiriirieiieieisise e 24
7.4.2 reformat_scripts/recognized _UNItS.Aat..........cccoeieeieii i 24
7.4.3 variable _defS/Varname.NCl............ooiiiiiir e e e e e ee e reenee s 24

7.4.4 reformat_scripts/cmor/CMOR _variable.datcccoovveiiiieiii e 26

7.5 Coding rules and STANAAIASceiiei i e e e e e e et ee e e e e e e e anara e e e e e eesnnreaaeeas 26
7.6 DocumMENtAtion Of SOfIWAIE ..cc..eiiii e et e e e rte e e e s e e e enaeas 27
7.7 The acknowledgements [0Z fileccuuii e e 27
7.8 DocumMENtation Of SOUMCE COUR ...oiuiiiiiiiiiitiiee ettt st st e ste e sbe e ssateesabeesaes 28
7.9 F AN Ty o] 4= A=Y I =Ty [oY USSPt 28
7.9.1 Setup and general WOIrKFIOWc.ooviiii i e 29
7.9.2 Example test implementation for @ diagnOStIC...........ccveviriiieiiieie e e 30

8 Scientific documentation of a diagnostic script Or MEetrics SEtcccvvviiiiieciiie e 31
8.1) =T e =T e IR =T 0 Y o] - | USSPt 31
8.2 Model and 0bservational datacceeeiiiiiiiiiie e e s 32
8.2.1 OVEIVIBW ...ttt etttk stttk etk s e et e ek e m e sb e e s e e bt ehe e e e ebeemeesbe et e enbesbeeneeneeneeens 32
8.2.2 Standard header for the reformatting routines for observational datac.ccoceovereieiinninne 32
8.2.3 Data with available reformatting roUtINESccooeriiiiiriiieeee e 33

9 The ESMValTool core developmeENnt tEAMceii i e e e e e e rre e e e e e e e e saneaeees 35
9.1 Y Y1 W e 0} - [l £ PP PP PP PPPPPPPPPP 35
9.2 (@l D11V [o] o o Y=Y oLl T o FO U 35
9.3 Y LT ¢ o = To U =T T RO PP P PP PP PP PP PP PPPPPPPPPR 36
9.31 Workflow core develOpmEeNt TEAM..........coiiiiriiieiecee s 36
9.3.2 Responsibilities of ESMValTOO0I AeVEIOPEIS........ccveiiieeieiiecece st e 36

O 20T oY T o o] E SRR 37
11 ANNEX A = MOTE TADIES .t e e e e e et b e e e e e e e e e ttbaaeeeeeeeeesaasseaeeeeeesansrareeeaeeanns 38
12 Annex B —subversion, Mantis, Wiki.......cccooiiiiiiiiiiiii e 40
0 U] o 1YY o o =T o o 1Y 1 o] o U 40
12,11 General do’S AN AONES....c.ceueiuiiiiiieiieitesi ettt bbbttt 41
I A I/ o] o= LI Yo 1 i [0SR 41
12.1.3 Other cOmMmMON SVN COMMIANTSooviiiiiiieieieetie e ee et see et seeseesteeseestesreeneeseeeneeneesseeneeseeenes 42
R V- o A o U T8 i = Vol =Y U 43
10720 T | SPRPR 43

Preface

This user’s and developer’s guide consists of parts targeting two overlapping categories of scientists working
with the Earth System Model Evaluation Tool (ESMValTool):

(1) Part I: User’s Guide: this part gives an introduction to the ESMValTool (v1.0) including installation,
running the ESMValTool, and available user settings of existing diagnostics and performance
metrics. The target group would typically consist of scientists mostly interested in running the
ESMValTool as provided either on CMIP model simulations or on mode simulations performed with
other models, and on observations.

(2) Part Il: Developer’s Guide: this part gives additional technical details on the ESMValTool not
necessarily needed to apply the ESMValTool as well as an introduction to implementing new
variables and new diagnostics. This part is mostly intended for scientists interested in technical
details as well as in contributing to the development of the ESMValTool by adding new nameslists
and code for additional diagnostics or performance metrics.

For the developer’s guide (part II), it is assumed that the user/developer is already familiar with the
ESMValTool user guide introduced in part 1.

Part |:User’s Guide

1 Introduction

The Earth System Model Evaluation Tool (ESMValTool) is a community-development that aims at improving
diagnosing and understanding of the causes and effects of model errors and inter-model spread. The
ESMValTool is open to both users and developers encouraging open exchange of diagnostic source code and
evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and
improve ESM evaluation beyond the state-of-the-art and aims at supporting the activities within CMIP and at
individual modelling centers. We envisage running the ESMValTool routinely on the CMIP model output
utilizing observations available through the Earth System Grid Federation (ESGF) in standard formats
(obs4MIPs) or made available at ESGF nodes.

The goal is to develop a benchmarking and evaluation tool that produces well-established analyses as soon as
model output from CMIP simulations becomes available, e.g., at one of the central repositories of the ESGF.
This is realized through standard namelists that reproduce a certain set of diagnostics and performance metrics
that have demonstrated its importance in benchmarking Earth System Models (ESMs) in a paper or
assessment report, such as Chapter 9 of the Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (AR5) (Flato et al., 2013). The expectation is that in this way a routine and systematic
evaluation of model results can be made more efficient, thereby enabling scientists to focus on developing
more innovative methods of analysis rather than constantly having to “reinvent the wheel”.

In parallel to standardization of model output, the ESGF also hosts observations for Model Intercomparison
Projects (obs4MIPs). Obs4MIPs provides open access data sets of satellite data that are comparable in terms
of variables, temporal and spatial frequency, and periods to the Coupled Model Intercomparison Project
(CMIP) data set (Taylor et al., 2012). The ESMValTool utilizes these observations plus additionally available
observations in order to evaluate the models performance. In many diagnostics and metrics, more than one
observational data set or meteorological reanalysis is used to assess uncertainties in observations.

1.1 Objectives and Approach

The main idea of the ESMValTool is to provide a broad suite of diagnostics which can be performed easily
when new model simulations are run. The suite of diagnostics needs to be broad enough to reflect the diversity
and complexity of Earth System Models, but must also be robust enough to be run routinely or semi-
operationally.

In order the address these challenging objectives the ESMValTool is conceived as a framework which allows
community contributions to be bound into a coherent framework.

1.2 Architecture

Figure 1 shows a schematic of the ESMValTool architecture: the workflow manager (controlled by the Python
script “main.py”) runs a set of diagnostics on data provided by, for instance, a data archive. The configuration
and the settings of each diagnostic are specified in namelists read and passed to the diagnostics by the
workflow manager. The results which typically comprise of NetCDF files and/or plots are stored in output
folders along with log-files summarizing the data used, references, and technical details to ensure traceability
and reproducibility of the results.

iagnostic
omponents

Caollated output

Namelists ;M:;:gb: *
| I:
Data archives |

49

Detailed logs for
traceability and
reproducability.
Plot files generated in
structured directories

Figure 1 Schematic of the system architecture. The workflow manager (main.py) passes information to the diagnostics;
results and log-files are written to dedicated folders.

2 Software installation
2.1 Prerequisites

The ESMValTool has the following software requirements (note that specific diagnostics might require
additional software packages):

1.

2.

Unix(-like) operating system
Python version 2.7.x for running the Python script main.py;

NCAR Command Language (NCL 2014) version 6.2 or higher to run the quality check and reformat
routines processing all input files. See the control flow description on reformat_default in Table S10
for details.

Input files in netCDF with required attributes and dimension names. Valid input files are:

1. a CMIP or similarly standardized format using a CMIP5 table, or with discrepancies that can
be handled via the definitions in the files reformat_scripts/recognized_units.dat and
reformat_scripts/recognized_units.dat, respectively.

2. any input file with a (user-)supplied reformat routine that converts the input data during run-
time, see the control flow description on reformat EMAC in Table S10 for details

Common GNU utilities such as “wc”, “date”, “basename”, and “more”, which are usually part of the
standard Linux distribution

2.2 Obtaining the source code

The ESMValTool will be made available at http://www.pa.op.dlr.de/ESMValTool via a tar-file with a doi
assigned. The ESMValTool will be released under the Apache License, version 2.0 and citation of the
ESMValTool paper Eyring et al. (2015), Geosci. Model Dev. Discuss. is kindly requested upon use. In
addition, ESMValTool will be further developed in a version controlled repository (see section 12.1) that is
accessible only to the development team. The wider climate community is encouraged to contribute to this
effort and to join the ESMValTool development team for contribution of additional more in-depth diagnostics
for ESM evaluation. A wiki page (see section 12.3) that describes ongoing developments is also available.
Interested users and developers are welcome to contact the core development team (see section 9).

2.3 Software installation

The tar-ball can be unpacked with the standard tar command, e.g.,

tar —xvf ESMValTool v1.0.tar

3 ESMValTool namelists

The ESMValTool namelists are the “control centers” acting as interfaces between the user and the various
scripts and configuration files that make up the ESMValTool. A namelist specifies a list of diagnostics to run,
global flags and a list of models and observations that are used within the diagnostics. Namelists are text files
written in XML (EXtensible Markup Language) [XML]. As a simple text file, the XML-namelist can be easily
modified by the user.

For any given namelist “namelist.xml’’, the ESMValTool is invoked from the command line via:
python main.py nml/namelist.xml

The Python “workflow manager” main.py will parse the namelist (namelist.xml) and call all diagnostic scripts
listed in the namelist. This sequence is schematically depicted in Figure 2 and involves the following steps:
parse the namelist

identify the input files on the file system

run an NCL script to check and reformat the input files

if needed, run a NCL script to compute derived variables such as, for instance, climate indices

run the diagnostic script (NCL/Python/R/etc.)

© o~ w D

repeat previous steps until all diagnostics listed in the namelist are processed

main.py namelist.xml

namelist.xml is parsed into the python dictionary project_info

[Loop over project_info [DIAGNOSTICS] (see Table S4)]

\ 4
Loop over standard variables]

e

[Loop over all models]

Identify model input files and run reformat scripts (see Table $10)

[Loop over derived variables (if any)]

\ 4
Use reformatted input files to compute derived variables (see section

7.4.3)

\ 4

Compute current diagnostic from intermediate input
files created in the above loops

Figure 2 ESMValTool control flow.

The script main.py processes the information in the XML namelist to be used by each of the supported
programming languages (currently NCL, Python and R) used for the diagnostic scripts. This means that
different diagnostics, even if implemented in different programming languages, can be called within the same
namelist. Any changes to the settings of the namelist will passed to each diagnostic script.

Note that the coupling between the namelist and the diagnostic scripts is “loose”. The Python workflow
manager main.py passes all information in the namelist to the target diagnostic script, e.g., via intermediate
files or environment variables, but it is up to the diagnostic script to act on that information.

Basic structure of a namelist

<GLOBAL>

controls the general settings (see Table S1) ; see section 3.1, “More on the <GLOBALS>-tag”
below for details

</GLOBAL>

<MODELS>

defines the models/observations and years to be processed and their pathnames; see the section
3.2, “More on the <MODELS>-tag” below for details

</MODELS>

<DIAGNOSTIC>

defines which diagnostics are run (see Table S4); each diagnostic is enclosed in an opening <diag>
and closing </diag>-tag; see the section 3.3, “More on the <DIAGNOSTICS>-tag” below for details

</DIAGNOSTIC>

Please note that the “loose coupling” described above applies particularly to the settings defined in the two
elements <GLOBAL> and <DIAGNOSTIC>.

3.1 More on the <GLOBAL>-tag

Table S1 summarizes the tags defined in the <GLOBAL> section of the namelist. Some of these tags (e.g.,
regridding_dir) are specific to some diagnostics and not generally defined in all namelists.

Table S1 Tags of the <GLOBAL> section of the namelist. Note that not all tags might be used by a diagnostic.

Name Type Description

write_plots boolean Produce plots

write_netcdf boolean Write results to netCDF file

force_processing boolean Force certain intermediate files (netCDF) to be recreated instead of using cached files
wrk_dir string Output path for data (netCDF, acknowledgements)

plot_dir string Output path for plots

climo_dir string Path for intermediate files (netCDF)

show_debuginfo string Generate a second version of each figure with explanatory text overlayed
regridding_dir string Path for intermediate files used for NCL regridding routines

max_data_filesize integer Limits internal memory handling in some core NCL scripts

verbosity integer Verbosity level (0 = minimum output, 4=maximum output)

exit_on_warning boolean Stop on warnings

output_file_type string File format of plots (ps, pdf, eps, png); not all formats supported by all diagnostic scripts

3.2 More on the <MODELS>-tag

Each data set is specified by a <model> line with the first entry of each model line being the “project
specifier” (see Table S2). The project specifier refers to a Python class that is used to parse the model line. For
example, a model line with the “CMIP5” specifier looks like:

<model> CMIP5 name mip experiment ensemble start-year end-year path </model>
The project specifier “CMIP5” will search for files in “path” with filenames matching the pattern

_mip_name_experiment_ensemble_
10

Here, the initial asterisk is a placeholder for the variable, which is defined in the <DIAGNOSTICS>-tag (see
below), question marks are placeholders for the start/end months of the data set. This naming convention
conforms to the syntax used for CMIP5 DRS filenames (as implied by the project specifier name). By
implementing their own project specifier classes into the Python code (interface_scripts/projects.py), the user
can handle data sets that follow different file naming conventions or require additional information to be
passed along in addition to the filename. Table S2 gives a summary of the available project specifiers and
arguments to be used in each <model> line.

The <model>-tag may also take the optional attribute “id”:
<model id=""string”’>

The attribute id specifies a string that can be used to refer to the model in other places of the namelist. Table
S3 gives a summary of valid attributes in <model>-tags.

Table S2 Project specifiers and corresponding arguments.

project specifier ~ argument argument argument argument argument argument argument argume

1 2 3 4 5 6 7 nt8
anadmips name table experime ensemble realm start year end year path
nt
CCMVal name case ensemble startyear endyear path - -
CCMVall name name ensemble startyear endyear path - -
CCMVal2 name case ensemble startyear endyear path - -
name
case
name
CMIP5 name table experime ensemble startyear endyear Path -
CMIP5_ETHZ name table nt ensemble startyear end year path -
CMIPS5_gridfile name table experime ensemble startyear endyear path gridfile
CMIP5_SMHI name table nt ensemble startyear endyear frequency path
experime
nt
experime
nt
ECEARTH name experime ensemble startyear end year path - -
nt
EMAC name ensemble startyear endyear path - - -
MiKlip name table experime ensemble realm startyear end year path
MiKlip_baseline0 name table nt ensemble realm startyear end year path
experime
nt
OBS name case ensemble startyear endyear Path - -
name
OBS_gridfile name case ensemble startyear end year path gridfile -
name
(insitu,
sat,
ground,
reanaly)
obs4mips name process ensemble startyear endyear path - -
level

Table S3 Optional attributes of the <model> tag.

Name Type Description
id string Define a name used to refer to the model data in other parts of the namelist

11

3.3 More on the <DIAGNOSTICS>-tag

Each <diag> entry refers to one or several scripts in the folder diag_scripts/, complemented by a variable
name (see Table S7 for a list of variables; please note that the list of variables is constantly extended and
check the ESMValTool wiki page (see section 12.3) for the most recent list) and the corresponding (input)
field type (see Table S6). Optionally the <diag>-tag may contain additional <model>-tags; these data sets will
be processed only by the diagnostic(s) listed in the current <diag> entry. In this way it is possible to define a
set of models to be analyzed by all diagnostics in the namelist (in the <MODELS> section) and a set of
models to be analyzed only by specific diagnostics (in the <diag> section). Available <diag>-tags are listed in
Table S4, their optional attributes in Table S5.

Table S4 Tags of the <diag> section within the <DIAGNOSTICS> section of the namelist. There are no default values.

Name Type Description

description string 1-line description / title of the diagnostic

variable_def_dir string Path for the variable-specific configuration file (usually variable_defs)

variable string Variable name: a script with the same name (variable_defs/<variable>.ncl) defines the

variable to process (see Table S7 for a list of variables) including possible preprocessing
(e.g., calculating derived variables). Variable scripts should be located in the local folder
variable_defs and written in NCL. Even though the variable scripts are written in NCL all
meta data defined in the scripts are passed on to the target diagnostic script regardless of
the used language (via variable attributes). If multiple variables need to be passed on to a
diagnostic script, multiple <variable>-tags have to be defined.

field_type string Type of input field (see Table S6) that can be used by the diagnostic scripts. If multiple
<variable>-tags are defined a single (which is then applied to all) or an equal number of
<field type>-tags has to be defined.

diag_script_cfg_dir string Path for diagnostic script configuration file

diag_script string Name of diagnostic script; the script can be written in any language currently supported by
ESMValTool (NCL, R and Python) and has to be located in the local folder diag_scripts. The
settings defined in the diagnostic script configuration file defined by the diag_script cfg
attribute is loaded at the beginning of the diagnostic script.

model (optional) string Additional data sets specific for this <diag>-section. Data sets defined here will be
processed in addition to the ones defined in the MODELS section (see above) but will be
ignored by other <diag>-sections.

Table S5 Optional attributes of selected tags in the <diag> section.

Name Type Parent tag Description

ref_model string <variable> Defines this data set as the reference data set within the diagnostic. The string
ref_model refers to either the model name, as specified in Table S2, or the model
attribute id as specified in Table S3. Note that because both model and
observational data sets are specified via the <model>-tag any of them can be
used as a reference data set.

exclude string <variable> When using more than one variable corresponding to different observational
data sets (e.g., precipitation and skin temperature), it is necessary to use this
attribute to match which variable goes with which data set, e.g., pr with TRMM
and ts with HadISST using,

<variable ref_model="trmm* exclude="hadisst“> pr ...

<variable ref_model="hadisst” exclude="“trmm“> ts ...
cfg string <diag_script> Configuration file for the diagnostic script

Table S6 Field types.

Name Description

T2Ms Monthly-mean 2d atmosphere or land surface data (longitude, latitude, time:month)

T3M Monthly-mean 3d atmosphere data (longitude, latitude, pressure, time:month)

T2Mz Monthly-mean zonal mean 2d atmosphere or land surface data (longitude, pressure, time:month)

12

T1Ms
T2Ds
T3D
T2Dz
T2lIs
T3l
T2Iz
Tz
TOI
TOAs
F2Ms
TO2Ms
TO3M

Monthly-mean 1d atmosphere or land surface data on a certain pressure level (latitude, time:month)
Daily-mean 2d atmosphere data (longitude, latitude, time:day)

Daily-mean 3d atmosphere data (longitude, latitude, pressure, time:day)

Daily-mean zonal mean 2d atmosphere data (latitude, pressure, time:month)

Daily instantaneous 2d atmosphere data for all years (longitude, latitude, time:day)
Daily-instantaneous 3d atmosphere data for selected years (longitude, latitude, model level, time:day)
Daily instantaneous zonal mean 2d atmosphere data for all years (latitude, pressure, time:day)

Daily instantaneous 1d field for all years (latitude-pressure, time:day)

Daily instantaneous 0d field for all years (time:day)

Annual-mean 0d atmosphere or land surface data on a certain pressure level (latitude, time:year)
Constant 2d land surface data (latitude, longitude)

Monthly-mean 2d ocean or sea ice data (longitude, latitude, time:month)

Monthly-mean 3d ocean or sea ice data (longitude, latitude, model level, time:month)

Table S7 Variable definition scripts.

Script name

clivi.ncl
cl.ncl
clt.ncl
clwvi.ncl
concbc.ncl

concbcSTP.ncl
conccnmode.ncl

Description

Vertically integrated cloud ice

Cloud area fraction (3d)

Total cloud fraction

Vertically integrated total cloud water (ice + liquid)

conccnSTPd120.ncl
concenSTPd14.ncl
conccnSTPd3.ncl

conccnSTPd5.ncl
concnh4.ncl
concno3.ncl

concoa.ncl

concpm10.ncl
concpm2p5.ncl

concso4.ncl

diamcnmode.ncl

et.ncl
evspsbl.ncl
hfds.ncl
hfls.ncl
hus.ncl
LW_CRE.ncl
lwp.ncl
mlotst.ncl
mmraer.ncl

mmrbcfree.ncl

mmrbc.ncl
mrso.ncl
MyVar.ncl

od550aer.ncl
pr-mmday.ncl

pr.ncl
psl.ncl
rlutcs.ncl
rlut.ncl
rsds.ncl
rsutcs.ncl
rsut.ncl
sic.ncl
sit.ncl
so.ncl
sos.ncl

Evapotranspiration

Evaporation

Downward heat flux at sea surface

Surface upward latent heat flux (includes both evaporation and sublimation)
Specific humidity

Longwave cloud radiative forcing

Vertically integrated cloud water (liquid only)

Ocean mixed layer thickness

Precipitation (total) in mm per day
Precipitation (total)

Surface pressure

TOA outgoing clear-sky longwave radiation
TOA outgoing all-sky longwave radiation

TOA outgoing clear-sky shortwave radiation
TOA outgoing all-sky shortwave radiation
Sea ice area fraction

Sea ice thickness

Sea water salinity

Sea surface salinity

stratospheric_column.ncl

SW_CRE.ncl
ta.ncl

Shortwave cloud radiative forcing
Air temperature

13

tas.ncl Near-surface air temperature

tauu.ncl Surface eastward wind stress
tauv.ncl Surface northward wind stress
tauw.ncl Surface wind stress

to.ncl Sea water temperature

tos.ncl Sea surface temperature
total_column.ncl

toz.ncl

tropospheric_column.ncl

tropoz.ncl

ts.ncl Skin temperature
ua-200-850.ncl Wind u-component at 200 hPa and at 850 hPa (monsoon diagnostics)
ua-200.ncl Wind u-component at 200 hPa
ua-850.ncl Wind u-component at 850 hPa
ua.ncl Wind u-component

uo.ncl Sea water x velocity
va-200-850.ncl Wind v-component at 200 hPa and at 850 hPa (monsoon diagnostics)
va-200.ncl Wind v-component at 200 hPa
va-850.ncl Wind v-component at 850 hPa
va.ncl Wind v-component
vmrc2h4.ncl

vmrc2h6.ncl

vmrc3h6.ncl

vmrc3h8.ncl

vmrch3coch3.ncl
vmrco_alt.ncl
vmrco_azr.ncl
vmrco_chr.ncl
vmrco_eic.ncl
vmrco_gmi.ncl
vmrco_hpb.ncl
vmrco_lef.ncl
vmrco_mlo.ncl
vmrco.ncl
vmrco_nwr.ncl
vmrh2o.ncl
vmrnox.ncl
vmro3.ncl
vmro3_NE.ncl
vmro3_NHext.ncl
vmro3_NT.ncl
vmro3_SE.ncl
vmro3_SHext.ncl
vmro3_ST.ncl
vmro3_Trop.ncl

vo.ncl Sea water y velocity
wfpe-mmday Water flux from precipitation and evaporation
zg.ncl Geopotential height

Typically, all namelists are stored in the folder nml, the naming convention is namelist_xxx.xml with “xxx”
being the name of the diagnostic and/or a description of the purpose of the namelist:
o [For papers
XXX = SurnameY earJournalabbreviation (e.g., stocker12jgr, stockerl2scil, stocker12sci2).
e For copies of reports that are not publicly available
xxx = OrgYearTitleabbrev (e.g., uneplOwater, unepllgap, roysoc09geoengineering).

e For grouped sets of diagnostics and performance metrics that do not follow a published paper
or report

14

XXX = an intuitive name describing the scientific topic (e.g., aerosol, MyDiag, SAMonsoon, Sealce)

3.4 Standard header for the namelist

For the sake of documentation, standard headers are defined and applied to all namelists and scripts in the
ESMValTool. This is a template of the standard header for the main namelist. The parts in red are the ones to
be modified by the author.

<namelist_summary>
namelist_name.xml

Description
A one-sentence description of the namelist content and purpose.

Author(s)
Name Surname (Affiliation, Country - e-mail@address)

Contributor(s)
Name Surname (Affiliation, Country - e-mail@address)

Reference(s)
Reference to the paper(s) considered by this namelist (if available).
Author, N. et al., Journ. Abbrev., NN, P1-P2, doi: (YEAR)

This namelist is part of the ESMValTool.
ESMValTool project PI: Veronika Eyring (DLR, Germany - veronika.eyring@dlr.de)
</namelist_summary>

3.5 Example namelist

<namelist>

<namelist_summary>

namelist_clouds.xml

#

Description

Diagnostics of clouds and hydrological cycle.

#

Author(s)

Axel Lauer (DLR, Germany - axel.lauer@dlIr.de)
#

Contributor(s)

#

Reference(s)

#

This namelist is part of the ESMValTool.

ESMValTool project Pl: Veronika Eyring (DLR, Germany - veronika.eyring@dlr.de)
</namelist_summary>

<GLOBAL>
<write_plots type="boolean"> True </write_plots>
<write_netcdf type="boolean"> True </write_netcdf>
<force_processing type="boolean"> False </force_processing>
<wrk_dir type="path"> work/ </wrk_dir>
<plot_dir type="path"> work/plots/ </plot_dir>
<climo_dir type="path"> work/climo/ </climo_dir>
<max_data_filesize type="integer"> 100 </max_data_filesize>

15

<verbosity type="integer"> 1 </verbosity>

<exit_on_warning type="boolean"> False </exit_on_warning>
<output_file_type> ps </output_file_type>
</GLOBAL>
<MODELS>

<model> CMIP5_ETHZ CESM1-CAM5 Amon historical rlilpl 2000 2004
/export/pa_data02/ESMVal/model/ETHZ_CMIP5/ </model>

<model> CMIP5_ETHZ GFDL-ESM2G Amon historical rlilpl 2000 2004
/export/pa_data02/ESMVal/model/ETHZ_CMIP5/ </model>

<model> CMIP5_ETHZ MIROC5 Amon historical rlilpl 2000 2004
/export/pa_data02/ESMVal/model/ETHZ_CMIP5/ </model>

<model> CMIP5_ETHZ MPI-ESM-MR Amon historical rlilpl 2000 2004
/export/pa_data02/ESMVal/model/ETHZ_CMIP5/ </model>

<model> CMIP5_ETHZ NorESM1-M Amon historical rlilpl 2000 2004
/export/pa_data02/ESMVal/model/ETHZ_CMIP5/ </model>
</MODELS>

<l—
This is an example of a comment in XML
->

<!l-- Please do not change anything below this line,
unless you want to modify the standard diagnostic settings. -->

<DIAGNOSTICS>
<diag>
<description> Cloud diagnostics</description>
<variable_def_dir> ./variable_defs/ </variable_def_dir>
<variable> Iwp </variable>
<field_type> T2Ms </field_type>

<diag_script_cfg_dir> ./nml/cfg_clouds/ </diag_script_cfg_dir>
<model> OBS UWisc sat v2 1988 2007 /export/pa_data02/ESMVal/obs/UWisc </model>
<diag_script cfg="cfg_clouds.ncl"> clouds.ncl </diag_script>
</diag>
</DIAGNOSTICS>

</namelist>

4 Directory structure of the ESMValTool

An overview of the directory structure used in the ESMValTool is given in Table S9. This section summarizes
the underlying principles of the structure.

e Common namelist settings (e.g., models, year ranges, diagnostics) are usually stored in one place.

e Less common settings may be hidden deeper in the directory structure (see also section 5).

o Diagnostic scripts that can be used by namelist entries are also stored in one place and it generally
possible to combine them in a modular way (e.qg., using the output of one routine as input for another).

o Reuse of code is strongly encouraged, i.e., one place for each functionality (modularity on the
technical level).

e The goal is to centralize functionality in individual functions/procedures whenever there is the
possibility of reusability. New developers are encouraged to consider building on or extending
existing routines before introducing new ones.

16

e Routines are sorted into folders according to their functionality. Whenever possible, the hierarchy
level of routines is reflected by their position in the directory structure.

5 Configuration files
5.1 nml/cfg_diag/cfg_diag*.typ

Diagnostic-specific settings can be passed via the configuration files. These are collected in the nml directory
under subdirectories named like the corresponding diagnostic (e.g., cfg_aerosol/, cfg_perfmetrics/). The suffix
“.typ” specifies the language the routine is written in.

There might be more than one configuration script per diagnostic set. All cfg_* files for a diagnostic set need
to be in the same folder specified by the <diag_script_cfg_dir> entry of the namelist (nml/namelist_*.xml).

The configuration settings are specified as attributes of the variable “diag_script_info” (in NCL via
“diag_script_info@attribute = ...” see example below). In order to activate these attributes, “diag_script_info”
must be set to “True”.

Example (NCL)
diag_script_info = True

diag_script_info@projection = "CylindricalEquidistant" ; map projection, e.g., Mollweide, Mercator
diag_script_info@styleset = "CMIP5" ; "CMIP5", "DEFAULT"

diag_script_info@colormap = "WhiteBlueGreenYellowRed" ; e.g., WhiteBlueGreenYellowRed, rainbow
diag_script_info@ncdf = "default" ; enable to output to netCDF; either use "default" or give a full file name

Example (Python)

class diag_script:
def __init__(self):
self.info = True
self.color=1
self.factor = 2.0e-3
self.name = “example”

diag_script_info = diag_script()

Example (R)
diag_script_info<-new()
diag_script_info[["begin_ref_year"]]<-1970
diag_script_info[["end_ref_year"]]<-2000

diag_script_info[["timescale"]]<-3
diag_script_info[["seasons"]]<-c("ann", "djf", "mam", "jja", "

6 Running the ESMValTool

The following section gives a brief description of the steps required by a user to run an existing diagnostic. As
an example, the toy diagnostic MyDiag is chosen to illustrate the basic steps:

son"

1. Check/edit the main namelist nml/namelist_ MyDiag.xml:

17

a. If needed, set the pathnames in the <GLOBAL> section for the “work” directory (wrk_dir),
the directory for the plots (plot_dir) and the directory for reformatted files (climo_dir). See
section 3.1 for details and Table S1 for a complete list of variables in the <GLOBAL>
section.

b. In the <MODELS> section, define the model(s) to be used, including the root path for the
actual model data, e.g., CMIP5_ETHZ MPI-ESM-LR Amon historical rlilpl 2000 2004
lexport/pa_data02/ESMVal/model/ETHZ_CMIP5/. See section 3.2, Table S2 and Table S3 for
details. The first year (here: 2000) and last year (here: 2004) or the model data processed for
each model is specified in this section.

c. Optionally, change variable and the field type in the <DIAGNOSTICS> section. See section
3.3, Table S4 and Table S5 for details. An overview of the available “field types” is given in
Table S6, Table S7 lists the available variables. Please note that the diagnostic section may
include additional models and/or observational data.

2. Check/edit the configuration file nml/cfg_MyDiag/cfg_MyDiag.ncl. In case of the toy diagnostics
MyDiag, you can for example change to map projection for the contour plot, by changing the value of
the attribute diag_script_info@projection.

3. Run the ESMValTool (in the ESMValTool root directory): python main.py nml/namelist_MyDiag.nml

4. The output will be written to a subdirectory named like the diagnostics package (e.g., MyDiag) in the
directories specified in the <GLOBAL> section of the namelist (step 1). The default directories are:
work/MyDiag for the NetCDF output and work/plots/MyDiag for the plot(s) (see also Figure 3).
Acknowledgements and references are written to the file work/refs-acknows_MyDiag.txt.

200 hPa
MPI-ESM-LR air temparatura in K

205 206 207 208 209 210 211 212 213 214 215 16 AT 218 218

Figure 3 Example plot created by the toy diagnostic MyDiag showing the 5-year annual mean temperature at 200 hPa
from the CMIP5 historical run (rlilpl) of the MPI-ESM-LR model.

18

6.1 The acknowledgements log file

Each diagnostics in the tool automatically generates a log file containing a list of authors/contributors, details
on the projects to be acknowledged and the reference papers to be cited. It also provides a list of the used
model and observational data with the corresponding reference.

The log is created automatically when running the ESMValTool. The log file is named refs-
acknow_<diagnostics>.txt and written to the directory defined in the <GLOBAL> section of the namelist
(variable wrk_dir), e.g., work/refs-acknows_MyDiag.txt (see also section 6, step 4).

An example of an acknowledgements log file is provided below.

Example

+++++++++++++ ESMValTool REFERENCES and ACKNOWLEDGEMENTS LOG +++++++++++++

Namelist file: nml/namelist_perfmetrics_CMIP5.xml
Creation date: Mi 25. Feb 09:25:13 CET 2015

Please acknowledge the use of the ESMValTool.
Please cite Righi et al., Geosci. Model Dev., 8, 733-768 d0i:10.5194/gmd-8-733-2015, 2015.
For the specific diagnostics, see below.

=== perfmetrics_main.ncl ===
Variable: ta

Model: ERA-Interim
Input path: /export/pa_data02/ESMVal/obs/ERA-Interim/
Input file(s):
(1) OBS_ERA-Interim_reanaly_1_T3M_ta.nc
Fixes applied to input file(s): none

Model: MPI-ESM-LR
Input path: /export/pa_data02/ESMVal/model/ETHZ_CMIP5/historical/Amon/ta/MPI-ESM-LR/r1ilp1/
Input file(s):
(1) ta_Amon_MPI-ESM-LR_historical_r1ilp1_199001-199912.nc
(2) ta_Amon_MPI-ESM-LR_historical_rlilp1l_200001-200512.nc
Fixes applied to input file(s): none

AUTHOR(S):
Frank, Franziska (DLR, Germany - franziska.frank 'at' dir.de)

CONTRIBUTOR(S):
Righi, Mattia (DLR, Germany - mattia.righi 'at' dir.de)
Eyring, Veronika (DLR, Germany - veronika.eyring 'at' dir.de)
Klinger, Carolin (DLR, Germany - carolin.klinger 'at' physik.uni-muenchen.de)
Gottschaldt, Klaus-Dirk (DLR, Germany - klaus-dirk.gottschaldt 'at' dir.de)

REFERENCE(S) FOR THIS DIAGNOSTIC:

Please cite Righi et al., Geosci. Model Dev., submitted, 2014.
Please cite Gleckler et al., J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972, 2008.

19

REFERENCE(S) FOR THE OBSERVATIONS:
NCEP - Kalnay et al., Bull. Amer. Meteor. Soc., 77, 437-470, 1996.
ERA-Interim
AIRS
CERES-EBAF
SRB

ACKNOWLEDGEMENTS FOR THE PROJECTS:
EU FP7 project EMBRACE
DLR project ESMVal

6.2 Model and observational data

When possible, observations from the obs4MIPs/anadMIPs archives are used in the model evaluation. These
data are freely available from the ESGF in the same format as the CMIP simulations and can be directly used
in the ESMValTool using the obs4mips or ana4dmips class in the namelist.

A collection of all observational data used by the diagnostics of the ESMValTool (trunk) is hosted at DLR and
can be made available (restrictions by the data owner permitting) on request (see Table S8). The reformatted
observational data can be read using the OBS class in the namelist.

All observations are tiered as follows:

e Tier 1: data sets from the obs4MIPs and ana4MIPs archives
e Tier 2: other freely available data sets
e Tier 3: restricted data sets (e.g., license agreement required)

Observational data sets not available in these archives need to be reformatted according to the CF/CMOR
standard before they can be used (see section 8.2 for more details).

20

Part Il: Developer’s Guide

7 Writing a diagnostic script or a metrics set

The development of a new diagnostic (or set of diagnostics) requires the following steps before getting started:

Creating a development branch in the applicable project subdirectory of the subversion repository (via
svn, see section 12.1). Developers are encouraged to work actively through the subversion repository.
Regular “commits” to the repository help to document changes introduced to the ESMValTool and
allow for efficient sharing of code with other developers.

Setting up a wiki documentation page for the new diagnostic/performance metrics following the
template on the ESMValTool wiki (see section 12.3).

Creating a standard namelist following the template on the ESMValTool wiki (see also section 3.4).

If needed, opening an issue on the Mantis bug tracker (see section 12.2).

General coding rules and conventions:

Regular updates of the development branch (svn merge, see also section 12) are strongly
recommended in order to keep it synchronized with the trunk.

Modularizing all diagnostic scripts as much as possible, using the general-purpose code in lib/ and
separating the diagnostic calculations from the plotting routines.

Before creating new functions or procedures, it should be considered to use or extend the existing
routines within lib/. Each header (see section 7.1) provides an overview of the already implemented
functions and procedures.

Functions and procedures specific to a given diagnostic shall go in the subdirectory
diag_scripts/aux/<diagnostic> (see Table S9).

Main namelist, diag_scripts, functions and procedures shall be documented within the respective file
using the templates provided on the ESMValTool wiki (see also sections 3.4, 7.1 and 12.3).

Each diag_script shall contain a call to the function write_reference (see section 0) in order to
generate a respective acknowledgements log file (section 7.7).

The reintegration of the development branch into the trunk can only be done by the core development team
(see section 9) who shall be contacted as soon as the branch is ready for integration into the trunk. Before
contacting the core development team the following items should be checked:

The new branch runs works with different configuration options.

If the lib/ routines have been modified, all the diagnostics using these routines have to be tested (see
automated testing, section 7.9).

The new code complies with the coding rules and standards (see section 7.5) and follows the
ESMValTool directory structure (see Table S9).

All authors, contributors and data are properly acknowledged and referenced in the
acknowledgements log file (see section 7.7).

If the new observational data are used, the scripts to “cmorize” these data shall also be made available
and placed as reformat_obs_<name> into the folder reformat_scripts/obs/. Once the branch has been
merged to the trunk, it shall be moved to the branches/legacy/ subfolder.

7.1 Standard template

21

All (diagnostic) scripts and namelists in the ESMValTool are documented following the standards defined by
templates (see section 3.4 for the namelist template). The following describes the standard header for
diagnostics scripts. The parts in red are the ones to be modified by the author.

e The modification history is in reverse chronological order (i.e., most recent on top) and the last entry
always contains the “written” statement (optionally with a statement such as “based on” if derived
from existing code).

e The author of each entry in the modification history is indicated with the author id as given in the
author list in the master reference file (doc/MASTER_authors-refs-acknow.txt, e.g., A_surn_na =
surname, name).

e All lines should be limited to a maximum of 79 characters (see section 7.5). Exceptions can be made
to improve the readability of the code.

s
;; TITLE OF THE DIAGNOSTIC

;; Author: Name Surname (Affiliation, Country)

;; PROJECT-NAME project

s]
;; Description

;; A short description of the diagnostic

;; Additional description of the diagnostic

;; Add more bullets if required

;; Required diag_script_info attributes (diagnostics specific)

;; attl: short description

5 keep the indentation if more lines are needed

;; att2:short description

;; Optional diag_script_info attributes (diagnostic specific)

;; attl: short description

;; att2: short description

;; Required variable_info attributes (variable specific)

;; attl: short description

;; att2:short description

;; Optional variable_info attributes (variable specific)

;; attl: short description

;; att2: short description

;; Caveats

;; List possible caveats or limitations of this diagnostic

;; Features to-be-implemented shall also be mentioned here
;; Modification history

;7 YYYYMMDD-A_X4Y4: extended...

5 YYYYMMDD-A_X3Y3: bug-fixed...

;; YYYYMMDD-A_X2Y2: adapted to...

;i YYYYMMDD-A-X1Y1: written.

;; HEHHHHHHHHHHHH R

load ...
load ...

begin
22

end

7.2 Library functions

The folder diag_scripts/lib/ contains general purpose routines used by several diagnostic scripts, these library
routines are grouped in subfolders by language, i.e.,

diag_scripts/lib/ncl
diag_scripts/lib/python
diag_scripts/lib/R
Library routines are grouped into individual files by topic, some examples for the NCL library routines are:
o diag_scripts/lib/ncl/latlon.ncl: routines to compute grid cell areas, weighted area averages, etc...
e diag_scripts/lib/ncl/regridding.ncl: routines interfacing the ESMF regridding functions in NCL
o diag_scripts/lib/ncl/statistics.ncl: statistical routines not (yet) implemented in NCL

o diag_scripts/lib/ncl/style.ncl: centralized control of NCL plot styles, e.g., defines line
colors/dashes/thickness for each model name in CMIP5, based on the style files in
diag_scripts/lib/ncl/styles/.

For further details on the library functions, see the project wiki or the documentation given in the header of the
functions themselves (see section 7.1 for a template).

7.3 Plotting functions

The folder plot_scripts/ contains general purpose routines used for plotting by the diagnostic scripts. The
plotting functions should facilitate the separation of computing the diagnostic and displaying the result. To
this end they should handle both the case when called directly from the diagnostic script (with data to
visualize as an argument), and the case when the computed diagnostic is passed along as a netCDF file. These
plotting routines are grouped in subfolders by language,

e plot_scripts/ncl
e plot_scripts/python
e plot_scripts/R
Each subfolder further groups the plotting routines into files by topic, e.g., for the NCL library routines:

e plot_scripts/ncl/contour_maps.ncl: interfaces NCL plotting routines for contour map plots, contour
polar maps and adding markers to contour maps

e plot_scripts/nc/scatterplot.ncl: interfaces NCL plotting routines for of scatter plots

23

For further details on the plotting functions, see the project wiki or the inline documentation in the functions
themselves.

7.4 Adding new variables

Adding new variables requires changes to reformat_scripts/recognized_vars.dat (section 7.4.1) and possibly
also to reformat_scripts/recognized units.dat (section 7.4.2). In addition, a new definition file
variable_defs/<varname>.ncl is needed (section 7.4.3; see Table S7 for a list of currently available variable
definition scripts). If the variable is a non-derived variable (explained in section 7.4.3) it also needs to be
defined in a file named reformat_scripts/cmor/CMOR_<variable>.dat (see section 7.4.4)

7.4.1 reformat_scripts/recognized_vars.dat
New variables have to be added to reformat_scripts/recognized_vars.dat. Two lines are added per variable:
e std_name = varname
standard CMOR variable name

e alt_name = alternative name 1, alternative name 2, ...
comma separated list of alternative variable names

Example (surface pressure)
e std_name = ps
e alt_name = aps,PS,psurf

The ESMValTool reformat scripts will look for variable “varname” in the input files. If not found, the
alternative variable names “alternative name 1”, “alternative name 2”, etc. are tried before an error message is
issued that the variable could not be found.

7.4.2 reformat_scripts/recognized_units.dat

The file reformat_scripts/recognized_units.dat contains a list of known units. If needed, the unit of the newly
added variable can be added. There are two lines per unit:

e std_name = unit
standard CMOR unit

e alt_name = alternative unit
comma separated list of possible alternative units and corresponding conversion factor, defined as
units[cmor] = units[alternative] * factor

Example (dobson units)

e std unit=DU
e alt_unit=gm-2, 4.6707e-5, kg m-2, mol m-2, 2.2414e-3

7.4.3 variable_defs/varname.ncl

The file variable_defs/<varname>.ncl is a NCL script containing the declaration of the variable “varname”
including its specific attributes. In case of derived variables, a function “calculate” calculating the derived
variable must be defined in the script <varname=>.ncl (see Table S7 for a list of currently available variable
definition scripts).

Remarks

24

1. For derived variables, a statement specifying the (standard, non-derived) variables required to
calculate the derived variable is needed. In the example given below, this statement in the beginning
of the NCL script looks like

; Requires: rsut:T2*s,rsutcs: T2*s

In this example, the two standard variables “rsut” and “rsutcs” are needed to calculate the
shortwave cloud forcing.

2. Variable attributes are specified as attributes of the variable “variable_info” (see examples
below). In order to activate the variable attributes, “variable_info” must be set to “True”.
Some examples for frequently used attributes are:

o variable_info@derived = False (True)
e variable_info@long_name = “...”

e variable_info@units = “...”

o variable_info@standard_name = “...”
o variable_info@short_name =" ...”

Example (precipitation, standard variable)

; Requires: none
variable_info = True
variable_info@derived = False

Example (shortwave cloud forcing, derived variable)

; Requires: rsut:T2*s,rsutcs:T2*s

[...]

variable_info = True

variable_info@derived = True

variable_info@long_name = "CS Shortwave cloud radiation effect"
variable_info@units = "W m-2"

undef("calculate")

function calculate(index [1] : integer, variable [1] : string, field_type [1] : string)
5 return_val [1] : logical

;; Arguments:

;; index - index to current infile defined in the 'interface_data/ncl.interface'-file
;; variable - Current variable as string

;; field_type - string with field type classification

;; Return value:

;; data_new — logical

local tmp, tmp1, tmp2, duml, dum2, dum, i, verbosity
begin

data_new =True

tmpl = read_data(index, "rsut", "T2Ms")

tmp2 =read_data(index, "rsutcs", "T2Ms")

duml = extract_data(index, tmp1, -1, 0, 0)

dum?2 = extract_data(index, tmp2, -1, 0, 0)

dum = duml
dum = dum2 - duml
dum@Ilong_name = variable_info@long_name

25

dum@units = variable_info@units
add_data_var(index, data_new, dum, variable)

return(data_new)
end

7.4.4 reformat_scripts/cmor/CMOR_variable.dat

Each standard variable (non-derived) also needs a configuration file indicating the expected units of the
variable. The expected units are read from the file reformat_scripts/cmor/CMOR_variable.dat which follows
the definitions in the official CMOR tables for CMIP5. If this file is missing for a specific variable, it can be
downloaded from http://pcmdi.github.io/cmor-site/tables.html. If a CMOR table for the new variable is not
available, the user can create a new one based on the existing tables (e.g., following the example in
reformat_scripts/cmor/CMOR_mmrbcfree.dat based on reformat_scripts/cmor/CMOR_mmrbc.dat).

Example, reformat_scripts/cmor/CMOR_pr.dat

SOURCE: CMIP5

modeling_realm: atmos
I

I Variable attributes:
[

standard_name: precipitation_flux

units: kg m-2 s-1

cell_methods: time: mean

cell_measures: area: areacella

long_name: Precipitation

comment: at surface; includes both liquid and solid phases from all types of clouds (both large-scale and

convective)
I

I Additional variable information:
|

dimensions: longitude latitude time
out_name: pr

type: real

valid_min: 0

valid_max: 0.001254
ok_min_mean_abs: 2.156e-05

ok_max_mean_abs: 3.215e-05
|

7.5 Coding rules and standards

The purpose of the code conventions used in ESMValTool is to ensure a high degree of consistency in the
code layout. Consistently structured code increases readability and understanding of the code making it easier
for developers and users work with a given piece of the code base. It is important to emphasize two points:

e Checking the code consistency should be done by software as this allows the check to be done
automatically.

e Code checkers are available at util/ncl-checker/pep8.py (NCL) and util/pep8-checker/pep8.py
(Python).

26

The code conventions are guidelines and should be treated as such. There are circumstances when it is
advisable, for various reasons such as improved readability, to ignore some of the guidelines.

Code conventions used for Python

Python code should conform to the PEP-8 style guide [PEP8 2001]. Recommended tools to check Python
code is the official PEP8-checker (util/pep8-checker/pep8.py) and PyFlakes. Further information on usage of
these tools can be found on the ESMValTool wiki pages.

Code conventions for NCL

NCL code in ESMValTool should follow the PEP-8 style guides. An NCL adapted version of the Python
PEP-8 checker is available in the ESMValTool repository (util/ncl-checker/pep8.py). See the ESMValTool
wiki for further details. Please note that the NCL checker may report some false-positive (e.g., the reading
symbol -> is not recognized as such).

Code conventions for R

The code conventions for R should conform to the formatting produced by the R parser tree. See the
ESMValTool wiki for further details.

7.6 Documentation of Software

In order to ensure that all code can be maintained, all diagnostic packages must be well documented. It is the
responsibility of the software developers to embed their documentation into the code and to provide a
summary of their diagnostics on the ESMValTool wiki (see also section 7.8). Documentation systems exist to
organize embedded documentation into well structured, linked documents.

e R: documentation should follow CRAN guidance.

e Python: the Sphinx package allows embedded documentation to be assembled into indexed web
pages (see section 7.8)

¢ NCL and namelists: a Sphinx extension has been developed to extract code documentation for NCL
and namelists (see section 7.8)

7.7 The acknowledgements log file

The acknowledgements log file automatically created by each diagnostic (see also section 6.1) is written by
the function write_references (interface_scripts/messaging.ncl, see below), which uses the tags defined in the
master reference/acknowledgements file (doc/MASTER_authors-refs-acknow.txt) as input. This master file
lists all authors and contributors (tags starting with A_), the diagnostic references (tags with D_), references
for observational data (tags E_) and projects (tags P_).

The function write_references

The function write_references (defined in interface_scripts/messaging.ncl) should be called at the end of each
diagnostic script in order to write the acknowledgements log file (section 7.7). The function has the arguments
“author(s)”, “contributors”, “diagnostics”, “observations”, “projects” which are arrays of strings. All strings
(“tags™) used must be defined in the master reference file doc/MASTER_authors-refs-acknow.txt. The tags are
then replaced by the function write_references with their definition when writing the acknowledgements log

file. All tags in the master reference file are sorted by category of which there are four in total:
27

e A xxx = authors, contributors (xxx = DLR user name)
e.g., A_eyri_ve = Veronika Eyring

o D_xxx = diagnostics
e.g., D_gleckler08jgr = Gleckler et al. (2008)

e E xxx = observational data
e.g., E_era40 = ERA40

e P_xxx = project
e.g., P_embrace = EU FP7 project EMBRACE

write_references(diag_script, \
"A_fran_fr", \
(/"A_righ_ma", "A_eyri_ve", "A_gott_kI"/), \
(/"D_righil5gmd", "D_gleckler08jgr"/), \
(/"E_kalnay96bams", "E_erainterim", "E_airs", "E_ceresebaf", "E_srb"/), \
(/"P_embrace", "P_esmval"/))

7.8 Documentation of source code

The Sphinx documentation generator (http://sphinx-doc.org) is used to organize and format ESMValTool
documentation, including text which has been extracted from source code. Sphinx can help to create
documentation in a variety of formats, including HTML, LaTeX (and hence printable PDF), manual pages and
plain text.

Sphinx may be obtained from http://sphinx-doc.org/install.html; an overview of its workings is available at
http://sphinx-doc.org/tutorial.html. In ESMValTool, Sphinx has been used to set up the files in doc/sphinx.
Running make <target> in that directory will cause the documentation to be built, and its output placed in the
build/<target> subdirectory. Here, <target> is the format required — for example, html, latexpdf, man or text
for the four example formats mentioned above. Running make by itself will generate a complete list of output
formats.

Sphinx was originally developed for documenting Python code, and one of its features is that it is able — using
the so-called autodoc extension — to extract documentation strings from Python source files and use them in
the documentation it generates. This feature apparently does not exist for NCL source files (such as those
which are used in ESMValTool), but it has been mimicked (or — more-or-less — reverse-engineered) here via
the Python script doc/sphinx/scripts/process_ncl_docs.py, which walks through a subset of the ESMValTool
NCL scripts, extracts function names, argument lists and descriptions (from the comments immediately
following the function definition), and assembles them in a subdirectory of doc/sphinx/source. These output
files are in the so-called reStructuredText format (see, e.g., http://docutils.sourceforge.net/rst.html), which is
the markup language used by Sphinx; running make in doc/sphinx builds the ESMValTool documentation
from them, as noted above.

7.9 Automated testing

Any changes to a programming code have the risk of introducing unwanted side effects on some other parts of
a code and introduce bugs. Routine and automated testing is therefore essential to maximize the code quality
and ensure integrity of all diagnostics implemented within ESMValTool.

28

7.9.1 Setup and general workflow
Automated testing within the ESMValTool is implemented on two complementary levels:

e unittests are used to verify that small code units (e.g. functions/subroutines) provide the expected
results

e integration testing is used to verify that a diagnostic integrates well into the ESMValTool framework
and that a diagnostic provides expected results. This is verified by comparison of the results against a
set of reference data generated during the implementation of the diagnostic.

Installation of the test environment

All scripts required to run the test environment are provided together with the ESMValTool code. Two
external python packages are required which can be installed using the python package manager (pip;
https://pypi.python.org/pypi/pip) as follows in a linux environment:

install nosetests (https://nose.readthedocs.org/en/latest/)
pip install nose

install easytest

pip install easytest

General functionality of testing framework

Each diagnostic is expected to produce a set of well-defined results. These are files in a variety of formats and
types (e.g. graphics, data files, ASCII files ...). While testing results of a diagnostic, a special namelist file is
executed by ESMValTool which runs a diagnostic on a limited set of test data only. A small test data set is
chosen to minimize executing time for testing while ensuring on the other hand that the diagnostic produces
the correct results. The following general tests are implemented at the moment for diagnostics with available
test data:

e Check for file availability: a check is performed that all required output data have been successfully
generated by the diagnostic. A missing file is always an indicator for a failure of the program.

e File checksum: While the previous test only checks if a file is available, the checksum verifies if the
content of a file is similar. Currently the MD5 checksum is used to verify that contents of a file are the
same. The MD5 checksum is a good proxy for the similarity of two files and is used regularly to
ensure integrity between files when transferring files between different computers.

e Graphics check: For graphic files an additional test is therefore implemented which verifies that two
graphical outputs are identical. This is in particular useful to verify that outputs of a diagnostic remain
the same after code changes.

Testing the ESMValTool diagnostics

Unittests are implemented for each diagnostic independently. Details on running unittests using nose is as
simple as going to the ESMValTool root directory and then execute the following shell command:

run nosetests
nosetests

This will search recursively for test files and execute these tests. A statistic on success and failures is provided
at the end of execution. More details on using nose can be found in the package’s documentation
(https://nose.readthedocs.org/en/latest/).

29

To run integration tests for each diagnostic, a small script needs to be written once. An example for a file
named esmvaltooltest. py is provided in section 7.9.2. To run all tests for diagnostics implemented in this
file the following command needs to be executed:

run integration tests
python esmvaltooltest.py

A summary of success and failures is provided as output.

7.9.2 Example test implementation for a diagnostic

In the following an example is given how to implement a test environment for a new diagnostic with just a
few lines of code.

File: esmvaltooltest.py

sample script for ESMValTool testing

from esmvaltool import ESMValToolTest

Define a new class for testing a particular diagnostic

class PerfMetricCMIP5Test(ESMValToolTest):
def _init_ (self):
1) define here the name of the test namelist
nml_name = 'namelist_perfmetrics_CMIP5_ test.xml'

2) specify here the full path of the namelist
(relative to ESMValTool root)
nml = ‘nml/test_suites/dlr/' + nml_name

3) define here the location of the reference data directory

note that it is expected that the directory has the same

name as the namelist

refdir = esmval_dir + os.sep + os.path.splitext(nml_name)[@] + '/output/plots/'

initialize the parent class
super(PerfMetricCMIP5Test,self). init_ (nml=nml, refdirectory=refdir,
esmval_dir=esmval_dir)

This is how you run a test
PT = PerfMetricCMIP5Test() # create instance of test class
PT.run_nml() # run the testing namelist

30

PT.run_tests(execute=False, graphics=None,
perform tests

checksum_files='all',files="all"') #

8 Scientific documentation of a diagnostic script or
metrics set

An important part of the implementation of a new diagnostic script is the documentation of the diagnostic on
the ESMValTool wiki as well as the documentation of the observational data sets used. The former should
comply with the standard template for new diagnostics (see section 8.1 below) and the latter should include
instructions how to download the observational data and, if necessary, scripts to convert it to the format

required in ESMValTool, see section 8.2 below.

8.1 Standard template

When implementing a new diagnostic script or metrics set, it should be documented on the ESMValTool wiki

by creating a new wiki entry and filling out the below standard template:

Title of diagnostic / performance metric set

Developers

first name surname 1 (DLR tag 1), first name surname 2 (DLR tag 2), etc.

Contributors

first name surname 1 (DLR tag 1), first name surname 2 (DLR tag 2), etc.

Date of documentation

yyyy-mm-dd

Name of standard namelist
(Xyz)

For Xyz the following naming conventions is used:

For papers

XyZ=SurnameYearlournalabbreviation (e.g., stocker12jgr, stocker12scil, stocker12sci2).
For copies of reports that are not publicly available:

XyZ=0OrgYearTitleabbrev (e.g., unepl0water, unepligap, roysoc09geoengineering).

For grouped set of diagnostics and performance metrics that do not follow a published
paper or report

an intuitive name that describes the science theme (e.g., XyZ=aerosol, MyDiag,
SAMonsoon, Sealce)

User settings

list of all settings that have to be checked/changed by a user in order to run the
diagnostic (e.g., pathnames, configuration files, color tables, supported model names,
etc.)

Brief summary

1-3 sentence summary

Status

Planned/work in progress/finished and merged to trunk

CMOR variable name (realm,
frequency, dimension)

e.g., tas (atmos, monthly mean, longitude latitude plevs time)

Development branch

e.g., https://svn.dIr.de/ESM-Diagnostic/source/branches/CCMI/

Link to relevant Mantis issue

e.g., https://mantis.dIr.de/mantis/view.php?id=11742

1. Overview
Insert text here

2. Available Diagnostics
Insert text here

3. Specific Routines

Contains a description of specific routines being developed for the given diagnostic that helps to identify common
code (which should then go in the lib/)
4. Observations and Scripts (also see Model and observational data below)

Insert text here

5. Test Cases (see also Automated testing on the project wiki and section 7.9)

Insert text here
6. References

° REF1:
° REF2:
. etc.

7. Sample Plots

Please insert sample plots for all plot types produced by the namelist

31

8.2 Model and observational data

8.2.1 Overview

When possible, observations from the obs4MIPs/anadMIPs archives are used in the model evaluation (see
section 6.2). These data are freely available from the ESGF in the same format as the CMIP simulations and
can be directly used in the ESMValTool using the obs4mips or anadmips class in the namelist.

Observational data sets not available in these archives need to be reformatted according to the CF/CMOR
standard before they can be used. In this case a reference to the official URL is provided such that a user can
get the latest version of the data set as well as a description and a script how to convert the data set to the
format required by the ESMValTool. These conversion scripts are collected in
reformat_scripts/obs/reformat_obs <NAME=>.ncl. The reformatting routines must be documented with a
standard header providing all information required to retrieve and process the data, as well as their availability
(Tier 1, Tier 2, or Tier 3).

All observations are tiered as follows:

e Tier 1: data sets from the obs4MIPs and ana4MIPs archives
o Tier 2: other freely available data sets
e Tier 3: restricted data sets (e.g., license agreement required)

For Tier 2 and 3 data, the developer shall also provide links and helper scripts through the reformatting
routines, following the template for the standard header described in section for the reformatting routines. An
example can be found here:

https://svn.dir.de/ESM-Diagnostic/source/trunk/reformat_scripts/obs/reformat obs AURA-MLS-OMI.ncl.

8.2.2 Standard header for the reformatting routines for observational data

This is a template of the standard header for the reformat_obs routines. The parts in red are the ones to be
modified by the author. The modification history is given in reverse chronological order (i.e., most recent on
top) and the last entry always contains the written statement. The author of each entry in the modification
history shall be indicated with the author tag, as given in the master reference file (doc/MASTER_authors-refs-
acknow.txt), e.g., A_surn_na = surname, name. All lines should be limited to a maximum of 79 characters.

s HEHEHE
;; REFORMAT SCRIPT FOR THE OBSERVATION NAME OBSERVATIONAL DATA

5
5 Tier

;; Information on data availability, possible options are:

;; Tier 1: obs4MIPs or anad4MIPs

;; Tier 2: other freely-available data set

;; Tier 3: restricted data set

;; Source

;; URL to the data source or the reference

;; Last access

;5 YYYYMMDD

;; Download and processing instructions

;; Short explanation on how to download and process the data

32

;; Caveats

;; List possible caveats or limitations of this script
;; Features to-be-implemented shall also be mentioned here

”

;; Modification history

;5 YYYYMMDD-A xxxx_yy: extended...

;i YYYYMMDD-A xxxx_yy: written.

7

;; HHHHEHEHAH A

load ...
load ...

8.2.3 Data with available reformatting routines

Table S8 Observational data with available reformatting routines for use with the ESMValTool.

Name

AERONET

ARGO

AURA-MLS-

omi

AURA-TES

CASTNET

CIRRUS

CloudSat-CPR

CONCERT

CR-AVE

DC3

EANET

EMEP

Emmons

Ti
er

Description

Aerosol optical
depth at 550 nm

Ocean mixed layer
depth

Tropospheric
column ozone

Ozone mixing ratio

Aerosol surface
level concentrations

Aerosol vertical
profiles

Aerosol vertical
profiles

Aerosol vertical
profiles

Aerosol vertical
profiles

Aerosol surface
level concentrations

Aerosol surface
level concentrations

Vertical profiles of

Variables

od550aer

mlotst

tropoz

vmro3

concso4,
concno3,
concnh4

mmrbc,
mmrbcfree

mmrbc,
conccnSTP14

mmrbc

mmrbc

concso4,
concno3,
concnh4

concso4,
concno3,
concnh4,
concpm2p5,
concpml10

various

Type

Ground

Buoy

Satellite

Satellite

Ground

Campaign

Campaign

Campaign

Campaign

Ground

Ground

Campaign

33

Time range

1992-2012

Climatology

2005-2013

2005-2009

1987-2012

late Nov.
2006

2001-2005

1970-2012

variable

Script name

reformat_obs_AERONET.ncl

reformat_obs_Dong08.ncl

reformat_obs_AURA-TES.ncl

reformat_obs_CASTNET.ncl

reformat_obs_CIRRUS.ncl

reformat_obs_CONCERT.ncl

reformat_obs_CR-AVE.ncl

Reformat_obs_DC3.ncl

reformat_obs_EANET.csh

reformat_obs_EMEP.csh

reformat_obs_Emmons.csh

EOC-GOME

ERA-Interim

ERA-Interim

fluxes

ESRL

GLOBALVIEW

GPCC

GTO-ECV

HadCRUT

HadISST

HALOE

HIPPO

IMPROVE

INCA

LACE

LandFlux-
EVAL

MODIS-
CFEMIP

Melpitz

gases
Total column ozone

Basic climate
parameters

Basic climate flux
parameters

CO2 surface level
concentrations

CO surface level
concentrations

Precipitation

Total column ozone

Near-surface air
temperature

Seaice
concentrations and
sea surface
temperatures

Water vapor mixing
ratio

Aerosol vertical
profiles

Aerosol surface
level concentrations

Aerosol vertical
profiles

Aerosol size
distributions

Evapotranspiration

Ice water path

Aerosol size

ta, ua, va, zg8,
hus, tas, ps,

tos, tauu, tauv
pr, evspsbl,

hfls, hfss,
rsns, rins

co2

vmrco

pr
toz

tas

sic, ts

vmrh2o

mmrbc

concso4,
concno3,
concnh4,
concbc,
concoa,
concpm2p5,
concpml10

concenSTPS,
conccnSTP14,
conccnSTP14

sizecn

et, et-sd

clivi

sizecn

Satellite

Reanalysis

Reanalysis

Ground

Ground

Reanalysis
Satellite

Ground

Reanalysis

Satellite

Campaign

Ground

Campaign

Campaign

Synthesis
product
(model +
observatio
ns)

Satellite

Campaign

34

1996-2010

1979-2012

1979-2012

1973-2012

1991-2008

1901-2010

1996-2010

1850-2013

1870-2014

1991-2002

1988-2011

1989-2005

2003-2014

reformat_obs_ERA-Interim.ncl

reformat_obs_ERA-Interim-
surffluxes.ncl

reformat_obs_ESRL.ncl

reformat_obs_GPCC.ncl

reformat_obs_HadCRUT.ncl

reformat_obs_HadISST

reformat_obs_HALOE.ncl

reformat_obs_HIPPO.ncl

reformat_obs_IMPROVE.ncl

reformat_obs_INCA.ncl

reformat_obs_LACE.ncl

reformat_obs_landflux-eval.ncl

reformat_obs_MODIS-
CFMIP.ncl

reformat_obs_Melpitz.ncl

NIWA

NCEP

NSIDC

Putaud

SALTRACE

SRB

TC4

Texas

Tilmes

TRMM

UB

UCN-Pacific

UWisc

WOAO09

(3
?)

distributions
Total column ozone

Basic climate
parameters

Sea ice
concentrations

Aerosol size
distributions

Aerosol vertical
profiles

Radiative fluxes
Aerosol vertical
profiles

Aerosol vertical
profiles

Ozone mixing ratios

Precipitation

Sea-ice

Aerosol vertical
profiles

Liquid water path

Climatological
ocean fields

toz

ta, ua, va, zg,
hus, tas

sic

sizecn

mmrbc

rsut, rlut,
rlutcs

mmrbc

mmraer,
mmrbc

vmro3

pr

sic

clwvi

S0, sos, to

Reanalysis

Reanalysis

Satellite

Campaign

Campaign

Satellite

Campaign

Campaign

In-situ
Satellite

Satellite

Campaign

Satellite

In-situ

1980-2010

1948-2012

1978-2010

1983-2007

1995-2009

1998-2004

1988-2007

Climatology

reformat_obs_NIWA.ncl

reformat_obs_NCEP.ncl

reformat_obs_Putaud.ncl

reformat_obs_SALTRACE.ncl

Data from CCMVal2

reformat_obs_TC4.ncl

reformat_obs_Texas.ncl

reformat_obs_UCN-Pacific.ncl

reformat_obs_UWisc.ncl

reformat_obs_WOAQ9.ncl

9 The ESMValTool core development team
9.1 Main Contacts

Please do not hesitate to contact Veronika Eyring (veronika.eyring@dlr.de) or Axel Lauer (axel.lauer@dlr.de)
for general or technical questions on the ESMValTool or in case you have problems with access to Mantis
(see section 12.2), svn (section 12.1), wiki (section 12.3).

9.2 Core Development Team

e Veronika Eyring (DLR, Germany), veronika.eyring@dlr.de

ESMValTool Core Pl and Developer: contact for requests to use the ESMValTool and for
collaboration with the development team (all projects), and access to Mantis, svn, Wiki

e Axel Lauer (DLR, Germany), axel.lauer@dlIr.de

35

ESMValTool Core Developer: contact for technical questions (all projects), and access to Mantis, svn,
Wiki

Mattia Righi (DLR, Germany), mattia.righi@dIr.de

ESMValTool Core Developer: contact for technical questions (all projects)

Martin Evaldsson (SMHI, Sweden), martin.evaldsson@smbhi.se

ESMValTool Core Developer EMBRACE: contact for general technical questions and technical
implementation of SMHI led diagnostics (only for EMBRACE project)

Contacts for specific diagnostic sets are the respective authors, as listed on the corresponding Wiki pages and
in the source code.

9.3 Merge requests

9.3.1

Workflow core development team

The following workflow followed by the ESMValTool core development team takes place whenever a
developer requests the merging of a diagnostics set into the trunk:

1.
2.

3.
4.

Check that the developer submits a standard namelist that calls a set of diagnostics / metrics

Check that the related documentation on the wiki is compliant with documentation templates for
diagnostics and metrics sets (see section 7.1).

Check that the code follows coding rules and standard (see section 7.5).

Check that a namelist is provided for automated testing that runs on 2-3 models and a small set of
observations/reference model/idealized data

e Verify that such a reduced and small set of observations/reference model/idealized data is
delivered for each diagnostic that is called by the standard namelist

o Verify that an example plot + netCDF for automated testing created with this reduced data set
is provided for each diagnostic that is called by the standard namelist as a reference

Check that also the full set of observations is provided that allows a sophisticated scientific
application of the (full) standard namelist

Check that the observations are documented on the ESMValTool Wiki and that a reformat routine
is available in case the original source is not in CMOR standard

Run the automated testing with all available diagnostics

Iterate with developer(s) on points 1-7 until the above items are fulfilled and the reference plots for all
standard namelists included in the trunk can be reproduced

Responsibilities of ESMValTool developers
Accept the ESMValTool license agreement.

Provide documentation on the wiki that is compliant with documentation templates for diagnostics
and metrics sets.

Provide well documented code that follows the coding rules and standards.

For each merge request to implement a diagnostic set into the trunk.

Scientific analysis

36

e Provide the code for all diagnostics and metrics that are called.

e Standard namelist running on (if possible) all CMIP5 models and corresponding plots that are
produced (for Wiki).

e Provide the full set of observations that allows a sophisticated scientific application of the full
standard namelist list (indicate source and if applicable license issues).

e Provide documentation for the observations on the wiki and a reformat routine if the original
source does not follow the CMOR standard.

Automated testing (see section 7.9)

e Provide the code for automated testing for the diagnostic set that should be integrated into the
trunk.

e Provide a namelist for automated testing.

e Provide a reduced and small set of observations/reference model/idealized data for each
diagnostic that is called by the testing namelist.

e Provide NetCDF + example plots for automated testing based on the reduced data set and the
standard namelist as a reference.

5. Name a contact person providing (scientific) support for your diagnostics.

10References

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S.,
Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and
Rummukainen, M.: Evaluation of Climate Models. In: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group | to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung,
A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Ed.), Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013.

NCL (2014) The NCAR Command Language (Version 6.2.1) [Software]. (2014). Boulder, Colorado:
UCAR/NCAR/CISL/VETS. http://dx.doi.org/10.5065/D6WD3XH5

PEP8 (2001) https://www.python.org/dev/peps/pep-0008/

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of Cmip5 and the Experiment Design, B Am
Meteorol Soc, 93, 485-498, 2012.

XML http://wvww.w3.org/TR/xml/www.gmail.com

37

11 Annex A — More tables

Table S9 Directory structure of the ESMValTool sorted by file type.

Namelists
nml/namelist_XyZ.xml

Namelists for specifying general parameters, input data and diagnostics to run.

Configuration files

nml/cfg_XyZ/cfg XyZ *.typ

Configuration files for diagnostic scripts. The suffix “.typ” specifies the language
the routine is written in. Note: there is usually than one configuration script per
diagnostic set.

Scripts
main.py Driver script controlling the overall program flow
diag_scripts/ Directory containing all diagnostics called by the namelists. Supporting routines

MyDiag.ncl
Sealce_polcon.ncl
SAMonsoon.ncl
etc.
aux/
<diagnostic>/
lib/
ncl/
ensemble.ncl
regrid.ncl
statistics.ncl
style.ncl

python/
ensemble.py
regrid.py
statistics.py
style.py

... for other languages (e.g.,

R)
plot_scripts/
ncl/
plottingl.ncl
plotting2.ncl
python/
plottingl.py
plotting2.py

... for other languages (e.g., R)
interface_data/

interface_scripts/

reformat_scripts/
cmor/
CMOR_<var>.dat

default/
reformat_default_main.ncl
reformat_default_func.ncl

ECEARTH/
reformat_ECEARTH_main.ncl
reformat_ECEARTH_func.ncl
names_ECEARTH.dat
make_Ism3d.sc

are placed in “diag_scripts/lib” under the subdirectory corresponding to the
programming language used (NCL, Python, R).

Functions and procedures specific to a given diagnostic are stored in the
subdirectory diag_scripts/aux/<diagnostic>.

Functions that are called by the diag_scripts, for example statistics.typ collects all
statistical functions in a single file. When adding a new function, it must be added
to list in the header.

Plotting routines; files should have an intuitive name for their purpose. Data to be
plotted may be passed to them directly or via netCDF files.

Inter-process communication, e.g., between Python and NCL/R, is done by
sourcing NCL/R specific files updated on the fly in this folder. These intermediate
files are based on templates files for different languages.

Routines called from the workflow manager script “main.py”, mainly used to
handle the control flow of the tool, e.g., parsing namelists, updating temporary
files in the folder interface_data/, etc).

Routines for checking or reformatting raw input data.

Contains the CMOR tables, defined as plain-text files CMOR_<var>.dat, where
<var> is the variable’s standard name. Additional tables can be added by the
users, e.g., from http://www2-pcmdi.llnl.gov/cmor/tables/.

Contains the reformat routines, in two NCL scripts.

Contains the EC-Earth/NEMO-specific reformat routines.

38

EMAC/
reformat_EMAC_main.ncl
reformat_EMAC_func.ncl
names_EMAC.dat

fixes/
<project>_<model>_fixes.ncl

obs/
constants.ncl

recognized_units.dat
recognized_vars.dat

variable_defs/

Contains the EMAC-specific reformat routines.

Contains the user-defined, project- and model-specific fixes, defined as NCL
scripts <project>_<model>_fixes.ncl. A template is also provided for the user to
add more fixes.

Contains specific reformat routines for “cmorizing” observational data.

Contains general-purpose functions and procedure, called by the default, the
ECEARTH- and the EMAC-specific routines.

Provides a list of possible alternative units to the CMOR standard and the
corresponding conversion factor. Can be extended by the user.

Provides a list of possible alternative variable names to the CMOR standard
names. Can be extended by the user.

Declaration of variables, variable specific attributes and calculation of derived
variables

Data folders

climo/
plots/
work/

The data folders are specified in nml/namelist_*, and thus may be different from
the defaults given here. These folders contain the output generated by the
ESMValTool and are created on the fly if needed. Note that these folders do not
need to be in the same directory as the source code. They can be arbitrarily
specified in the namelist as path relative to the root path. Using symbolic links is
another option to separate the actual data from the code.

Quality checked and derived netCDF files, reformatted from the original data.
Destination directory for graphics files.

Miscellaneous files produced during run-time, e.g., optional netCDF output and

references/acknowledgements.

Table S10 Workflow of reformat routines.

Control flow of reformat_default

The reformat_default_main.ncl script sets the global variables as defined in reformat.py (input and output paths, variable
name and field, model name and ensemble, etc.) and then performs a list of operations calling various functions and
procedures defined in reformat_default_func.ncl. The workflow is as follows:

find grid type: the data can be defined on a standard rectilinear grid or on an irregular grid. In the latter case, the
script does not modify the grid properties and additionally attaches the area field (the area weights) for the irregular
grid to the output file. The location of the area file is typically defined as an entry in the namelist, for example by
using the project class CMIP5_gridfile where the final entry is the full path to the area file, see Table S2.

read variable: the selected variable is read from the input file. If the variable is not found, the reading function checks
for possible alternative variable names (as specified in recognized_vars.dat), before issuing an error message.

apply project- and model-specific fixes: if a fixing procedure is found in the fixes/ directory for the selected project
and model, it is called at this point in order to apply the user-defined corrections to the data.

create time-series: the variable is read for the selected time range (start_year-end_year) and a time-series is created.
rank/field consistency: the consistency of variable's rank with the given field (T3M, T2Mz, T2Ms, etc.). A simple
calculation of the zonal mean is performed in case a rank 4 variable is provided with T2?z field.

check fill values: a default missing values is assigned if the variable does not have one. The function then looks for
data values that might represent undefined missing values. Currently it considers: -999., -9999., -99999., -999999.,
1.e15, -1.e34. Finally, the ESMValTool default missing values (1.e20) is assigned as a standard _FillValue to the
variable.

reformat time coordinate: the time coordinate is reformatted according to the CMOR standard. If a calendar attribute
is not assigned, the standard is used. The consistency of the time-series with the selected time range is checked.
reformat vertical coordinate (applies only to certain fields and to rectilinear grids): the vertical coordinate is assigned
"Pa" units, converting from the most common alternative units (mbar, bar, hPa) if required. The ordering is set from
top to bottom (monotonically decreasing).

reformat latitude coordinate (applies only to certain fields and to rectilinear grids): the ordering is set from South to
North (monotonically increasing).

reformat longitude coordinate (applies only to certain fields and to rectilinear grids): the ordering is set from 0 to 360
degrees.

check units: consistency of the variable's units with the CMOR standard is checked. The CMOR table for the selected
variable must be available in the CMOR/ directory (an error message is issued otherwise). Units renaming and

39

conversion can also be performed, if the corresponding information is given in recognized_units.dat.

e setvariable attributes: the CMOR standard attributes are assigned to the selected variable. The corresponding CMOR
table must be available in the CMOR/ directory (an error message is issued otherwise).

e write output file: the variable reformatted according to the CMOR standard is written in the selected output file.

e add info for irregular grids (applies only to irregular grids): the area file of the irregular grid is added, this file may later
be used for averaging.

Control flow of reformat ECEARTH

This reformat procedure can be used to convert raw EC-Earth/NEMO files to a format that complies with the ESMValTool
requirements. It performs the following additional operations compared with the default workflow:

e find_name: translate the EC-Earth/NEMO name to a CMOR name using the table names_ECEARTH.dat.

® sub_staggergrid: determine grid type (T, U, V) and add that information to the filename.

e mask_land: land points have the value 0 in the raw files, not a fill value (missing value). This routine sets land
points (as in the landmask file) to fill values.

® rename_time: rename time variable from EC-Earth name to standard name and remove the attribute _FillValue.

e rename_lev: vertical coordinate name in raw files depends on grid, rename it to lev. Requires the external input
table names_ECEARTH.dat.

e add_ijcoordvars: add i and j variables and assign them as coordinate variables.
e convert_units: unit conversions that cannot be handled by check_units.
e add_ECEARTHgrid_info: add ECEARTH grid info (lat, lon, areacello and grid sizes) to the output.

Control flow of reformat_ EMAC

The workflow is similar to the default case, but some additional operations specific to the EMAC model are performed in
addition:

o find messy version: the MESSy version with which the EMAC output has been generated is read from the data.

e find EMAC name: the EMAC name of the selected variable is found from the table in names_EMAC.dat (an error
message is issued if not defined). For complex variables (i.e., variables not directly available as EMAC output but
derivable from other EMAC variables)) a user-defined recipe can be provided in
reformat_scripts/EMAC/recipes/EMAC_recipes_xxx.ncl to derive it.

e check field consistency: reads from names_EMAC.dat file the list of allowed fields for the selected variable (for
example is not possible to select total column ozone toz as T3M field).

e check vertical integration type (only for T2?s types): reads from names_EMAC.dat the option for the vertical
coordinate (C for column integration, S for surface value).

e start the time loop: the EMAC output is assumed to be monthly-aggregated (monthly averages are optional). The
data are read starting from January of the start_year to December of the end_year.

e extract variable: the selected variable is searched in the EMAC output. If multiple files for a given month/year
combination contain the selected variable, the following priority list is applied: time coordinate matching the
field type (monthly mean or daily output), data from tracer_gp and tr_* streams/channels, first file in the list. For
complex variables, the corresponding user-defined recipe is called
(reformat_scripts/EMAC/recipes/EMAC_recipes_xxx.ncl). For T2?z types, the data are interpolated on constant
pressure levels (defined in reformat_scripts/constants.ncl).

e create time series: within the time loop, a time series start_year-end_year is created.

e reformat coordinates, check units, set variable attributes and write output: these operations are applied exactly
as in the default case.

The user can extend the reformat_scripts/EMAC/recipes/EMAC _recipes_xxx.ncl in order to calculate additional (derived)
variables not directly available in EMAC.

12 Annex B — subversion, Mantis, wiki
12.1Subversion repository

The ESMValTool development currently uses a subversion repository for managing and maintaining the
source code.

The ESMValTool repository is located at: https://svn.dIr.de/ESM-Diagnostic/

(use https://svn.dir.de/viewvc/ESM-Diagnostic/source/ for an improved web
interface)

The following description gives an overview of the typical workflow and usage for implementing a new
diagnostic into the ESMValTool. For general information on subversion see the online svn book at
http://svnbook.red-bean.com/.

12.1.1 General do’s and don’ts

Always use the "svn rm <...>", "svn mv <..>" and "svn cp <...>" instead of rm, mv, and cp. That way
subversion will be able to keep track changes applied to the (local copy of the) development branch.

Note that it is possible to apply the above commands directly to the repository, e.g., "svh copy <URL1>
<URL2>". This is useful when modifying folders higher up in the repository structure.

When merging, svn keeps track of the revisions merged via the svn:merginfo-metadata, i.e., it is (usually) not
required to specify a revision range for a merge.

12.1.2 Typical workflow

NB: All of the following svn commands take the optional argument "--username <USERNAME>" to
explicitly specify your (DLR) username.

1. Create a new branch by copying the latest version of the trunk into to your new branch on the
repository, selecting the appropriate project (<your-project>) and choosing a new branch name
(<your-branch>):

svn copy -m “creating branch .." https://svn.dlr.de/ESM-Diagnostic/source/trunk/
https://svn.dlr.de/ESM-Diagnostic/source/branches/<your-project>/<your-branch>

2. Checkout a local copy of your newly created branch (if you already have a <local-path>, you can just
call svn update):

svn checkout https://svn.dlr.de/ESM-Diagnostic/source/branches/<your-project>/<your-branch>
<local-path>

3. Work in the local folder and commit your changes on a regular basis to the repository:
svn commit -m *““changed ...”

4. Keep your development branch updated with the trunk, by bringing in trunk updates on a regular basis
(recommended is at least once per week):

svn merge https://svn.dlr.de/ESM-Diagnostic/source/trunk --dry-run

The "--dry-run™ option will give you a heads up to which files are about to be merged/updated and
possible merge conflicts. NB: the --dry-run option does not display updates to the svn mergeinfo
metadata. Updating the mergeinfo is always necessary and you should therefore, always, proceed with
5-c and 5-e even if the output from 5-a indicated no changes.

svn merge https://svn.dlr.de/ESM-Diagnostic/source/trunk

5. Resolve any merge conflicts that were reported in step 4, then test the local changes (important) and
commit your changes back to your branch with:

svn commit -m “implemented the following changes: ...”

41

NB: Always follow through with the svn commit even if no files were updated. The svn:merginfo has
been updated and needs to be commited back to your branch.

6. Reintegrate your work to trunk by (core developers only, other users shall do a merge request to the
core development team, see Responsibilities for ESMValTool Development Team):
e switch your working folder to trunk: svn switch https://svn.dlr.de/ESM-Diagnostic/source/trunk
e cd to the trunk (--dry-run means try operation but make no changes),
e svn merge --reintegrate https://svn.dlr.de/ESM-Diagnostic/source/<branch-URL>/feature-

branch-name --dry-run
e do the actual reintegration. svn merge --reintegrate https://svn.dlr.de/ESM-
Diagnostic/source/<branch-URL>/feature-branch-name

7. Test the changes locally (very important to keep the trunk stable), then commit. If a Mantis issue
exists (see also section 12.2) it can be useful to refer to this in the commit comment.
svn commit -m "merging feature-branch-name (Mantis #XXXXX) to the trunk™

8. At this point the reintegrated branch contains erroneous meta data and should not be used further. In
order to prepare removal of the local copy, switch back to the feature branch:
svn switch https://svn.dir.de/ESM-Diagnostic/source/<branch-URL>/feature-branch-name
Then either run
svn rm <branch-URL>/feature-branch-name
or, if it is worth to keep an easy access point to the branch in the repository, move it to the legacy
folder:
svn mv -m "moving feature-branch-name into legacy" <branch-URL>/feature-branch-name <branch-
legacy-folder>
Finally remove your local copy with
svn update
and - if needed - manually delete files that were not under version control.

12.1.3 Other common svn commands

svn status: check status of changes to local files, e.g., files modified, moved, gone missing, etc.
svn status -uv: verbose output (-v) + indicate updates in the repository with a ™*' (-u)

svn info: general info about the checked out files + details which repository URL the local files
represent

svn update: bring in current URL updates from the repository

svn diff: check the difference between local edits and their original (= locally unmodified) state. Note:
this diff is never done towards the repository files, see 'svn revert' below.

42

e svn s <URL>: list content of the repository <URL>

e svn revert <file>: undo local changes, i.e., the ones shown by 'svn status' and 'svn diff'. The file is
reverted to its original state. Note: the original state is the locally unmodified state, i.e., the state the
file had at the time of the previous update / commit. If another developer has committed an update of
the same file to the repository then the original state will differ from the repository state.

e svnrm: svn "aware" 'rm'-command

e svn mv: svn "aware" 'mv'-command

e svn cp: svn "aware™ ‘cp'-command

12.2Mantis bug tracker

The ESMValTool developers currently use the Mantis bug tracker (http://www.mantisbt.org/) to discuss any
kind of problems and open issues encountered with the ESMValTool. The ESMValTool Mantis page can be
found at: https://mantis.dlr.de/mantis/my_view_page.php

12.3Wiki

The latest information on the ESMValTool and diagnostics under development can be found on the wiki
available at https://teamsites-extranet.dlr.de/pa/ESMValTool/Wiki/Home.aspx. All users and developers are
strongly encouraged to frequently check the ESMValTool wiki for new information, contact data or
observational data.

43

