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Abstract 20 

A wealth of recent laboratory and field experiments demonstrate that organic aerosol 21 

composition evolves with time in the atmosphere, leading to changes in the influence of the 22 

organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can 23 

realistically represent the evolution of CCN activity to better predict indirect effects of organic 24 

aerosol on clouds and climate. This work describes a model to predict the CCN activity of 25 

organic compounds from functional group composition. Following previous methods in the 26 

literature, we test the ability of semi-empirical group contribution methods in Köhler theory to 27 

predict the effective hygroscopicity parameter, kappa. However, in our approach we also account 28 

for liquid-liquid phase boundaries to simulate phase-limited activation behaviour. Model 29 

evaluation against a selected database of published laboratory measurements demonstrates that 30 

kappa can be predicted within a factor of two. Simulation of homologous series is used to 31 

identify the relative effectiveness of different functional groups in increasing the CCN activity of 32 

weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, 33 

carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit 34 

CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator 35 

of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of 36 

kappa for a complex mix of organic compounds and to develop suitable parameterizations of 37 

CCN evolution for larger scale models.   38 
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Introduction 39 

Organic compounds are an important contributor to the atmospheric submicron aerosol 40 

(Jimenez et al., 2009). The organic fraction is projected to increase in the future due to the 41 

confluence of a decreasing sulfate and nitrate burden and increases in the global secondary 42 

organic aerosol burden (Heald et al., 2008). An important unanswered question is how the 43 

organic fraction influences the aerosol's ability to serve as cloud condensation nuclei (CCN), and 44 

in turn modulates climate via indirect effects of aerosols on clouds and precipitation (Andreae 45 

and Rosenfeld, 2008). Realistic prescribed variations in secondary organic aerosol 46 

hygroscopicity have demonstrable impacts on CCN number concentration (Mei et al., 2013) and 47 

can change the simulated global aerosol indirect forcing (AIF) by ~1/6 of the AIF simulated in a 48 

control case (Liu and Wang 2010). To obtain a prognostic understanding of the contribution of 49 

the organic fraction to indirect aerosol forcing in future climates, models need improved schemes 50 

that map simulated organic aerosol composition to hygroscopicity and CCN activity.  51 

Several organic aerosol types (e.g. freshly emitted diesel oil particles or first generation 52 

oxidation products of sesquiterpenes) consist of mostly hydrophobic hydrocarbon chains with 53 

few functional groups attached. Pure hydrocarbons with carbon number less than C30 are 54 

expected to be semi-volatile and in the liquid phase. Over time the compounds evolve by 55 

functionalization, fragmentation and oligomerization (Kroll and Seinfeld, 2008, Ziemann and 56 

Atkinson, 2012). As functional groups are added to the carbon chain the products usually, but not 57 

always, become less volatile (Goldstein et al., 2007), more dense (Kuwata et al., 2012), more 58 

viscous (Sastri and Rao, 1992), and more CCN active (Suda et al., 2014). 59 

Laboratory (George and Abbatt, 2010, Poulain et al., 2010, Cappa et al., 2011, Massoli et al., 60 

2010, Lambe et al., 2011, Duplissy et al., 2011, Kuwata et al., 2013, Rickards et al., 2013, Suda 61 

et al., 2014) and field studies (Jimenez et al., 2008, Chang et al., 2008, Mei et al., 2013) have 62 

demonstrated a robust link between the aerosol oxidation state and the ability of the organic 63 

fraction to promote hygroscopic water uptake and CCN activity. Proxies from mass spectrometry 64 

such as the fragmentation peak f44 or the atomic oxygen-to-carbon ratio are often used to model 65 

the increase in hygroscopicity. However, these correlations exhibit significant variability 66 
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between studies and break down when applied at the compound level (Rickards et al., 2013, 67 

Suda et al., 2014). 68 

Chemistry models are already capable of simulating the molecular identities of species 69 

present in the condensed phase during multi-day evolution of diluting air-parcels (Lee-Taylor et 70 

al., 2015). Mapping this speciated aerosol composition to the aerosol hygroscopicity should 71 

ultimately permit quantification of changes in CCN number concentration (provided that the size 72 

distribution is also simulated) and associated effects on clouds and climate. Thermodynamic 73 

models should be able to predict CCN activity. Many thermodynamic models have made use of 74 

activity coefficients predicted by the universal functional group activity coefficient (UNIFAC) 75 

group contribution method (Fredenslund et al., 1975). Several investigators have compared 76 

UNIFAC predictions of organic aerosol water content to experimental data (Saxena and 77 

Hildemann, 1997, Ming and Russell, 2001, Peng et al., 2001, Choi and Chan, 2002, Mochida and 78 

Kawamura, 2004, Marcolli and Peter, 2005, Moore and Raymond, 2008). Some of these 79 

comparisons prompted proposed revisions of specific group interaction parameters, e.g. [OH] 80 

and [H2O]. Several thermodynamic models that treat complex phase equilibria of multifunctional 81 

multicomponent organic mixtures are based on UNIFAC activity coefficients (Ming and Russell, 82 

2002, Raatikainen and Laaksonen, 2005, Topping et al., 2005, Amundson et al., 2007, Zuend et 83 

al., 2008, Compernolle et al., 2009). The development of these models has been driven by the 84 

need to enable predictions over a wide range of conditions and compositions, including the effect 85 

of liquid-liquid phase separation on gas-to-particle partitioning (Zuend and Seinfeld, 2012, 86 

Toping et al., 2013). The prediction of CCN activity of organic compounds has received less 87 

attention. Rissman et al. (2007) used the aerosol diameter dependent equilibrium model 88 

(ADDEM, Topping et al., 2005) with an underlying UNIFAC core to predict the relationship 89 

between critical supersaturation and dry for several dicarboxylic acid aerosols. To our knowledge 90 

no study to date has systematically focused on the prediction of CCN activity from 91 

thermodynamic models.  92 

Here we build on this body of work to predict the contribution of a compound with known 93 

chemical structure to the CCN activity of a particle of known size. The proposed model uses the 94 

UNIFAC equations (Fredenslund et al., 1975) with group interaction parameters form Hansen et 95 
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al., (1991), Raatikainen and Laaksonen (2005) and Compernolle et al. (2009) to model activity 96 

coefficients and free energy of mixing. Liquid-liquid phase boundaries are determined using the 97 

area method of Eubank et al. (1992). Molecular volume is estimated from elemental composition 98 

and adjustments for functional group composition using the approach of Girolami (1994). The 99 

relationship between critical supersaturation and dry diameter is then predicted using Köhler 100 

theory (Seinfeld and Pandis, 2006). The basic model mechanics are similar to those employed in 101 

multicomponent phase equilibrium models (Ming and Russell, 2002, Raatikainen and 102 

Laaksonen, 2005, Topping et al., 2005, Amundson et al., 2007, Zuend et al., 2008) but limited in 103 

scope to binary compositions and with focus on accurately representing phase and water activity 104 

at conditions relevant at the point of CCN activation only. These predictions are validated by 105 

manually mapping chemical composition to UNIFAC groupings and comparing modeled CCN 106 

activity against observations from a compiled library of recently published CCN data of mostly 107 

weakly oxidized hydrocarbons containing a mixture of alcohol, carbonyl, aldehyde, ether, 108 

carboxyl, nitrate, and hydroperoxide moieties. The model is used to predict how the addition of 109 

one or more functional groups to otherwise similar molecules promotes CCN activity. 110 

Envisioned application to multi-component aerosols and contrasts with more complete 111 

thermodynamic models are discussed.  112 

Model Description 113 

Köhler theory 114 

The saturation ratio over a curved droplet is given by the Köhler equation 115 

ܵ ൌ ܽ௪ ⋅ exp ቀ
ସఙೞ ೌ⁄ ሺ்ሻெೢ

ఘೢோ்஽
ቁ,                  (1) 116 

where aw is the water activity, s/a is the surface tension of the solution/air interface, T is 117 

temperature, Mw is the molecular weight of water, w is the density of pure water, R is the 118 

universal gas constant, and D is the wet drop diameter. Water activity depends on the water 119 

content and the amounts and identities of solutes in the nucleus. The principle water content 120 

variable used in this work is the mole fraction 121 
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௪ݔ ൌ ௡ೢ
௡ೢା∑ ௡ೞ,೔೔

 ,                     (2) 122 

where xw is the mole fraction of water, nw and ns,i are the number of moles of water and solutes, 123 

and i is the number of dry components. The wet drop diameter can be calculated from xw if the 124 

dry diameter, Dd, is specified and it is assumed that the particle is spherical and that the volume 125 

of water and solute are additive: 126 

ܦ ൌ 〈ሺݔ௪ െ 1ሻିଵሺݔ௪ െ ௪ݔ ∑ ሺ߳௜ݒ௪ݒ௦,௜
ିଵሻ௜ െ 1ሻܦௗ

ଷ〉ଵ ଷ⁄ .           (3) 127 

In Eq. (3) vw  and vs,i are the molar volume of the water and solutes and i are the volume 128 

fractions in the dry particle. Eq. (3) is obtained by rearranging Eq. (7) in Petters et al. (2009a).  129 

The critical supersaturation required for an aqueous solution droplet to activate into a cloud 130 

droplet is found by combining Eqs. (1) and (3) and finding the xw (or D) that maximizes sc 131 

௖ݏ ൌ ൜݉ܽݔ ൤ܽ௪ ⋅ exp ൬
ସఙೞ ೌ⁄ ሺ்ሻெೢ

ఘೢோ்〈ሺ௫ೢିଵሻషభሺ௫ೢି௫ೢ∑ ሺఢ೔௩ೢ௩ೞ,೔
షభሻ೔ ିଵሻ஽೏

య〉భ య⁄ ൰൨ൠ ⋅ 100%

௪ݔ ∈ ሾ0,1ሿ
,      (4) 132 

where sc is the critical supersaturation in %. The variables that control sc are vs, aw, and s/a. In 133 

this work it is assumed that surface tension is that of pure water. Discussion on this and other 134 

assumptions are provided at the end of this section. First the prediction of vs and aw for organic 135 

compounds with known chemical structure is described. 136 

Molar Volume 137 

Molar volume is calculated from the molecular formula using the method of Girolami (1994). 138 

Each element is assigned a relative volume based on its location in the periodic table. The 139 

elemental volumes are summed and scaled by a constant factor to compute vs. If the oxygen is 140 

bound in the form of alcohol [OH] or carboxyl [C(=O)OH] moieties, the actual vs is smaller due 141 

to intramolecular bonding. Therefore vs is decreased by 10% for each [OH] or [C(=O)OH] group 142 

but by no more than 30% of the molar volume derived from the elemental composition. Girolami 143 

(1994) tested this method for 166 liquids and reports agreement with observations vs ~ ±10%. 144 

Barley et al. (2012) reviewed the performance of various methods for predicting molar volume 145 

using a test set of 56 multifunctional organic compounds and report similar scatter.146 
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Water activity 147 

Water activity is related to the mole fraction via 148 

ܽ௪ ൌ  ௪,                       (5) 149ݔ௪ߛ

where w is the activity coefficient of water. Activity coefficients are estimated using the semi-150 

empirical group contribution method UNIFAC (Fredenslund et al., 1975). The UNIFAC model 151 

describes a liquid solution that consists of i components. Each component is divided into k 152 

groups. The activity coefficient of component i in solution (γi) has contributions from 153 

combinatorial (γC) and residual parts (γR) 154 

lnߛ௜ ൌ lnߛ௜
஼ ൅ lnߛ௜

ோ.                     (6) 155 

The combinatorial part is computed via 156 

lnߛ௜
஼ ൌ ln ః೔

௫೔
൅ ௭

ଶ
௜lnݍ

ఏ೔
ః೔
൅ ݈௜ െ

ః೔
௫೔
∑ ௝ݔ ௝݈௝                    (7a) 157 

݈௜ ൌ
௭

ଶ
ሺݎ௜ െ ௜ሻݍ െ ሺݎ௜ െ 1ሻ; ݖ ൌ 10                    (7b) 158 

௜ߠ ൌ
௤೔௫೔

∑ ௤ೕ௫ೕೕ
; ௜ߔ ൌ

௥೔௫೔
∑ ௥ೕ௫ೕೕ

                            (7c) 159 

௜ݎ ൌ ∑ ௞ݒ
ሺ௜ሻܴ௞௞ ; ௜ݍ ൌ ∑ ௞ݒ

ሺ௜ሻܳ௞௞ .                     (7d) 160 

In Eqs. (7), xi is the mole fraction of component i,  θi and Φi are the average surface and segment 161 

fraction, z is the lattice coordination number, v(i)
k is the number of groups of type k in component 162 

i, Rk and Qk are the group volume and surface area parameters derived from Bondi (1964), and  ri  163 

and qi are the normalized Van-der-Waals volume and surface area. The summation i or j is over 164 

all components in the mixture, including component i. 165 

The residual part is computed via 166 

lnߛ௜
ோ ൌ ∑ ௞ݒ

ሺ௜ሻቂln߁௞ െ ln߁௞
ሺ௜ሻቃ௞                        (8a) 167 

ln߁௞ ൌ ܳ௞ െ ቂ1 െ lnሺ∑ ௠௞௠ߖ௠߆ ሻ െ ∑ ௵೘అೖ೘

∑ ௵೙అ೙೘೙
௠ ቃ                     (8b) 168 
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௠߆ ൌ ொ೘௑೘
∑ ொ೙௑೙೙

                                (8c) 169 

ܺ௠ ൌ
∑ ௩೘

ሺ೔ሻ௫೔೔

∑ ∑ ௩ೖ
ሺ೔ሻ௫೔ೖ೔

                              (8d) 170 

௠௡ߖ ൌ exp ቀെ ௔೘೙

்
ቁ                        (8e) 171 

In Eqs (8), amn are empirically determined parameters, Ψmn is the group interaction parameter of 172 

group m with n, Xm is the mole fraction of group m in the mixture, Θm is the area fraction of 173 

group m, Γk  is the group residual activity coefficient, and Γ(i)
k is the residual activity coefficient 174 

of group k in a reference solution containing only molecules of type i. Eqs. (8) are also used to 175 

compute Γ(i)
k .  The summation n or m is over all different groups in the mixture, and the 176 

summation k is over all groups in component i. 177 

Groups within UNIFAC are represented as main groups and subgroups. The main groups 178 

evaluated in this work are alkane [CHn], alcohol [OH], water [H2O], carbonyl [CHnC(=O)], 179 

aldehyde [HC(=O)], ether [CHn(O)], carboxyl [C(=O)OH], nitrate [CHnONO2], and 180 

hydroperoxide [CHn(OOH)]. Interaction parameters amn between the main groups that are used in 181 

this work are tabulated in Table S1. Some of the main groups have several subgroups, with each 182 

subgroup having unique volume and surface area parameters Rk  and Qk. These are summarized 183 

in Table S2.  184 

Phase Equilibrium 185 

For some xw liquid-liquid phase separation can occur. The normalized Gibbs free energy of 186 

the mixture, defined as the actual Gibbs free energy divided by the thermal energy, is needed to 187 

compute the number of thermodynamically stable phases in the system. For a binary system 188 

consisting of water (w) and a single solute (s), Gibbs energy is calculated from the activity 189 

coefficients via standard thermodynamic relationships (Prausnitz et al., 1999, Petters et al., 2009)  190 

 Δ݃௠௜௫ ൌ Δ݃௜ௗ௘௔௟ ൅ Δ݃௘௫௖௘௦௦                 (9a) 191 

Δ݃௜ௗ௘௔௟ ൌ ௪ݔ௪lnݔ ൅ ሺ1 െ  ௦               (9b) 192ݔ௪ሻlnݔ

Δ݃௘௫௖௘௦௦ ൌ ௪ߛ௪lnݔ ൅ ሺ1 െ  ௦,               (9c) 193ߛ௪ሻlnݔ
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where gmix is the normalized change in Gibbs free energy of the mixture, gideal is the change in 194 

ideal Gibbs free energy of the mixture (Raoult's law) and gexcess is the excess Gibbs free energy 195 

of mixing quantifying the deviation from Raoult's law. In highly non-ideal solutions liquid-liquid 196 

phase separation may occur. Two compositions xa and xb define the water mole fraction of the 197 

two co-existing phases. Computationally, xa and xb can be obtained from gmix 
 using the area 198 

method (Eubank et al., 1992). Briefly, the state space is evaluated by computing the following 199 

area for all possible combinations xI and xII 200 

,ூݔሺܣ ூூሻݔ ൌ ∣∣ൣΔ݃
௠௜௫ሺݔூூሻ ൅ Δ݃௠௜௫ሺݔூሻ൧ ቂ

௫಺಺ି௫಺
ଶ

ቃ∣∣ െ ∣
׬∣ Δ݃௠௜௫ሺݔሻ݀ݔ
௫಺಺
௫಺ ∣

∣.      (10a) 201 

Phase boundaries xa and xb exist if condition 202 

,௔ݔሺܣ ௕ሻݔ ൌ maxܣሺݔூ, ;ூூሻݔ ܣ ൐ 0               (10b) 203 

is satisfied. If multiple phases coexist in phase equilibrium, the Gibbs-Duhem relationship 204 

dictates that the chemical potential of each component is equal in all phases. Therefore the water 205 

activity inside the miscibility gap is constant and the values entering Eq. 4 are subject to the 206 

constraint 207 

ܽ௪ ൌ ൜
ܽ௪ሺݔ௔ሻ ൌ ܽ௪ሺݔ௕ሻ				for	ݔ௔ ൑ ௪ݔ ൑ ௕ݔ

else	௪ݔ௪ߛ
.            (11) 208 

We note that Eubank et al. (1992) algorithm can be extended to n-components. Other 209 

numerically efficient approaches to find phase equilibrium, including those of n-component 210 

mixtures, are available in the literature (e.g. Amundson et al., 2005, 2007, Zuend et al., 2010). 211 

Comparison for phase boundaries (ݔ௔, ݔ௕) calculated using standard UNIFAC parameters and the 212 

Eubank method used in this model, and standard UNIFAC parameter and the algorithm in the 213 

UHAERO model (Amundson et al., 2007) are in good agreement and summarized in the 214 

supplementary information. 215 

Model Implementation 216 

 The model was implemented to run on a personal computer using the commercial MATLAB 217 

environment (MathWorks, Inc.). Alternatively, the code runs under the Octave environment, 218 
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which is available as free software under the GNU General Public License. Correct 219 

implementation of the UNIFAC model was confirmed by comparing results from test mixtures 220 

against output from existing implementations which is further described in the supplementary 221 

information. A compound is defined by specifying a count of subgroups comprising the 222 

molecule. Eqs. (6)-(8) are solved to find w for n linearly spaced values within the domain 223 

xw  [0.0001, 0.9999]. Resulting w  are parsed through Eqs. (9)-(11) to find the number of stable 224 

phases and to define aw over the entire domain. These aw are interpolated onto a higher 225 

resolution linearly gridded domain (m points) to improve the accuracy of the computation of sc 226 

using Eq. (4). Values for n and m are selected to balance computational speed and solution 227 

accuracy. Equations (6)-(8) have linear time complexity. Equations (9)-(11) have quadratic time 228 

complexity. Thus the two algorithms have order O(n) and O(n2), respectively. For n > 200, the 229 

overall model time complexity is O(n2). For n > ~800 and m = 10000, the resolution is 230 

sufficiently high so that the computed sc becomes independent of the choice of n. All 231 

computations in this work were carried out for n = 1000 and m = 10000. Total model execution 232 

times for a single compound on an Intel(R) Core(TM) i7-2600 3.4 GHz microprocessor using a 233 

single core were 39 s with MATLAB version R2013a (8.1.0.604) 64-bit and 282 s with GNU 234 

Octave version 3.8.1 configured for 64-bit. 235 

Hygroscopicity Parameter 236 

Equation (4) is solved to find sc for a specified dry diameter, fixed T = 298.15 K and 237 

s/a = 0.072 J m-2. The result is expressed in terms of the hygroscopicity parameter  (Petters and 238 

Kreidenweis, 2007) that is defined via 239 

௖ݏ ൌ ൜݉ܽݔ ൤
஽యି஽೏

య

஽యି஽೏
యሺଵି఑ሻ

exp ቀ
ସఙೞ ೌ⁄

ఘೢோ்஽
ቁ൨ െ 1ൠ ⋅ 100%

ܦ ∈ ሾܦௗ,∞ሿ
.           (12) 240 

The hygroscopicity parameter is obtained by iteratively seeking the value that satisfies Eq. (12) 241 

for a given Dd, sc pair. Kappa values obtained by fitting a Dd, sc pair to Eq. (12) with the assumed 242 

temperature and surface tension conceptually correspond to “apparent hygroscopicity at standard 243 

state” (Christensen and Petters, 2012). All values in this work are apparent ’s. For simplicity 244 
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these are denoted as  without further qualification. Observations against which the model is 245 

evaluated are summarized in the supplementary information and will be discussed further in 246 

Section 3. 247 

Model Assumptions and Limitations 248 

 The model approach presented here is limited to liquid organic compounds. This assumption 249 

is implied in both molar volume and UNIFAC activity coefficient calculations. Comparison with 250 

observational CCN data where the reference phase state may be crystalline should be interpreted 251 

with caution. For example, CCN experiments performed with crystalline dicarboxylic acids 252 

demonstrate that for some compounds deliquescence, i.e. a solubility-controlled phase transition, 253 

must precede droplet activation (Petters and Kreidenweis, 2008). The UNIFAC approach is 254 

unable to accurately predict the solubility of these compounds if they existed in their crystalline 255 

solid state. If, however, the compound is in metastable aqueous solution, the UNIFAC prediction 256 

is expected to be valid to within the general accuracy of the specific model implementation. 257 

Under atmospheric conditions where the organic compounds are embedded in a matrix 258 

comprising a multitude of organic compounds, liquid or amorphous solid is the prevailing stable 259 

phase (Marcolli et al., 2004). Furthermore, since metastable states with hygroscopically bound 260 

water appear to dominate in the atmosphere (Rood et al. 1989, Nguyen et al., 2014) the liquid 261 

assumption may not be a serious limitation. Nonetheless, it is unclear whether the assumption of 262 

a liquid-like reference state is a serious limitation if the organic particles are highly viscous 263 

(Vaden et al. 2011, Shiraiwa et al. 2011, Zobrist et al. 2011, Renbaum-Wolff et al. 2013). 264 

 Other limitations of the UNIFAC method are the problems of accounting for group proximity 265 

effects and the inability to distinguish between isomers. Proximity effects occur when polar 266 

groups are separated by less than three to four carbon atoms (Topping et al., 2005). Since only 267 

the number of groups of type i are specified, all isomers are modeled to have identical  values. 268 

Although experiments show that the location of the functional group has a small and systematic 269 

effects on the observed (Suda et al., 2014), those effects are relatively small and beyond the 270 

resolution of the model presented here. 271 
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The application of Eq. (4) assumes that the surface tension is that of pure water. Many 272 

organic compounds found in ambient organic aerosol lower the surface tension at the solution/air 273 

interface (Tuckermann and Cammenga, 2004, Tuckerman, 2007). However, several studies have 274 

demonstrated via experiment and theory that surfactant partitioning between the bulk solution 275 

and the Gibbs surface phase greatly diminishes the effect one would predict by applying 276 

macroscopic surface tensions in Köhler theory (Li et al., 1998, Rood and Williams, 2001, 277 

Sorjamaa et al., 2004, Prisle et al., 2011). Neglecting to account for reduced surface tension and 278 

using water activity to estimate CCN activity results in an underestimate of  of ~30% for the 279 

strong surfactant sodium dodecyl sulfate (Petters and Kreidenweis, 2013). We note that estimates 280 

of surface tension reduction for pure organic liquids can be obtained from critical pressure and 281 

boiling point (Sastri and Rao, 1994) and the Sprow and Prausnitz (1966) expression coupled with 282 

UNIFAC activity coefficients (Topping et al., 2005, Rafati et al., 2011). Combined with 283 

predictions of critical properties from functional group data (Joback and Reid, 1987), predicted 284 

binary surface tensions could be obtained for each compound. Including surfactant partitioning 285 

in Eq. (4) is possible using the expressions in Petters and Kreidernweis (2013) or similar 286 

approaches (Sorjamaa et al., 2004, Raatikainen and Laaksonen, 2011). Thorough validation 287 

against experimental data, including measurements of surface tension and CCN activity are 288 

needed before this approach should be adopted.  289 

Relationship to other thermodynamic models and application to multicomponent systems 290 

The basic model functionality described here can also be obtained by appropriately 291 

initializing other multicomponent equilibrium models (Ming and Russell, 2002, Raatikainen and 292 

Laaksonen, 2005, Topping et al., 2005, Clegg and Seinfeld, 2006, Amundson et al., 2007, Zuend 293 

et al., 2008) with a set of binary water/organic solutions, parsing the output through a phase 294 

equilibrium module (if not included in the thermodynamic model itself) and the Köhler model. 295 

The predicted CCN activity mostly depends on the underlying set of group interaction 296 

parameters. The output should match with the solution presented here if the same interaction 297 

parameter matrix is used. The main conceptual distinction between the approach proposed here 298 

and the approach employed by the more complex multicomponent models is our focus on 299 
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predictions for binary organic/water solutions and limitation of the scope to a narrow range of 300 

water activities relevant to CCN activation only. Accurate representation of hygroscopic growth 301 

at aw < ~0.99 is not required and would be of secondary concern when tuning interaction 302 

parameters.  303 

We envision that the proposed specialized model approach can be used to categorize 304 

individual compound into three miscibility regimes, analogous to the solubility regimes defined 305 

in Petters and Kreidenweis (2008). Regime I: the compound is CCN inactive and can be 306 

effectively modeled as  = 0. Regime II: the compound is CCN active without any additional 307 

phase constraints. In turn  is mostly determined by molar volume and slightly modulated by 308 

activity coefficients. Regime III: the compounds’ CCN activity is limited due to miscibility 309 

constraints. In turn  is highly sensitive to overall water content and can either have  ~ 0 or 310 

express  according to its molar volume. Once pure component 's are predicted and stored in a 311 

database, the overall OA  in mixed particles can be calculated quickly using the volume 312 

weighted mixing rule (Petters and Kreidenweis, 2007). This compound-by-compound treatment 313 

of multicomponent mixtures assumes that solute-solute interactions are negligible. Salting-in and 314 

salting-out of solution effects are not captured. Effective -values for compounds falling into the 315 

limited miscibility regime may be misrepresented in this treatment. Whether such effects are 316 

important will depend on the fraction of compounds in a mixture that fall into the limited 317 

miscibility regime and whether the proposed approach of intermediate complexity – modelling 318 

binary solutions coupled with a linear mixing rule – ultimately proves sufficiently accurate 319 

model the evolution of ambient OA. In the following we use experimental data to demonstrate 320 

that the outlined UNIFAC model is suitable to categorize compounds into these three regimes. 321 

Results and Discussion 322 

Experimental data for validation was compiled from the literature. A detailed summary of the 323 

compound names, chemical structures, physicochemical properties, CCN observations, and 324 

observed app’s is provided in the supplementary information (Tables S3-S7). This set features 325 

compounds with mostly linear carbon backbones C4 to C18 and O:C ratio between 0.1 and 1. The 326 

data are grouped into model compounds for primary organic aerosol (POA, Table S3), 327 
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functionalized hydroperoxy ethers (Table S4), hydroxynitrates (Table S5), carboxylic acids 328 

(Table S6), and carbohydrates (Table S7). Compounds included in Table S3 are long chain 329 

molecules that have hydrophobic tails (> 14 methylene groups) and a single terminal carboxyl or 330 

hydroxyl group. Representative example compounds are oleic acid or cetyl alcohol. Compounds 331 

in Table S4 are C14 functionalized hydroperoxy ethers that have 10-12 methylene groups, at least 332 

one hydroperoxide and ether group, and a second carbonyl, hydroperxide, or carboxyl group. 333 

Compounds in Table S5 are functionalized hydroxynitrates featuring C10 to C15 carbon 334 

backbones with 1-3 hydroxyl and 1-4 nitrate groups. Compounds in Table S6 are C4-C10 335 

carboxylic acids that have 1-2 carboxyl and up to one carbonyl group attached to the carbon 336 

backbone. Finally, compounds in Table S7 are C4-C18 carbohydrates that have hydroxyl groups 337 

approximately equal to the number of carbon atoms. Data in Table S3 are taken from Raymond 338 

and Pandis (2002) and Shilling et al., (2007). Data in Tables S4 and S5 are taken from the 339 

supplement of Suda et al. (2014). Data in Tables S6 and S7 are from various sources are 340 

summarized in the supplement of Petters et al. (2009b), which was updated with new compounds 341 

from Christensen and Petters (2012), and data were re-screened for quality. The compounds were 342 

selected to provide systematic variation in the number and type of functional groups with 343 

otherwise similar structure, i.e. linear or weakly branched alkane backbone with variable carbon 344 

chain length. 345 

To illustrate model initialization and model output two example compounds from the 346 

supplementary information C12 dihydroxynitrate and C13 trihydroxynitrate, are presented in Table 347 

1. For some of the compounds density and solubility data are available and those data are 348 

included in the supplementary information. Table 1 shows how the molecular structure is 349 

decomposed into the subgroups understood by the UNIFAC and Girolami (1994) model 350 

framework. Detailed model output for the two example compounds is illustrated in Figure 1. The 351 

predicted mole fraction dependence of gmix suggests that the C13 trihydroxynitrate is miscible 352 

with water in all proportions while the C12 dihydroxynitrate is not. The dashed black line 353 

connecting xa and xb encloses the maximum positive area with the gmix line and defines the two-354 

phase region. Water activity derived from gmix is graphed in the middle panel. It shows that the 355 

miscibility gap for the C12 dihydroxynitrate occurs at water activity close to unity. Phase gaps at 356 
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water activity near unity may result in miscibility-controlled cloud droplet activation (Petters et 357 

al., 2006), which is analogous to solubility/deliquescence limited cloud droplet activation 358 

(Shulman et al., 1998, Hori et al., 2003, Bilde and Svenningsson et al., 2004, Kreidenweis et al., 359 

2006, Petters and Kreidenweis, 2008). Köhler curves in the right panel demonstrate miscibility-360 

limited activation behavior. For the C13 trihydroxynitrate, the Köhler curve is smooth and 361 

exhibits a single maximum corresponding to the model critical supersaturation. For the C12 362 

dihydroxynitrate two maxima appear. The first maximum corresponds to the point of incipient 363 

phase separation xa. The height of the miscibility barrier depends on the dry diameter. For large 364 

dry particles where the Kelvin term does not play a significant role, the supersaturation of point 365 

xa is reduced and the second classical Köhler maximum will control droplet activation. Similar 366 

complex Köhler curves have been reported previously (e.g. Bilde and Svenningsson, 2004, 367 

Petters and Kreidenweis, 2008). Experiments with pure crystalline sparingly-soluble organic 368 

compounds have demonstrated convincingly that the larger maximum indeed controls cloud 369 

droplet activation for solubility-limited cases (Hori et al., 2003, Bilde and Svenningsson, 2004, 370 

Hings et al., 2008). The sc vs. Dd relationship for phase-controlled activation does not result in 371 

 ௔௣௣ that is independent with respect to Dd (Petters and Kreidenweis, 2008). Therefore for 372ߢ

compounds having  < ~ 0.06 where phase separation might play a role, the observed sc, Dd pair 373 

is included in the data tables (Table 1, Tables S3-S7) and ߢ values are computed from the 374 

observation and the model (Eq. 12) at the same Dd. Note that the Dd-dependent ߢ only plays a 375 

role in a narrow range of miscibilities. Sufficiently soluble and truly insoluble substances are not 376 

affected. In summary, Table 1 and Figure 1 demonstrate model input, illustrate model mechanics, 377 

and identify model outputs.  378 

How well do data-derived and model-derived ߢ௔௣௣ compare? For numerical comparison both 379 

’s are included in Tables S3-S7. A graphical illustration of these is presented in Figure 2. To 380 

improve clarity compounds with predicted and modelled  < 0.001 are clustered in the lower left 381 

corner. Such low ߢ’s correspond to compounds that are effectively CCN inactive. The range 382 

between  = 10-3 and 10-5 spans a narrow range in the sc-Dd- state space that characterizes CCN 383 

activity (cf. Figure 1 Petters and Kreidenweis, 2007). Resolving these differences is not 384 
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particularly meaningful for the organic dominated particles that typically have Dd < 300 nm. 385 

Furthermore, the  of an internally mixed particle is approximately the weighted volume fraction 386 

in the mixture. For  < 10-3 the contribution to a mixed particle’s  is insensitive to the exact 387 

value. Finally, although state-of-the-science size-resolved CCN measurements can resolve 388 

differences in  < 10-3, compound impurities can interfere. A 1% impurity having  similar to 389 

ammonium sulphate would contribute ~0.06 to a measured particle . In addition, solvent 390 

residuals (Huff Hartz et al., 2006, Shilling et al. 2007, Rissman et al. 2007) and control over the 391 

dry particle phase state (Raymond and Pandis, 2002, Hori et al., 2003, Broekhuizen et al., 2004, 392 

Bilde and Svenningson, 2004) can disproportionally bias the characterization of low ’s. 393 

Combined these points justify the definition of  < 0.001 as effectively CCN inactive. 394 

Compounds in the CCN inactive corner include all compounds from Table S3, the C14 and C15 395 

hydroxnitrate, and the C14-trinitrate. These compounds all have 11 or more methylene groups and 396 

O:C ratios between 0.11 and 0.65. CCN activity of these compounds is satisfactorily predicted by 397 

the model. 398 

Nine compounds are predicted to be CCN inactive but have measurements indicating 399 

0.001 > obs > ~0.03. These are graphed below the dashed line and include C14 di- and tetra-400 

nitrate, C13 hydroxynitrate, C14 and C15 dihydroxynitrate, the remaining hydroperoxide ethers 401 

from Table S4, and cis-pinonic acid. The observed C14 di- and tetra-nitrate are barely larger than 402 

the cutoff for CCN inactive. Variation of  between the C14 di- and tri- and tetra-nitrate (cf. 403 

Figure 2, Suda et al., 2014) implies that the trinitrate has lower  than the di- and tetra-nitrate, 404 

which suggests that some random variability in the data is superimposed on the trend. Similarly, 405 

the observations show that the C14- and  C15 dihydroxynitrate are slightly more CCN active than 406 

the C13 dihydroxynitrate. Although this is possible such behaviour is not plausible due to the 407 

well-established hydrophobic nature of the added CHx groups. One possible explanation for the 408 

discrepancies is the sensitivity of observed ’s to trace contamination. Each of the compounds 409 

was purified via high performance liquid chromatography (HPLC,Suda et al., 2014) but degree 410 

of purification likely varied between compounds. Furthermore, experimental uncertainty for the 411 

HPLC-CCN method used is slightly larger than for standard methods since it requires application 412 
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of fast flow scans. Finally, the data are from a single set of experiments. More data are needed 413 

before attributing the mismatch to either model or measurement error.  414 

Another notable outlier is adipic acid. Here, the observed  < 0.01 corresponds to the 415 

solubility-limited value that is referenced against its solid crystalline phase state. In contrast, the 416 

predicted value =0.14 is in good agreement with the molar volume prediction ( = 0.17, cf. 417 

Figure 4, Christensen and Petters, 2012) and observed  that adipic acid particles express when 418 

solubility limitations are removed (cf. Figure 1, Hings et al., 2008). This scenario was selected to 419 

illustrate the inability of the UNIFAC model to treat solid phases. It therefore cannot capture 420 

deliquescence and deliquescence/solubility limited activation. In atmospheric OA multiple 421 

organic compounds likely form an amorphous supercooled melt (Marcolli et al., 2004) and 422 

metastable aqueous solutions are ubiquitous (Rood et al., 1995). Thus the metastable prediction 423 

would be valid to account for adipic acid in the context of atmospheric OA. 424 

A series of carboxylic acids and carbohydrates cluster near the 1:1 line at  > ~ 0.06. These 425 

compounds are generally highly functionalized having at least 2 carboxyl, hydroxyl, or carbonyl 426 

group for every 4 carbon atoms. The O:C ratio always exceeds 0.5 and is close to 1 for many of 427 

the compounds. For the predictions, activity coefficients approach unity, compounds are miscible 428 

in water in all proportions, and model ’s closely track the prediction based on estimated molar 429 

volume. Overall comparison of predicted vs. observed  is approximately within a factor of two 430 

and this range is similar to predictions that are based on actual molar volume (cf. Figure 2, 431 

Petters et al., 2009b).  432 

The series of hydroxynitrates, dihydroxynitrates, and trihydroxynitrates for different carbon 433 

chain length also cluster near the 1:1 line. The spread is within approximately a factor of two and 434 

similar to that of the carboxylic acids and carbohydrates. These compounds span the entire range 435 

from  < 0.001 to  ~0.1 and have as few as two hydroxyl and one nitrate group per 13 carbon 436 

atoms (C13 dihydroxynitrate). The model appears to accurately predict the influence of the 437 

methylene and hydroxyl groups on the transition from immiscible and CCN inactive to 438 

sufficiently miscible and CCN active according to the molar volume of the compound. For the 439 

C11, C12, and C13 dihydroxynitrates the predicted miscibility-limited activation demonstrated in 440 
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Figure 1 seems to adequately explain the transition. The accurate model prediction of this 441 

sensitive transition regime is encouraging, especially since no adjustment was made to the amn 442 

group interaction parameters for [OH], [CHx], and [H2O] groups.  443 

In summary, Figure 2 demonstrates four capabilities of the model. First, the model has good 444 

skill in correctly classifying effectively CCN inactive compounds ( < 0.001). Second, the model 445 

captures the molar volume dependent activation of highly functionalized compounds (low 446 

molecular weight dicarboxylic acids and polysaccharides). Scatter between predicted and 447 

observed  is approximately within a factor of two and considered acceptable taking into account 448 

the considerable diversity in the underlying CCN data. We note that uncertainties in molar 449 

volume estimation of vs ~ ±10% stemming from the Girolami et al. (1994) method correspond to 450 

±10% error in predicted  for these compounds, which is significantly less than the observed 451 

scatter in the data (Petters et al., 2009). Third, the model predicts that miscibility limitations are 452 

the cause for poor CCN activity of weakly functionalized hydrocarbons, and the phase separation 453 

information can be used to quantitatively predict the transition between sufficiently miscible and 454 

effectively immiscible species. Finally, the model seems to accurately capture the main 455 

functional group dependencies observed previously (Suda et al., 2014): a strong promoting effect 456 

of hydroxyl, a weak promoting effect for hydroperoxides, a negligible or inhibiting effect of 457 

nitrate, and inhibiting effect of methylene groups on CCN activity. How, then, can one quantify 458 

the model sensitivity of  to the addition of functional groups to otherwise similar molecules? 459 

Simulation of homologous series can be used to derive these sensitivities. Figure 3 shows 460 

modelled ’s for a series of functionalized n-alkanes. The gradual decreasing trend of  with 461 

increasing carbon number is due to the increase in molar volume. A steep decline is observed 462 

when a critical carbon number is exceeded. Beyond this point the additional methylene groups 463 

reduce the miscibility with water and render the compound effectively CCN inactive. For 464 

example, CCN activity for a C16 trihydroxyalkane is controlled mostly by molar volume while 465 

C18 trihydroxyalkane is effectively CCN inactive. The critical carbon number is C7, C12, C16, C20, 466 

and C24 for the mono-, di-, tri-, tetra-, and penta-hydroxyalkanes, respectively. Starting with an n-467 

alkane, the most dramatic effect of adding functional groups is to render the molecule miscible 468 
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with water. Contrasting the critical carbon number for different homologous series is can be used 469 

as a measure of a particular groups’ ability to transform the molecule such that it is sufficiently 470 

miscible in water and can express its molar volume . The hydroxyalkane series shows that 471 

approximately one hydroxyl group is needed to compensate for the addition of 4 methylene 472 

groups (i.e. to maintain miscibility at the composition of the critical carbon number). Expressed 473 

as a ratio, [CHn]/[OH] ~ -4/1. Similar ratios for the other groups are derived from the shifts in 474 

the dihydroxyalkane series upon further functionalization: [CHn]/[C(=O)OH] ~ -5/2, 475 

[CHn]/[CHnC(=O)] ~ -2/3, [CHn]/[HC(=O)] ~ -4/2, [CHn]/[CHn(O)] ~ -2/4, 476 

[CHn]/[CHn(OOH)] ~ -2/2, and [CHn]/[CHnC(=O)] ~ -2/3, and [CHn]/[CHnONO2] ~ 477 

2/3. This leads to a sorting of relative effectiveness of the groups in promoting miscibility, 478 

hydroxyl (-4) > acid (-2.5) > aldehyde (-2) > hydroperoxide (-1) > carbonyl (-0.66) > ether (-0.5) 479 

> nitrate (0.66), where the number in parentheses corresponds to the [CHn]/[n]. According to 480 

this model the addition of nitrate groups is in the same direction as methylene groups, i.e. it 481 

reduces miscibility. This finding is consistent with CCN experiments on alkenes reacted with 482 

NO3 radicals (Suda et al., 2014, supplement), and the known low miscibility of organic nitrates 483 

in water (Boschan et al., 1995). Furthermore sorting of the different functional groups is 484 

qualitatively consistent with the sensitivity of  to the addition of functional groups derived from 485 

CCN data (Table S5, Suda et al., 2014). 486 

Treatment of OA evolution in the atmosphere  487 

The computational speed of the model is relatively slow. The slow speed is due to the need to 488 

evaluate the entire range of mole fractions in order to determine the phase boundaries. 489 

Improvement in model execution speed is likely possible via algorithm optimization. 490 

Furthermore, parallel execution of the code is possible. With a regular workstation it is feasible 491 

to perform offline computation of ~106 ’s for a large set of compounds produced by the 492 

Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) or 493 

similar models. Once pure component 's are predicted, the evolution of the overall OA  in 494 

mixed particles can be calculated quickly using the linear mixing rule (Petters and Kreidenweis, 495 

2007), subject to the limitations of this approach discussed in Section 2. One additional 496 
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limitation is the need for algorithms that automatically map the computer-generated simplified 497 

molecular-input line-entry system (SMILES) structures (e.g. Table 3, Lee-Taylor et al., 2015) to 498 

UNIFAC groups. Several of these structures are bridged and even manual mapping of those 499 

structures to UNIFAC groupings will necessitate definition of new groups with unknown 500 

volume, surface, and interaction parameters. Separate studies are needed to establish the minimal 501 

number of new groups that would be needed to obtain optimal coverage for the set of compounds 502 

of interest.   503 

  504 

Summary and Conclusions 505 

This paper describes how functional group contribution methods can be used to estimate the 506 

CCN activity of pure organic compounds. Group interaction parameters were taken from a mix 507 

of sources and used without further tuning. Model fidelity was evaluated against a database of 508 

published CCN data. Weakly functionalized alkanes are correctly classified as effectively CCN 509 

inactive (defined as  < 0.001). Highly functionalized and water-soluble molecules are predicted 510 

to activate in accordance with the estimated molar volume and generally predictions agree with 511 

observations within a factor of two. Liquid-liquid phase separation is predicted to occur for 512 

compounds with few functional groups and phase separation is predicted to control . The model 513 

adequately reproduces the observation that hydroxyl groups strongly promote CCN activity 514 

while nitrate groups inhibit CCN activity. A few outliers in the model evaluation may be 515 

explained by the combination of CCN measurement uncertainty, compound purity, uncertainty in 516 

dry particle phase state, and insufficiently tuned group interaction parameters. However, more 517 

systematic data on weakly functionalized compounds, including repeat studies, are needed before 518 

a retuning of parameters is justified. The model makes new predictions about the relative 519 

effectiveness of the groups in promoting miscibility. Most notably, it predicts that 520 

hydroperoxides have much less of an effect than hydroxyl, which is slightly surprising since one 521 

would expect the hydrogen bonding to be similar. The model state space can serve as a rough 522 

guide to define test conditions to quantify via experiment the effectiveness of adding one or more 523 

functional groups to a carbon backbone. 524 
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Although this work is limited to a few functional groups, the presented framework is general 525 

since interaction parameters are available for a wide range of groups. For atmospheric purposes, 526 

amines, olefins, and aromatic compounds are the most relevant groups that need to be added. 527 

Few, if any systematic CCN data for these groups are available. However, the success of the 528 

current model to estimate  without the need to tune parameters could be taken as indication that 529 

first order predictions can be obtained until such data become available.  530 

 531 

Code Availability 532 

Source code and example scripts demonstrating model initialization for the compounds presented 533 

in this study is available as supplementary information to this manuscript. 534 
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Table 1. Properties for two example chemical compounds. UNIFAC representation indicated the 781 

number and type of subgroups to represent the chemical structure MW denotes molecular weight 782 

(g mol-1) and vs denotes the model predicted molar volume (cm3 mol-1). CCN reflects the 783 

observed supersaturation and dry diameter data pair obtained from the source (Suda et al., 2014) 784 

from which observed ࣄ was determined.  785 
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UNIFAC 
representation

MW 
 

vs 
 

observed 
CCN 

Apparent ߢ 

# Subgroup 
sc (%) 

observed  model
Dd (nm) 

C12 
dihydroxy 
nitrate 

C12H25O5N 

2 CH3

263.3  263.3 

0.3 

0.018  0.008 

8 CH2

1 C

222 1 CH(ONO2)

2 OH

C13 
trihydroxy 
nitrate 

C13H27O6N 

2 CH3

293.4  257.7 

0.3 
 

0.1  0.07 

8 CH2

1 CH

1 C

111 1 CH(ONO2)

3 OH

OH

O2NO OH

OHONO2

OHOH



31 

 

 

Figures 786 

 787 

Figure 1. Modeled gmix (left), water activity (middle), and Köhler curves (right) for C12 788 

dihydroxynitrate and C13 trihydroxynitrate (see Table 1). Open circles denote the mole fractions 789 

xa and xb that correspond to the envelope of compositions where liquid-liquid phase separation is 790 

predicted for the C12 dihydroxynitrate.   791 
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792 

Figure 2. Model predicted vs. experimentally determined ߢ-values. Values 0.001 > ߢ are 793 

classified as CCN inactive and are clustered in the lower left corner of the graph. Colors are used 794 

to delineate the grouped source data in the supplementary information (SI). Selected structures 795 

from the SI are included in the graph. Cx-HN, Cx-DHN, and Cx-THN denote hydroxynitrate, 796 

dihydroxynitrate, and trihydroxynitrate and x denotes the total number of carbon atoms. C14-797 

DiN, C14-TriN, C14-TetraN denote the C14 dinitrate, trintrate, and tetranitrate, respectively. Points 798 

below the dashed line corresponds to compounds with predicted ߢ ൏ 0.001 and observed ߢ ൐799 

0.001. Typical range of observed ߢ CCN for peroxides is indicated by the horizontal bar. 800 
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801 

Figure 3. Modeled ߢ values for homologous series of functionalized n-alkanes. Solid lines 802 

correspond to alkanes with 1-5 non-terminal hydroxyl groups. Orange dashed lines correspond to 803 

further functionalized dihydroxyalkanes as described in the legend. Colored carbon numbers (C7, 804 

C12, C16, C20, and C24) correspond to the largest carbon number without miscibility limited 805 

activation for the respective hydroxyalkanes series. 806 
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