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Abstract 14 

A community diagnostics and performance metrics tool for the evaluation of Earth System Models 15 

(ESMs) has been developed that allows for routine comparison of single or multiple models, either 16 

against predecessor versions or against observations. The priority of the effort so far has been to 17 

target specific scientific themes focusing on selected Essential Climate Variables (ECVs), a range 18 

of known systematic biases common to ESMs, such as coupled tropical climate variability, 19 

monsoons, Southern Ocean processes, continental dry biases and soil hydrology-climate 20 

interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and 21 

tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily 22 

be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics 23 

or performance metrics that have demonstrated their importance in ESM evaluation in the peer-24 

reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort 25 

open to both users and developers encouraging open exchange of diagnostic source code and 26 

evaluation results from the CMIP ensemble. This will facilitate and improve ESM evaluation 27 

beyond the state-of-the-art and aims at supporting such activities within the Coupled Model 28 

Intercomparison Project (CMIP) and at individual modelling centres. Ultimately, we envisage 29 
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running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more 1 

routine evaluation of CMIP model simulations while utilizing observations available in standard 2 

formats (obs4MIPs) or provided by the user. 3 

 4 

1. Introduction 5 

Earth System Model (ESM) evaluation with observations or reanalyses is performed both to 6 

understand the performance of a given model and to gauge the quality of a new model, either 7 

against predecessor versions or a wider set of models. Over the past decades, the benefits of multi-8 

model intercomparison projects such as the Coupled Model Intercomparison Project (CMIP) have 9 

been demonstrated. Since the beginning of CMIP in 1995, participating models have been further 10 

developed, with more complex and higher resolution models joining in CMIP5 (Taylor et al., 2012) 11 

which supported the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 12 

(AR5) (IPCC, 2013). The main purpose of these internationally coordinated model experiments is 13 

to address outstanding scientific questions, to improve the understanding of climate, and to provide 14 

estimates of future climate change. Standardization of model output in a format that follows the 15 

Network Common Data Format (netCDF) Climate and Forecast (CF) Metadata Convention 16 

(http://cfconventions.org/) and collection of the model output on the Earth System Grid Federation 17 

(ESGF, http://esgf.llnl.gov/) facilitated multi-model analyses. However, CMIP has historically 18 

lacked a common analysis tool available that could operate directly on submitted model data and 19 

deliver a standard evaluation of models against observations. 20 

An important new aspect in the next phase of CMIP (i.e., CMIP6 (Eyring et al., 2015)) is a more 21 

distributed organization under the oversight of the CMIP Panel, where a set of standard model 22 

experiments, which were common across earlier CMIP cycles, the Diagnostic, Evaluation and 23 

Characterization of Klima (DECK) experiments and the CMIP6 historical simulations, will be used 24 

to broadly characterize model performance and sensitivity to standard external forcing. 25 

Standardization, coordination, common infrastructure, and documentation functions that make the 26 

simulation results and their main characteristics available to the broader community are envisaged 27 

to be a central part of CMIP6. The Earth System Model Evaluation Tool (ESMValTool) presented 28 

here is a community development that can be used as one of the documentation functions in CMIP 29 

to help diagnose and understand the origin and consequences of model biases and inter-model 30 

spread. Our goal is to develop an evaluation tool that users can run to produce well-established 31 

analyses of the CMIP models once the output becomes available on the ESGF. This is realized 32 
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through text files that we refer to as standard namelists, each calling a certain set of diagnostics and 1 

performance metrics to reproduce analyses that have demonstrated to be of importance in ESM 2 

evaluation in previous peer-reviewed papers or assessment reports. Through this approach routine 3 

and systematic evaluation of model results can be made more efficient. The framework enables 4 

scientists to focus on developing more innovative analysis methods rather than constantly having to 5 

“re-invent the wheel”. An additional purpose of the ESMValTool is to facilitate model evaluation at 6 

individual modelling centres, in particular to rapidly assess the performance of a new model against 7 

predecessor versions. Righi et al. (2015) and Jöckel et al. (2015) have applied a subset of the 8 

namelists presented here to evaluate a set of simulations using different configurations of the global 9 

ECHAM/MESSy Atmospheric Chemistry model (EMAC). In this paper we also highlight the 10 

integration of ESMValTool into modelling workflows – including models developed at NOAA’s 11 

Geophysical Fluid Dynamics Laboratory (GFDL), the EMAC model, and the NEMO ocean model 12 

– through the use of the ESMValTool’s reformatting routine capabilities. 13 

In addition to standardized model output, the ESGF hosts observations for Model Intercomparison 14 

Projects (obs4MIPs (Ferraro et al., 2015; Teixeira et al., 2014)) and reanalyses data (ana4MIPs, 15 

https://www.earthsystemcog.org/projects/ana4mips). The obs4MIPs and ana4MIPs projects provide 16 

the community with access to CMIP-like data sets (in terms of variables, temporal and spatial 17 

frequencies, and time periods) of satellite data and reanalyses, together with the corresponding 18 

technical documentation. The ESMValTool makes use of these observations as well as observations 19 

available from other sources to evaluate the models. In several of the diagnostics and metrics, more 20 

than one observational data set or meteorological reanalysis is used to account for uncertainties in 21 

observations. This is crucial for assessing model performance in a more robust and scientifically 22 

valid way. 23 

For the model evaluation we apply diagnostics and in several cases also performance metrics. 24 

Diagnostics (e.g., the calculation of zonal means or derived variables in comparison to 25 

observations) provide a qualitative comparison of the models with observations. Performance 26 

metrics are defined as a quantitative measure of agreement between a simulated and observed 27 

quantity which can be used to assess the performance of individual models or generation of models. 28 

Quantitative performance metrics are routinely calculated for numerical weather forecast models, 29 

but have been increasingly applied to Atmosphere-Ocean General Circulation Models (AOGCMs) 30 

or ESMs. Performance metrics used in these studies have mainly focused on climatological mean 31 

values of selected ECVs (Connolley and Bracegirdle, 2007; Gleckler et al., 2008; Pincus et al., 32 
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2008; Reichler and Kim, 2008), and only a few studies have developed process-based performance 1 

metrics (SPARC-CCMVal, 2010; Waugh and Eyring, 2008; Williams and Webb, 2009). The 2 

implementation of performance metrics in the ESMValTool enables a quantitative assessment of 3 

model improvements, both for different versions of individual ESMs and for different generations 4 

of model ensembles used in international assessments (e.g., CMIP5 versus CMIP6). Application of 5 

performance metrics to multiple models helps highlighting when and where one or more models 6 

represent a particular process well. While quantitative metrics provide a valuable summary of 7 

overall model performance, they usually do not give information on how particular aspects of a 8 

model’s simulation interact to determine the overall fidelity. For example, a model could simulate a 9 

mean state (and trend) in global mean surface temperature that agrees well with observations, but 10 

this could be due to compensating errors. To learn more about the sources of errors and 11 

uncertainties in models and thereby highlight specific areas requiring improvement, evaluation of 12 

the underlying processes and phenomena is necessary. A range of diagnostics and performance 13 

metrics focussing on a number of key processes are also included in ESMValTool. 14 

This paper describes ESMValTool version 1.0 (v1.0) which is the first release of the tool to the 15 

wider community for application and further development as open source software. It demonstrates 16 

the use of the tool by showing example figures for each namelist for either all or a subset of CMIP5 17 

models. Section 2 describes the technical aspects of the tool, and Section 3 the type of modelling 18 

and observational data currently supported by ESMValTool (v1.0). In Section 4 an overview of the 19 

namelists of ESMValTool (v1.0) is given along with their diagnostics and performance metrics and 20 

the variables and observations used. Section 5 describes the use of the ESMValTool in a typical 21 

model development cycle and evaluation workflow and Section 6 closes with a summary and an 22 

outlook. 23 

2. Brief overview of the ESMValTool 24 

In this section we give a brief overview of ESMValTool (v1.0) which is schematically depicted in 25 

Fig. 1. A detailed user’s guide is provided in the Supplement. 26 

The ESMValTool consists of a workflow manager and a number of diagnostic and graphical output 27 

scripts. It builds on a previously published diagnostic tool for chemistry-climate model evaluation 28 

(CCMVal-Diag Tool, Gettelman et al. (2012)), but is different in its focus. In particular, it extends 29 

to ESMs by including diagnostics and performance metrics relevant for the coupled Earth system, 30 

and also focuses on evaluating models with a common set of diagnostics rather than being mostly 31 

flexible as the CCMVal-Diag tool. In addition, several technical and structural changes have been 32 
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made that facilitate development by multiple users. The workflow manager is written in Python, 1 

while a multi-language support is provided in the diagnostic and the graphic routines. The current 2 

version supports Python (www.python .org), the NCAR Command Language (NCL, 2016) and R 3 

(Ihaka and Gentleman, 1996), but it can be extended to other open-source languages. The 4 

ESMValTool is executed by invoking the main.py script, which takes a namelist as a single input 5 

argument. The namelists are text files written using the XML (eXtensible Markup Language) syntax 6 

and define the data to be read (models and observations), the variables to be analysed and the 7 

diagnostics to be applied. The XML-syntax has been chosen in order to allow users to express the 8 

relationship between these three elements (data, variables and diagnostics) in a structured, easy to 9 

use way. 10 

Within the workflow, the input data are checked for compliance with the CF and Climate Model 11 

Output Rewriter (CMOR, http://pcmdi.github.io/cmor-site/tables.html) standards required by the 12 

tool (see Section 3) via a set of dedicated reformatting routines, which are also able to fix the most 13 

common errors in the input data (e.g., wrong coordinates, undefined or missing values, non-14 

compliant units, etc.). It is additionally possible to define new variables using variable-specific 15 

scripts, for example to calculate the total column ozone from a 3D ozone field (tro3), temperature 16 

(ta) and surface pressure (ps). The diagnostic and graphic routines are written in a modular and 17 

flexible way so that they can be customized by the user via diagnostic-specific settings in the 18 

configuration file (cfg-file) and variable-specific settings (in the directory variable_defs/) without 19 

changing the source code. These routines are complemented by a set of libraries, providing general-20 

purpose code for the most common operations (statistical analyses, regridding tools, graphic styles, 21 

etc.). The output of the tool can be both NetCDF and graphics files in various formats. In addition, a 22 

log file is written containing all the information of a specific call of the main script: creation date of 23 

running the script, version number, analysed data (models and observations), applied diagnostics 24 

and variables, and corresponding references. This helps to increase the traceability and 25 

reproducibility of the results.  26 

To facilitate the development of new namelists and diagnostics by multiple developers from various 27 

institutions while preserving code quality and reliability, an automated testing framework is 28 

included in the package. This allows the developers to verify that modifications and new code are 29 

compatible with the existing code and do not change the results of existing diagnostics. Automated 30 

testing within the ESMValTool is implemented on two complementary levels: 31 

 unittests are used to verify that small code units (e.g., functions/subroutines) provide the 32 
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expected results. 1 

 integration testing is used to verify that a diagnostic integrates well into the ESMValTool 2 

framework and that a diagnostic provides expected results. This is verified by comparison of 3 

the results against a set of reference data generated during the implementation of the 4 

diagnostic. 5 

Each diagnostic is expected to produce a set of well-defined results, i.e. files in a variety of formats 6 

and types (e.g., graphics, data files, ASCII files). While testing results of a diagnostic, a special 7 

namelist file is executed by ESMValTool which runs a diagnostic on a limited set of test data only 8 

minimizing executing time for testing while ensuring that the diagnostic produces the correct 9 

results. The tests implemented include: 10 

 file availability: a check that all required output data have been successfully generated by the 11 

diagnostic. A missing file is always an indicator for a failure of the program. 12 

 file checksum: currently the MD5 checksum is used to verify that contents of a file are the 13 

same. 14 

 graphics check: for graphic files an additional test is implemented which verifies that two 15 

graphical outputs are identical. This is in particular useful to verify that outputs of a 16 

diagnostic remain the same after code changes. 17 

Unittests are implemented for each diagnostic independently using nose 18 

(https://nose.readthedocs.org/en/latest/). Test files are searched recursively, executed and a statistic 19 

on success and failures is provided at the end of the execution. In order to run integration tests for 20 

each diagnostic, a small script needs to be written once. As for the unittests, a summary of success 21 

and failures is provided as output (see the Supplement for details). 22 

For the documentation of the code, Sphinx is used (http://sphinx-doc.org/) to organize and format 23 

ESMValTool documentation, including text which has been extracted from source code. Sphinx can 24 

help to create documentation in a variety of formats, including HTML, LaTeX (and hence printable 25 

PDF), manual pages and plain text. Sphinx was originally developed for documenting Python code, 26 

and one of its features is that it is able – using the so-called autodoc extension – to extract 27 

documentation strings from Python source files and use them in the documentation it generates. 28 

This feature apparently does not exist for NCL source files (such as those which are used in 29 

ESMValTool), but it has been mimicked here via a Python script, which walks through a subset of 30 

the ESMValTool NCL scripts, extracts function names, argument lists and descriptions (from the 31 
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comments immediately following the function definition), and assembles them in a subdirectory for 1 

usage with Sphinx. The documentation includes a listing of the functions, procedures, and plotting 2 

routines in order to encourage the reuse of existing code in multiple namelists. 3 

 4 

3. Models and observations 5 

The open-source release of ESMValTool (v1.0) that accompanies this paper is intended to work 6 

with CMIP5 model output, but the tool is compatible with any arbitrary model output, provided that 7 

it is in CF-compliant netCDF format and that the variables and metadata are following the CMOR 8 

tables and definitions. The namelists are designed such that it is straightforward to execute the same 9 

diagnostics with either CMIP DECK or CMIP6 model output rather than CMIP5 output, and these 10 

will be provided when the new simulations are available. As mentioned in the previous section, 11 

routines are provided for checking CF/CMOR compliance and fixing the most common minor flaws 12 

in the model output submitted to CMIP5. More substantial deviations from the required standards in 13 

the model output may be corrected via project- and model-specific procedures defined by the user 14 

and automatically applied within the workflow. The current reformatting routines are, however, not 15 

able to convert arbitrary model output to the full CF/CMOR standard. In this case, it is the 16 

responsibility of the individual modelling groups to perform that conversion. Currently, model-17 

specific reformatting routines are provided for EMAC (Jöckel et al., 2015; Jöckel et al., 2010), the 18 

GFDL CM3 and ESM models (Donner et al., 2011; Dunne et al., 2012; Dunne et al., 2013), and for 19 

NEMO (Madec, 2008) which is the ocean model used in for example EC-Earth (Hazeleger et al., 20 

2012). Users can develop similar reformatting routines specific to their model using the template 21 

included in the package allowing the tool to run directly on the original model output rather than 22 

having to reformat the model output to CF/CMOR beforehand. 23 

The observations are organized in tiers. Where available, observations from the obs4MIPs and 24 

reanalysis from the ana4MIPs archives at the ESGF are used in the ESMValTool. These data sets 25 

form “Tier 1”. Tier 1 data are freely available for download to be directly used by the tool since 26 

they are formatted following the CF/CMOR standard and do not need any additional processing. 27 

For other observational data sets, the user has to retrieve the data from their respective source and 28 

reformat them into the CF/CMOR standard. To facilitate this task, we provide specific reformatting 29 

routines for a large number of such data sets together with detailed information of the data source, 30 

as well as download and processing instructions (see Table 1). “Tier 2” includes other freely 31 

available data sets and “Tier 3” includes restricted data sets (e.g., requiring the user to accept a 32 
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license agreement issued by the data owner). For Tier 2 and 3 data, links and help scripts are 1 

provided, so that these observations can be easily retrieved from their respective sources and 2 

processed by the user. A collection of all observational data used in ESMValTool (v1.0) is hosted at 3 

DLR and the ESGF nodes at BADC and DKRZ, but depending on the license terms of the 4 

observations these might not be publicly available. 5 

 6 

4. Overview of namelists included in ESMValTool (v1.0) 7 

A number of namelists have been included in ESMValTool (v1.0) that group a set of performance 8 

metrics and diagnostics for a given scientific topic. Namelists that focus on the evaluation of 9 

physical climate process for respectively, the atmosphere, ocean, and land surface are presented in 10 

Sections 4.1, 4.2, and 4.3. These can be applied to simulations with prescribed SSTs (i.e., AMIP 11 

runs) or the CMIP5 historical simulations (simulations for 1850 to present-day conducted with the 12 

best estimates of natural and anthropogenic climate forcing) that are run by either coupled 13 

AOGCMs or ESMs. Another set of namelists has been developed to evaluate biogeochemical biases 14 

present in ESMs when additional components of the Earth system such as the carbon cycle, 15 

atmospheric chemistry or aerosols are simulated interactively (Sections 4.4 and 4.5 for carbon cycle 16 

and aerosols/chemistry, respectively). 17 

In each subsection, we first scientifically motivate the inclusion of the namelist by reviewing the 18 

main systematic biases in current ESMs and their importance and implications. We then give an 19 

overview of the namelists that can be used to evaluate such biases along with the diagnostics and 20 

performance metrics included, and the required variables and corresponding observations that are 21 

used in ESMValTool (v1.0). For each namelist we provide 1-2 example figures that are applied to 22 

either all or a subset of the CMIP5 models. An assessment of CMIP5 models is however not the 23 

focus of this paper. Rather, we attempt to illustrate how the namelists contained within 24 

ESMValTool (v1.0) can facilitate the development and evaluation of climate model performance in 25 

the targeted areas. Therefore, the results of each figure are only briefly described in each figure 26 

caption.  27 

Table 1 provides a summary of all namelists included in ESMValTool (v1.0) along with 28 

information on the quantities and ESMValTool variable names for which the namelist is tested, the 29 

corresponding observations or reanalyses, the section and example figure in this paper, and 30 

references for the namelist. Table 2 then provides an overview of the diagnostics included for each 31 
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namelist along with specific calculations, the plot type, settings in the configuration file (cfg-file), 1 

and comments. 2 

4.1. Detection of systematic biases in the physical climate: atmosphere 3 

4.1.1. Quantitative performance metrics for atmospheric ECVs 4 

A starting point for the calculation of performance metrics is to assess the representation of 5 

simulated climatological mean states and the seasonal cycle for essential climate variables (ECVs, 6 

GCOS (2010)). This is supported by a large observational effort to deliver long-term, high quality 7 

observations from different platforms and instruments (e.g., obs4MIPs and the ESA Climate 8 

Change Initiative (CCI)) and ongoing efforts to improve global reanalysis products (e.g., 9 

ana4MIPs). 10 

Following Gleckler et al. (2008) and similar to Fig. 9.7 of Flato et al. (2013), a namelist has been 11 

implemented in the ESMValTool that produces a “portrait diagram” by calculating the relative 12 

space-time root-mean square error (RMSE) from the climatological mean seasonal cycle of 13 

historical simulations for selected variables [namelist_perfmetrics_CMIP5.xml]. In Fig. 2 the 14 

relative space-time RMSE for the CMIP5 historical simulations (1980-2005) against a reference 15 

observation and, where available, an alternative observational data set, is shown. The overall mean 16 

bias can additionally be calculated and adding other statistical metrics is straightforward. Different 17 

normalizations (mean, median, centered median) can be chosen and the multi model mean/median 18 

can also be added. In order to calculate the RMSE, the data is regridded to a common grid using a 19 

bilinear interpolation method. The user can select which grid to use as a target grid. The results 20 

shown in this section have been obtained after regridding the data to the grid of the reference 21 

dataset. With this namelist it is also possible to perform more in-depth analyses of the ECVs, by 22 

calculating seasonal cycles, Taylor diagrams (Taylor, 2001), zonally averaged vertical profiles and 23 

latitude-longitude maps. In the latter two cases, it is also possible to produce difference plots 24 

between a given model and a reference (usually the observational data set) or between two versions 25 

of the same model, and to apply a statistical test to highlight significant differences. As an example, 26 

Fig. 3 (left panel) shows the zonal profile of seasonal mean temperature differences between the 27 

MPI-ESM-LR model (Giorgetta et al., 2013) and ERA-Interim reanalysis (Dee et al., 2011), and 28 

Fig. 3 (right panel) a Taylor diagram for temperature at 850 hPa for CMIP5 models compared to 29 

ERA-Interim. A similar analysis can be performed with namelist_righi15gmd_ECVs.xml, which 30 

reproduces the ECV plots of Righi et al. (2015) for a set of EMAC simulations. 31 
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Tested variables in ESMValTool (v1.0) that are shown is Fig. 2 are selected levels of temperature 1 

(ta), eastward (ua) and northward wind (va), geopotential height (zg), and specific humidity (hus), 2 

as well as near-surface air temperature (tas), precipitation (pr), all-sky longwave (rlut) and 3 

shortwave (rsut) radiation, long-wave (LW_CRE) and shortwave (SW_CRE) cloud radiative effect, 4 

and aerosol optical depth (AOD) at 550 nm (od550aer). The models are evaluated against a wide 5 

range of observations and reanalysis data: ERA-Interim and NCEP (Kistler et al., 2001) for 6 

temperature, winds and geopotential height, AIRS (Aumann et al., 2003) for specific humidity, 7 

CERES-EBAF for radiation (Wielicki et al., 1996), Global Precipitation Climatology Project 8 

(GPCP, Adler et al. (2003)) for precipitation, Moderate Resolution Imaging Spectrometer (MODIS, 9 

Shi et al. (2011)) and the ESA CCI aerosol data (Kinne et al., 2015) for AOD. Additional 10 

observations or reanalyses can be provided by the user for these variables and easily added. The 11 

tool can also be applied to additional variables if the required observations are made available in an 12 

ESMValTool compatible format (see Section 2 and Supplement). 13 

4.1.2. Multi-model mean bias for temperature and precipitation 14 

Near-surface air temperature (tas) and precipitation (pr) are the two variables most commonly 15 

requested by users of ESM simulations. Often, diagnostics for tas and pr are shown for the multi-16 

model mean of an ensemble. Both of these variables are the end result of numerous interacting 17 

processes in the models, making it challenging to understand and improve biases in these quantities. 18 

For example, near surface air temperature biases depend on the models’ representation of radiation, 19 

convection, clouds, land characteristics, surface fluxes, as well as atmospheric circulation and 20 

turbulent transport (Flato et al., 2013), each with their own potential biases that may either augment 21 

or oppose one another.  22 

The namelist_flato13ipcc.xml reproduces a subset of the figures from the climate model evaluation 23 

chapter of IPCC AR5 (Chapter 9, Flato et al. (2013)). This namelist will be further developed and a 24 

more complete version included in future releases. The diagnostic that calculates the multi-model 25 

mean bias compared to a reference data set is part of this namelist and reproduces Figures 9.2 and 26 

9.4 of Flato et al. (2013). Figure 4 shows the CMIP5 multi-model average as absolute values and as 27 

biases relative to ERA-Interim and the GPCP data for the annual mean surface air temperature and 28 

precipitation, respectively. Model output is regridded using bilinear interpolation to the reanalysis 29 

or observational grid by default, but alternative options that can be set in the cfg-file include 30 

regridding of the data to the lowest or highest resolution grid in the entire input data set. Such 31 

figures can also be produced for individual seasons as well as for a single model simulation or other 32 



 12

2D variables if suitable observations are provided.  1 

4.1.3. Monsoon 2 

Monsoon systems represent the dominant seasonal climate variation in the tropics, with profound 3 

socio-economic impacts. Current ESMs still struggle to capture the major features of both the South 4 

Asian summer monsoon (SASM, Section 4.1.3.1) and the West African monsoon (WAM, Section 5 

4.1.3.2). Sperber et al. (2013) and Roehrig et al. (2013) provide comprehensive assessments of the 6 

ability of CMIP5 models to represent these two monsoon systems. By implementing diagnostics 7 

from these two studies into ESMValTool (v1.0), we aim to facilitate continuous monitoring of 8 

progress in simulating the SASM and WAM systems in ESMs. 9 

4.1.3.1. South Asian summer monsoon (SASM) 10 

While individual models vary in their simulations of the SASM, there are known biases in ESMs 11 

that span a range of temporal and spatial scales. The namelists in the ESMValTool are targeted 12 

toward analysing these biases in a systematic way. Climatological mean biases include excess 13 

precipitation over the equatorial Indian Ocean, too little precipitation over the Indian subcontinent 14 

and excess precipitation over orography such as the southern slopes of the Himalayas (Annamalai et 15 

al., 2007; Bollasina and Nigam, 2009; Sperber et al., 2013), see also Fig. 4. The monsoon onset is 16 

typically too late in the models, and the boreal summer intra-seasonal oscillation (BSISO), which 17 

has a particularly large socio-economic impact in South Asia, is often weak or not present 18 

(Sabeerali et al., 2013). Monsoon low pressure systems, which generate many of the most intense 19 

rain events during the monsoon (Krishnamurthy and Misra, 2011) are often too infrequent and weak 20 

(Stowasser et al., 2009). In coupled models, biases in SSTs, evaporation, precipitation and air-sea 21 

coupling are common (Bollasina and Nigam, 2009) and have been shown to affect both present-day 22 

simulations and future projections (Levine et al., 2013). Interannual teleconnections with ENSO 23 

(Lin et al., 2008) and the Indian Ocean Dipole (Ashok et al., 2004; Cherchi and Navarra, 2013) are 24 

also not well-captured (Turner et al., 2005). 25 

Three SASM namelists for the basic climatology, seasonal cycle, intra-seasonal and inter-annual 26 

variability and key teleconnections have been implemented into the ESMValTool focusing on 27 

SASM rainfall and horizontal winds in June-September (JJAS) [namelist_SAMonsoon.xml, 28 

namelist_SAMonsoon_AMIP.xml, namelist_SAMonsoon_daily.xml]. Rainfall and wind 29 

climatologies, including their pattern correlations and RMSE against observations, are similar to the 30 

metrics proposed by the Climate Variability and Predictability (CLIVAR) Asian–Australian 31 

Monsoon Panel (AAMP) Diagnostics Task Team and used by Sperber et al. (2013). Diagnostics for 32 
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determining global monsoon domains and intensity follow the definition of Wang et al. (2012) 1 

where the global precipitation intensity is calculated from the difference between the hemispheric 2 

summer (May-September in the Northern Hemisphere, November-March in the Southern 3 

Hemisphere) and winter (vice versa) mean values, and the global monsoon domain is defined by 4 

those areas where the precipitation intensity exceeds 2.0 mm/day and the summer precipitation is > 5 

0.55 x the annual precipitation (Fig. 5). Seasonal cycle diagnostics include monthly rainfall over the 6 

Indian region (5°-30°N, 65°-95°E) and dynamical indices based on wind-shear (Goswami et al., 7 

1999; Wang and Fan, 1999; Webster and Yang, 1992). Figure 6 shows examples of the seasonal 8 

cycle of area-averaged Indian rainfall from selected CMIP5 models and their AMIP counterparts. 9 

The namelists include diagnostics to calculate maps of inter-annual standard deviation of JJAS 10 

rainfall and horizontal winds at 850 hPa and 200 hPa, and maps of teleconnection diagnostics 11 

between Nino3.4 SSTs (defined by the region 190°-240°E, 5°S to 5°N) and JJAS precipitation 12 

across the monsoon region (30°S to 30°N, 40°-300°E) following (Sperber et al., 2013). To generate 13 

difference maps, data are first regridded using an area-conservative binning and using the lowest 14 

resolution grid as target. For atmosphere-only models, we also evaluate their ability to represent 15 

year to year monsoon variability directly against time-equivalent observations to check whether 16 

models, given correct inter-annual SST forcing, can reproduce observed year to year variations and 17 

significant events occurring in particular years. This evaluation is done by plotting the time-series 18 

across specified years of standardized anomalies (normalized by climatology) of JJAS-averaged 19 

dynamical indices and area-averaged JJAS precipitation over the Indian region (defined above) for 20 

both the models and observations. Namelists for intra-seasonal variability include maps of standard 21 

deviation of 30-50 day filtered daily rainfall, with area-averaged values for key regions including 22 

the Bay of Bengal (10°-20°N, 80°-100°E) and the Eastern equatorial Indian Ocean (10°S-10°N, 23 

80°-100°E) given in the plot titles. To illustrate the northward and eastward propagation of the 24 

BSISO, Hovmöller lag-longitude and lag-latitude diagrams show either the latitude-averaged (10ºS-25 

10ºN) and plotted for 60º-160ºE, or longitude-averaged (80ºE-100ºE) and plotted for 10ºS-30ºN, 26 

anomalies of 30-80 day filtered daily rainfall correlated against intraseasonal precipitation at the 27 

Indian Ocean reference point (75ºE-100ºE, 10ºS-5ºN). These use a slightly modified (for season, 28 

region and filtering band) version of the existing Madden-Julian Oscillation (MJO) NCL scripts, 29 

available at https://www.ncl.ucar.edu/Applications/mjoclivar.shtml, that are based on the 30 

recommendations from the US CLIVAR MJO Working Group (Waliser et al., 2009) and are similar 31 

to those shown in Lin et al. (2008) and used in Section 4.1.4.2 for the MJO.  32 
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Tested variables in ESMValTool (v1.0), some of which are illustrated in Figs. 5 and 6, include 1 

precipitation (pr), eastward (ua) and northward wind (va) at various levels, and skin temperature 2 

(ts). The primary reference data sets are ERA-Interim for horizontal winds, Tropical Rainfall 3 

Measuring Mission 3B43 version 7 (TRMM-3B43-v7; Huffman et al. (2007) for rainfall and 4 

HadISST (Rayner et al., 2003) for SST, although the models are evaluated against a wide range of 5 

other observational precipitation data sets (see Table 1) and an alternate reanalysis data set: the 6 

Modern-Era Retrospective Analysis for Research and Applications (MERRA; Rienecker et al. 7 

(2011)).  8 

4.1.3.2. West African Monsoon Diagnostics 9 

West Africa and the Sahel are highly dependent on seasonal rainfall associated with the WAM. 10 

Rainfall in the region exhibits strong inter-decadal variability (Nicholson et al., 2000), with major 11 

socio-economic impacts (Held et al., 2005). Projecting the future response of the WAM to 12 

increasing concentrations of greenhouse gases (GHG) is therefore of critical importance, as is the 13 

ability to make dependable forecasts of the WAM evolution on monthly to seasonal timescales. 14 

Current ESMs exhibit biases in their representation of both the mean state (Cook and Vizy, 2006; 15 

Roehrig et al., 2013) and temporal variability (Biasutti, 2013) of WAM. Such biases can affect the 16 

skill of monthly to seasonal predictions of the WAM as well as long term future projections. CMIP5 17 

coupled models often exhibit warm SST biases in the equatorial Atlantic, which induce a southward 18 

shift of the WAM in summer (Richter et al., 2014). Because of the zonal symmetry, the 10°W-10°E 19 

meridional transect of any geophysical variable (see below) is particularly informative with respect 20 

to the main features of the WAM and their representation in climate models (Redelsperger et al., 21 

2006). For instance, the JJAS-averaged Sahel rainfall has a large inter-model spread with biases 22 

ranging from +-50% of the observed value (Cook and Vizy, 2006; Roehrig et al., 2013). Differences 23 

in simulated surface air temperatures are large over the Sahel and Sahara, with deficiencies in the 24 

Saharan heat low inducing feedback errors on the WAM structure. Here, a correct simulation of the 25 

surface energy balance is critical, where biases related to the representation of clouds, aerosols and 26 

surface albedo (Roehrig et al., 2013). The seasonal cycle also shows large inter-model spread, 27 

pointing to deficiencies in the representation of key processes important for the seasonal dynamics 28 

of the WAM. Daily precipitation is highly intermittent over the Sahel, mainly caused by a few 29 

intense mesoscale convective systems during the monsoon season (Mathon et al., 2002). Intense 30 

mesoscale convective systems over Africa as well as the diurnal cycle of the WAM are still a 31 
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challenge for most climate models (Roehrig et al., 2013). Improving the quality of the WAM in 1 

climate models is therefore urgently needed.  2 

To evaluate key aspects of the WAM, two namelists have been implemented into ESMValTool 3 

(v1.0) [namelist_WAMonsoon.xml, namelist_WAMonsoon_daily.xml]]. These include maps and 4 

meridional transects (averages over 10°W to 10°E) that provide a climatological picture of the 5 

summer (JJAS) WAM structure: (i) precipitation (pr) for the mean position of the WAM, (ii) near-6 

surface air temperature (tas) for biases in the Atlantic cold tongue and the Saharan heat low, (iii) 7 

horizontal winds (ua, va) for the mean position and intensity of the monsoon flow at 925 hPa and of 8 

the mid- (700 hPa) and upper-level (200 hPa) jets. The surface and top of the atmosphere (TOA) 9 

radiation budgets provide a picture of the radiative fluxes associated with the WAM. Figure 7 10 

shows the meridional transect of summer-averaged precipitation over West Africa for a range of 11 

CMIP5 models as an example for this namelist. Diagnostic for the mean seasonal cycle of 12 

precipitation is also provided to evaluate the WAM onset and withdrawal. Finally, a set of 13 

diagnostics for the WAM intra-seasonal variability evaluates the ability of models to capture 14 

variability of precipitation on timescales associated with African easterly waves (3-10 day), the 15 

MJO (25-90 days) and more broadly the WAM intra-seasonal variability (1-90 days). The strong 16 

day-to-day intermittency of precipitation is also diagnosed using maps of 1-day autocorrelation of 17 

intra-seasonal precipitation anomalies (Roehrig et al., 2013). To perform the autocorrelation 18 

analysis, data is first regridded to a common 1°×1° map using a bilinear interpolation method, 19 

whereas for generating difference maps the same regridding method as for the SASM diagnostics is 20 

used (see Section 4.1.3.1). Observations for evaluation are based on the following data sets: GPCP 21 

version 2.2 and Tropical Rainfall Measuring Mission 3B43 version 7 (TRMM-3B43-v7, Huffman 22 

et al. (2007)) precipitation retrievals, Clouds and Earth’s Radiant Energy Systems (CERES) Energy 23 

Balanced and Filled (EBAF) edition 2.6 radiation estimates (Loeb et al., 2009), NOAA daily TOA 24 

outgoing longwave radiation (Liebmann and Smith, 1996), ERA-Interim reanalysis for the 25 

dynamics. 26 

4.1.4. Natural modes of climate variability 27 

4.1.4.1. NCAR Climate Variability Diagnostics Package 28 

Modes of natural climate variability from interannual to multi-decadal time scales are important as 29 

they have large impacts on regional and even global climate with attendant socio-economic impacts. 30 

Characterization of internal (i.e., unforced) climate variability is also important for the detection and 31 

attribution of externally-forced climate change signals (Deser et al., 2012; Deser et al., 2014). 32 
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Internally-generated modes of variability also complicate model evaluation and intercomparison. As 1 

these modes are spontaneously generated, they do not need to exhibit the same chronological 2 

sequence in models as in nature. However, their statistical properties (e.g., time scale, 3 

autocorrelation, spectral characteristics, and spatial patterns) are captured to varying degrees of skill 4 

among climate models. Despite their importance, systematic evaluation of these modes remains a 5 

daunting task given the wide range to consider, the length of the data record needed to adequately 6 

characterize them, the importance of sub-surface oceanic processes and uncertainties in the 7 

observational records (Deser et al., 2010).  8 

In order to assess natural modes of climate variability in models, the NCAR Climate Variability 9 

Diagnostics Package (CVDP) (Phillips et al., 2014) has been implemented into the ESMValTool. 10 

The CVDP has been developed as a standalone tool. To allow for easy updating of the CVDP once 11 

a new version is released, the structure of the CVDP is kept in its original form and a single 12 

namelist [namelist_CVDP.xml] has been written to enable the CVDP to be run directly within 13 

ESMValTool. The CVDP facilitates evaluation of the major modes of climate variability, including 14 

ENSO (Deser et al., 2010), PDO (Deser et al., 2010; Mantua et al., 1997), the Atlantic Multi-15 

decadal Oscillation (AMO, Trenberth and Shea (2006)), the Atlantic Meridional Overturning 16 

Circulation (AMOC, Danabasoglu et al. (2012)), and atmospheric teleconnection patterns such as 17 

the Northern and Southern Annular Modes (NAM (Hurrell and Deser, 2009; Thompson and 18 

Wallace, 2000) and SAM (Thompson and Wallace, 2000), respectively), North Atlantic Oscillation 19 

(NAO, Hurrell and Deser (2009)), and Pacific North and South American (PNA and PSA, 20 

respectively (Thompson and Wallace, 2000)) patterns. For details on the actual calculation of these 21 

modes in CVDP we refer to the original CVDP package and explanations available at 22 

http://www2.cesm.ucar.edu/working-groups/cvcwg/cvdp. 23 

Depending on the climate mode analyzed, the CVDP package uses the following variables: 24 

precipitation (pr), sea level pressure (psl), near-surface air temperature (tas), skin temperature (ts), 25 

snow depth (snd), and basin-average ocean meridional overturning mass stream function (msftmyz). 26 

The models are evaluated against a wide range of observations and reanalysis data, for example 27 

NCEP for near-surface air temperature, HadISST for skin temperature, and the NOAA-CIRES 28 

Twentieth Century Reanalysis Project (Compo et al., 2011) for sea level pressure. Additional 29 

observations or reanalysis can be added by the user for these variables. The ESMValTool (v1.0) 30 

namelist runs on all CMIP5 models. As an example, Fig. 8 shows the representation of the PDO as 31 
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simulated by 41 CMIP5 models and observations (HadISST) and Fig. 9 the mean AMOC from 13 1 

CMIP5 models.  2 

4.1.4.2. Madden-Julian oscillation (MJO) 3 

The MJO is the dominant mode of tropical intraseasonal variability (30-80 day) and has wide 4 

impacts on numerous regional climate and weather phenomena (Madden and Julian, 1971). 5 

Associated with enhanced convection in the tropics, the MJO exerts a significant influence on 6 

monsoon precipitation, e.g. on the South Asian Monsoon (Pai et al., 2011) and on the west African 7 

monsoon (Alaka and Maloney, 2012). The eastward propagation of the MJO into the West Pacific 8 

can trigger the onset of some El Nino events (Feng et al., 2015; Hoell et al., 2014). The MJO also 9 

influences tropical cyclogenesis in various ocean basins (Klotzbach, 2014). Increased vertical 10 

resolution in the atmosphere and better and representation of stratospheric processes have led to an 11 

improvement in MJO fidelity in CMIP5 compared with CMIP3 (Lin et al., 2006). However, current 12 

generation models still struggle to adequately capture the eastward propagation of the MJO (Hung 13 

et al., 2013) and the variance intensity is typically too weak. Identifying and reducing such biases 14 

will be important for ESMs to accurately represent important climate phenomena, such as regional 15 

precipitation variability in the tropics arising through the differing impact of MJO phases on ENSO 16 

and ENSO forced regional climate anomalies (Hoell et al., 2014).  17 

To assess the main MJO features in ESMs, a namelist with a number of diagnostics developed by 18 

the US CLIVAR MJO Working Group (Kim et al., 2009; Waliser et al., 2009) has been 19 

implemented in the ESMValTool (v1.0) [namelist_mjo_mean_state.xml, namelist_mjo_daily.xml]. 20 

These diagnostics are calculated using precipitation (pr), outgoing longwave radiation (OLR) (rlut), 21 

eastward (ua) and northward wind (va) at 850 hPa (u850) and 200 hPa (u200) against various 22 

observations and reanalysis data sets for boreal summer (May-October) and winter (November-23 

April).  24 

Observation and reanalysis data sets include GPCP-1DD for precipitation, ERA-Interim and NCEP-25 

DOE reanalysis 2 for wind components (Kanamitsu et al., 2002) and NOAA polar-orbiting satellite 26 

data for OLR (Liebmann and Smith, 1996). The majority of the scripts are based on example scripts 27 

at http://ncl.ucar.edu/Applications/mjoclivar.shtml. Daily data is required for most of the scripts. 28 

The basic diagnostics include mean seasonal state and 20-100 day bandpass filtered variance for 29 

precipitation and u850 in summer and winter. To better assess and understand model biases in the 30 

MJO, a number of more sophisticated diagnostics have also been implemented. These include; 31 

univariate empirical orthogonal function (EOF) analysis for 20-100 day bandpass filtered daily 32 
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anomalies of precipitation, OLR, u850 and u200. To illustrate the northward and eastward 1 

propagation of the MJO, lag-longitude and lag-latitude diagrams show either the equatorial 2 

(latitude) averaged (10ºS-10ºN) or zonal (longitude) averaged (80ºE-100ºE) intraseasonal 3 

precipitation anomalies and u850 anomalies correlated against intraseasonal precipitation at the 4 

Indian Ocean reference point (75ºE-100ºE, 10ºS-5ºN). Similar figures can also be produced for 5 

other key variables and regions following the definitions of Waliser et al. (2009). To further explore 6 

the MJO intraseasonal variability, the wavenumber-frequency spectra for each season is calculated 7 

for individual variables. In addition, we also produce cross-spectral plots to quantify the coherence 8 

and phase relationships between precipitation and u850. Figure 10 shows examples of boreal 9 

summer (May-October) wavenumber-frequency spectra of 10ºS-10ºN averaged daily precipitation 10 

from GPCP-1DD, HadGEM2-ES, MPI-ESM-LR and EC-Earth. Finally, we also calculate the 11 

multivariate combined EOF (CEOF) modes using equatorial averaged (15ºS-15ºN) daily anomalies 12 

of U850, U200 and OLR. This analysis demonstrates the relationship between lower- and upper-13 

tropospheric wind anomalies and convection. To further illustrate the spatial-temporal structure of 14 

the MJO, the first two leading CEOFs are used to derive a composite MJO life cycle which 15 

highlights intraseasonal variability and northward/eastward propagation of the MJO. The data used 16 

in these diagnostics are regridded to a common 0.5°×0.5° grid using an area-conservative method. 17 

4.1.5. Diurnal cycle 18 

In addition to the previously discussed biases in precipitation, many ESMs that rely on 19 

parameterized convection exhibit biases related to the diurnal cycle and timing of precipitation. 20 

Over land, ESMs tend to simulate a diurnal cycle of continental convective precipitation in phase 21 

with insolation, while observed precipitation peaks in the early evening. This constitutes one of the 22 

endemic biases of ESMs, in which convective precipitation intensity is often related to atmospheric 23 

instability. This bias can have important implications for the simulated climate, as the timing of 24 

precipitation influences subsequent surface evaporation, and convective clouds affect radiation 25 

differently around noon or in late afternoon. The biases in the diurnal cycle are most pronounced 26 

over land areas and the diurnal cycles of convection and clouds during the day contribute to the 27 

continental warm bias (Cheruy et al., 2014). Similarly, biases in the diurnal cycle also exist over the 28 

ocean (Jiang et al., 2015). Another motivation for looking at the diurnal cycle in models is that its 29 

representation is more closely linked to the parameterizations of surface fluxes, boundary-layer, 30 

convection and cloud processes than any other diagnostics. The phase of precipitation and radiative 31 

fluxes during the day is the consequence of surface warming, boundary-layer turbulence mixing and 32 
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cumulus clouds moistening, as well as of the triggering criteria used to activate deep convection, 1 

and the closure used to compute convective intensity. The evaluation of the diurnal cycle thus 2 

provides a direct insight into the representation of physical processes in a model. Recent efforts to 3 

improve the representation of the diurnal cycle of precipitation models include modifying the 4 

convective entrainment rate, revisiting the quasi-equilibrium hypothesis for shallow and deep 5 

convection, and adding a representation of key missing processes such as boundary-layer thermals 6 

or cold pools. We envisage that ESMValTool will help to quantify the impact of those 7 

improvements in the next generation of ESMs. 8 

To help document progress made in the representation of the diurnal cycle of precipitation (pr) in 9 

models, a set of diagnostics has been implemented in ESMValTool. After regridding all data on a 10 

common 2.5°×2.5° grid using bilinear interpolation, the mean diurnal cycle computed every 3 hours 11 

is approximated at each grid-point by a sum of sine and cosine functions (first harmonic analysis) 12 

allowing to derive global maps of the amplitude and phase of maximum rainfall over the day. Mean 13 

diurnal cycle of precipitation is also provided over specific regions in the tropics. Over land, we 14 

contrast semi-arid (Sahel) and humid (Amazonia) regions as well as West-Africa and India. Over 15 

the ocean, we focus on the Gulf of Guinea, the Indian Ocean and the East and West Equatorial 16 

Pacific. We use TRMM 3B42 V7, as a reference 17 

(http://mirador.gsfc.nasa.gov/collections/TRMM_3B42_daily__007.shtml). The ESMValTool also 18 

includes diagnostics for the evaluation of the diurnal cycle of radiative fluxes at the top of the 19 

atmosphere and at the surface, and their decomposition into LW and SW, total and clear sky 20 

components, however not all are available for all models from the CMIP5 archive. As a reference, 21 

we use 3-hourly SYN1deg CERES products (Wielicki et al., 1996), derived from measurements at 22 

top of the atmosphere and computed using a radiative transfer model at the surface 23 

(http://ceres.larc.nasa.gov/products.php?product=SYN1deg). These diagnostics provide a first 24 

insight into the representation of the diurnal cycle, but further analysis is required to understand the 25 

links between the model’s parameterizations and the representation of the diurnal cycle, as well as 26 

the impact of errors in the diurnal cycle on other, slower timescale climate processes. Figure 11 27 

shows the evaluation against TRMM observations of the mean diurnal cycle averaged over specific 28 

regions in the tropics for five summers (2004-2008) simulated by four CMIP5 ESMs.  29 
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4.1.6. Clouds 1 

4.1.6.1. Clouds and radiation 2 

Clouds are a key component of the climate system because of their large impact on the radiation 3 

budget as well as their crucial role in the hydrological cycle. The simulation of clouds in climate 4 

models has been challenging because of the many nonlinear processes involved (Boucher et al., 5 

2013). Simulations of long-term mean cloud properties from CMIP3 and CMIP5 models show large 6 

biases compared to observations (Chen et al., 2011; Klein et al., 2013; Lauer and Hamilton, 2013). 7 

Such biases have a range of implications as they affect application of these models to investigate 8 

chemistry-climate interactions and aerosol-cloud interactions, while also having an impact on the 9 

climate sensitivity of the model. 10 

The namelist namelist_lauer13jclim.xml computes the climatology and interannual variability of 11 

climate relevant cloud variables such as cloud radiative forcing, liquid and ice water path, and cloud 12 

cover and reproduces the evaluation results of Lauer and Hamilton (2013). The standard namelist 13 

includes a comparison of the geographical distribution of multi-year average cloud parameters from 14 

individual models and the multi-model mean with satellite observations. Taylor diagrams are 15 

generated that show the multi-year annual or seasonal average performance of individual models 16 

and the multi-model mean in reproducing satellite observations. The diagnostic routine also 17 

facilitates the assessment of the bias of the multi-model mean and zonal averages of individual 18 

models compared with satellite observations. Interannual variability is estimated as the relative 19 

temporal standard deviation from multi-year timeseries of data with the temporal standard 20 

deviations calculated from monthly anomalies after subtracting the climatological mean seasonal 21 

cycle. Data regridding is applied using a bilinear interpolation method and choosing the grid of the 22 

reference dataset as target. As an example, Fig. 12 shows the bias of the 20-year average (1985-23 

2005) annual mean cloud radiative effects from CMIP5 models (multi-model mean) against the 24 

CERES EBAF satellite climatology (2001-2012) (Loeb et al., 2012; Loeb et al., 2009), similar to 25 

Flato et al. (2013) their Figure 9.5. 26 

The cloud namelist focuses on precipitation (pr) and four cloud parameters that largely determine 27 

the impact of clouds on the radiation budget and thus climate in the model simulations: total cloud 28 

amount (clt), liquid water path (lwp), ice water path (iwp), and TOA cloud radiative effect (CRE) 29 

consisting of the longwave CRE and shortwave CRE that can also separately be evaluated with the 30 

performance metrics namelist (see Section 4.1.1). Precipitation is evaluated with GPCP data, total 31 

cloud amount with MODIS, liquid water path with passive-microwave satellite observations from 32 
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the University of Wisconsin (O'Dell et al., 2008), and the ice water path with MODIS Cloud Model 1 

Intercomparison Project (MODIS-CFMIP, Pincus et al. (2012), King et al. (2003)) data. 2 

4.1.6.2. Quantitative performance assessment of cloud regimes 3 

The cloud-climate radiative feedback process remains one of the largest sources of uncertainty in 4 

determining the climate sensitivity of models (Boucher et al., 2013). Traditionally, clouds have 5 

been evaluated in terms of their impact on the mean top of atmosphere fluxes. However, it is 6 

possible to achieve good performance on these quantities through compensating errors, for example 7 

boundary layer clouds may be too reflective but have insufficient horizontal coverage (Nam et al., 8 

2012). Williams and Webb (2009) proposed a Cloud Regime Error Metric (CREM) which critically 9 

tests the ability of a model to simulate both the relative frequency of occurrence and the radiative 10 

properties correctly for a set of cloud regimes determined by the daily mean cloud top pressure, in-11 

cloud albedo and fractional coverage at each grid-box. Having previously identified the regimes by 12 

clustering joint cloud-top pressure-optical depth histograms from the International Satellite Cloud 13 

Climatology Project (ISCCP, Rossow and Schiffer (1999)) as per Williams and Webb (2009), each 14 

daily model grid box is assigned to the regime cluster centroid with the closest cloud top pressure, 15 

in-cloud albedo and fractional coverage as determined by the 3-element Euclidean distance. The 16 

fraction of grid points assigned to each of the regimes and the mean radiative properties of those 17 

grid points are then compared to the observed values. This routine also uses a bilinear regridding 18 

method with a 2.5°×2.5° target grid. 19 

This metric is now implemented in ESMValTool (v1.0), with references in the code to tables in the 20 

Williams and Webb (2009) study defining the cluster centroids 21 

[namelist_williams09climdyn_CREM.xml]. Required are daily data from ISCCP mean cloud albedo 22 

(albisccp), ISCCP Mean Cloud Top Pressure (pctisccp), ISCCP Total Total Cloud Fraction 23 

(cltisccp), TOA outgoing short- and long-wave radiation (rsut, rlut), TOA outgoing shortwave 24 

radiation (rlutcs), surface snow area fraction (snc) or surface snow amount (snw), and sea ice area 25 

fraction (sic). The metric has been applied over the period January 1985 to December 1987 to those 26 

CMIP5 models with the required diagnostics (daily data) available for their AMIP simulation (see 27 

caption of Fig. 13). A perfect score with respect to ISCCP would be zero. Williams and Webb 28 

(2009) also compared data from the MODIS and the Earth Radiation Budget Experiment (ERBE, 29 

Barkstrom (1984)) to ISCCP in order to provide an estimate of observational uncertainty. This 30 

observational regime characteristic was found to be 0.96 as marked on Fig. 13 when calculated over 31 

the period March 1985 to February 1990. Hence a model with a score that is similar to this value 32 
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can be considered to be within observational uncertainty, although it should be noted that this does 1 

not necessarily mean that the model lies within the observations for each regime. Error bars are not 2 

plotted since experience has shown that the metric has little sensitivity to interannual variability and 3 

models that are visibly different on Fig. 13 are likely to be significantly so. A minimum of two 4 

years, and ideally five years or more, of daily data are required for the scientific analysis. 5 

4.2. Detection of systematic biases in the physical climate: ocean 6 

4.2.1. Handling of ocean grids 7 

Analysis of ocean model data from ESMs poses several unique challenges for analysis. First, in 8 

order to avoid numerical singularities in their calculations, ocean models often use irregular grids 9 

where the poles have been rotated or moved to be located over land areas. For example, the global 10 

configuration of the Nucleus for European Modelling of the Ocean (NEMO) framework uses a 11 

tripolar grid (Madec, 2008), with the three poles located over Siberia, Canada and Antarctica. 12 

Second, transports of scalar quantities (e.g., overturning stream functions and heat transports) can 13 

only be calculated accurately on the original model grids as interpolation to other grids introduces 14 

errors. This means that, e.g. for the calculation of water transport through a strait, both the 15 

horizontal and vertical extent of the grids on which the u and v currents are defined is required. 16 

Therefore, this type of diagnostic can only be used for models for which all native grid information 17 

is available. State variables like SSTs, sea ice and salinity are regridded using grid information (i.e., 18 

coordinates, bounds, and cell areas) available in the ocean input files of the CMIP5 models. To 19 

create difference plots against observations or other models all data are regridded to a common grid 20 

(e.g., 1°×1°) using the regridding functionality of the Earth System Modeling Framework (ESMF, 21 

https://www.ncl.ucar.edu/Applications/ESMF.shtml). 22 

4.2.2. Southern Ocean Diagnostics 23 

4.2.2.1. Southern Ocean mixed layer dynamics and surface turbulent fluxes  24 

Earth system models often show large biases in the Southern Ocean mixed layer. For example, Sterl 25 

et al. (2012) showed that in EC-Earth/NEMO the Southern Ocean is too warm and salinity too low, 26 

while the mixed-layer is too shallow. These biases are not specific to EC-Earth, but are rather 27 

widespread. At the same time, values for Antarctic Circumpolar Current (ACC) transport vary 28 

between 90 and 264 Sv in CMIP5 models, with a mean of 155±51 Sv. The differences are 29 

associated with differences in the ACC density structure. 30 
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A namelist has been implemented in the ESMValTool to analyse these biases 1 

[namelist_SouthernOcean.xml]. With these diagnostics polar stereographic (difference) maps can be 2 

produced to compare monthly/annual mean model fields with corresponding ERA-Interim data. The 3 

patch recovery technique is applied to regrid data to a common 1°×1° grid. There are also scripts to 4 

plot the differences in the area mean vertical profiles of ocean temperature and salinity between 5 

models and data from the World Ocean Atlas (Antonov et al., 2010; Locarnini et al., 2010). The 6 

ocean mixed layer thickness from models can be compared with that obtained from the Argo floats 7 

(Dong et al., 2008). Finally, the ACC strength, as measured by water mass transport through the 8 

Drake Passage, is calculated using the same method as in the CDFTOOLS package (CDFTOOLS, 9 

http://servforge.legi.grenoble-inp.fr/projects/CDFTOOL). This diagnostic can be used to calculate 10 

the transport through other sections as well, but is presently only available for NEMO/ORCA1 11 

output, for which all grid information is available. The required variables for the comparison with 12 

ERA-Interim are sea surface temperature (tos), downward heat flux (hfds, calculated from ERA-13 

Interim by summing the surface latent and sensible heat flux and the net shortwave and longwave 14 

fluxes (hfls+hfss+rsns+rlns)), water flux (wfpe, calculated by summing precipitation and 15 

evaporation (pr+evspsbl)) and the wind stress components (tauu and tauv). For the comparison with 16 

the World Ocean Atlas 2009 data (WOA09) sea surface salinity (sos), sea water salinity (so) and 17 

temperature (to) are required variables. For the comparison with the Argo floats the ocean mixed 18 

layer thickness (mlotst) is required. Finally the two components of sea water velocity (uo and vo) 19 

are required for the volume transport calculation. Some example figures from this set of diagnostic 20 

scripts are shown for EC-Earth in Fig. 14. 21 

4.2.2.2. Atmospheric processes forcing the Southern Ocean 22 

One leading cause of SST biases in the Southern Ocean is systematic biases in surface radiation 23 

fluxes (Trenberth and Fasullo, 2010) coupled with systematic errors in macrophysical (e.g. cloud 24 

amount) and microphysical (e.g. frequency of mixed-phase clouds) cloud properties (Bodas-Salcedo 25 

et al., 2014). 26 

A namelist has been implemented into the ESMValTool that compares model estimates of cloud, 27 

radiation and surface turbulent flux variables over the Southern Ocean with suitable observations 28 

[namelist_SouthernHemisphere.xml]. Due to the lack of surface/in-situ observations over the 29 

Southern Ocean, remotely sensed data can be subject to considerable uncertainty (Mace, 2010). 30 

While this uncertainty is not explicitly addressed in ESMValTool (v1.0), in future releases we will 31 

include a number of alternative satellite based data sets for cloud variables (e.g., MISR, MODIS, 32 
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ISCCP) as well as new methods under development to derive surface turbulent flux estimates 1 

constrained by observed TOA radiation flux estimates and atmospheric energy divergence derived 2 

from reanalysis products (Trenberth and Fasullo, 2008). Inclusion of multiple satellite-based 3 

estimates will provide some estimate of observational uncertainty over the region. Variables 4 

analysed include (i) total cloud cover (clt), vertically integrated cloud liquid water and cloud ice 5 

water (clwvi, clivi) (ii) surface/ (TOA) downward/outgoing total sky and clear sky short wave and 6 

longwave radiation fluxes (rsds, rsdcs, rlds, rldscs / rsut, rsutcs, rlut, rlutcs) and (iii) surface 7 

turbulent latent and sensible heat fluxes (hfls, hfss). Observational constraints are derived from, 8 

respectively; cloud: CloudSat level 3 data (Stephens et al., 2002), radiation: CERES-EBAF level 3 9 

Ed2 data and surface turbulent fluxes: WHOI-OAflux (Yu et al., 2008). 10 

The following diagnostics are calculated with accompanying plots: (i) Seasonal mean absolute-11 

value and difference maps for model data versus observations covering the Southern Ocean region 12 

(30°S-65°S) for all variables. (ii) Mean seasonal cycles using zonal means averaged separately over 13 

three latitude bands (i) 30°S-65°S, the entire Southern Ocean, (ii) 30°S-45°S, the sub-tropical 14 

Southern Ocean and (iii) 45°S-65°S, the mid-latitude Southern Ocean. (iii) Annual means of each 15 

variable (models and observations) plotted as zonal means, over 30°S-65°S, (iv) Scatter plots of 16 

seasonal mean downward (surface) and outgoing (TOA) longwave and short wave radiation as a 17 

function of total cloud cover, cloud liquid water path or cloud ice water path, calculated for the 18 

three regions outlined above. The data are regridded using a cubic interpolation method with the 19 

observations grid as target. Figure 15 provides an example diagnostic, with the top panel showing 20 

covariability of seasonal mean surface downward short wave radiation as a function of total cloud 21 

cover. To construct the figure, grid point values of cloud cover, for each season covering 30°S to 22 

65°S, are saved into bins of 5% increasing cloud cover. For each grid point the corresponding 23 

seasonal mean radiation value is used to obtain a mean radiation flux for each cloud cover bin. The 24 

lower panel plots the fractional occurrence of seasonal mean cloud cover from CloudSat and model 25 

data for the same spatial and temporal averaging as used in the upper panel. Observations from 26 

CERES-EBAF radiation plotted against CloudSat cloud cover are compared to an example CMIP5 27 

model. From the covariability plot we can diagnose whether models exhibit a similar dependency 28 

between incoming surface short wave radiation and cloud cover as seen in observations. We can 29 

further assess if there is a systematic bias in surface solar radiation and whether this bias occurs at 30 

specific values of cloud cover. Similar covariability plots are available for surface incoming 31 

longwave radiation and for TOA long and short wave radiation, plotted respectively against cloud 32 

cover, cloud liquid water path and cloud ice water path. Combining these diagnostics provides a 33 
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comprehensive evaluation of simulated relationships between surface and TOA radiation fluxes and 1 

cloud variables. 2 

4.2.3. Simulated tropical ocean climatology 3 

An accurate representation of the tropical climate is fundamental for ESMs. The majority of solar 4 

energy received by the Earth is in the tropics and the potential for thermal emission of absorbed 5 

energy back to space is also largest in the tropics due to the high column concentrations of water 6 

vapor at low latitudes (Pierrehumbert, 1995; Stephens and Greenwald, 1991). Coupled interactions 7 

between equatorial SSTs, surface wind stress, precipitation and upper-ocean mixing are central to 8 

many tropical biases in ESMs. This is the case both with respect to the mean state and for key 9 

modes of variability, influenced by, or interacting with, the mean state (e.g., El Nino Southern 10 

Oscillation (ENSO), Choi et al. (2011)). Such biases are often reflected in a “double ITCZ” seen in 11 

the majority of CMIP3 and CMIP5 CCMs (Li and Xie, 2014; Oueslati and Bellon, 2015). The 12 

double ITCZ bias, present in many ESMs, occurs when models fail to simulate a single, year round, 13 

ITCZ rainfall maximum north of the equator. Instead, an unrealistic secondary maximum in models 14 

south of the equator is present for some or all of the year. Such biases are particularly prevalent in 15 

the tropical Pacific, but can also occur in the Atlantic (Oueslati and Bellon, 2015). This double 16 

ITCZ is often accompanied by an overextension of the East Pacific equatorial cold tongue into the 17 

Central Pacific, collocated with a positive bias in easterly near-surface wind speeds and a shallow 18 

bias in ocean mixed layer depth (Lin, 2007). Such biases can directly impact the ability of an ESM 19 

to accurately represent ENSO variability (An et al., 2010; Guilyardi, 2006) and its potential 20 

sensitivity to climate change (Chen et al., 2015), with negative consequences for a range of 21 

simulated features, such as regional tropical temperature and precipitation variability, monsoon 22 

dynamics and ocean and terrestrial carbon uptake (Iguchi, 2011; Jones et al., 2001). 23 

To assess such tropical biases with the ESMValTool, we have implemented a namelist with 24 

diagnostics motivated by the work of Li and Xie (2014) [namelist_TropicalVariability.xml]. In 25 

particular, we reproduce their Fig. 5 for models and observations/reanalyses, calculating equatorial 26 

mean (5°N-5°S), longitudinal sections of annual mean precipitation (pr), skin temperature (ts), 27 

horizontal winds (ua and va) and 925 hPa divergence (derived from the sum of the partial 28 

derivatives of the wind components extracted at the 925 hPa pressure level (that is du/dx + dv/dy). 29 

Latitude cross sections of the model variables are plotted for the equatorial Pacific, Indian and 30 

Atlantic Oceans with observational constraints provided by the TRMM-3B43-v7 for precipitation, 31 

the HadISST for SSTs, and ERA-interim reanalysis for temperature and winds. Latitudinal sections 32 



 26

of absolute and normalized annual mean SST and precipitation are also calculated, spatially 1 

averaged for the three ocean basins. Normalization follows the procedure outlined in Fig. 1 of Li 2 

and Xie (2014) whereby values at each latitude are normalized by the tropical mean (20°N-20°S) 3 

value of the corresponding parameter (e.g., annual mean precipitation at a given location is divided 4 

by the 20°N-20°S annual mean value). Finally, to assess how models capture observed relationships 5 

between SST and precipitation we calculate the co-variability of precipitation against SST for 6 

specific regions of the tropical Pacific. This analysis includes calculation of the Mean Square Error 7 

(MSE) between model SST/precipitation and observational equivalents. A similar regridding 8 

procedure as for the Southern Hemisphere diagnostics is applied here, based on a cubic 9 

interpolation method and using the observations as target grid. The namelist as included in 10 

ESMValTool (v1.0) runs on all CMIP5 models. Figure 16 provides one example of the tropical 11 

climate diagnostics, with latitude cross sections of absolute and tropical normalized SST and 12 

precipitation from three CMIP5 models (HadGEM2-ES (Collins et al., 2011), MPI-ESM-LR and 13 

IPSL-CM5A-MR (Dufresne et al., 2013)) plotted against HadISST and TRMM data.  14 

4.2.4. Sea ice 15 

Sea ice is a key component of the climate system through its effects on radiation and seawater 16 

density. A reduction in sea ice area results in increased absorption of shortwave radiation, which 17 

warms the sea ice region and contributes to further sea ice loss. This process is often referred to as 18 

the sea ice albedo climate feedback which is part of the Arctic amplification phenomena (Curry, 19 

2007). CMIP5 models tend to underestimate the decline in summer Arctic sea ice extent observed 20 

by satellites during the last decades (Stroeve et al., 2012) which may be related to models’ 21 

underestimation of the sea ice albedo feedback process (Boé et al., 2009). Conversely in the 22 

Antarctic, observations show a small increase in March sea ice extent while the CMIP5 models 23 

simulate a small decrease (Flato et al., 2013; Stroeve et al., 2012). It is therefore important that 24 

model sea-ice processes are evaluated and improvements regularly assessed. Caveats have been 25 

noted with respect to the limitations of using only sea ice extent as a metric of model performance 26 

(Notz et al., 2013) as the sea ice concentration, volume, and drift, sea ice thickness and surface 27 

albedo, as well as sea ice processes such as melt pond formation or the summer sea ice melt are all 28 

important sea ice related quantities. In addition the atmospheric forcings (e.g., wind, clouds, and 29 

snow) and ocean forcings (e.g., salinity and ocean transport) impact on the sea ice state and 30 

evolution. 31 

In ESMValTool (v1.0) the sea ice namelist includes diagnostics that cover sea ice extent and 32 
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concentration [namelist_SeaIce.xml], but work is underway to include other variables and processes 1 

in future releases. An example diagnostic produced by the sea ice namelist is given in Figure 17, 2 

which shows the timeseries of September Arctic sea ice extent from the CMIP5 historical 3 

simulations compared to observations from the National Snow and Ice Data Center (NSIDC) 4 

produced by combining concentration estimates created with the NASA Team algorithm and the 5 

Bootstrap algorithm (Meier et al., 2013; Peng et al., 2013) and SSTs from the HadISST data set, 6 

similar to Figure 9.24 of Flato et al. (2013). Sea ice extent is calculated as the total area (km2) of 7 

grid cells over the Arctic or Antarctic with sea-ice concentrations (sic) of at least 15%. The sea ice 8 

namelist can also calculate the seasonal cycle of sea ice extent and polar stereographic contour and 9 

polar contour difference plots of Arctic and Antarctic sea ice concentration. For the latter 10 

diagnostic, data is regridded to a common 1°×1° grid using the patch recovery technique. 11 

4.3. Detection of systematic biases in the physical climate: land 12 

4.3.1. Continental dry bias 13 

The representation of land surface processes and fluxes in climate models critically affects the 14 

simulation of near-surface climate over land. In particular, energy partitioning at the surface 15 

strongly influences surface temperature and it has been suggested that temperature biases in ESMs 16 

can be in part related to biases in evapotranspiration. The most notable feature in a majority of 17 

CMIP3 and CMIP5 models is a tendency to overestimate evapotranspiration globally (Mueller and 18 

Seneviratne, 2014). 19 

A diagnostic to analyse the representation of evapotranspiration in ESMs has been included in the 20 

ESMValTool [namelist_Evapotranspiration.xml]. For comparison with the LandFlux-EVAL 21 

product (Mueller et al., 2013), the modelled surface latent heat flux (hfls) is converted to 22 

evapotranspiration units using the latent heat of vaporization. The diagnostic then produces lat-lon 23 

maps of absolute evapotranspiration as well as bias maps (model minus reference product, after 24 

regridding data to the coarsest grid using area-conservative interpolation). In Fig. 18, the global 25 

pattern of monthly mean evapotranspiration is evaluated against the LandFlux-EVAL product. The 26 

evapotranspiration diagnostic is complemented by the Standardized Precipitation Index (SPI) 27 

diagnostic [namelist_SPI.xml], which gives a measure of drought intensity from an atmospheric 28 

perspective and can help relating biases in evapotranspiration to atmospheric causes such as the 29 

accumulated precipitation amounts. For each month, precipitation (pr) is summed over the 30 

preceding months (options for 3, 6 or 12-monthly SPI). Then a two-parameter Gamma distribution 31 
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of cumulative probability is fitted to the strictly positive month sums, such that the probability of a 1 

non-zero precipitation sum being below a certain value x corresponds to Gamma(x). The shape and 2 

scale parameters of the gamma distribution are estimated with a maximum likelihood approach. 3 

Accounting for periods of no precipitation, occurring at a frequency q, the total cumulative 4 

probability distribution of a precipitation sum below x, H (x), becomes H (x) = q + (1 - 5 

q)*Gamma(x). In the last step, a precipitation sum x is assigned to its corresponding SPI value by 6 

computing the quantile q_N(0,1) of the standard normal distribution at probability H (x). The SPI of 7 

a precipitation sum x, thus, corresponds to the quantile of the standard normal distribution which is 8 

assigned by preserving the probability of the original precipitation sum, H (x). Mean and annual 9 

cycle are not meaningful since the SPI accounts for seasonality and transforms the data to a zero 10 

average in each month. Therefore the diagnostic focuses on lat-lon maps of annual or seasonal 11 

trends in SPI (unitless) when comparing models with observations. 12 

4.3.2. Runoff 13 

Evaluation of precipitation is a challenge due to potentially large errors and uncertainty in observed 14 

precipitation data (Biemans et al., 2009; Legates and Willmott, 1990). An alternative or additional 15 

option to the direct evaluation of precipitation over land (such as, e.g., included in the global 16 

precipitation evaluation in Sect. 4.1.2) is the evaluation of river runoff that can in principle be 17 

measured with comparatively small errors for most rivers. Routine measurements are performed for 18 

many large rivers, generating a large global database (e.g., available at the Global Runoff Data 19 

Centre (GRDC, Dümenil Gates et al. (2000)). The length of available time series, however, varies 20 

between the rivers, with large data gaps especially in recent years for many rivers. The evaluation of 21 

runoff against river gauge data can provide a useful independent measure of the simulated 22 

hydrological cycle. If both river flow and precipitation are given with reasonable accuracy, it will 23 

also provide an observational constraint on model surface evaporation, provided that the considered 24 

averaging time periods are long enough so that changes in surface water storages are negligible 25 

(Hagemann et al., 2013), e.g., by considering climatological means of 20 years or more. For present 26 

climate conditions ESMs often exhibit a dry and warm near-surface bias during summer over mid-27 

latitude continents (Hagemann et al., 2004). Continental dry biases in precipitation exist in the 28 

majority of CMIP5 models over South America, the Mid-west of US, the Mediterranean region, 29 

Central and Eastern Europe, West and South Asia (Fig. 4 and Fig. 9.4 of Flato et al. (2013)). These 30 

precipitation biases often transfer into dry biases in runoff, but sometimes dry biases in runoff can 31 

be caused by a too large evapotranspiration (Hagemann et al., 2013). In order to relate biases in 32 
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runoff to biases in precipitation and evapotranspiration, the catchment oriented evaluation in this 1 

section considers biases in all three variables. This means that the respective variables are 2 

considered as spatially averages over the drainage basins of large rivers. 3 

Beside bias maps, a set of diagnostics to produce basin-scale comparisons of runoff (mrro), 4 

evapotranspiration (evspsbl) and precipitation (pr) have also been implemented in ESMValTool 5 

[namelist_runoff_et.xml]. This namelist calculates biases in climatological annual means of the 6 

three variables for 12 large-scale catchments areas on different continents and for different climates. 7 

For total runoff, catchment averaged model values are compared to climatological long-term 8 

averages of GRDC observations. Due to the incompleteness of these station data, a year-to-year 9 

correspondence of data cannot be achieved so only climatological data are considered, as in 10 

Hagemann et al. (2013). Simulated precipitation is compared to catchment-averaged WATCH 11 

forcing data based on ERA-Interim (WFDEI) data (Weedon et al., 2014) for the period 1979-2010. 12 

Evapotranspiration observations are estimated using the difference of the catchment-averaged 13 

WFDEI precipitation minus the climatological GRDC river runoff. As an example, Fig. 19 shows 14 

biases in runoff coefficient (runoff/precipitation) against the relative precipitation bias for the 15 

historical simulation of one of the CMIP5 models (MPI-ESM-LR). 16 

4.4. Detection of biogeochemical biases: carbon cycle 17 

4.4.1. Terrestrial biogeochemistry 18 

A realistic representation of the global carbon cycle is a fundamental requirement for ESMs. In the 19 

past, climate models were directly forced by atmospheric CO2 concentrations, but since CMIP5, 20 

ESMs are routinely forced by anthropogenic CO2 emissions, the atmospheric concentration being 21 

inferred from the difference between these emissions and the ESM simulated land and ocean carbon 22 

sinks. These sinks are affected by atmospheric CO2 and climate change, inducing feedbacks 23 

between the climate system and the carbon cycle (Arora et al., 2013; Friedlingstein et al., 2006). 24 

Quantification of these feedbacks is critical to estimate the future of these carbon sinks and hence 25 

atmospheric CO2 and climate change (Friedlingstein et al., 2014).  26 

The diagnostics implemented in ESMValTool to evaluate simulated terrestrial biogeochemistry are 27 

based on the study of Anav et al. (2013) and span several time-scales: climatological means, intra-28 

annual (seasonal cycle), interannual and long-term trends [namelist_anav13jclim.xml]. Further 29 

extending these routines, the diagnostics presented in Sect. 4.1.1 are also applied here to calculate 30 

quantitative performance metrics. These metrics assess how both the land and ocean 31 
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biogeochemical components of ESMs reproduce different aspects of the land and ocean carbon 1 

cycle, with an emphasis on variables controlling the exchange of carbon between the atmosphere 2 

and these two reservoirs. The analysis indicates some level of compensating errors within the 3 

models. Selecting, within the namelist, several specific diagnostics to be applied to more key 4 

variables controlling the land or ocean carbon cycle, can help reducing the risk of missing such 5 

compensating errors. Figure 20 shows a portrait diagram similar to Fig. 3 of Anav et al. (2013) but 6 

for seasonal carbon cycle metrics against suitable reference data sets (see below). 7 

For land, diagnostics of the land carbon sink net biosphere productivity (nbp) are essential. 8 

Although direct observations are not available, nbp can be estimated from atmospheric CO2 9 

inversions (JMA and TRANSCOM) and on the global scale combined with observation-based 10 

estimates of the oceanic carbon sink (fgco2 from GCP (Le Quéré et al., 2014)). In addition to net 11 

carbon fluxes, diagnostics for gross primary productivity of land (gpp), leaf area index (lai), 12 

vegetation (cVeg) and soil carbon pools (cSoil) are also implemented in the ESMValTool to assess 13 

possible error compensation in ESMs. Observation-based gpp estimates are derived from Model 14 

Tree Ensemble (MTE) upscaling data (Jung et al., 2009) from the network of eddy-covariance flux 15 

towers (FLUXNET, Beer et al. (2010). The leaf area index data set used for evaluation (LAI3g) is 16 

derived from the Global Inventory Modeling and Mapping Studies group (GIMMS) AVHRR 17 

normalized difference vegetation index (NDVI-017b) data (Zhu et al., 2013). Finally, cSoil and 18 

cVeg are assessed as mean annual values over different large sub-domains using the Harmonised 19 

World soil Database (HWSD, Nachtergaele et al. (2012)) and the Olson based vegetation carbon 20 

data set (Gibbs, 2006; Olson et al., 1985). 21 

4.4.2. Marine biogeochemistry 22 

Marine biogeochemistry models form a core component of ESMs and require evaluation for 23 

multiple passive tracers. The increasing availability of quality-controlled global biogeochemical 24 

data sets for the historical period (e.g. Surface Ocean CO2 Atlas Version 2 (SOCAT v2, Bakker et 25 

al. (2014)) provides further opportunity to evaluate model performance on multi-decadal timescales. 26 

Recent analyses of CMIP5 ESMs indicate that persistent biases exist in simulated biogeochemical 27 

variables, for instance as identified in ocean oxygen (Andrews et al., 2013) and carbon cycle (Anav 28 

et al., 2013) fields derived from CMIP5 historical experiments. Some systematic biases in 29 

biogeochemical tracers can be attributed to physical deficiencies within ocean models (see Section 30 

4.2), motivating further understanding of coupled physical-biogeochemical processes in the current 31 

generation of ESMs. For example, erroneous over oxygenation of subsurface waters within the 32 
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MPI-ESM-LR CMIP5 model has been attributed to excess ventilation and vertical mixing in mid- 1 

to high-latitude regions (Ilyina et al., 2013). 2 

A namelists is provided that includes diagnostics to support the evaluation of ocean biogeochemical 3 

cycles at global scales, as simulated by both ocean-only and coupled climate-carbon cycle ESMs 4 

[namelist_GlobalOcean.xml]. Supported input variables include surface partial pressure of CO2 5 

(spco2), surface chlorophyll concentration (chl), surface total alkalinity (talk) and dissolved oxygen 6 

concentration (o2). These variables provide an integrated view of model skill with regard to 7 

reproducing bulk marine ecosystem and carbon cycle properties. Observation-based reference data 8 

sets include SOCAT v2 and ETH-SOM-FFN (Landschützer et al., 2014a, b) for surface pCO2, Sea-9 

viewing Wide Field-of-view Sensor (SeaWiFS) satellite data for surface chlorophyll (McClain et 10 

al., 1998), climatological data for total alkalinity (Takahashi et al., 2014), and World Ocean Atlas 11 

2005 climatological data (WOA05) with in situ corrections following Bianchi et al. (2012) for 12 

dissolved oxygen. Diagnostics calculate contour plots for climatological distributions, inter-annual 13 

or inter-seasonal (e.g. JJAS) variability together with the difference between each model and a 14 

chosen reference data set. Such differences are calculated after regridding the data to the coarsest 15 

grid using an area-conservative interpolation. Monthly, seasonal or annual frequency time-series 16 

plots can also be produced either globally averaged or for a selected latitude-longitude range. 17 

Optional extensions include the ability to mask model data with the same coverage as observations, 18 

calculate anomaly fields, and to overlay trend lines, and running or multi-model means. Pre-19 

processing routines are also included to accommodate native curvilinear grids, common in ocean 20 

model discretisation (see Section 4.2.1), along with providing the ability to extract depth levels 21 

from 3-D input fields. An example plot is presented in Fig. 22, showing inter-annual variability in 22 

surface ocean pCO2 as simulated by a subset of CMIP5 ESMs (BNU-ESM, HadGEM2-ES, GFDL-23 

ESM2M), expressed as the standard deviation of de-trended annual averages for the period 1992 – 24 

2005. As an observation-based reference pCO2 field, ETH SOM-FFN (1998-2011) is used, which 25 

extrapolates SOCAT v2 data (Bakker et al., 2014) using a 2-step neural network method. As 26 

described in Landschützer et al. (2014a), ETH SOM-FFN partitions monthly SOCAT v2 pCO2 27 

observations into discrete biogeochemical provinces by establishing common relationships between 28 

independent input parameters using a Self Organising Map (SOM). Non-linear input-target 29 

relationships, as derived for each biogeochemical province using a Feed-Forward Network (FFN) 30 

method, are then used to extrapolate observed pCO2. 31 
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A diagnostic for oceanic Net Primary Production (NPP) is also implemented in ESMValTool for 1 

climatological annual mean and seasonal cycle, as well as for inter-annual variability over the 1986-2 

2005 period [namelist_anav13jclim.xml]. Observations are derived from the SeaWiFS satellite 3 

chlorophyll data, using the Vertically Generalized Production Model (VGPM, Behrenfeld and 4 

Falkowski (1997)). 5 

4.5. Detection of biogeochemical biases: aerosols and trace gas chemistry 6 

4.5.1. Tropospheric aerosols 7 

Tropospheric aerosols play a key role in the Earth system and have a strong influence on climate 8 

and air pollution. The global aerosol distribution is characterized by a large spatial and temporal 9 

variability which makes its representation in ESMs particularly challenging (Ghan and Schwartz, 10 

2007). In addition, aerosol interactions with radiation (direct aerosol effect (Schulz et al., 2006)) 11 

and with clouds (indirect aerosol effects (Lohmann and Feichter, 2005)) need to be accounted for. 12 

Model-based estimates of anthropogenic aerosol effects are still affected by large uncertainties, 13 

mostly due to an incorrect representation of aerosol processes (Kinne et al., 2006). Myhre et al. 14 

(2013) report a substantial spread in simulated aerosol direct effects among 16 global aerosol 15 

models and attribute it to diversities in aerosol burden, aerosol optical properties and aerosol optical 16 

depth (AOD). Diversities in black carbon (BC) burden up to a factor of three, related to model 17 

disagreements in simulating deposition processes were also found by Lee et al. (2013). Model 18 

meteorology can be a source of diversity since it impacts on atmospheric transport and aerosol 19 

lifetime. This in turn relates to the simulated essential climate variables such as winds, humidity and 20 

precipitation (see Section 4.1). Large biases also exist in simulated aerosol indirect effects (IPCC, 21 

2013) and are often a result of systematic errors in both model aerosol and cloud fields (see Section 22 

4.1.6). 23 

To assess current biases in global aerosol models, the aerosol namelist of the ESMValTool 24 

comprises several diagnostics to compare simulated aerosol concentrations and optical depth at the 25 

surface against station data, motivated by the work of Pringle et al. (2010), Pozzer et al. (2012), and 26 

Righi et al. (2013) [namelist_aerosol_CMIP5.xml]. Diagnostics include time series of monthly or 27 

yearly mean aerosol concentrations, scatter plots with the relevant statistical indicators, and contour 28 

maps directly comparing model results against observations. The comparison is performed 29 

considering collocated model and observations in space and time. In the current version of 30 

ESMValTool, these diagnostics are supplied with observational data from a wide range of station 31 
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networks, including Interagency Monitoring of Protected Visual Environments (IMPROVE) and 1 

CASTNET (North America), European Monitoring and Evaluation Programme (EMEP, Europe) 2 

and the recently-established Asian network (EANET). The AERONET data are also available for 3 

evaluating aerosol optical depth in continental regions and in a few remote marine locations. For 4 

evaluating aerosol optical depth, we also use satellite data, the primary advantage of which is 5 

almost-global coverage, particularly over the oceans. Satellite data is however affected by 6 

uncertainties related to the algorithm used to process radiances into relevant geophysical state 7 

variables. The tool currently implements data from the Multi-angle Imaging SpectroRadiometer 8 

(MISR, Stevens and Schwartz (2012)), MODIS and the ESACCI-AEROSOL product (Kinne et al., 9 

2015) which is a combination of ERS2-ATSR2 and ENVISAT-AATSR data. To calculate model 10 

biases against satellite data, regridding is performed using a bilinear interpolation to the coarsest 11 

grid. Aerosol optical depth time series over the ocean for the period 1850-2010 are shown in Fig. 23 12 

for the CMIP5 models in comparison to MODIS and ESACCI-AEROSOL. Finally, more specific 13 

aerosol diagnostics have been implemented to compare aerosol vertical profiles of mass and number 14 

concentrations and aerosol size distributions, based on the evaluation work by Lauer et al. (2005) 15 

and Aquila et al. (2011). These diagnostics, however, use model quantities that were not part of the 16 

CMIP5 data request and therefore will not be discussed here. 17 

4.5.2. Tropospheric trace gas chemistry and stratospheric ozone 18 

In the past, climate models were forced with prescribed tropospheric and stratospheric ozone 19 

concentration, but since CMIP5 some ESMs include interactive chemistry and are capable of 20 

representing prognostic ozone (Eyring et al., 2013; Flato et al., 2013). This allows models to 21 

simulate important chemistry-climate interactions and feedback processes. Examples include the 22 

increase in oxidation rates in a warmer climate which leads to decreases in methane and its lifetime 23 

(Voulgarakis et al., 2013) or the increase in tropical upwelling (associated with the Brewer Dobson 24 

circulation) in a warmer climate and corresponding reductions in tropical lower stratospheric ozone 25 

as a result of faster transport and less time for ozone production (Butchart et al., 2010; Eyring et al., 26 

2010). It is thus becoming important to evaluate the simulated atmospheric composition in ESMs. A 27 

common high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere has been 28 

identified in tropospheric column ozone simulated by chemistry-climate models participating in the 29 

Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP), which could partly be 30 

related to deficiencies in the ozone precursor emissions (Young et al., 2013). Analysis of CMIP5 31 

models with respect to trends in total column ozone show that the multi-model mean of the models 32 
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with interactive chemistry is in good agreement with observations, but that significant deviations 1 

exist for individual models (Eyring et al., 2013; Flato et al., 2013). Large variations in stratospheric 2 

ozone in models with interactive chemistry drive large variations in lower stratospheric temperature 3 

trends. The results show that both ozone recovery and the rate of GHG increase determine future 4 

Southern Hemisphere summer-time circulation changes and are important to consider in ESMs 5 

(Eyring et al., 2013). 6 

The namelists implemented in the ESMValTool to evaluate atmospheric chemistry can reproduce 7 

the analysis of tropospheric ozone and precursors of Righi et al. (2015) 8 

[namelist_righi15gmd_tropo3.xml, namelist_righi15gmd_Emmons.xml] and the study by Eyring et 9 

al. (2013) [namelist_eyring13jgr.xml]. The calculation of the RMSE, mean bias, and Taylor 10 

diagrams (see Section 4.1.1) has been extended to tropospheric column ozone (derived from tro3 11 

fields), ozone profiles (tro3) at selected levels, and surface carbon monoxide (vmrco) (see Righi et 12 

al. (2015) for details). This enables a consistent calculation of relative performance for the climate 13 

parameters and ozone, which is particularly relevant given that biases in climate can impact on 14 

biases in chemistry and vice versa. In addition, diagnostics that evaluate tropospheric ozone and its 15 

precursors (nitrogen oxides (vmrnox), ethylene (vmrc2h4), ethane (vmrc2h6), propene (vmrc3h6), 16 

propane (vmrc3h8) and acetone (vmrch3coch3)) are compared to the observational data of Emmons 17 

et al. (2000). A diagnostic to compare tropospheric column ozone from the CMIP5 historical 18 

simulations to Aura MLS/OMI observations (Ziemke et al., 2011) is also included and shown as an 19 

example in Fig. 24. This diagnostic also remaps the data to the coarsest grid using local area 20 

averaging in order to calculate differences. For the stratosphere, total column ozone (toz) 21 

diagnostics are implemented. As an example, Figure 25 shows the CMIP5 total column ozone time 22 

series compared to the NIWA combined total column ozone database (Bodeker et al., 2005).  23 

4.6. Linking model performance to projections 24 

The relatively new research field of emergent constraints aims to link model performance 25 

evaluation with future projection feedbacks. An emergent constraint refers to the use of 26 

observations to constrain a simulated future Earth system feedback. It is referred to as emergent, 27 

because a relationship between a simulated future projection feedback and an observable element of 28 

climate variability emerges from an ensemble of ESM projections, potentially providing a 29 

constraint on the future feedback. Emergent constraints can help focus model development and 30 

evaluation onto processes underpinning uncertainty in the magnitude and spread of future Earth 31 

system change. Systematic model biases in certain forced modes, such as the seasonal cycle of 32 
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snow cover or inter-annual variability of tropical land CO2 uptake appear to project in an 1 

understandable way onto the spread of future climate change feedbacks resulting from these 2 

phenomena (Cox et al., 2013; Hall and Qu, 2006; Wenzel et al., 2014).  3 

To reproduce the analysis of Wenzel et al. (2014) that provides an emergent constraint on future 4 

tropical land carbon uptake, a namelist is included into ESMValTool (v1.0) to perform an emergent 5 

constraint analysis of the carbon cycle-climate feedback parameter (LT) (Cox et al., 2013; 6 

Friedlingstein et al., 2006) [namelist_wenzel14jgr.xml]. This namelist only considers the CMIP5 7 

ESMs that have provided the necessary output for the aalysis. This criterion precludes most CMIP5 8 

models and only seven ESMs are therefore considered here. The namelist includes diagnostics 9 

which analyse the short-term sensitivity of atmospheric CO2 to temperature variability on 10 

interannual time scales (IAV) for models and observations, as well as diagnostics for LT from the 11 

models. The observed sensitivity IAV is calculated by summing land (nbp) and ocean (fgco2) 12 

carbon fluxes which are correlated to tropical near-surface air temperature (tas). Results from 13 

historical model simulations are compared to observational based estimates of carbon fluxes from 14 

the Global Carbon project (GCP, Le Quéré et al. (2014)) and reanalysis temperature data from the 15 

NOAA National Climate Data Center (NCDC, Smith et al. (2008)). For diagnosing LT from the 16 

models, nbp from idealized fully coupled and biochemically coupled simulations are used as well as 17 

tas from fully coupled idealized simulations (see Fig. 26). Emergent constraints of this type help to 18 

understand some of the underlying processes controlling future projection sensitivity and offer a 19 

promising approach to reduce uncertainty in multi-model climate projections. 20 

5. Use of the ESMValTool in the model development cycle and evaluation workflow 21 

5.1. Model development 22 

As new model versions are developed, standardized diagnostics suites as presented here allow 23 

model developers to compare their results against previous versions of the same model or against 24 

other models, e.g. CMIP5 models. Such analyses help to identify different aspects in a model that 25 

have either improved or degraded as a result of a particular model development. The benchmarking 26 

of ESMs using performance metrics (see Section 4.1.1) provides an overall picture of the quality of 27 

the simulation, whereas process-oriented diagnostics help determine whether the simulation quality 28 

improvements are for the correct underlying physical reasons and point to paths for further model 29 

improvement. 30 
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The ESMValTool is intended to support modelling centres with quality control of their CMIP 1 

DECK experiments and the CMIP6 historical simulation, as well as other experiments from 2 

CMIP6-Endorsed Model Intercomparison Projects (Eyring et al., 2015). A significant amount of 3 

institutional resources go into running, post-processing, and publishing model results from such 4 

experiments. It is important that centres can easily identify and correct potential errors in this 5 

process. The standardized analyses contained in the ESMValTool can be used to monitor the 6 

progress of CMIP experiments. While the tool is designed to accommodate a wide range of time 7 

axes and configurations, and many of the diagnostics may be run on control or future climate 8 

experiments, ESMValTool (v1.0) is largely targeted to evaluate AMIP and the CMIP historical 9 

simulations. 10 

5.2. Integration into modelling workflows 11 

The ESMValTool can be run as a stand-alone tool, or integrated into existing modelling workflows. 12 

The primary challenge is to provide CF/CMOR compliant data. Not all modelling centres produce 13 

CF/CMOR compliant data directly as part of their workflow although we note that more are doing 14 

so as the potential benefits are being realized. For many groups conversion to CF/CMOR standards 15 

involves significant post-processing of native model output. This may require some groups to 16 

perform analysis via the ESMValTool on their model output after conversion to CF/CMOR, or to 17 

create intermediate “CMOR-like” versions of the data. Users who wish to use native model output 18 

can take advantage of the reformatting routine flexibility (see Section 3) to create scripts that 19 

convert this data into the CF/CMOR standard. As an example, reformat scripts for the NOAA-20 

GFDL models and the EMAC model are included with the initial release. These scripts are used to 21 

convert the native model output for direct use with the ESMValTool. The reformatting routine 22 

capability may provide an alternative to more expensive and complete “CMORization” processes 23 

that are usually required to formally publish model data on the ESGF. 24 

5.3. Running the ESMValTool alongside the ESGF 25 

Large international model inter-comparison projects such as CMIP stimulated the development of a 26 

globally distributed federation of data providers, supporting common data provisioning policies and 27 

infrastructures. ESGF is an international open source effort to establish a distributed data and 28 

computing platform, enabling world wide access to Peta- (in the future Exa-) byte scale scientific 29 

climate data. Data can be searched via a globally distributed search index with access possible via 30 

HTTP, OpenDAP and GridFTP. To efficiently run the ESMValTool on CMIP model data and 31 
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observations alongside the ESGF, the necessary data hosted by the ESGF has to be made locally 1 

accessible at the site where ESMValTool is executed. There are various ways this might be 2 

achieved. One possibility is to run ESMValTool separately at each site holding datasets required by 3 

the analysis, then combine the results. However, this is limited by the extent to which calculations 4 

can be performed without requiring data from another site. A more practical possibility is running 5 

ESMValTool alongside a large store of replica datasets gathered from across the ESGF, so that all 6 

the required data are in one location. Certain large ESGF sites (e.g., DKRZ, BADC, IPSL, PCMDI) 7 

provide replica dataset stores, and ESMValTool has been run in such a way at several of these sites. 8 

Replica dataset stores do not provide a complete solution however, as it is impossible to replicate all 9 

ESGF datasets at one site, so circumstances will arise when one or more required datasets are not 10 

available locally. The obvious solution is to download these datasets from elsewhere in the ESGF, 11 

and store them locally whilst the analysis is carried out. The indexed search facility provided by the 12 

ESGF makes it easy to identify the download URL of such ‘remote’ datasets, and a prototype of 13 

ESMValTool (not included in v1.0) has been developed that performs this search automatically 14 

using esgf-pyclient1. If the search is successful, the prototype provides the user with the URL of 15 

each file in the dataset, and the user (or system administrator) is then responsible for performing the 16 

download. The workflow of this prototype is illustrated in Figure 27. It is possible that the fully 17 

automated downloading of remote ESGF datasets may be provided by a future version of 18 

ESMValTool, but for now it is preferable for a human to manage the process due to large size of the 19 

files involved. A more complete coupling to the ESGF was originally planned for version 1.0 but 20 

was not possible due to the long down period of the ESGF. 21 

 22 

6. Summary and Outlook 23 

The Earth System Model Evaluation Tool (ESMValTool) is a diagnostics package for routine 24 

evaluation of Earth System Models (ESMs) with observations and reanalyses data or for 25 

comparison with results from other models. The ESMValTool has been developed to facilitate the 26 

evaluation of complex ESMs at individual modelling centres and to help streamline model 27 

evaluation standards within CMIP. Priorities to date that are included in ESMValTool (v1.0) 28 

described in this paper concentrate on selected systematic biases that were a focus of the European 29 

                                                 
1 https://pypi.python.org/pypi/esgf‐pyclient 
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Commission's 7th Framework Programme “Earth system Model Bias Reduction and assessing 1 

Abrupt Climate change (EMBRACE) project, the DLR Earth System Model Evaluation (ESMVal) 2 

project and other collaborative projects, in particular: performance metrics for selected ECVs, 3 

coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases 4 

and soil hydrology-climate interactions, atmospheric CO2 budgets, ozone, and tropospheric aerosol. 5 

We have applied the bulk of the diagnostics of ESMValTool (v1.0) to the entire set of CMIP5 6 

historical or AMIP simulations. The namelist on emergent constraints for the carbon cycle has been 7 

additionally applied to idealized carbon cycle experiments and the emission driven RCP 8.5 8 

simulations. 9 

ESMValTool (v1.0) can be used to compare new model simulations against CMIP5 models and 10 

observations for the selected scientific themes much faster than this was possible before. Model 11 

groups, who wish to do this comparison before submitting their CMIP6 historical simulations or 12 

AMIP experiments to the ESGF can do so since the tool is provided as open source software. In 13 

order to run the tool locally, observations need to be downloaded and for tiers 2 and 3 reformatted 14 

with the help of the reformatting scripts that are included. Model output needs to be either in CF 15 

compliant NetCDF or a reformatting routine needs to be written by the modelling group, following 16 

given examples for EMAC, GFDL models, and NEMO. 17 

Users of the ESMValTool (v1.0) results need to be aware that ESMValTool (v1.0) only includes a 18 

subset of the wide behaviour of model performance that the community aims to characterize. The 19 

results of running the ESMValTool need to be interpreted accordingly. Over time, the ESMValTool 20 

will be extended with additional diagnostics and performance metrics. A particular focus will be to 21 

integrate additional diagnostics that can reproduce the analysis of the climate model evaluation 22 

chapter of IPCC AR5 (Flato et al., 2013) as well as the projection chapter (Collins et al., 2013). We 23 

will also extend the tool with diagnostics to quantify forcings and feedbacks in the CMIP6 24 

simulations and to calculate metrics such as the equilibrium climate sensitivity (ECS), transient 25 

climate response (TCR), and the transient climate response to cumulative carbon emissions (TCRE) 26 

(IPCC, 2013). While inclusion of these diagnostics is straightforward, the evaluation of processes 27 

and phenomena to improve understanding about the sources of errors and uncertainties in models 28 

that we also plan to enhance remains a scientific challenge. The field of emergent constraints 29 

remains in its infancy and more research is required how to better link model performance to 30 

projections (Flato et al., 2013). In addition, an improved consideration of the interdependency in the 31 
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evaluation of a multi-model ensemble (Sanderson et al., 2015a, b) as well as internal variability in 1 

ESM evaluation is required. 2 

A critical aspect in ESM evaluation is the availability of consistent, error-characterized global and 3 

regional Earth observations, as well as accurate globally gridded reanalyses that are constrained by 4 

assimilated observations. Additional or longer records of observations and reanalyses will be used 5 

as they become available, with a focus on using obs4MIPs - including new contributions from the 6 

European Space Agency’s Climate Change Initiative (ESA CCI) - and ana4MIPs data. The 7 

ESMValTool can consider observational uncertainty in different ways, e.g. through the use of more 8 

than one observational data set to directly evaluate the models, by showing the difference between 9 

the reference data set and the alternative observations, or by including an observed uncertainty 10 

ensemble that spans the observed uncertainty range (e.g., available for the surface temperature data 11 

set compiled for HadISST). Often the uncertainties in the observations are not readily available. 12 

Reliable and robust error characterization/estimation of observations is a high priority throughout 13 

the community, and obs4MIPs and other efforts that create data sets for model evaluation should 14 

encourage the inclusion of such uncertainty estimates as part of each data set. 15 

The ESMValTool will be contributed to the analysis code catalogue being developed by the 16 

WGNE/WGCM climate model metrics panel. The purpose of this catalogue is to make the diversity 17 

of existing community-based analysis capabilities more accessible and transparent, and ultimately 18 

for developing solutions to ensure they can be readily applied to the CMIP DECK and the CMIP6 19 

historical simulation in a coordinated way. We are currently exploring options to interface with 20 

complimentary efforts, e.g. the PCMDI Metrics Package (PMP, Gleckler et al. (2016)) and the 21 

Auto-Assess package that is under development at the UK Met Office. An international strategy for 22 

organising and presenting CMIP results produced by various diagnostic tools is needed, and this 23 

will be a priority for the WGNE/WGCM climate metrics panel in collaboration with the CMIP 24 

Panel (http://www.wcrp-climate.org/index.php/wgcm-cmip/about-cmip). 25 

This paper presents ESMValTool (v1.0) which allows users to repeat all the analyses shown. 26 

Additional updates and improvements will be included in subsequent versions of the software, 27 

which are planned to be released on a regular basis. The ESMValTool works on CMIP5 simulations 28 

and, given CMIP DECK and CMIP6 simulations will be in a similar format, it will be 29 

straightforward to run the package on these simulations. A limiting factor at present is the need to 30 

download all data to a local cache. This limitation has spurred the development allowing 31 

ESMValTool to run alongside the ESGF at one of the data nodes. An initial attempt to couple the 32 
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tool to the ESGF has been made, but this is still at prototype stage (see Section 5.3). An additional 1 

limiting factor is that the model output from all CMIP models has to be mirrored to the ESGF data 2 

node where the tool is installed. This is facilitated by providing a listing of the variables and time 3 

frequencies that are used in ESMValTool (v1.0) which uses a significantly smaller volume than the 4 

data request for the CMIP DECK and CMIP6 simulations will include. This reduced set of data 5 

could be mirrored with priority. 6 

Several technical improvements are required to make the software package more efficient. One 7 

current limitation is the lack of a parallelization. Given the huge amount of data involved in a 8 

typical CMIP analysis, this can be highly CPU-time-intensive when performed on a single 9 

processor. In future releases, the possibility of parallelizing the tool will be explored. Additional 10 

development work is ongoing to create a more flexible pre-processing framework, which will 11 

include operations like ensemble-averaging and regridding to the current reformatting procedures as 12 

well as an improved coupling to the ESGF. Here, future versions of the ESMValTool will build as 13 

much as possible on existing efforts for the backend that reads and reformats data. In this regard it 14 

would be helpful if an application programming interface (API) could be defined for example by 15 

the WGCM Infrastructure Panel (WIP) that allows for flexible integration of diagnostics across 16 

different tools and programming languages in CMIP to this backend. 17 

We aim to move ESM evaluation beyond the state-of-the-art by investing in operational evaluation 18 

of physical and biogeochemical aspects of ESMs, process-oriented evaluation and by identifying 19 

processes most important to the magnitude and uncertainty of future projections. Our goal is to 20 

support model evaluation in CMIP6 by contributing the ESMValTool as one of the standard 21 

documentation functions and by running it alongside the ESGF. In collaboration with similar 22 

efforts, we aim for a routine evaluation that provides a comprehensive documentation of broad 23 

aspects of model performance and its evolution over time and to make evaluation results available 24 

at a timescale that was not possible in CMIP5. This routine evaluation is not meant to replace 25 

further in-depth analysis of model performance and can to date not strongly reduce uncertainties in 26 

global climate sensitivity which remains an active area of research. However, the ability to routinely 27 

perform such evaluation will drive the quality and realism of ESMs forward and will leave more 28 

time to develop innovative process-oriented diagnostics - especially those related to feedbacks in 29 

the climate system that link to the credibility of model projections. 30 

 31 
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7. Code availability 1 

ESMValTool (v1.0) is released under the Apache License, VERSION 2.0. The latest version of the 2 

ESMValTool is available from the ESMValTool webpage at http://www.esmvaltool.org/. Users 3 

who apply the Software resulting in presentations or papers are kindly asked to cite this paper 4 

alongside with the Software doi (doi:10.17874/ac8548f0315) and version number. In addition, 5 

ESMValTool will be further developed in a version controlled repository that is accessible only to 6 

the development team. Regular releases are planned for the future. The wider climate community is 7 

encouraged to contribute to this effort and to join the ESMValTool development team for 8 

contribution of additional more in-depth diagnostics for ESM evaluation. A wiki page for the 9 

development that describes ongoing developments is also available. Interested users and developers 10 

are welcome to contact the lead author. 11 
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Table 1. Overview of standard namelists implemented in ESMValTool (v1.0) along with the 1 

quantity and ESMValTool variable name for which the namelist is tested, the corresponding 2 

observations or reanalyses, the section and example figure in this paper, and references for the 3 

namelist. When the namelist is named with a specific paper (naming convention: 4 

namelist_SurnameYearJournalabbreviation.xml), it can be used to reproduce in general all or in 5 

some cases only a subset of the figures published in that paper. Otherwise the namelists group a set 6 

of diagnostics and performance metrics for a specific scientific topic (e.g., 7 

namelist_aerosol_CMIP5.xml). Observations and reanalyses are listed together with their Tier, type 8 

(e.g., reanalysis, satellite or in situ observations), the time period used, and a reference. Tier 1 9 

includes observations from obs4MIPs or reanalyses from ana4MIPs. Tier 2 and tier 3 indicate 10 

freely-available and restricted data sets, respectively. For these observations, reformatting routines 11 

are provided to bring the original data in the CF/CMOR standard format so that they can directly be 12 

used in the ESMValTool. 13 

xml namelist Tested Quantity (CMOR units) ESMValT
ool 
Variable 
Name 

Tested 
Observations 
/Reanalyses 
(Tier, type, time 
period, 
reference) 

Section / 
Example 
Figure(s) 

Reference
s for 
namelist 

Section 4.1: Detection of systematic biases in the physical climate: atmosphere 
namelist_perf
metrics_CMI
P5 
 
namelist_righi
15gmd_ECVs 

Temperature (K)  
 
Eastward wind (m s–1) 
 
Northward wind (m s–1) 
 
Near-surface air temperature (K) 
 
Geopotential height (m) 

ta 
 
ua 
 
va 
 
tas 
 
zg 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 
 
NCEP (Tier 2, 
reanalysis, 1948-
2012 (Kistler et 
al., 2001)) 

Section 
4.1.1. / Fig. 
2 and Fig. 
3 

Gleckler et 
al. (2008); 
Taylor 
(2001); 
Fig. 9.7 of 
Flato et al. 
(2013) 
Righi et al. 
(2015) 

Specific Humidity (1) hus AIRS (Tier 1, 
satellite, 2003-
2010 (Aumann et 
al., 2003)) 

Precipitation (kg m-2 s-1) pr GPCP-SG (Tier 1, 
satellite & rain 
gauge, 1979-near-
present (Adler et 
al., 2003)) 

TOA outgoing shortwave 
radiation (W m-2) 
 
TOA outgoing longwave 
radiation (W m-2) 
 
TOA outoing clear sky longwave 
radiation (W m-2) 
 

rsut 
 
 
rlut 
 
 
rlutcs 
 
 

CERES-EBAF 
(Tier 1, satellite, 
2001-2011 
(Wielicki et al., 
1996)) 
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Shortwave cloud radiative effect 
(W m-2) 
 
Longwave cloud radiative effect 
(W m-2) 

SW_CRE 
 
 
LW_CRE 

Aerosol optical depth at 550 nm 
(1) 

od550aer  MODIS (Tier 1, 
satellite, 2001-
2012 (King et al., 
2003)) 
 
ESACCI-
AEROSOL (Tier 
2, satellite, 1996-
2012 (Kinne et 
al., 2015)) 

Total cloud amount (%) clt MODIS (Tier 1, 
satellite, 2001-
2012 (King et al., 
2003)) 

namelist_flato
13ipcc 
 

Near-surface air temperature (K) tas ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 

Section 
4.1.2 / Fig. 
4 

Fig. 9.2 
and Fig. 
9.4 of 
Flato et al. 
(2013) 

Precipitation (kg m-2 s-1) pr GPCP-1DD (Tier 
1, satellite, 1997-
2010 (Huffman et 
al., 2001)) 

namelist_SAM
onsoon 
 
 
 
 
namelist_SAM
onsoon_AMIP 
 
 
 
namelist_SAM
onsoon_daily 

Eastward wind (m s–1) 
 
Northward wind (m s–1) 

ua 
 
va 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 
 
MERRA (Tier 1, 
reanalysis, 1979-
2011 (Rienecker 
et al., 2011)) 

Section 
4.1.3.1 / 
Fig. 5 and 
Fig. 6 

Goswami 
et al. 
(1999) 
Sperber et 
al. (2013) 
Wang and 
Fan (1999) 
Wang et al. 
(2012) 
Webster 
and Yang 
(1992) 
Lin et al. 
(2008); 
Fig. 9.32 
of Flato et 
al. (2013) 

Precipitation (kg m-2 s-1) pr TRMM-3B42-v7 
(Tier 1, satellite, 
1998-near-present 
(Huffman et al., 
2007)) 
 
GPCP-1DD 1DD 
(Tier 1, satellite, 
1997-2010 
(Huffman et al., 
2001)) 
 
CMAP (Tier 2, 
satellite & rain 
gauge, 1979-near-
present (Xie and 
Arkin, 1997)) 
 
MERRA (Tier 1, 
reanalysis, 1979-
2011 (Rienecker 
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et al., 2011)) 
 
ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 

Skin temperature (K) ts HadISST (Tier  2, 
reanalysis, 1870-
2014 (Rayner et 
al., 2003)) 

namelist_WA
Monsoon 
 
namelist_WA
Monsoon_dail
y 
 
 

Eastward wind (m s–1) 
 
Northward wind (m s–1) 
 
Temperature (K)  
 
Near-surface air temperature (K) 

ua 
 
va 
 
ta 
 
tas 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 

Section 
4.1.3.2 / 
Fig. 7 

Roehrig et 
al. (2013); 
Cook and 
Vizy 
(2006) 

Precipitation (kg m-2 s-1) pr GPCP-1DD (Tier 
1, satellite, 1997-
2010 (Huffman et 
al., 2001)) 
 
TRMM (Tier 1, 
satellite, 1998-
near-present 
(Huffman et al., 
2007)) 

TOA outgoing shortwave 
radiation (W m-2) 
 
TOA outgoing longwave 
radiation (W m-2) 
 
TOA outoing clear sky shortwave 
radiation (W m-2) 
 
TOA outoing clear sky longwave 
radiation (W m-2) 
 
Shortwave cloud radiative effect 
(W m-2) 
 
Longwave cloud radiative effect 
(W m-2) 
 
Shortwave downwelling radiation 
at surface (W m-2) 
 
Longwave downwelling radiation 
at surface (W m-2) 

rsut 
 
 
rlut 
 
 
rsutcs 
 
 
rlutcs 
 
 
SW_CRE 
 
 
LW_CRE 
 
 
rsds 
 
 
rlds 

CERES-EBAF 
(Tier 1, satellite, 
2001-2011 
(Wielicki et al., 
1996)) 

TOA outgoing longwave 
radiation (W m-2) 

rlut NOAA polar-
orbiting satellites 
(Tier 2, satellite, 
1974- 2013 
(Liebmann and 
Smith, 1996)) 

namelist_CV Precipitation (kg m-2 s-1) pr GPCP-SG (Tier 1, Section Phillips et 
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DP 
 

satellite & rain 
gauge, 1979-near-
present (Adler et 
al., 2003)) 
 
TRMM (Tier 1, 
satellite, 1998-
near-present 
(Huffman et al., 
2007)) 

4.1.4.1 / 
Fig. 8 and 
Fig. 9 

al. (2014) 

Air pressure at sea level (Pa) psl NOAA-CIRES 
Twentieth 
Century 
Reanalysis Project 
(Tier 1, 
reanalysis, 1900-
2012 (Compo et 
al., 2011)) 

Near-surface air temperature (K) tas NCEP (Tier 2, 
reanalysis, 1948-
2012 (Kistler et 
al., 2001)) 

Skin temperature (K) ts HadISST (Tier  2, 
satellite-based, 
1870-2014 
(Rayner et al., 
2003)) 

Snow depth (m) snd without obs 
Ocean meridional overturning 
mass streamfunction (kg s-1) 

msftmyz without obs 

namelist_mjo
_daily 
namelist_mjo
_mean_state 

Eastward wind (m s–1) 
 
Northward wind (m s–1) 

ua 
 
va 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 
 
NCEP (Tier 2, 
reanalysis, 1979-
2013 (Kistler et 
al., 2001)) 

Section 
4.1.4.2 / 
Fig. 10 

Waliser et 
al. (2009); 
Kim et al. 
(2009) 

Precipitation (kg m-2 s-1) pr GPCP-1DD (Tier 
1, satellite, 1997-
2010 (Huffman et 
al., 2001)) 

TOA longwave radiation (W m-2) rlut NOAA polar-
orbiting satellites 
(Tier 2, satellite, 
1974- 2013 
(Liebmann and 
Smith, 1996)) 

namelist_Diur
nalCycle 

Precipitation (kg m-2 s-1) 
 
Convective Precipitation (kg m-2 
s-1) 

pr 
 
prc 

TRMM (Tier 1, 
satellite, 1998-
near-present 
(Huffman et al., 
2007)) 

Section 
4.1.5 / Fig. 
11 

Rio et al. 
(2009) 
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TOA outgoing longwave 
radiation (W m-2) 
 
TOA outgoing shortwave 
radiation (W m-2) 
 
TOA outgoing clear sky 
longwave radiation (W m-2) 
 
TOA outgoing clear sky 
shortwave radiation (W m-2) 
 
Surface downwelling shortwave 
radiation (W m-2) 
 
Surface downwelling clear sky 
sky shortwave radiation (W m-2) 
 
Surface upwelling shortwave 
radiation (W m-2) 
 
Surface upwelling clear sky 
shortwave radiation (W m-2) 
 
Surface upwelling longwave 
radiation (W m-2) 
 
Surface upwelling clear sky 
longwave radiation (W m-2) 
 
Surface downwelling shortwave 
radiation (W m-2) 
 
Surface downwelling clear sky 
longwave radiation (W m-2) 

rlut 
 
 
rsut 
 
 
rlutcs 
 
 
rsutcs 
 
 
rsds 
 
 
rsdscs 
 
 
rsus 
 
 
rsuscs 
 
 
rlus 
 
 
rluscs 
 
 
rlds 
 
 
rldscs 

CERES-SYN1deg 
(Tier 1, satellite, 
2001-2011 
(Wielicki et al., 
1996)) 

namelist_laue
r13jclim 

Atmosphere cloud condensed 
water content (kg m-2) 

clwvi UWisc: SSM/I, 
TMI, AMSR-E 
(Tier 3, satellite, 
1988-2007 
(O'Dell et al., 
2008)) 

Section 
4.1.6.1 / 
Fig. 12 

Lauer and 
Hamilton 
(2013); 
Fig. 9.5 of 
Flato et al. 
(2013) 

Atmosphere cloud ice content (kg 
m-2) 

clivi MODIS-CFMIP 
(Tier 2, satellite, 
2003-2014 (King 
et al., 2003; 
Pincus et al., 
2012)) 

Total cloud amount (%) clt MODIS (Tier 1, 
satellite, 2001-
2012 (King et al., 
2003)) 

TOA outgoing longwave 
radiation (W m-2) 
 
TOA outgoing longwave 
radiation (clear sky) (W m-2) 
 
TOA outgoing shortwave 
radiation (W m-2) 

rlut  
 
 
rlutcs 
 
 
rsut  
 

CERES-EBAF 
(Tier 1, satellite, 
2001-2011 
(Wielicki et al., 
1996)) 
 
SRB (Tier 2, 
satellite, 1984-
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TOA outgoing shortwave 
radiation (clear sky) (W m-2) 

 
rsutcs 

2007 (GEWEX-
news, February 
2011)) 

Precipitation (kg m-2 s-1) pr GPCP-SG (Tier 1, 
satellite & rain 
gauge, 1979-near-
present (Adler et 
al., 2003)) 

namelist_willi
ams09climdyn
_CREM  

ISCPP mean cloud albedo (1) 
 
ISCCP mean cloud top pressure 
(Pa) 
 
ISCCP total cloud fraction (%) 
 
TOA outgoing shortwave 
radiation (W m-2) 
 
TOA outgoing longwave 
radiation (W m-2) 
 
TOA outoing clear sky shortwave 
radiation (W m-2) 
 
TOA outoing clear sky longwave 
radiation (W m-2) 
 
Surface snow area fraction (%) 
 
Surface snow amount (kg m-2) 
 
Sea ice area fraction (%) 

albisccp 
 
pctisccp  
 
 
cltisccp 
 
rsut 
 
 
rlut 
 
 
rsutcs 
 
 
rlutcs 
 
 
snc  
 
snw 
 
sic 

ISCCP (Tier 1, 
satellite, 1985-
1990 (Rossow 
and Schiffer, 
1991)) 
 
ISCCP-FD (Tier 
2, satellite, 1985-
1990 (Zhang et 
al., 2004)) 

Section 
4.1.6.2 / 
Fig. 13 

Williams 
and Webb 
(2009) 

Section 4.2: Detection of systematic biases in the physical climate: ocean 
namelist_Sout
hernOcean 

Ocean Mixed Layer Thickness 
Defined by Sigma T (m) 

mlotst ARGO (Tier 2, 
Buoy, Monthly 
mean climatology 
2001-2006 (Dong 
et al., 2008)) 

Section 
4.2.2.1 / 
Fig. 14 

CDFTOOL
S 

Sea surface temperature (K) 
 
Downward heat flux at sea water 
surface (W m-2) 
 
 
Surface Downward Eastward 
Wind Stress (Pa) 
 
Surface Downward Nordward 
Wind Stress (Pa) 
 
Water Flux from precipitation and 
evaporation (kg m-2 s-1) 

tos 
 
hfds (hfls 
+ hfss + 
rsns + rlns) 
 
tauu 
 
 
tauv 
 
 
wfpe (pr + 
evspsbl) 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 

Sea water salinity (psu) 
 
Sea surface salinity (psu) 
 
Sea Water Temperature (K) 

so 
 
sos 
 
to 

WOA09 (Tier 2, 
in-situ, 
climatology, 
(Antonov et al., 
2010; Locarnini et 
al., 2010)) 

Sea Water X Velocity (m s-1) uo without obs 
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Sea Water Y Velocity (m s-1) 

 
vo 

namelist_Sout
hernHemisphe
re 

Total Cloud Fraction (%) 
 
Atmosphere cloud ice content (kg 
m-2) 
 
Atmosphere cloud condensed 
water content (kg m-2) 

clt 
 
 
clivi 
 
 
clwvi 

CloudSat (Tier 1, 
satellite, 2000-
2005 (Stephens et 
al., 2002)) 

Section 
4.2.2.2 / 
Fig. 15 

Frolicher 
et al. 
(2015) 

Surface upward latent heat flux 
(W m-2) 
 
Surface upward sensible heat flux 
(W m-2) 

hfls 
 
 
hfss 

WHOI-OAflux 
(Tier 2, satellite-
based, 2000-2005 
(Yu et al., 2008)) 

TOA outgoing longwave 
radiation (W m-2) 
 
TOA outgoing clear sky 
longwave radiation (W m-2) 
 
TOA outgoing shortwave 
radiation (W m-2) 
 
TOA outgoing clear sky 
shortwave radiation (W m-2) 
 
Surface downwelling shortwave 
radiation (W m-2) 
 
Surface downwelling clear sky 
longwave radiation (W m-2) 
 
Surface downwelling shortwave 
radiation (W m-2) 
 
Surface downwelling clear sky 
shortwave radiation (W m-2) 

rlut 
 
 
rlutcs 
 
 
rsut 
 
 
rsutcs 
 
 
 
rlds 
 
 
rldscs 
 
 
rsds 
 
 
rsdscs 

CERES-EBAF 
(Tier 1, satellite, 
2001-2011 
(Wielicki et al., 
1996)) 
 
SRB (Tier 2, 
satellite, 1984-
2007 (GEWEX-
news, February 
2011)) 

namelist_Trop
icalVariability 

Precipitation (kg m-2 s-1) pr TRMM (Tier 1, 
satellite, 1998-
near-present 
(Huffman et al., 
2007) 

Section 
4.2.3 / Fig. 
16 

Choi et al. 
(2011); Li 
and Xie 
(2014) 

Sea surface temperature (K) ts HadISST (Tier  2, 
satellite-based, 
1870-2014 
(Rayner et al., 
2003)) 

Eastward wind (m s–1) 
 
Northward wind (m s–1) 
 

ua 
 
va 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 

namelist_SeaI
ce 
 

Sea ice area fraction (%) sic HadISST (Tier  2, 
satellite-based, 
1870-2014 
(Rayner et al., 
2003)) 
 
NSIDC (Tier 2, 

Section 
4.2.4 / Fig. 
17 

Stroeve et 
al. (2007) 
Stroeve et 
al. (2012); 
Fig. 9.24 
of Flato et 
al. (2013) 
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satellite, 1978-
2010 (Meier et al., 
2013; Peng et al., 
2013)) 

Section 4.3: Detection of systematic biases in the physical climate: land 
namelist_Eva
potranspiratio
n 
 
 
 
 
 
 
 
 
 
namelist_SPI 

Surface upward latent heat flux 
(W m-2) 

hfls LandFlux-EVAL 
(Tier 3, ground, 
1989-2004 
(Mueller et al., 
2013)) 
 
GPCC (Tier 2, 
Rain gauge 
analysis, 1901-
2010 (Becker et 
al., 2013)) 

Section 
4.3.1 / Fig. 
18 

Mueller 
and 
Seneviratn
e (2014);  
Orlowsky 
and 
Seneviratn
e (2013) 

Precipitation (kg m-2 s-1) pr CRU (Tier 2, 
Rain gauge 
analysis, 1901-
2010 (Mitchell 
and Jones, 2005))  

namelist_runo
ff_et 

Total runoff (kg m-2  s-1) 
 
Evaporation (kg m-2  s-1) 
 
Precipitation (kg m-2 s-1) 

mrro 
 
evspsbl 
 
pr 

GRDC (Tier 2, 
river runoff 
gauges, varying 
periods (Dümenil 
Gates et al., 
2000)) 
 
WFDEI (Tier 2, 
Reanalysis, 1979-
2010 (Weedon et 
al., 2014)) 

Section 
4.3.2 / Fig. 
19 

Dümenil 
Gates et al. 
(2000);  
Hagemann 
et al. 
(2013); 
Weedon et 
al. (2014) 

Section 4.4: Detection of biogeochemical biases: carbon cycle 
namelist_anav
13jclim 

Net biosphere production of 
carbon (kg m-2 s-1) 
 

nbp 
 

TRANSCOM 
(Tier 2, 
Reanalysis, 1985 -
2008 (Gurney et 
al., 2004)) 

Section 
4.4.1 / Fig. 
20 and Fig. 
21 

Anav et al. 
(2013) 

Gross primary production of 
carbon (mol m-2 s-1) 

gpp MTE (Tier 2, 
Reanalysis, 1982 -
2008 (Jung et al., 
2009)) 

Leaf area index (mol m-2 s-1) lai LAI3g (Tier 2, 
Reanalysis, 1981 -
2008 (Zhu et al., 
2013)) 

Carbon mass in vegetation (kg m-

2) 
cVeg NDP-017b (Tier 

2, remote sensing 
2000 (Gibbs, 
2006)) 

Carbon mass in soil pool (kg m-2) cSoil HWSD (Tier 2, 
reanalysis, 
climatology 
(Nachtergaele et 
al., 2012)) 

Primary organic Carbon 
Production by all types of 
phytoplankton (mol m-2 s-1) 

intPP SeaWiFS (Tier 2, 
satellite, 1998- 
2010 (Behrenfeld 
and Falkowski, 
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1997; McClain et 
al., 1998)) 

Near-surface air temperature (K)  tas CRU (Tier 3, 
near-surface 
temperature 
analysis, 1901-
2006) 

  

Precipitation (kg m-2 s-1) pr CRU (Tier 2, rain 
gauge analysis, 
1901-2010 
(Mitchell and 
Jones, 2005)) 

  

namelist_Glo
balOcean 

Surface partial pressure of CO2 
(Pa) 

spco2 SOCAT v2 (Tier 
2, in-situ, 1968 -  
2011 (Bakker et 
al., 2014)) 
 
ETH SOM-FFN 
(Tier 2, 
extrapolated in 
situ, 1998 - 2011, 
(Landschützer et 
al., 2014a, b)) 

Section 
4.4.2 / Fig. 
22 

 

Total chlorophyll mass 
concentration at surface (kg m-3) 

chl SeaWiFS (Tier 2, 
satellite, 
1997 - 2010 
(Behrenfeld and 
Falkowski, 1997; 
McClain et al., 
1998)) 

Dissolved oxygen concentration 
(mol m-3) 

o2 WOA05 (Tier 2, 
in situ, 
climatology 1950-
2004 (Bianchi et 
al., 2012)) 

Total alkalinity at surface (mol m-

3) 
talk T14 (Tier 2, in 

situ, 2005 
(Takahashi et al., 
2014)) 

Section 4.5: Detection of biogeochemical biases: chemistry and aerosols 
namelist_aero
sol_CMIP5 
 

Surface concentration of SO4 (kg 
m-3) 
 
Surface concentration of NO3 (kg 
m-3) 
 
Surface concentration of NH4 (kg 
m-3) 
 
Surface concentration of black 
carbon aerosol (kg m-3) 
 
Surface concentration of dry 
aerosol organic matter (kg m-3) 
 
Surface concentration of PM10 
aerosol (kg m-3) 
 
Surface concentration of PM2.5 

sconcso4  
 
 
sconcno3 
 
 
sconcnh4 
 
 
sconcbc 
 
 
sconcoa 
 
 
 
sconcpm1
0 
 

CASTNET (Tier 
2, Ground, 1987 
.2012 (Edgerton 
et al., 
1990))EANET 
(Tier 2, Ground, 
2001-2005 
(Totsuka et al., 
2005)) 
 
EMEP (Tier 2, 
Ground, 1970-
2014  
 
IMPROVE (Tier 
2, Ground, 1988-
2014  

Section 
4.5.1 / Fig. 
23 

Lauer et al. 
(2005) 
Aquila et 
al. (2011) 
Righi et al. 
(2013); 
Fig. 9.29 
of Flato et 
al. (2013) 
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aerosol (kg m-3) sconcpm2
p5 

Aerosol Number Concentration 
(m-3) 
 
BC Mass Mixing Ratio (kg kg-1) 
 
Aerosol mass mixing ration (kg 
kg-1) 
 
BC-Free Mass Mixing Ratio (kg 
kg-1) 

conccn 
 
 
mrbc 
 
mmraer  
 
 
mmrbcfre
e 

Aircraft 
campaigns (Tier 
3, aircraft, 
various) 

Aerosol Optical Depth at 550 nm 
(1) 

od550aer AERONET (Tier 
2, Ground, 1992-
2015 (Holben et 
al., 1998))  
 
MODIS (Tier 1, 
satellite, 2001-
2012 (King et al., 
2003)) 
 
MISR (Tier 1, 
Satellite, 2001-
2012 (Stevens and 
Schwartz, 2012)) 
 
ESACCI-
AEROSOL (Tier 
2, satellite, 1998-
2011 (Kinne et 
al., 2015)) 

namelist_righi
15gmd_tropo
3 
namelist_righi
15gmd_Emmo
ns 

Ozone (nmol mol-1) tro3 Aura MLS-OMI 
(Tier 2, satellite, 
2005-2013 
(Ziemke et al., 
2011)) 
 
Ozone sondes  
(Tier 2, sondes, 
1995-2009 
(Tilmes et al., 
2011)) 

Section 
4.5.2 / Fig. 
24 

Emmons et 
al. (2000) 
Righi et al. 
(2015)  

Carbon Monoxide (mol mol-1) vmrco GLOBALVIEW 
(Tier 2, ground, 
1991-2008, 
(GLOBALVIEW-
CO2, 2008)) 

Nitrogen Dioxide (NOx = NO + 
NO2) (mol mol-1) 
 
C2H4 Propane (mol mol-1) 
 
C2H6 Propane (mol mol-1) 
 
C3H6 Propane (mol mol-1) 
 

vmrnox 
 
 
vmrc2h4 
 
vmrc2h6 
 
vmrc3h6 
 

Emmons (Tier 2, 
aircraft, various 
campaign 
(Emmons et al., 
2000)) 
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C3H8 Propane (mol mol-1) 
 
CH3COCH3 Acetone (mol mol-1) 

vmrc3h8 
 
vmrch3co 
ch3 

namelist_eyri
ng13jgr 
 

Temperature (K)  
 
Eastward wind (m s–1) 

ta 
 
ua 
 

ERA-Interim 
(Tier 3, 
reanalysis, 1979-
2014 (Dee et al., 
2011)) 
 
NCEP (Tier 2, 
reanalysis, 1948-
2012 (Kistler et 
al., 2001)) 

Section 
4.5.2 / Fig. 
25 

Eyring et 
al. (2013): 
Fig. 9.10 
of Flato et 
al. (2013) 

Total Column Ozone (DU) toz NIWA (Tier 3, 
sondes, 
climatology, 
Bodeker et al., 
2005) 

Tropospheric column ozone (DU) 
 
Ozone (nmol mol-1) 

tropoz 
 
 
tro3 

AURA-MLS-
OMI (Tier 2, 
satellite, 2005-
2013 (Ziemke et 
al., 2011)) 

Section 4.6: Linking model performance to projections 
namelist_wen
zel14jgr 

Near-surface air temperature (K) tas NCDC (Tier 2, 
reanalysis, 1880-
2001 (Smith et al., 
2008)) 

Section 4.6 
/ Fig. 26 

Wenzel et 
al. (2014);  
Fig. 9.45 
of Flato et 
al. (2013) Net biosphere production of 

carbon (kg m-2 s-1) 
 
Carbon Dioxide (mol mol-1) 
 
Surface Downward CO2 Flux into 
ocean (kg m-2 s-1) 

nbp 
 
 
co2 
 
fgco2 

GCP (Tier 2, 
reanalysis, 1959-
present, (Le 
Quéré et al., 
2014)) 

 1 

2 
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Table 2. Overview of the diagnostics included for each namelist along with specific calculations, 1 

the plot type, settings in the configuration file (cfg-file), and comments. See also Annex C in the 2 

Supplement for additional information. 3 

xml namelist Diagnostics 
included 

Specific 
Calculations 
(e.g., statistical 
measures, 
regridding) 

Plot Types Settings in cfg-file Comments 

Section 4.1: Detection of systematic biases in the physical climate: atmosphere 
namelist_perf
metrics_CMI
P5 
 
namelist_righi
15gmd_ECVs 

perfmetrics_main.
ncl 

Time averages, 
Regional 
weighted 
averages, 
t-test for 
difference plots 

Annual cycle 
line plot, 
zonal mean 
plot, lat-lon 
map plot 

Specific plot type, 
time averaging (e.g. 
annual, seasonal 
and monthly 
climatologies, 
annual and multi-
year monthly 
means), region, 
target grid, pressure 
level,  
reference model,  
difference plot 
(True/False), 
statistical 
significance level 
of t-test for 
difference plot, 
multi model 
mean/median 

The results of the 
analysis are saved to a 
netCDF file for each 
model to be read by 
perfmetrics_grading.n
cl or 
perfmetrics_taylor.ncl. 

perfmetrics_gradi
ng.ncl 

Grading metric, 
normalization 

No plot Time averaging, 
region, pressure 
level, reference 
model, type of 
metric for grading 
models (RMSE, 
Bias) 
type of 
normalization 
(mean, median, 
centered median) 

For tractability the 
filename for every 
diagnostic is written 
into a temporary file, 
which then is read by 
the perfmetrics 
_XXX_collect.ncl 
scripts. 
Additional metric and 
normalization 
methods can be added. 

perfmetrics_taylor
.ncl 

Taylor metrics 
 

No plot Time averaging, 
region, pressure 
level, reference 
model 
 

 

perfmetrics_gradi
ng_collect.ncl 

Collection of 
model grades 
from pre-
calculated 
netCDF files  

Portrait 
diagram 

 If individual models 
did not provide output 
for all variables or are 
compared to a 
different number of 
observations, the code 
will recognize this and 
return a blank array 
entry, producing a 
white box in the 
portrait diagram; 
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produces Figure 9.7 
included in 
namelist_flato13ipcc 

perfmetrics_taylor
_collect.ncl 

Collection of 
model grades 
from 
precalculated 
netCDF files 

Taylor 
diagram 

  

namelist_flato
13ipcc 

clouds_ipcc.ncl Multi-model 
means, linear 
regridding to the 
grid of the 
reference data 
set 

Zonal mean 
plots, global 
map 

Map projection 
(CylindricalEquidis
tant, Mercator, 
Mollweide), 
selection of target 
grid, time mean 
(annualclim, 
seasonal-clim), 
reference data set 

Produces Figure 9.5 of 
Flato et al. (2013) 
with 
namelist_flato13ipcc 

clouds_bias.ncl Multi-model 
means, linear 
regridding to the 
grid of the 
reference data 
set 

Global map map projection 
(CylindricalEquidis
tant, Mercator, 
Mollweide), 
selection of target 
grid, time mean 
(annualclim, 
seasonal-clim), 
reference data set 

Produces Figures 9.2 
and 9.4 of Flato et al. 
(2013) with 
namelist_flato13ipccl 

namelist_SAM
onsoon 

SAMonsoon_win
d_basic.ncl 

Mean and 
interannual 
standard 
deviation 

Map contour 
plot, regional 
mean, RMSE 
and spatial 
correlation 
are given in 
plot titles 

Region (latitude, 
longitude), season 
(consecutive 
month), contour 
levels 

Zonal and meridional 
wind fields are used; 
mean and standard 
deviation (across all 
years) for each model. 
This diagnostic also 
plots the difference of 
the mean/standard 
deviation with respect 
to a reference data set. 
Mean contour plots 
include wind vectors. 

SAMonsoon_win
d_seasonal.ncl 

Climatology, 
seasonal 
anomalies and 
interannual 
variability 

Annual cycle Region (latitude, 
longitude), season 
(consecutive 
month), line 
colours, multi 
model mean (y/n) 

Dynamical indices 
calculated from zonal 
and meridional wind 
fields are used. Wind 
levels are selected by 
input quantity (e.g. ua-
200-850 and va-200-
850) 

SAMonsoon_prec
ip_basic.ncl 

Mean and 
interannual 
standard 
deviation 

Map contour 
plot, regional 
mean, RMSE 
and spatial 
correlation 
are given in 
plot titles 

Region (latitude, 
longitude), 
season (consecutive 
month), contour 
levels 

Similar to 
SAMonsoon_wind_ba
sic.ncl 

SAMonsoon_prec
ip_seasonal.ncl 

Climatology, 
seasonal 
anomalies and 
interannual 
variability 

Annual cycle Region (latitude, 
longitude), season 
(consecutive 
month), line 
colours, multi 
model mean (y/n) 

Similar to 
SAMonsoon_wind_se
asonal.ncl 
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SAMonsoon_prec
ip_domain.ncl 

Mean and 
standard 
deviation 

Map contour 
plot 

Region (latitude, 
longitude), 
season (consecutive 
month), contour 
levels 

Domain and intensity 
defined using summer 
and winter 
precipitation defined 
appropriately for each 
hemisphere. 
Differences from 
reference data set also 
plotted. Produces 
Figure 9.32 included 
in 
namelist_flato13ipcc 

SAMonsoon_tele
connections.ncl 

Correlation 
between 
interannual 
seasonal mean 
Nino3.4 SST 
timeseries (5S-
5N, 190-240E) 
and precipitation 
over monsoon 
region. 

Map contour 
plot, regional 
mean, RMSE 
and spatial 
correlation 
are given in 
plot titles 

Region (latitude, 
longitude), 
season (consecutive 
month), contour 
levels 

pr and ts are used to 
calculate 
teleconnections 
between precip and 
interannual Nino3.4 
SSTs. 
Differences from 
reference data set also 
plotted. 

namelist_SAM
onsoon_AMIP 

SAMonsoon_win
d_IAV.ncl 

Mean and 
standard 
deviation 

Time-series 
line plot 

Region (latitude, 
longitude), season 
(consecutive 
month), multi 
model mean (y/n) 

Seasonal means of 
dynamical indices 
calculated for each 
year from zonal and 
meridional wind fields 
are used.  

SAMonsoon_prec
ip_IAV.ncl 

Mean and 
standard 
deviation 

Time-series 
line plot 

Region (latitude, 
longitude), season 
(consecutive 
month), multi 
model mean (y/n) 

Seasonal means of 
precipitation for each 
year are used.  
Note that the scripts in 
namelist_SAMonsoon 
and 
namelist_SAMonsoon
_daily can be used for 
coupled and 
atmosphere-only 
models alike, but this 
namelist allows year-
to-year variations to 
be examined only for 
atmosphere-only 
simulations forced by 
observed SSTs. 

namelist_SAM
onsoon_daily 

SAMonsoon_prec
ip_daily.ncl 
 

Standard 
deviation of 
filtered daily 
precipitation 
rates for each 
season 

Map contour 
plot. 
Regional 
mean, spatial 
correlation 
and averages 
for Bay of 
Bengal (10-
20N, 80-
100E) and E. 
Eq. Indian 
Ocean (10S-
10N, 80-
100E) are 

Region (latitude, 
longitude), season 
(consecutive 
month), contour 
levels 

Both, actual standard 
deviations and 
standard deviations 
normalized by a 
climatology (with 
masking for 
precipitation rates < 
1mm/day) are plotted. 
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given in plot 
titles.  

SAMonsoon_prec
ip_propagation.nc
l 

Regional 
averages, lagged 
correlations, 
band-pass 
filtering of daily 
precipitation 
rates  

Hovmöller 
diagrams: 
(lag, lat) and 
(lag, lon) 

Regions (latitude, 
longitude), season 
(consecutive 
months), filter 
settings 

Similar to 
namelist_mjo_daily_p
ropagation but using 
30-80 day band-pass 
filtering and regions 
appropriate for 
SASM. 

namelist_WA
Monsoon 
namelist_WA
Monsoon_dail
y 

WAMonsoon_co
ntour_basic.ncl 

Mean and 
standard 
deviation 

Map contour 
plot 

Region (latitude, 
longitude), season 
(consecutive 
months), specific 
contour levels 

Similar to 
SAMonsoon_wind_ba
sic.ncl 

WAMonsoon_wi
nd_basic.ncl 

Mean and 
standard 
deviation 

Map contour 
and vector 
plot 

Region (latitude, 
longitude), season 
(consecutive 
months), contour 
levels, reference 
vector length 

Mean wind contour 
and vector plots at 
selected pressure 
level. Similar to 
SAMonsoon_wind_ba
sic.ncl 

WAMonsoon_10
W10E_1D_basic.
ncl 

Zonal average 
over 10°W-10°E 

Latitude line 
plot 

Region (latitude), 
season (consecutive 
month) 

Only 2 dimensional 
fields 

WAMonsoon_10
W10E_3D_basic.
ncl 

Zonal average 
over 10°W-10°E 

Vertical 
profile 
(latitude vs. 
level) 
contour plot 

Region (latitude, 
pressure level ), 
season (consecutive 
month), contour 
levels 

Only 3 dimensional 
fields 

WAMonsoon_pre
cip_IAV.ncl 

Seasonal 
anomalies and 
interannual 
variability 

Time-series 
line plot 

Region (latitude, 
longitude) 

Similar to 
SAMonsoon_wind_IA
V.ncl 

WAMonsoon_pre
cip_seasonal.ncl 

Mean annual 
cycle 

Time-series 
line plot 

Region (latitude, 
longitude) 

Similar to 
SAMonsoon_wind_se
asonal.ncl 

WAMonsoon_aut
ocorr.ncl 

1-day 
autocorrelation 
of 1-90d 
(intraseasonal) 
anomalies 

Map contour 
plot 

Region (latitude, 
longitude), season 
(consecutive 
months), filtering 
properties, contour 
levels 

 

WAMonsoon_isv
_filtered.ncl 

Intra-seasonal 
variance (time 
filtering) 

Map contour 
plot 

Region (latitude, 
longitude), season 
(consecutive 
months), filtering 
properties, contour 
levels 

 

namelist_CV
DP 

cvdp_atmos.ncl Renaming climo 
files to CVDP 
naming 
convention, 
Generates 
CVDP namelist 
with all models 

No plot  Needed for the CVDP 
coupling to the 
ESMValTool. 

cvdp_ocean.ncl Renaming climo 
files to CVDP 
naming 
convention 

No plot   

cvdp_obs.ncl Generates No plot Reference model(s) Needed for the CVDP 
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CVDP name-list 
with all 
observations 

for each variable coupling to the 
ESMValTool. 

cvdp_driver.ncl Calls the CVDP No plot  Needed for the CVDP 
coupling to the 
ESMValTool. Flexible 
implementation for 
easy update-processes, 
Results of the analysis 
are saved in netCDF 
files for each 
model/observation 

amo.ncl Area-weighted 
average, linear 
regression, 
spectral analysis, 
regridding for 
area-weighted 
pattern 
correlation and 
RMS difference 

Lat-lon 
contour 
plots, time-
series, 
spectral plots 

 Original CVDP 
diagnostic 

amoc.ncl Mean, standard 
deviation, EOF, 
linear 
regression, lag 
correlations, 
spectral analysis 

Pattern plots, 
spectral 
plots, time-
series 

 Original CVDP 
diagnostic 

pdo.ncl EOF, linear 
regression, 
spectral analysis 

Lat-lon 
contour 
plots, time-
series, 
spectral plots 

 Original CVDP 
diagnostic 

pr.mean_stddev.n
cl 

Global means, 
standard 
deviation 

Lat-lon 
contour plots 

 Original CVDP 
diagnostic 

pr.trends_timeseri
es.ncl 

Global trends Lat-lon 
contour 
plots, time-
series 

 Original CVDP 
diagnostic 

psl.mean_stddev.
ncl 

Global means, 
standard 
deviation 

Lat-lon 
contour plots 

 Original CVDP 
diagnostic 

psl.modes_indices
.ncl 

EOF, linear 
regression, 

Lat-lon 
contour 
plots, time 
series 

 Original CVDP 
diagnostic 

psl.trends.ncl Global trends Lat-lon 
contour plots 

 Original CVDP 
diagnostic 

snd.trends.ncl Global trends Lat-lon 
contour plots 

 Original CVDP 
diagnostic 

sst.indices.ncl Area-weighted 
average, 
standard 
deviation, 
spectral analysis 

Spatial 
composites, 
Hovmöller 
diagram, 
time-series, 
spectral plots 

 Original CVDP 
diagnostic 

sst.mean_stddev.n
cl 

Global means, 
standard 
deviation 

Lat-lon 
contour plots 

 Original CVDP 
diagnostic 
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sst.trends_timeser
ies.ncl 

Global trends Lat-lon 
contour 
plots, time-
series 

 Original CVDP 
diagnostic 

tas.mean_stddev.
ncl 

Global means, 
standard 
deviation 

Lat-lon 
contour plots 

 Original CVDP 
diagnostic 

tas.trends_timeser
ies.ncl 

Global trends Lat-lon 
contour 
plots, 
timeseries 

 Original CVDP 
diagnostic 

metrics.ncl Collect all area-
weighted pattern 
correlations and 
RMS differences 
created by the 
various scripts, 
calculates total 
score 

txt-file  Original CVDP 
diagnostic 

webpage.ncl Creates 
webpages to 
display CVDP 
results 

.html files  Original CVDP 
diagnostic 

namelist_mjo
_daily 

mjo_wave_freq.n
cl 

Meridional 
averaged over 
10°S-10°N, 
wavenumber-
frequency 

Wavenumber
-frequency 
contour plot 
 

Season (summer, 
winter), daily 
max/min, region 
(latitude) 

 

mjo_univariate_e
of.ncl 

Conventional 
(covariance) 
univariate EOF 
analysis 

Lat-lon 
contour plot 

Region (latitude, 
longitude), number 
and name of EOF 
modes,  contour 
levels 

EOF for 20-100 day 
band-pass filtered 
daily anomaly data 

mjo_precip_u850-
200_propagation.
ncl 

Correlation, 
zonal average 
over 80°E-
100°E, 
meridional 
average over 
10°S-10°N, 
reference region 
over 75°E-
100°E,10°S-5°N 

Lag-
longitude 
and lag-
latitude 
diagram 

Season(summer, 
winter, annual), 
region(latitude, 
longitude) 

Lead/lag correlation of 
two variables with 
daily time resolution 

mjo_precip_uwnd
_variance.ncl 

Variance Lat-lon 
contour plot 

Season (summer, 
winter), region 
(latitude, 
longitude), contour 
levels 

20-100 day bandpass 
filtered variance for 
two variables with 
daily time resolution 

mjo_olr_u850-
200_cross_spectra
.ncl 

Coherence 
squared and 
phase lag 

Wavenumber
-frequency 
contour plot 

Region (latitude), 
segments length 
and overlapped 
segments length, 
spectra type 

Missing values are not 
allowed in the input 
data 

mjo_olr_u850_20
0_ceof.ncl 

CEOF Line plot Region(latitude),nu
mber and names of 
CEOF modes, y-
axis limit 

the first two  CEOF 
modes (PC1 and PC2) 
are retained for the 
MJO composite life 
cycle analysis 

mjo_olr_uv850_c Calculate mean Lat-lon Season (summer, The appropriate MJO 
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eof_life_cycle.ncl value for each 
phase category 

contour plot winter), region 
(latitude, longitude) 

phase categories are 
derived from PC1 and 
PC2 of CEOF analysis 

namelist_mjo
_mean_state 

mjo_precip_u850
_basic.ncl 

Season mean Lat-lon 
contour plot 

Season (summer, 
winter), region 
(latitude, longitude) 

Based on monthly 
data 

namelist_Diur
nalCycle 

 Mean diurnal 
cycle 
computation, 
regridding of 
observations and 
models over a 
specific grid and 
first harmonic 
analysis to 
derive amplitude 
and phase of 
maximum 
rainfall 

Composites 
of diurnal 
cycles over 
specific 
regions and 
seasons, 
global maps 
of maximum 
precipitation 
phase and 
amplitude 

 A prerequisite to use 
this namelist is to 
check the time axis of 
high frequency data 
from models and 
observations to be 
sure of what is 
provided. One should 
check in particular if it 
is instantaneous or 
averaged values, and 
if the time provided 
corresponds to the 
middle or the end of 
the 3h interval. Note 
that timeaxis is 
modified in the 
namelist to make data 
coherent. 

namelist_laue
r13jclim 

clouds.ncl Multi-model 
mean 

Lat-lon 
contour plot 

map projection 
(CylindricalEquidis
tant, Mercator, 
Mollweide), 
destination grid 

Produces Figure 9.5 
included in 
namelist_flato13ipcc 

clouds_taylor.ncl Multi-model 
mean 

Taylor 
diagram 

 Taylor diagrams 

clouds_interannua
l.ncl 

Interannual 
variability, 
multi-model 
mean 

Lat-lon 
contour plot 

Map projection 
(CylindricalEquidis
tant, Mercator, 
Mollweide), 
destination grid, 
reference data sets 

 

namelist_willi
ams09climdyn
_CREM  

ww09_ESMValT
ool.py 

Model data 
assigned to 
observed cloud 
regimes and 
regime 
frequency and 
mean radiative 
properties 
calculated. 

Bar graph    

Section 4.2: Detection of systematic biases in the physical climate: ocean 
namelist_Sout
hernOcean 

SeaIce_polcon.ncl  Polar 
stereographic 
maps 

contour values  

SeaIce_polcon_di
ff.ncl 

Rregridding 
(ESMF) 

Polar 
stereographic 
maps 

contour values, 
reference model 

 

SouthernOcean_v
ector_polcon_diff
.ncl 

Vector overlay 
(magnitude and 
direction) 

Polar 
stereographic 
maps 

contour plot scales, 
reference model 

based on 
SeaIce_polcon_diff.nc
l, variables with u and 
v components 

SouthernOcean_a Regridding Zonal mean coordinates of based on CDFTOOLS 
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reamean_vertconp
lot.ncl 

(ESMF) vertical 
profiles 
(Hovmöller 
diagrams) 

subdomain package 

SouthernOcean_tr
ansport.ncl 

Sea water 
volume transport 
calculation 

Line plot coordinates of 
subdomain 

 

namelist_Sout
hernHemisphe
re 

SouthernHemisph
ere.py 

Regridding 
(interpolation to 
common grid), 
Temporal and 
zonal averages, 
RMSEs 

Seasonal 
cycle line 
plot with 
calculated 
RMSEs and  
zonal mean 
contour plot  

Masking of 
unwanted values 
(limits), region 
(coordinates) and 
season (months) 
specification, 
plotting limits, 
contour colourmap 

 

SouthernHemisph
ere_scatter.py 

Covariability of 
radiation fluxes 
as function of 
cloud metrics 

Scatter plot 
of values 
with line plot 
of value 
distribution 

 

namelist_Trop
icalVariability 

TropicalVariabilit
y.py 

Temporal and 
zonal averages, 
RMSEs, 
normalization, 
co-variability 

Annual 
cycles, 
seasonal 
scatter plots 
with 
calculated 
RMSEs 

Masking of 
unwanted values 
(limits),  
Region 
(coordinates) and 
season (months), 
plotting limits 

Fig. 5 of Lie and Xie, 
2014 

TropicalVariabilit
y_EQ.py 

Temporal and 
zonal averages, 
RMSEs, 
normalization, 
co-variability 

Latitude 
cross 
sections of 
equatorial 
variables 

 

TropicalVariabilit
y_wind.py 

Regridding 
(interpolation) 

Wind 
divergence 
plots 

 

namelist_SeaI
ce 

SeaIce_tsline.ncl Sea-ice area and 
extent, 
regridding 
(ESMF) 

Time series Selection of 
Arctic/Antarctic, 

Produces Figure 9.24 
included in 
namelist_flato13ipcc 

SeaIce_ancyc.ncl Sea-ice area and 
extent, 
regridding 
(ESMF) 

Annual cycle 
line plot 

Selection of 
Arctic/Antarctic  

 

SeaIce_polcon.ncl Sea-ice area and 
extent, 
regridding 
(ESMF) 

Polar 
stereographic 
maps 

Selection of 
Arctic/Antarctic, 
optional red line 
depicting edges of 
sea-ice extent  

 

SeaIce_polcon_di
ff.ncl 

Sea-ice area and 
extent, 
regridding 
(ESMF) 

Polar 
stereographic 
maps 

Selection of 
Arctic/Antarctic, 
optional red line 
depicting edges of 
sea-ice extent  

 

Section 4.3: Detection of systematic biases in the physical climate: land 
namelist_Eva
potranspiratio
n 

Evapotranspiratio
n.ncl 

Conversion to 
evapotranspirati
on units, global 
average, RMSE 

Lat-lon 
contour plot 

Time period  

namelist_SPI SPI.r SPI calculation Lat-lon 
contour plot 

Time period, time 
scale (3, 6 or 12 

May require manual 
installation of certain 
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monthly) R-packages to run 

namelist_runo
ff_et 

catchment_analys
is_val.py 

Temporal and 
spatial mean for 
12 large river 
catchments, 
regridding to 
0.5x0.5 lat-lon 
grid 

Bar plots of 
evapotranspir
ation and 
runoff bias 
against 
observation, 
scatter plots 
of runoff bias 
against the 
biases of 
evapotranspir
ation 
precipitation 

(no cfg. file) Three variables are 
read by this 
diagnostic. 

Section 4.4: Detection of biogeochemical biases: carbon cycle 
namelist_anav
13jclim 

Anav_MVI_IAV_
Trend_Plot.ncl 

Regridding to 
common grid, 
monthly and 
annual special 
averages ,  
variability (MVI 
= 
(model/reference 
- 
reference/model) 
2) 

Scatter plot Region (latitude), 
resolution size for 
regridding (e.g., 
0.5°, 1°, 2°) 

All carbon flux 
variables were 
corrected for the exact 
amount of carbon in 
the coastal regions by 
applying the models 
land-ocean fraction to 
the variables. 

Anav_Mean_IAV
_ErrorBars_Seaso
nal_cycle_plots.n
cl 

Regridding to 
common grid 
Monthly and 
annual special 
averages 

Seasonal 
cycle line 
plot, scatter 
plot, error-
bar plot 

Region (latitude), 
resolution size for 
regridding (e.g., 
0.5°, 1°, 2°) 

 

Anav_cSoil-
cVeg_Scatter.ncl 

Regridding to 
common grid 
annual special 
averages 

Scatter plot Region (latitude), 
resolution size for 
regridding (e.g., 
0.5°, 1°, 2°) 

Two variables are read 
by this diagnostic 

perfmetrics_gradi
ng.ncl 

RMSE, PDF-
skill score 

No plot  See details in 
namelist_perfmetrics_
CMIP5 

perfmetrics_gradi
ng_collect.ncl 

 Portrait 
diagram 

 See details in 
namelist_perfmetrics_
CMIP5 

namelist_Glo
balOcean 

GO_tsline.ncl Multi-model 
mean 

Time-series 
line plot 

Region (lat/lon), 
pressure levels, 
optional smoothing, 
anomaly 
calculations, 
overlaid trend lines, 
and masking of 
model data 
according to 
observations 

 

GO_comp_map.n
cl 

Mean, standard 
deviation, and 
difference to 
reference model 

Lat-lon 
contour plot 
(for specified 
z-level) 

Region (Lat/lon), 
ocean depth, 
contour levels 

Actual metrics ported 
from UK MetOffice 
IDL-monsoon 
evaluation scripts 

Section 4.5: Detection of biogeochemical biases: chemistry and aerosols 
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namelist_aero
sol_CMIP5 

aerosol_stations.n
cl 

 
Collocation of 
model and 
observational 
data 

Time series, 
scatter plot, 
map plot  

Time averaging, 
station data 
network 

All available 
observational data in 
the selected time 
period, on a monthly-
mean basis is 
considered. The model 
data is extracted in the 
grid boxes where the 
respective 
observational stations 
are located (collocated 
model and 
observational data). 
 

aerosol_satellite.n
cl 

Regridding to 
coarsest grid 

Map plots 
and 
difference 
plots 

Target grid  

aerosol_profiles.n
cl 

Mean, standard 
deviation, 
median, 5-10-
25-75-90-95 
percentiles 

Vertical 
profiles 

 The model data are 
extracted based on the 
campaign/station 
location (lat-lon box) 
and time period (on a 
climatological basis, 
i.e. selecting the same 
days/months, but 
regardless of the year). 
Rather specific 
variables are required 
(i.e., aerosol number 
concentration for 
particles with diameter 
larger than 14 nm) to 
match the properties 
of the instruments 
used during the 
campaign. 

tsline.ncl  Line plot Time averaging 
(annual, seasonal 
and monthly 
climatologies, 
annual and multi-
year monthly 
means), region 
(latitude, longitude) 

 

namelist_righi
15gmd_tropo
3 

ancyc_lat.ncl Regridding to 
reference 
global (area-
weighted) 
average, 
zonal mean 

Seasonal 
Hovmöller 
(month vs. 
latitude) 

 global (area-weighted) 
average is calculated 
only for grid cells with 
available 
observational data 

lat_long.ncl Regridding to 
coarsest grid 
global (area-
weighted) 
average 

  global (area-weighted) 
average is calculated 
only for grid cells with 
available 
observational data 

perfmetrics_main.
ncl 

 Annual cycle 
line plot, 
zonal mean 

 See details in 
namelist_perfmetrics_
CMIP5 
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plot, lat-lon 
map plot 

perfmetrics_gradi
ng.ncl 

 No plot  See details in 
namelist_perfmetrics_
CMIP5 

perfmetrics_taylor
.ncl 

 No plot  See details in 
namelist_perfmetrics_
CMIP5 

perfmetrics_gradi
ng_collect.ncl 

 Portrait 
diagram 

 See details in 
namelist_perfmetrics_
CMIP5 

perfmetrics_taylor
_collect.ncl 

 Taylor 
diagram 

 See details in 
namelist_perfmetrics_
CMIP5 

namelist_righi
15gmd_Emmo
ns 

Emmons.ncl Percentiles 
(5,25,75,95)% 

Vertical 
profiles 

Name(s) of the 
observational 
campaign(s) 

 

namelist_eyri
ng13jgr 

ancyc_lat.ncl  Seasonal 
Hovmöller 
(month vs. 
latitude) 

 See details in 
namelist_righi15gmd_
tropo3 

eyring13jgr_fig01
.ncl 

 Seasonal 
Hovmöller 
(month vs. 
latitude) 

Multi model mean 
(True/False), 
regions (latitude, 
longitude), time 
averaging (annual, 
individual month, 
seasons) 

 

eyring13jgr_fig02
.ncl 

 Time series Multi model mean 
(True/False), 
regions (latitude, 
longitude), time 
averaging (annual, 
individual month, 
seasons) 

Produces Figure 9.10 
of Flato et al. (2013)  
included in 
namelist_flato13ipcc 

eyring13jgr_fig04
.nxl 

Tropospheric 
column ozone 

Global maps   

eyring13jgr_fig06
.ncl 

Anomalies with 
respect to a 
specifiable base 
line, mean and 
standard 
deviation (95% 
confidence) for 
simulation 
experiment  

Time series Multi model mean 
(True/False), 
regions (latitude, 
longitude), time 
averaging (annual, 
individual month, 
seasons) 

 

eyring13jgr_fig07
.ncl 

Mean simulation 
experiments, 
differences 
between future 
scenario 
simulations and 
historical 
simulations 

Vertical 
profile 

Multi model mean 
(True/False), 
regions (latitude, 
longitude), time 
averaging (annual, 
individual month, 
seasons), list of 
models w/o 
interactive 
chemistry 

 

eyring13jgr_fig10 Time averages, Error bar plot Multi model mean  
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.ncl linear trends (True/False), 
regions (latitude, 
longitude), height 
(in km), time 
averaging (annual, 
individual month, 
seasons) 

eyring13jgr_fig11
.ncl 

Correlations and 
correlation 
coefficient 

Scatterplot Multi model mean 
(True/False), 
regions (latitude, 
longitude), time 
averaging (annual, 
individual month, 
seasons) 

Two quantities are 
compared to each 
other for individual 
models and 
simulations at once. 
Simulations are 
indicated by different 
marker types. 

Section 4.6: Linking model performance to projections 
namelist_wen
zel14jgr 

tsline.ncl Cosine 
weighting for 
latitude 
averaging, 
anomaly with 
respect to first 
10 years 

Line plot Multi model mean 
(True/False), 
anomaly 
(True/False), 
regions (latitude, 
longitude), time 
averaging (annual, 
individual month, 
seasons) 

 

carbon_corr_2var
s.ncl 

Linear 
regression 

Scatter plot 
and 
correlation 
coefficient 

Exclude two years 
after volcanic 
eruptions 
(True/False: Mount 
Agung, 1963; El 
Chichon, 1982; and 
Mount Pinatubo, 
1991) 

Two variables are 
read. 
The gradient of the 
linear regression and 
the prediction error of 
the fit, giving IAV, are 
saved in an external 
netCDF file to be read 
by the 
carbon_constraint.ncl 
script. 

carbon_constraint
.ncl 

‘c’coupled 
simulation 
‘u’ biocemically 
coupled 
simulation 
Gaussian-
Normal PDF  
Conditional PDF 

Scatter plot 
and 
correlation 
coefficient 

Time period, region 
(latitude) 

Three variables are 
read. (1) LT is 
diagnosed from the 
models (2) the 
previously saved 
netCDF files 
containing IAV values 
are read and correlated 
to LT (3) normal and 
conditional PDFs for 
the pure model 
ensemble and the 
constraint LT values 
are calculated  
Produces Figure 9.45 
included in 
namelist_flato13ipcc 

 1 

2 
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FIGURES 1 

 2 

Figure 1. Schematic overview of the ESMValTool (v1.0) structure. The primary input to the 3 

workflow manager is a user-configurable text namelist file (orange). Standardized libraries/utilities 4 

(purple) available to all diagnostics scripts are handled through common interface scripts (blue). 5 

The workflow manager runs diagnostic scripts (red) that can be written in several freely-available 6 

scripting languages. The output of the ESMValTool (gray) includes figures, binary files (netCDF), 7 

and a log-file with a list of relevant references and processed input files for each diagnostic. 8 

9 
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 1 

Figure 2. Relative space-time root-mean square error (RMSE) calculated from the 1980–2005 2 

climatological seasonal cycle of the CMIP5 historical simulations. A relative performance is 3 

displayed, with blue shading indicating performance being better and red shading worse, than the 4 

median of all model results. A diagonal split of a grid square shows the relative error with respect to 5 

the reference data set (lower right triangle) and the alternate data set (upper left triangle). White 6 

boxes are used when data are not available for the given model and variable or no alternate data set 7 

has been used. The figure shows that performance varies across CMIP5 models and variables, with 8 

some models comparing better with observations for one variable and another model performing 9 

better for a different variable. Except for global average temperatures at 200 hPa where most but 10 

not all models have a systematic bias, the multi-model mean outperforms any individual model. 11 

Similar to Gleckler et al. (2008) and Figure 9.7 of Flato et al. (2013) produced with 12 

namelist_perfmetrics_CMIP5.xml. 13 
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 1 

Figure 3. Left. Zonally averaged temperature profile difference between MPI-ESM-LR and the 2 

ERA-Interim reanalysis data with masked non-significant values. MPI-ESM-LR has generally small 3 

biases in the troposphere (< 1–2 K), but a cold bias in the tropopause region that is particularly 4 

strong in the extratropical lower stratosphere. This is a systematic bias present in many of the 5 

CMIP3 and CCMVal models (IPCC, 2007; SPARC-CCMVal, 2010), related to an overestimation 6 

of the water vapour concentrations in that region. Right: Taylor diagram for temperature at 850 hPa 7 

from CMIP5 models compared with ERA-Interim (reference observation-based data set) and NCEP 8 

(alternate observation-based data set) showing a very high correlation or R>0.98 with the reanalyses 9 

demonstrating very good performance in this quantity. Both figures produced with 10 

namelist_perfmetrics_CMIP5.xml. 11 
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 1 

Figure 4. Annual-mean surface air temperature (upper row) and precipitation rate (mm day–1) for 2 

the period 1980–2005. The left panels show the multi-model mean and the right panels the bias as 3 

the difference between the CMIP5 multi-model mean and the climatology from ERA-Interim (Dee 4 

et al., 2011) and the Global Precipitation Climatology Project (Adler et al., 2003) for surface air 5 

temperature and precipitation rate, respectively. The multi-model mean near-surface temperature 6 

agrees with ERA-Interim mostly within ±2°C. Larger biases can be seen in regions with sharp 7 

gradients in temperature, for example in areas with high topography such as the Himalaya, the sea 8 

ice edge in the North Atlantic, and over the coastal upwelling regions in the subtropical oceans. 9 

Biases in the simulated multi-model mean precipitation include too low precipitation along the 10 

equator in the western Pacific and too high precipitation amounts in the tropics south of the equator. 11 

Similar to Figures 9.2 and 9.4 of Flato et al. (2013) and produced with namelist_flato13ipcc.xml. 12 

13 
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 1 

Figure 5. Monsoon precipitation intensity (upper panels) and monsoon precipitation domain (lower 2 

panels) for TRMM and an example of deviations from observations from three CMIP5 models (EC-3 

Earth, HadGEM2-ES, and GFDL-ESM2M). The models have difficulties representing the eastward 4 

extent of the monsoon domain over the South China Sea and western Pacific, and several models 5 

(e.g., HadGEM2-ES) underestimate the latitudinal extent of most of the monsoon regions. The 6 

monsoon precipitation intensity tends to be underestimated in the South Asian, East Asian and 7 

Australian monsoon regions while in the African and American monsoon regions the sign of the 8 

intensity bias varies between models. Similar to Figure 9.32 of Flato et al. (2013) and produced 9 

with namelist_SAMonsoon.xml. 10 

11 
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Figure 6. Seasonal cycle of monthly rainfall averaged over the Indian region (5-30°N, 65-95°E) for 2 

a range of CMIP5 coupled models (upper panel) and their AMIP counterparts (lower panel), 3 

averaged over available years (models: 1980-2004, observations: 1998-2010). The grey area in each 4 

panel indicates standard deviation from the model mean, to indicate the spread between models 5 

(observations/reanalyses are not included in this spread). These illustrate the range of rainfall 6 

simulated particularly in AMIP experiments where there is no feedback between precipitation and 7 

SST biases that might moderate the rainfall biases (Bollasina and Ming, 2013; Levine et al., 2013). 8 

Some of the CMIP5 coupled models (e.g., HadGEM2-ES, IPSL-CM5A-MR) show a delayed 9 

monsoon onset that is not apparent in their AMIP configurations. This is related to cold SST biases 10 

in the Arabian Sea which develop during boreal winter and spring (Levine et al., 2013). Produced 11 

with namelist_SAMonsoon.xml. 12 
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 1 

Figure 7. Precipitation (mm day-1) averaged over 10°W-10°E for the JJAS season for the years 2 

1979-2005 for CMIP5 historical simulations (left) and 1979-2008 for CMIP5 AMIP simulations 3 

(right) compared to 1998-2008 for TRMM 3B43 Version 7 data set. The results illustrate the inter-4 

model spread in the mean position and intensity of the WAM among the CMIP5 models. The 5 

spread is slightly reduced in AMIP simulations, as the warm SST bias in the equatorial Atlantic is 6 

removed. The WAM mean structure, however, is not captured by many models. Produced with 7 

namelist_WAMonsoon.xml. 8 
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 1 

Figure 8. The PDO as simulated by 41 CMIP5 models (individual panels labelled by model name) 2 

and observations (upper left panel) for the historical period 1900-2005. These patterns show the 3 

global SST anomalies (°C) associated with a one standard deviation change in the normalized 4 

principal component (PC) time series. The percent variance accounted by the PDO is given in the 5 

upper right of each panel. The PDO is defined as the leading empirical orthogonal function of monthly 6 

SST anomalies (minus the global mean SST) over the North Pacific (20-70°N, 110°E-100°W). The global 7 

patterns (°C) are formed by regressing monthly SST anomalies at each grid point onto the PC time series. 8 

Most CMIP5 models show realistic patterns in the North Pacific. However, linkages with the 9 

tropics and the tropical Pacific in particular, vary across models. The lack of a strong tropical 10 

expression of the PDO is a major shortcoming in many CMIP5 models (Flato et al., 2013). Figure 11 

produced with namelist_CVDP.xml. 12 

13 
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Figure 9. Long-term annual mean Atlantic Meridional Overturning Streamfunction (AMOC; Sv) as 2 

simulated by 13 CMIP5 models (individual panels labelled by model name) for the historical period 3 

1900-2005. AMOC annual averages are formed, weighted by the cosine of the latitude and by the 4 

depth of the vertical layer, and then the data is masked by setting all those areas to missing where 5 

the variance is less than 1.e-6. The figure shows that there is a wide spread among the CMIP5 6 

models, with maximal AMOC strength ranging from ~13 Sv (CanESM2) to over ~28 Sv 7 

(NorESM1), while the models agree generally well on the position of maximal AMOC strength. 8 

Figure produced with namelist_CVDP.xml. 9 

10 
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Figure 10. May-October wavenumber-frequency spectra of 10ºS-10ºN averaged precipitation (mm2 2 

day-2) for GPCP-1DD, HadGEM2-ES, MPI-ESM-LR and EC-Earth. Individual May-October 3 

spectra were calculated for each year and then averaged over all years of data. Only the 4 

climatological seasonal cycle and time mean for each May-October segment were removed before 5 

calculation of the spectra. The bandwidth is (180 days)-1. The observed precipitation shows the 6 

dominant MJO spatial scale is zonal wavenumber 1-3 at the 30-80-day frequency. According to the 7 

definition, the positive frequency represents eastward propagation of the MJO. Compared with 8 

observations, both HadGEM2-ES and EC-Earth models have difficulties simulating precipitation 9 

variability on MJO timescsales. Produced with namelist_mjo_daily.xml. 10 

11 
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Figure 11. Mean diurnal cycle of precipitation (mm/hour) averaged over five summers (2004-2008) 1 

over specific regions in the tropics (Sahel, West-Africa, Gulf of Guinea, India, Indian Ocean, 2 

Amazonia, East-Equatorial Pacific and West-Equatorial Pacific) as observed by TRMM 3B42 V7 3 

and as simulated by four CMIP5 models: CNRM-CM5, EC-Earth, HadGEM2-A and IPSL-CM5A-4 

LR. ESMs produce a too strong peak of rainfall around noon over land while the observed 5 

precipitation maximum is weaker and delayed to 6 pm. At the same time, most models 6 

underestimate nocturnal precipitation. Over the ocean, the diurnal cycle of precipitation is more flat 7 

but rainfall maximum usually occurs a few hours earlier than in observations during the night, and 8 

the amplitude of oceanic precipitation shows large variations among models. Produced with 9 

namelist_DiurnalCycle_box_pr.xml. 10 

11 
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Figure 12. Climatological (1985-2005) annual-mean cloud radiative effects from the CMIP5 models 2 

against CERES EBAF (2001–2012) in W m–2. Top row shows the shortwave effect; middle row the 3 

longwave effect, and bottom row the net effect. Multi-model-mean biases against CERES EBAF 4 

2.7 are shown on the left, whereas the right panels show zonal averages from CERES EBAF 2.7 5 

(black), the individual CMIP5 models (thin grey lines), and the multi-model mean (thick red line). 6 

The multi-model mean longwave CRE is overestimated in models, particularly in the Pacific and 7 

Atlantic south of the inter-tropical convergence zone (ITCZ) and in the South Pacific convergence 8 
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zone (SPCZ). The longwave CRE is underestimated over Central and South America as well as 1 

parts of Central Africa and southern Asia. The most striking biases in the multi-model mean 2 

shortwave CRE are found in the stratocumulus regions off the west coasts of North and South 3 

America, southern Africa, and Australia. Despite biases in component cloud properties, simulated 4 

CRE is in quite good agreement with observations. Reproducing Figure 9.5 of Flato et al. (2013) 5 

and produced with namelist_flato13ipcc.nml. 6 

7 
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Figure 13. Cloud Regime Error Metric (CREM) from Williams and Webb (2009) applied to some 2 

CMIP5 AMIP simulations with the required data in the archive. The results show that MIROC5 is 3 

the best performing model on this metric, other models are slightly worse on this metric. The red 4 

dashed line shows the observational uncertainty estimated from applying this metric to independent 5 

data from MODIS. An advantage of the metric is that its components can be decomposed to 6 

investigate the reasons for poor performance. This requires extra print statements compared to the 7 

default code but might help to identify, for instance,  cloud regimes that are too reflective or 8 

simulated too frequently at the expense of some of the other regimes. Produced with 9 

namelist_williams09climdyn_CREM.xml. 10 

11 
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Figure 14. Annual-mean difference between EC-Earth/NEMO and ERA-Interim sea surface 2 

temperatures (a), the World Ocean Atlas sea surface salinity (b), and the Argo float observations for 3 

ocean mixed layer thickness (c), showing that in the Southern Ocean SSTs in EC-Earth are too high, 4 

sea surface salinity too fresh, and the mixed layer too shallow. The other available diagnostics of 5 

the namelist_SouthernOcean.nml help understanding these biases. Vertical sections of temperature 6 

(d) and salinity differences (e) reveal that the SST bias is mainly an austral summer problem, but 7 

also that vertical mixing is not able to penetrate a year-round existing warm layer below 80 m 8 

depth.  9 

10 
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Figure 15. Upper panel: covariability between incoming surface short wave radiation (rsds) and 2 

total cloud cover (clt). Lower panel: fraction occurrence histograms of binned cloud cover: 3 

observations are CERES-EBAF (radiation) and CloudSat (cloud cover). The CanESM2 model from 4 

the CMIP5 archive is shown as an example for comparison to observations (the namelists runs on 5 

all CMIP5 models). CanESM2 generally reproduces the observed slope of rsds as a function of clt, 6 

although there is a systematic positive bias in the amount of shortwave radiation reaching the 7 

surface for most cloud cover values. A positive bias is also seen in the CanESM2 histogram of 8 

cloud occurrence, with a strong peak in seasonal cloud fraction of 90% in most seasons. Produced 9 

with namelist_SouthernHemisphere.xml. 10 

11 
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Figure 16. Latitude cross-section of seasonal and zonally averaged values of SSTs and precipitation 2 

for the tropical Pacific (zonal averages are made between 120°E and 100°W). Upper panel shows 3 

absolute values of SST and precipitation, lower panel shows values normalized by their respective 4 

tropical mean value (20°N to 20°S) The figure shows that HadGEM2-ES simulates a double ITCZ 5 

in the equatorial Pacific with excessive precipitation south of the equator. This bias is accompanied 6 

by off equatorial warm biases in normalized SST in both hemispheres and a relative cold bias along 7 

the equator. The IPSL-CM5A-MR and MPI-ESM-LR models better capture the SST and 8 

precipitation distributions in the tropical Pacific. Produced with namelist_TropicalVariability.xml. 9 

10 
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Figure 17. Timeseries (1960-2005) of September mean Arctic sea ice extent from the CMIP5 2 

historical simulations. The CMIP5 ensemble mean is highlighted in dark red and the individual 3 

ensemble members of each model (coloured lines) are shown in different linestyles. The model 4 

results are compared to observations from the NSIDC (1978-2005, black solid line) and the Hadley 5 

Centre Sea ice and Sea Surface Temperature (HadISST, 1960-2005, black dashed line). Consistent 6 

with observations, most CMIP5 models show a downward trend in sea ice extent over the satellite 7 

era. The range in simulated sea ice is however quite large (between 3.2 and 12.1 x 106 km2 at the 8 

beginning of the timeseries). The multi-model-mean lies below the observations throughout the 9 

entire time period, especially after 1978, when satellite observation became available. Similar to 10 

upper left panel of Figure 9.24 of Flato et al. (2013) and produced with namelist_SeaIce.nml. 11 

12 
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Figure 18. Bias in evapotranspiration (mm/day) for July in a subset of CMIP5 models in reference 2 

to the LandFlux-EVAL evapotranspiration product. The global mean bias is also indicated for each 3 

model as well as the RMSE. The comparison reveals the existence of biases in July 4 

evapotranspiration for a subset of CMIP5 models. All models overestimate evapotranspiration in 5 

summer, especially in Europe, Africa, China, Australia, Western North America, and parts of 6 

Amazonia. Biases of the opposite sign (underestimation in evapotranspiration) can be seen in some 7 

other regions of the world, notably over parts of the tropics. For most regions, there is a clear 8 

correlation between biases in evapotranspiration and precipitation (see precipitation bias in Fig. 4). 9 

Produced with namelist_Evapotranspiration.xml. 10 

11 
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Figure 19. Biases in runoff coefficient (runoff/precipitation) and precipitation for major catchments 2 

of the globe. The MPI-ESM-LR historical simulation is used as an example. Even though positive 3 

and negative precipitation biases exist for MPI-ESM-LR in the various catchment areas, the bias in 4 

the runoff coefficient is usually negative. This implies that the fraction of evapotranspiration 5 

generally tends to be overestimated by the model independently of whether precipitation has a 6 

positive or negative bias. Produced with namelist_runoff_et.xml. 7 

8 
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Figure 20. Relative space-time RMSE calculated from the 1986–2005 climatological seasonal cycle 2 

of the CMIP5 historical simulations over different sub-domains for NBP, LAI, GPP, precipitation, 3 

and near-surface air temperature. The RMSE has been normalized with the maximum RMSE in 4 

order to have a skill score ranging between 0 and 1. A score of 0 indicates poor performance of 5 

models reproducing the phase and amplitude of the reference mean annual cycle, while a perfect 6 

score is equal to 1. The comparison suggests that there is no clearly superior model for all variables. 7 

All models have significant problems in representing some key biogeochemical variables such as 8 

NBP and LAI, with largest errors in the tropics mainly because of a too weak seasonality. Similar to 9 

Figure 18 of Anav et al. (2013) and produced with namelist_anav13jclim.xml. 10 

11 
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 2 

Figure 21. Error-bar plot showing the 1986-2005 CMIP5 integrated NBP for different land 3 

subdomains. Positive values of NBP correspond to land uptake, vertical bars are computed 4 

considering the interannual variation. The models are compared to JMA inversion estimates. The 5 

models’ range is very large and results show that ESMs fail to accurately reproduce the global net 6 

land CO2 flux. At the hemispheric scale, there is no clear bias common in most ESMs, except in the 7 

tropics where models simulate a lower CO2 source than that estimated by the inversion. 8 

Reproducing Figure 6 of Anav et al. (2013) and produced with namelist_anav13jclim.xml. 9 

10 
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Figure 22. Inter-annual variability in de-trended annual mean surface pCO2 (Pa) for the period 2 

1998–2011 from an observation-based reference product (ETH-SOM-FFN; upper left) and three 3 

CMIP5 models (1992-2005). The spatial structure of inter-annual variability differs between 4 

individual CMIP5 ESMs, however both BNU-ESM and GFDL-ESM2M are able to reproduce 5 

pronounced variability in surface ocean pCO2 within the Equatorial Pacific, primarily associated 6 

with ENSO variability (Rodenbeck et al., 2014). Produced with namelist_GlobalOcean.xml. 7 

8 
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Figure 23. Timeseries of global oceanic mean aerosol optical depth (AOD) from individual CMIP5 2 

models’ historical (1850–2005) and RCP 4.5 (2006–2010) simulations, compared with MODIS and 3 

ESACCI-AEROSOL satellite data. All models simulate a positive trend in AOD starting around 4 

1950. Some models also show distinct AOD peaks in response to major volcanic eruptions, e.g. El 5 

Chichon (1982) and Pinatubo (1991). The models simulate quite a wide range of AODs, between 6 

0.05 and 0.20 in 2010, which largely deviates from the observed values from MODIS and ESACCI-7 

AEROSOL. A significant difference, however, exists also between the two satellite data sets (about 8 

0.05), indicating an observational uncertainty. Similar to Figure 9.29 of Flato et al. (2013) and 9 

produced with namelist_aerosol_CMIP5.xml.  10 

11 
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Figure 24. Climatological mean annual mean tropospheric column ozone averaged between 2000 2 

and 2005 from the CMIP5 historical simulations compared to MLS/OMI observations (2005-2012). 3 

The values on top of each panel show the global (area-weighted) average, calculated after 4 

regridding the data to the horizontal grid of the model and ignoring the grid cells without available 5 

observational data. The comparison shows a high bias in tropospheric column ozone in the Northern 6 

Hemisphere and a low bias in the Southern Hemisphere in the CMIP5 multi-model mean. Similar to 7 

Figure 13 of Righi et al. (2015) and produced with namelist_righi15gmd_tropo3.xml. 8 

9 
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Figure 25. Total column ozone time series for (a) annual global and (b) Antarctic October mean. 2 

CMIP5 models are shown in coloured lines and the multi-model mean in thick black, their standard 3 

deviation as grey shaded area, and observations from NIWA (black triangles). The CMIP5 multi-4 

model mean is in good agreement with observations, but significant deviations exist for individual 5 

models with interactive chemistry. Based on Figure 2 of Eyring et al. (2013) and reproducing 6 

Figure 9.10 of Flato et al. (2013), with namelist_eyring13jgr.xml.  7 

8 
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Figure 26. (a) The carbon cycle-climate feedback (γLT) versus the short-term sensitivity of 2 

atmospheric CO2 to interannual temperature variability (γIAV) in the tropics for CMIP5 models. The 3 

red line shows the best fit line across the CMIP5 simulations and the vertical dashed lines show the 4 

observed range of γIAV. (b) probability distribution function (PDF) for γLT. The solid line is derived 5 

after applying the interannual variability (IAV) constraint to the models while the dashed line is the 6 

prior PDF derived purely from the models before applying the IAV constraint. The results show a 7 

tight correlation between γLT and IAV that enables the projections to be constrained with 8 

observations. The conditional PDF sharpens the range of LT to -44 ± 14 GtC/K compared to the 9 

unconditional PDF which is (-49 ± 40 GtC/K). Similar to Figure 9.45 of Flato et al. (2013) and 10 

reproducing the CMIP5 model results from Figure 5 of (Wenzel et al. (2014)) with 11 

namelist_wenzel14jgr.xml. 12 

13 
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Figure 27. Schematic overview of the coupling of the ESMValTool to the ESGF. 2 
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