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Abstract

Bocquet and Sakov (2013) have introduced a low-order model based on the coupling
of the chaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with
the transport of a tracer species advected by this zonal wind field. This model, named
L95-T, can serve as a playground for testing data assimilation schemes with an online5

model. Here, the tracer part of the model is extended to a reduced photochemistry
module. This coupled chemistry meteorology model (CCMM), the L95-GRS model,
mimics continental and transcontinental transport and the photochemistry of ozone,
volatile organic compounds and nitrogen oxides. Its numerical implementation is de-
scribed. The model is shown to reproduce the major physical and chemical processes10

being considered. L95-T and L95-GRS are specifically designed and useful for testing
advanced data assimilation schemes, such as the iterative ensemble Kalman smoother
(IEnKS) which combines the best of ensemble and variational methods. These mod-
els provide useful insights prior to the implementation of data assimilation methods on
larger models. We illustrate their use with data assimilation schemes on preliminary,15

yet instructive numerical experiments. In particular, online and offline data assimilation
strategies can be conveniently tested and discussed with this low-order CCMM. The
impact of observed chemical species concentrations on the wind field can be quan-
titatively estimated. The impacts of the wind chaotic dynamics and of the chemical
species non-chaotic but highly nonlinear dynamics on the data assimilation strategies20

are illustrated.

1 Introduction

Several data assimilation methods have been used in the field of atmospheric chem-
istry and air quality in many studies (as exemplified in the reviews of Carmichael et al.,
2008; Sandu and Chai, 2011; Zhang et al., 2012; Bocquet et al., 2015). Yet, how ef-25

ficiently data assimilation schemes operate in high-dimensional and heterogeneous
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models such as those used in the field remains largely unclear. Indeed, atmospheric
chemistry models are becoming increasingly complex, with multiphasic chemistry, size-
resolved particulate matter, and possibly coupled to numerical weather prediction mod-
els. In the meantime, data assimilation methods have also become more sophisticated.
Let us briefly and non-exhaustively describe this evolution. Kalman filters have been5

used with atmospheric chemistry models by Ménard et al. (2000). The numerical cost
of this algorithm was addressed by the use of the ensemble Kalman filter and vari-
ants thereof in Segers et al. (2000); Eben et al. (2005); Hanea et al. (2007); Wu et al.
(2008); Sekiyama et al. (2011). In order to address rank deficiencies and sampling is-
sues, localisation and inflation have been used in this context (Constantinescu et al.,10

2007a, b; Schutgens et al., 2010). Moreover, 3D- and 4D-Var techniques have been
applied to chemichal transport models (CTMs) in the wake of their success in oper-
ational meteorology (Elbern et al., 2000; Quélo et al., 2006; Errera et al., 2008; Wu
et al., 2008). These methods, however, require the development of the adjoint models
(e.g., Hakami et al., 2007; Henze et al., 2007) and this has led to the implementation of15

easier approximate adjoints (Bocquet, 2005, 2012; Koohkan and Bocquet, 2012; Singh
and Sandu, 2012). Attention has been paid to the construction of the background error
covariance matrix (Elbern et al., 2007; Singh et al., 2011). Getting the best of the en-
semble Kalman filter and variational methods through an hybrid ensemble-variational
approach is a quest recently initiated in meteorology (Buehner et al., 2010; Clayton20

et al., 2013; Bocquet and Sakov, 2014; Desroziers et al., 2014; Ruiz and Sandu, 2015),
that could be applied to atmospheric chemistry models (Bocquet and Sakov, 2013).
Finally, the recent development of coupled chemistry meteorology models (CCMMs)
opens the Pandora’s box of data assimilation in coupled systems characterized by het-
erogeneous dynamics with distinct timescales, heterogeneous sources of uncertainty,25

and complex interactions.
Hence, it will become increasingly difficult to disentangle the merits of data assimila-

tion schemes, of models, and of their numerical implementation in a successful high-
dimensional data assimilation study. That is why we believe that the increasing variety
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of problems encountered in the field of atmospheric chemistry data assimilation puts
forward the need for simple low-order models, albeit complex enough to capture the
relevant dynamics, physics and chemistry that could impact the performance of data
assimilation schemes. Low-order models, also called toy models, are models of re-
duced dimension meant to capture the prominent characteristics of the dynamics of5

larger models, but at a much lower computational cost. They are not meant to be real-
istic, but their study provides insights into the larger models and their dynamics. Their
low numerical cost also comes with the ability to compute reliable statistical scores
in various regimes and hence to validate methods with greater confidence. Moreover,
they can be distributed and used with the goal to benchmark data assimilation methods10

since their baseline performance can easily be reproduced.

1.1 The Lorenz-95 and tracer model

The Lorenz-95 (L95) model is a very popular low-order meteorology model (Lorenz
and Emanuel, 1998). It is a one-dimensional model whose M = 40 state variables ex-
tend over a mid-latitude circle. It is defined by the following set of ordinary differential15

equations:

dxm
dt

= (xm+1 −xm−2)xm−1 −xm + F , (1)

for m = 1, . . .,M, and the domain is periodic (circle-like, i.e. x−1 = x39, x0 = x40 and
x41 = x1). F is chosen to be 8 so that the dynamics is chaotic with a doubling time of
about 0.42 Lorenz time units and with 13 positive Lyapunov exponents. A time step of20

∆t = 0.05 is meant to represent a time interval of 6 h in the real atmosphere. The L95
model has been extensively used as a testbed and benchmark for data assimilation
experiments.

Bocquet and Sakov (2013) have added a tracer field to the L95 model state vector.
The field is discretised into 40 additional variables meant to represent 40 tracer25

concentrations. The 40 scalar variables of L95 are considered to be the magnitude
7350
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and direction of winds at 40 locations. The tracer field is advected by these winds with
a simple Godunov/upwind scheme. These 80 variables are defined on the circle using
an Arakawa C-grid as shown below:

5

1.1 The Lorenz-95 and tracer model

The Lorenz-95 (L95) model is a very popular low-order meteorology model (Lorenz and Emanuel,

1998). It is a one-dimensional model whoseM = 40 state variables extend over a mid-latitude circle.

It is defined by the following set of ordinary differential equations:60

dxm

dt
= (xm+1−xm−2)xm−1−xm +F , (1)

for m= 1, . . . ,M , and the domain is periodic (circle-like, i.e. x−1 = x39, x0 = x40 and x41 = x1).

F is chosen to be 8 so that the dynamics is chaotic with a doubling time of about 0.42 Lorenz time

units and with 13 positive Lyapunov exponents. A time step of ∆t= 0.05 is meant to represent a

time interval of 6 hours in the real atmosphere. The L95 model has been extensively used as a testbed65

and benchmark for data assimilation experiments.

Bocquet and Sakov (2013) have added a tracer field to the L95 model state vector. The field is

discretised into 40 additional variables meant to represent 40 tracer concentrations. The 40 scalar

variables of L95 are considered to be the magnitude and direction of winds at 40 locations. The

tracer field is advected by these winds with a simple Godunov/upwind scheme. These 80 variables70

are defined on the circle using an Arakawa C-grid as shown below:

xm−1 cm− 1
2

xm cm+ 1
2

xm+1

• • •

Φm−1 Em− 1
2

Φm Em+ 1
2

Φm+1

The equations of the model are those of Eq. (1) together with

dcm+ 1
2

dt
= Φm−Φm+1−λcm+ 1

2
+Em+ 1

2
, (2)

where Φm = xmcm− 1
2

if xm ≥ 0 , (3)75

Φm = xmcm+ 1
2

if xm < 0 . (4)

This model will be called L95-T in the following. Because the meteorological and tracer state vec-

tors are simulated together, it is an online model. The tracer is emitted over the whole domain and

the emission fluxes are denoted Em+ 1
2

. It is deposited over the whole domain, using a simple scav-

enging scheme parametrised by a scavenging ratio λ. The reference values for those parameters in80

Bocquet and Sakov (2013) are: Em+ 1
2

= 1 and λ= 0.1. Additional details and illustrations can be

found in Bocquet and Sakov (2013). L95-T is a one-way coupled model in the sense that there is

no physical feedback from the transport part to the meteorology part. However, when applying data

assimilation to the model, information is exchanged both ways through covariances between the

meteorological and transport subsystems. In particular, observations of tracer concentrations can in85

principle improve the estimation of the meteorological variables.

Hence, L95-T represents an instructive model for more ambitious CCMMs (Bocquet et al., 2015).

From a dynamical perspective, this model couples chaotic meteorology with non-chaotic transport,

3

The equations of the model are those of Eq. (1) together with

dcm+ 1
2

dt
=Φm −Φm+1 − λcm+ 1

2
+Em+ 1

2
, (2)10

where Φm = xmcm− 1
2

if xm ≥ 0, (3)

Φm = xmcm+ 1
2

if xm < 0 . (4)

This model will be called L95-T in the following. Because the meteorological and tracer
state vectors are simulated together, it is an online model. The tracer is emitted over the15

whole domain and the emission fluxes are denoted Em+ 1
2
. It is deposited over the whole

domain, using a simple scavenging scheme parametrised by a scavenging ratio λ. The
reference values for those parameters in Bocquet and Sakov (2013) are: Em+ 1

2
= 1 and

λ = 0.1. Additional details and illustrations can be found in Bocquet and Sakov (2013).
L95-T is a one-way coupled model in the sense that there is no physical feedback from20

the transport part to the meteorology part. However, when applying data assimilation
to the model, information is exchanged both ways through covariances between the
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meteorological and transport subsystems. In particular, observations of tracer concen-
trations can in principle improve the estimation of the meteorological variables.

Hence, L95-T represents an instructive model for more ambitious CCMMs (Bocquet
et al., 2015). From a dynamical perspective, this model couples chaotic meteorology
with non-chaotic transport, as any realistic online tracer model would do. Uncertainty5

in the meteorology comes from the exponential growth of errors due to the chaotic
dynamics. Uncertainty in transport comes from the uncertainty in the emission field
and from the wind uncertainty which, however, does not significantly grow within the
transport subsystem. This is meant to mimic CCMMs. Data assimilation techniques
applied to the model, which are meant to reduce these uncertainties, should be able10

to control the growing error modes as done in numerical weather prediction, and also
estimate forcings, typically emissions, as done with CTMs.

However, in order to develop a qualitatively representative low-order CCMM, nonlin-
ear chemistry must be added. The primary goal of this article is to extend the L95-T
model with a simple photochemical kinetic mechanism. To that end, we will use the15

Generic Reaction Set (GRS; Azzi et al., 1992) and the coupled model will be called
L95-GRS. In particular, it is meant to be useful to test a state-of-the-art data assim-
ilation and parameter estimation method with a significant potential for such coupled
models with heterogeneous observations and dynamics.

1.2 The iterative ensemble Kalman smoother20

Hence, the secondary goal of this work is to illustrate the usefulness of low-order
CCMMs to better understand the application of specific data assimilation techniques
to CCMMs and CTMs. The data assimilation method we shall use is the iterative en-
semble Kalman smoother (IEnKS). It has been introduced and developed by Bocquet
and Sakov (2014). A short account of the scheme can be found in Bocquet and Sakov25

(2013), which we do not repeat here. However, the main characteristics of the method
are recalled in the following and its algorithm is recalled in Appendix A. The IEnKS is
an ensemble variational (EnVar) method. It solves a variational problem over a data
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assimilation window (DAW), as 4D-Var would do. However, because the variational
problem is solved in the reduced space generated by an ensemble of state vectors, the
adjoint of the model can easily be estimated without the burden of generating the full
adjoint model. Because it can solve nonlinear variational problems, it has an edge over
a state-of-the-art ensemble Kalman filter. In particular, we expect it to handle very well5

parameter estimation, as well as nonlinear models (Bocquet and Sakov, 2013, 2014).
As such, it is as good a candidate method as 4D-Var (Elbern and Schmidt, 1999, 2001)
when accounting for nonlinear chemistry such as in a photochemical model. Unlike
4D-Var, a posterior ensemble is generated as output of the analysis using techniques
known in deterministic ensemble Kalman filtering. Unlike standard 4D-Var, the IEnKS10

propagates this updated ensemble in between two variational updates, which allows
for a better transfer of the errors from an update to the next.

It was shown with the L95 and L95-T models that the IEnKS outperforms the ensem-
ble Kalman filter (EnKF) and 4D-Var for filtering applications (i.e. present time estima-
tion and forecasting), especially in strongly nonlinear conditions. It was also shown to15

outperform the EnKF, 4D-Var and the standard ensemble Kalman smoother for smooth-
ing (i.e. reanalysis). As for any EnVar method, the toll for applying these methods to
high-dimensional models is to use ad hoc techniques to regularise the error statis-
tics obtained by empirical ensemble statistics that are prone to sampling errors. As
a consequence, localisation and possibly inflation are required when implementing the20

IEnKS in high-dimensional systems.
If ∆t is the time interval between two batches of observations, L∆t is the DAW length

over which the IEnKS variational analysis is performed. The simplest variant of the
IEnKS algorithm is given in Appendix A. Note that the case L = 0 corresponds to the
ensemble square root Kalman filter in its ensemble transform implementation (Hunt25

et al., 2007), while the case L = 1 corresponds to the iterative ensemble Kalman filter
(Sakov et al., 2012).
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1.3 Outline

In Sect. 2, the L95-GRS model with a reduced photochemistry module is introduced
and justified. This entails numerical complications similar to what is experienced in
larger numerical CTMs and CCMMs due to numerical stiffness of the chemical reac-
tions. Its physical and chemical relevance is also discussed. The following sections5

illustrate the usefulness of these models. In Sect. 3, additional experiments with the
IEnKS on L95-T are described, focusing on features not discussed in Bocquet and
Sakov (2013). In particular, data assimilation for the full L95-T model is compared to
an offline variant where the tracer data assimilation system is operated independently
from the L95 data assimilation system. We also demonstrate the importance of the10

emission regime for the efficiency of the data assimilation scheme and we assess the
impact of the tracer observation network density. In Sect. 4, the EnKF and IEnKS are
applied to the newly developed L95-GRS model, with emphasis on the precision, local-
isation, and parameter estimation. Conclusions are given in Sect. 5.

2 A low-order photochemical and transport model15

In this section, we replace the tracer part of L95-T with a reduced order photochem-
ical kinetic mechanism to form the low-order coupled chemistry meteorology model
L95-GRS. We will first describe the resulting model, then we will evaluate its ability to
reproduce major physical and chemical characteristics of the processes considered.

2.1 Description of the model20

The photochemistry module is based on the Generic Reaction Set (GRS) of Azzi et al.
(1992). GRS consists of 7 chemical species meant to represent the atmospheric chem-
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istry of ozone formation from VOC and NOx emissions. The chemical reactions are:

ROC+hν
O2−−→
k1

RP+ROC (R1)

RP+NO
k2−→ NO2 (R2)

NO2 +hν
k3−→ NO+O3 (R3)

NO+O3
O2−−→
k4

NO2 (R4)5

RP+RP
k5−→ RP (R5)

RP+NO2
k6−→ SGN (R6)

RP+NO2
k7−→ SNGN (R7)

where ROC represents the reactive organic compounds, RP is the radical pool, SGN
is the stable gaseous nitrogen product and SNGN is the stable non-gaseous nitrogen10

product. The kinetic rate constants, taken from Venkatram et al. (1994), are as follows:

k1 = 10 000×e− 4710
T ×k3 min−1 (5)

k2 = 5.482×e 242
T ppb−1 min−1 (6)

k4 = 2.643×e− 1370
T ppb−1 min−1 (7)

k5 = 10.2ppb−1 min−1 (8)15

k6 = 0.12ppb−1 min−1 (9)

k7 = 0.12ppb−1 min−1 (10)

where T is the temperature, chosen to be constant equal to 300K for the sake of sim-
plicity and k3 is the photolysis rate for NO2 in min−1 which is a function of sunlight.
Details are given in Appendix B.20
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Since k6 = k7 and Reactions (R6) and (R7) are similar, one can merge the last two
species of the scheme into a lumped species and use a kinetic rate of 0.24ppb−1 min−1

that represents the formation of all the stable nitrogen products, whether gaseous or
non-gaseous, i.e.:

RP+NO2
k=2·k6−−−−→ S(N)GN. (R8)5

To further reduce the GRS scheme and improve the efficiency of its numerical im-
plementation, we use the quasi-steady-state approximation (QSSA) for the radical pool
species RP, which is highly reactive and has the shortest lifetime among all the GRS
species. This means that the radical pool is in a dynamic equilibrium, adjusting rapidly
to the other species concentrations. Solving the algebraic second-order equation for10

the concentration of the radical pool, we obtain:

[RP] =
k2[NO]+2k6[NO2]

2k5

√1+
4k1k5[ROC]

(k2[NO]+2k6[NO2])2
−1

 . (11)

This approximation has been validated a posteriori. There was little to no impact on the
simulated concentrations, while the mean adaptive time step of the chemistry solver
increased significantly.15

GRS was coupled to the L95 model. As for the L95-T model, the L95 variables are
seen as wind speeds that advect the GRS chemical species. The objective is, there-
fore, to create a simplified model that is able to reproduce the temporal variability of
ozone chemistry on a regional to transcontinental scale. There is a total of 40 wind
variables and 200 concentration variables, namely the ROC, NO, NO2, O3, S(N)GN20

concentrations at each of the 40 grid points defined on the circle using the C-grid. Note
that the RP concentrations are obtained from Eq. (11).

The transport equations for species [Ci ] are consequently:

d[Ci ]m+ 1
2

dt
= ψ im −ψ im+1 +Ri

(
[Cj ]j=1,...,6

)
− λi [Ci ]m+ 1

2
+E i

m+ 1
2

(12)
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with ψ im = xm[Ci ]m− 1
2
, if xm ≥ 0, (13)

ψ im = xm[Ci ]m+ 1
2

if xm < 0 . (14)

where λi is the scavenging ratio, E i is the emission rate and Ri
(
[Cj ]
)

is the production
term for Ci . There is no such production term for ROC (RROC = 0) so that ROC behaves
as the tracer of L95-T. The full equations are given in Appendix B for completeness.5

When L95-GRS is seen as a global low-order model, the photolysis rate constant
k3, which depends on sunlight, should vary around the domain and with the season
since it is directly linked to the solar zenith angle at a given grid point. Hence, there
are points on the grid where it is nighttime, with k3 = 0 and some where it is daytime,
with k3 6= 0. However, for the sake of simplicity, it has been chosen constant over the10

domain and it varies according to a uniform daily cycle. This choice does not impact
the order of magnitude of the simulated concentrations. A test where the coefficient
varies around the domain was performed and led to the same visual result as in Fig. 3
but with a delay around the domain: the black stripes of the figure that signal the time
when the NO concentrations reach 0, are slanted instead of straight.15

As ROC is not consumed in Reaction (R1), it will eventually produce enough RP
to consume all the NO, NO2 and O3. Therefore, we have added emission fluxes for
ROC and NOx and a single scavenging ratio for all the species. The emissions are
considered constant over time and uniform over the domain, even though a distinction
between continent and ocean will also be made in the following. These constants have20

been chosen using a genuine emission inventory. Since the domain of our model is
supposed to be a mid-latitude circle discretised with 40 grid points, one cell of our do-
main is roughly of length a few hundred kilometres. We used an emission rate for NOx

of 0.27 ppbday−1, where NO accounts for 90% of these emissions and NO2 for 10%.
This corresponds to an emission of 3 kgyear−1 inhabitant−1 of NO for 60 million inhabi-25

tants in a volume of 700km×700km×3km (typically France). We have fitted the values
of the ROC emission and scavenging coefficients so as to obtain concentrations within
the range of realistic continental concentrations. Specifically, we used an emission rate
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of 0.0235 ppbCday−1 for the ROC species and a scavenging ratio of 0.02 day−1. This
ratio is the same as the reference value of the L95-T model, since one Lorenz time unit
corresponds to 5 days. All parameters are listed in Appendix B.

2.2 Time integration of the model

The L95-T model is integrated in time using a fourth-order Runge–Kutta (RK4) scheme5

with a time step of δt = 0.05 in Lorenz time units, i.e. 6 h (Bocquet and Sakov, 2013).
Similarly, the L95 subsystem of the L95-GRS model and the transport part are inte-

grated with the RK4 scheme. A first-order splitting of this integration and the chemistry
integration is performed, integrating first the L95 and species transport part, followed
by the GRS integration.10

The chemical reactions of L95-GRS have a wide range of rates, which leads to nu-
merical stiffness. Hence, the RK4 scheme is an inadequate solver to integrate the
chemistry, even though it is more precise. An implicit or semi-implicit scheme is re-
quired. That is why the GRS chemical scheme is integrated with a second-order Rosen-
brock method, following Hundsdorfer and Verwer (2003). This method is costly since15

it is based on a semi-implicit scheme that requires using the tangent linear model and
solving two linear systems. This is potentially the most time-consuming operation of
the whole model integration. Since the chemistry is local and because of the splitting,
the Rosenbrock scheme is actually implemented block-wise, one block per grid point.
The linear systems to be solved point-wise have a size equal to the number of species.20

Because the integration of the chemistry is block-wise, it can easily be parallelised. The
tangent linear model of GRS required by the Rosenbrock scheme is simple to derive
analytically and implement given the limited number of reactions.

Furthermore, an adaptive time stepping has been implemented that adjusts the time
step to the instantaneous stiffness of the reaction rates. However, it has often been25

proven unnecessary in the free model run (i.e. without data assimilation) in conjunction
with the QSSA used for the radical pool.
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The typical integration time step for the chemistry is δt = 1h. The L95 and transport
subsystem is integrated with δt = 1h (δt = 0.05/6 in L95 unit).

2.3 Qualitative analysis of the L95-GRS model

The outcome of a free run (after spin-up) at a grid point is shown in Fig. 1. One no-
tices the daily cycle induced by the variation of the photolysis coefficient k3 on the NO,5

NO2 and O3 concentrations, since they are directly related to the value of that coeffi-
cient through Reactions (R3) and (R4). The wind speed and orientation variations are
responsible for the wave with a period of about one week. In real situations, O3 and
NO concentrations can drop close to zero at night (Finlayson-Pitts and Pitts, 1986). In
our simulation results, only NO reaches zero at night while O3 remains at high levels.10

However, if the ROC emissions are sufficiently lowered or if the NOx emissions are
sufficiently increased, the opposite behaviour occurs.

This model is highly nonlinear, exhibiting distinct chemical regimes. This can be
seen in Fig. 2 which represents ozone isopleths for different mean ROC and NOx
concentrations. This feature is typical of lower troposphere ozone chemistry and is15

commonly known as an Empirical Kinetic Modeling Approach (EKMA) diagram (Dimitri-
ades, 1977). Two different regimes are visible in this graph. The top part of the diagram,
where the isopleths are steep, corresponds to a ROC-limited regime. In this regime,
a reduction in the emissions of the ozone precursor NOx leads to an increase of the
ozone concentrations (as long as the regime does not change), while a diminution of20

ROC emissions reduces the ozone concentrations significantly. This is due to the fact
that in that ROC-poor regime, RP concentrations are low and NO reacts preferentially
with O3. On the contrary, the bottom part of the diagram, where the isopleths are flat,
corresponds to a NOx-limited regime. In this regime, a reduction in the emissions of the
ozone precursor NOx leads to a strong decrease in the ozone concentrations, whereas25

the ROC emissions have little to no impact on the ozone concentrations. Since the
black circle corresponds to our reference case, it is located in the ROC-limited regime.
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In the NOx-limited regime, the low levels of NO concentrations reduce the amplitude
of the daily cycle of the ozone. Hence, the resulting concentrations rather correspond
to a background ozone simulation, with very low concentrations of NOx and little daily
variability of ozone. Because GRS is meant to be used with concentrations typical
of urban areas, we chose to remain in a ROC-limited regime even though a global5

simulation should be NOx-limited. Nevertheless, several free runs and data assimila-
tion experiments have been performed as well in a NOx-limited regime and lead to
one noteworthy result: ROC concentration estimations are worse than in our reference
case, unlike NO2. This makes sense because the NO2 concentrations mainly control
the model and an error on the ROC concentrations has less impact on other species in10

this context.
To emphasise the impact of the transport of the chemical species by the wind in the

model, an experiment was performed, where the domain was split into a continental
zone and an oceanic zone. In this experiment, we set the ROC and NOx emissions
on the continent to Ei > 0 for i in [1,20] and on the ocean to Ei = 0 for i in [21,40].15

The results of this experiment, displayed in Fig. 3, show that puffs of ozone and its
precursors can cross the ocean, similarly to what is witnessed over the Pacific (Lin
et al., 2012) and the Atlantic (Guerova et al., 2006). Moreover, ozone concentrations
are higher above the ocean in the absence of NO emissions. Note also that the tracer
plumes move eastward (increasing indices) which is consistent with a positive group20

velocity for the L95 model, while the peaks and lows of the L95 field move westward
according to the L95 negative phase velocity (Lorenz and Emanuel, 1998).

So far, the wind kinetics (amplitude and variability) has been determined by the orig-
inal L95 model characteristics. In the reference experiment, the waves of the wind
extend over several days. The concentrations are driven by this wind kinetics but vary25

within those waves according to the photochemical daily cycles. However, other types
of behaviour are possible with L95-GRS by choosing differently the time scale of the
L95 model. If time within the L95 model is rescaled by α and the wind variables are

7360

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7347/2015/gmdd-8-7347-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7347/2015/gmdd-8-7347-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 7347–7394, 2015

A low-order online
and offline

atmospheric
chemistry model

J.-M. Haussaire and M.
Bocquet

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

rescaled by β,

dxm
dt

= α
[
β(xm+1 −xm−2)xm−1 −xm +

F
β

]
, (15)

it is possible to reduce the period of the wind wave and to match that of the chemical
daily cycles. This way, the species concentrations are significantly modulated by the
wind variations. In terms of spatial scale, this would correspond to regional modelling5

rather than continental to global modelling of the species fields. Figure 4 illustrates this
time scale change with α = 20 and β = 1. The winds fluctuate at a higher rate than the
concentrations, quite differently from the reference configuration of Fig. 1. Adjusting
β, it is also possible to rescale the amplitude of the winds in the L95 equations to
match a more regional/lower troposphere transport behaviour with weaker mean wind10

magnitude.

3 Numerical experiments with the L95-T model

In this section, we experiment on the use of data assimilation techniques for forecasting
and reanalysis with the tracer model (L95-T) beyond the preliminary results of Bocquet
and Sakov (2013). The aim is to demonstrate the advantages brought by this model15

to study certain data assimilation strategies. Several of the results and interpretations
in this section will also apply to data assimilation systems operating with the L95-GRS
model.

3.1 Definition of online and offline data assimilation systems

A typical offline model is a chemical transport model (CTM) where the meteorological20

fields have been generated externally and are given as an input to the model. These
fields usually stem from operational meteorological prediction centres or from any in-
dependently run meteorological model. On the other hand, online models consistently
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process meteorology, chemistry, and transport of species all together, but at a higher
numerical cost. The choice of an offline or online approach is a crucial issue as far as
modelling is concerned (Zhang et al., 2012). It is even more so when data assimilation
techniques are applied to offline or online models because of the fluxes of information
between the two subsystems: chemistry and transport on the one hand and meteorol-5

ogy on the other hand (Milewski and Bourqui, 2011; Bocquet et al., 2015).
The L95-T model stands as a well-suited simple tool to experiment on this issue. In

the following, we apply the IEnKS to L95-T using either an offline or an online approach.
A distinction is made between:

– The full online data assimilation system for the L95-T model. Even though the10

L95 subsystem of the model does not depend on the tracer subsystem, it should
be kept in mind that information propagates both ways with state-of-the-art data
assimilation methods.

– The offline data assimilation system for the L95-T model. The L95 subsystem is
run separately. The IEnKS is applied to L95 with a DAW length Lw (in units of ∆t).15

The IEnKS is applied separately to the tracer subsystem (transport, deposition
and emission) with a DAW length Lc (in units of ∆t). For advection, the winds
are provided by the analyzes of the independent L95 data assimilation system.
Therefore, no feedback from the tracer subsystem to the L95 subsystem is to be
expected. The information gained from the observations flows one way. Moreover,20

for the tracer subsystem, the uncertainty of the wind field constitutes a realistic
and significant source of model error. We believe that this is an elegant way to
create consistent model error, beyond stochastic noise or offset parameters.

We conduct synthetic data assimilation experiments, applying the IEnKS to the L95-T
model. A simulation of L95-T that represents the truth is generated, with E = 1, λ = 0.1.25

Synthetic observations are generated from the truth every ∆t = 0.05. The system is
fully observed, on both wind and concentration variables. A Gaussian white noise is
used to perturb the observations. The observation error covariance matrix for the wind

7362

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7347/2015/gmdd-8-7347-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7347/2015/gmdd-8-7347-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 7347–7394, 2015

A low-order online
and offline

atmospheric
chemistry model

J.-M. Haussaire and M.
Bocquet

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and the tracer is in both cases R = I the identity matrix. The analysis, output of the data
assimilation system, is compared to the truth using a root mean square error (RMSE),
for the meteorological subsystem as well as for the tracer subsystem. Reliable statistics
are computed over runs of 105 ×∆t with a burn-in period of 5×103 ×∆t.

The ensemble size of the IEnKS has been chosen to be N = 20 in a dynamical5

regime of L95-T where localisation is unnecessary. Yet, sampling errors due to the
finite-size of the ensemble would require the use of inflation of the errors. To avoid this
issue, we use the finite-size scheme of Bocquet (2011); Bocquet and Sakov (2012)
where no inflation tuning is necessary. Practically, it means that whenever the IEnKS
is mentioned, the IEnKS-N has been used instead or, equivalently, that we enforced10

optimal inflation meant to account for sampling errors. However, note that the finite-
size approach does not account for extrinsic model error.

We consider several practical variants of the offline data assimilation system for the
tracer model. In the first offline system, called Offline 1a in the following, the mean
analysis wind is provided to the IEnKS of the tracer subsystem, both for the forecast15

step and the analysis step of the IEnKS. In this baseline case, we choose Lw = Lc. In
a first variant, the winds are obtained through an EnKF, i.e. Lw = 0 and Lc is varied
(experiment Offline 1b). In another variant, the winds are obtained from an IEnKS with
a given Lw and an EnKF is run for the tracer subsystem Lc = 0 (experiment Offline 1c).

Because the uncertain winds are a source of model error for the offline system, we20

also implement a multiplicative inflation on top of the IEnKS-N. It is applied on the prior
by a rescaling of the anomalies. We shall choose the inflation that leads to the best
RMSE.

In a last variant of the offline model, called Offline 2, the analysis mean wind is still
provided for the analysis step of the IEnKS applied on the tracer subsystem. Yet, the full25

analysis wind ensemble, rather than the mean, is provided in the forecast step of the
IEnKS applied on the tracer subsystem. If the wind ensemble spread is representative
of the wind ensemble uncertainty, it is hoped that the uncertainty in the winds will be
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properly accounted for. As in the Offline 1 experiments, a multiplicative inflation is also
applied for any residual model error.

The full online data assimilation system is also run for comparison (experiment On-
line), without any inflation.

3.2 Comparison of online and offline data assimilation systems5

The performance of these systems is reported in Fig. 5 as a function of the DAW
length. The best estimate of the present time wind and concentration state vectors are
compared to the truth leading to the filtering RMSE, which is a good indication of the
forecasting quality in this context. Best estimates for the past state vectors (reanalysis)
are also compared to the truth, leading to the smoothing RMSE.10

First of all, the online system has a very significant edge over the offline systems be-
cause of the two-way information flows, both for the concentration variables and for the
wind variables. This shows that concentration observations can significantly improve
meteorological forecasts, in agreement with the results of Semane et al. (2009) ob-
tained when assimilating real observations of lower stratospheric ozone. For all offline15

systems, the wind variables cannot benefit from the assimilation of concentrations, but
only from the L95 observations. Therefore, from now on, we shall focus on the tracer
subsystem.

The extrinsic model error due to the uncertain winds must be accounted for in the
tracer subsystems. Otherwise, the ensemble of the tracer subsystem collapses (the20

ensemble method diverges). In the absence of any correction for model error, we ob-
served that the estimation was close to a free run, with an average filtering RMSE of
about 0.65.

Yet, as expected, accounting for model error offers better performance. Let us first
consider cases 1a, 1b, and 1c that use the best estimate of the mean wind and apply25

multiplicative inflation to account for model error. Configuration offline 1a, i.e. when
Lc = Lw , offers a baseline performance for the filtering and smoothing RMSEs, which
improves as the joint DAW length increases. It remains quite far from the performance
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of the online system since multiplicative inflation cannot compete with a better wind
estimate.

With configuration Offline 1b, where the mean wind estimate comes from an EnKF
(Lw = 0), the average filtering RMSE does not benefit from an extended DAW for the
tracer, while the smoothing RMSE only marginally benefits from short DAW (up to5

Lc = 2) before degrading. Hence a longer window for this CTM system is inefficient.
We attribute this important property to the stable and linear dynamics of transport.

With configuration Offline 1c, the tracer data assimilation system is based on an
EnKF, while the wind estimation gets better as Lw gets larger. Therefore, the improve-
ment that is observed for the filtering RMSE comes from reduced model errors. In this10

configuration, the filtering and smoothing RMSEs coincide since the concentrations are
merely estimated by an EnKF (Lc = 0).

In the light of these results, we understand that the improvement that is observed in
configuration 1a comes from the reduced uncertainty in the wind fields in the first place.
Note that as Lc = Lw gets larger, the tracer analysis within the DAW of length Lc uses15

wind fields with lower error thanks to smoothing. This explains why the improvement in
the RMSEs is more pronounced than in configuration 1b, which only benefits from the
filtered winds at present time.

With configuration Offline 2, model error is addressed by not only multiplicative in-
flation but also the ensemble of winds in the forecast steps. Each wind member is20

ascribed to a tracer member. This is similar to stochastic parametrisation where one
changes the model input parameters for each member of the CTM (Wu et al., 2008).
This shows much better performance. As far as filtering is concerned, the optimal infla-
tion is an increasing function of Lc (with an inflation of 1.06 for anomalies at Lc = 25),
whereas the absence of inflation is optimal for smoothing.25

One lesson is that a variational analysis over a long DAW is useless for the offline
transport subsystem, because of its linear dynamics; an IEnKS, or a 4D-Var analysis
does not better perform than an EnKF analysis in this context. This conclusion will not
necessarily hold with the L95-GRS model because of the nonlinear chemistry.
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3.3 Emission/deposition regime

The scavenging ratio λ and the emission rate E control the tracer mass budget in the
domain. Their ratio can lead to different regimes of the physics of the model. It can
impact the performance of data assimilation. In the reference case (E = 1, λ = 0.1),
parcels of tracer travel over large distances before deposition. Hence, an observation5

of the tracer concentration at a grid point gives information about the wind magnitude
and direction at other grid points several time steps in the past.

A synthetic experiment where the scavenging ratio λ is varied over several orders of
magnitude has been setup to highlight this point. The emission flux E is tuned in order
to keep the ratio E/λ constant. Thus, the order of magnitude of the concentrations is10

unchanged so that the relative precision of the concentration observations remains the
same with an unchanged error covariance matrix. The setup of this experiment is the
same as in the previous section, but only the online data assimilation system based on
the L95-T model is used.

The average filtering RMSE of the concentration variables and of the wind variables15

are plotted in Fig. 6 as a function of the scavenging ratio. The RMSE remains rather
constant for both the concentrations and the winds for small scavenging ratios, with
the same performance as in the reference case (E = 1, λ = 0.1). However, as soon
as λ > 1, the behaviour changes. With such higher values of the scavenging ratio, the
wind does not have sufficient time to transport the tracer over significant distances.20

The information about the wind embedded in the observations of the concentrations
diminishes and the wind RMSE increases. On the contrary, the absence of transport of
the tracer by the wind reduces the detrimental impact of diffusion making the concen-
trations easier to estimate (in the fully observed configuration at least). Moreover, the
benefit of using a larger DAW (L = 15 here) is greater with lower scavenging ratios be-25

cause the tracer is advected farther in space. Indeed, pieces of information contained
in concentration observations help estimate the wind back in time before the tracer was
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advected by that wind. These results stress that variational schemes implemented over
large DAW have an advantage over the EnKF in that context.

3.4 Observation network

The performance of the EnKF and of the IEnKS is now studied with the L95-T model
when the observations of the tracer concentrations are sparser. The setup of this syn-5

thetic experiment remains unchanged except for the density of the observations. The
wind variables are observed on all grid points while only some of the observations of
the tracer concentrations are assimilated. The observations of the concentrations are
chosen to be evenly spread. The number of observations is a divisor of 40 and belongs
to {1,2,4,5,8,10,20,40}. The performance of the IEnKS is studied for several DAW10

lengths L = 0,1,2,3,4,5,10,20. The resulting average filtering RMSEs for the concen-
tration variables and the wind variables are shown in Fig. 7. In both cases, the gain
derived from using a longer DAW is undeniable: the gain in RMSE is greater for large
L than for small L, but the marginal gain decreases with L.

4 Applying the IEnKS to the L95-GRS model15

The IEnKS is now applied to the L95-GRS model introduced in Sect. 2. We showed
that the model could reproduce the main physical and chemical processes of interest.
The aim in this section is to show that it offers a rich playground for testing data assim-
ilation methods. The approach is similar to the one applied in Sect. 3. Apart from an
overall performance test, we will focus on specific aspects not addressed in Sect. 3 of20

relevance for this type of model.
Twin experiments are conducted where each chemical species is observed. The

observations are drawn from the truth every ∆t = 6h and perturbed using a Gaussian
white noise. The standard deviations of the error for the concentrations have been
chosen to correspond to about 10 % of the average value of the concentration over25
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the domain. Specifically, the observation error covariance matrix of each species is
of the form Rd = σ

2Id , where σ2 = 1 for the wind in Lorenz units, σ2 = 0.01ppbC2 for
ROC, σ2 = 0.16ppb2 for NO, σ2 = 1ppb2 for NO2, σ2 = 4ppb2 for O3, σ2 = 0.01ppb2

for S(N)GN. All the RMSEs shown in this section are normalised by the corresponding
standard deviation values. All the data assimilation runs use the same setup as used5

with the L95-T model. The size of the ensemble is set again to N = 20, except when
localisation will be tested.

4.1 Performance

At first, the number of observations of the concentration variables has been varied as
in Sect. 3.4. All the chemical species are observed but only at selected grid points. The10

resulting average filtering RMSEs for the concentration variables and the wind vari-
ables are shown in Fig. 8. We found that with poor observability of the concentrations,
the system’s state estimate can be imprecise. When the concentrations are only ob-
served at one point, the EnKF diverges from the truth. The IEnKS with L = 1 also fails
to estimate the S(N)GN better on average over the whole domain than the standard15

deviation of the single observation.
To be more realistic, further experiments will assimilate sparse concentration obser-

vations. We choose to keep 8 observations in the domain per species, that is to say at 1
every 5 grid points. In this context, the DAW length has been varied over a wider range
of values. The time averaged analysis filtering and smoothing RMSEs for the wind and20

the concentrations are shown in Fig. 9. Even though the model is strongly nonlinear, the
IEnKS method can account for these nonlinearities and, therefore, it performs well and
improves with L for both the filtering and smoothing RMSEs. The S(N)GN species is
still the one with the worst results, probably because it is little correlated with the other
species except for ROC. A misevaluation of its concentration has no consequences on25

the other species.
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4.2 Parameter estimation

In atmospheric chemistry, there is a strong dependency of the model on the values
of the various forcings, such as the boundary conditions (Roustan et al., 2010), the
meteorological fields (Dawson et al., 2007) or the emission rates of the pollutants and
their precursors (Cohan et al., 2005). It is therefore important to estimate these inputs5

and data assimilation can be a powerful tool in this context. Here, we show how the
L95-GRS model allows us to test parameter estimation strategies, which is illustrated
using the IEnKS.

To estimate a set of model parameters θ ∈RP along with the state variables, the
state vector is augmented from x ∈RM to a vector10

z =
(
x

θ

)
∈RM+P , (16)

in the joint state and parameter space. It is also necessary to define a forward model
for the parameters. The persistence model is chosen here: θk+1 = θk .

The estimation of the main parameters of the L95-T model (forcing of the L95
and emission rate of the tracer) with various data assimilation methods, including the15

IEnKS, has been experimented upon by Bocquet and Sakov (2013). Similarly, we con-
duct a twin experiment with the L95-GRS model where, in addition to the state vari-
ables, the F forcing of the L95 model and the emission rates of ROC and NOx are
estimated simultaneously. The state space is, therefore, augmented from a 240- to
a 240+3-vector of the joint state and parameter space. The parameter variables in the20

ensemble are set as follows:

– For the emission rates: the ensemble is initialised around the truth by adding
a Gaussian noise of standard deviation 10% of the true value.

– For F : the ensemble is initialised around the value F = 7 by adding a Gaussian
noise of standard deviation 10% of the true value.25
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Rather than the Single Data Assimilation (SDA) version of the IEnKS presented in
Appendix A, we use the Multiple Data Assimilation (MDA) one, which is very similar,
less precise for small L but more stable for large L. The MDA IEnKS algorithm is
described in detail by Bocquet and Sakov (2014).

Let us first mention that the RMSEs of the state variables are barely changed by5

the joint state and parameter estimation, as well as by the use of a different variant of
the IEnKS in this experiment. Hence, the results in Fig. 9 for state variables still hold.
The parameter values are plotted in Fig. 10, over time intervals of different lengths.
We observe that only a few days are required to converge to the right value for the
forcing parameter of the meteorology F while a few dozens of days are necessary10

for the emission rates to stabilise. This is due to the high sensitivity of both wind and
concentration variables to the forcing F of the wind model which controls its chaotic
behaviour.

This is due to the fact that there is a bias on the initial value of F . At the end of a long
data assimilation run, the algorithm has converged to the right values with a precision15

of less than a percent. The use of a long DAW improves the estimation of the param-
eters and the smoothness of the results. The case L = 1 shows that the method can
sometimes converge to a biased value for a long period of time.

It could be possible to estimate chemical reaction rates, for instance, the ROC pho-
tolysis rate. However, our experiments have shown that the filter diverges. It probably20

happens because this rate is equal to 0 at night. Hence, it is imperative to set a prior
distribution on this type of parameters to avoid divergence when the model becomes
insensitive to the parameter, which is out of the scope of this work.

4.3 Localisation

Estimating covariances from a limited size ensemble of state vectors produces spuri-25

ous long distance correlations between variables. This degrades the estimation of the
error statistics and can lead to divergence in ensemble data assimilation methods. To
address this issue, localisation is used in high-dimensional systems implementing en-
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semble methods. There are two main localisation methods known as covariance local-
isation and local/domain analysis (Sakov and Bertino, 2011). The first method consists
in tapering the empirical covariance matrix using a Schur product with short-range cor-
relation function. The second method performs the analysis in a local domain around
each grid point, using only nearby observations. Both localisation methods have been5

tested with success with EnKF techniques applied to the L95-GRS model. Here, we
provide an illustration of such experiments.

We tested covariance localisation on the L95-GRS model using the DEnKF data as-
similation method from Sakov and Oke (2008). This method has the advantage of being
computationally efficient while allowing a straightforward use of Schur localisation. The10

RMSEs are shown in Fig. 11, as a function of the ensemble size, with optimally tuned
inflation and localisation radius. For comparison, the results without localisation are
shown as well. We see how localisation allows us to reduce the size of the ensemble
below 18 without diverging, even though it leads to a degradation of the scores for very
small ensemble sizes (N < 10).15

5 Conclusions

The aim of this article was to introduce low-order models on which to test advanced
data assimilation methods so as to get insights on some of the many difficulties encoun-
tered in data assimilation applied to meteorology and atmospheric chemistry. Amongst
them, the questions of inflation, localisation for ensemble methods, model error, online20

and offline modelling or nonlinearities have been addressed.
Building on the L95-T model, where the transport of a tracer is coupled to the L95

model, we introduced a new model, L95-GRS, where the tracer part is replaced with
a simplified ozone chemistry. The L95-GRS model shows important peculiarities typical
of tropospheric ozone chemistry. It has been adjusted to simulate pollutant concentra-25

tions of realistic magnitude. Ozone precursors can experience long-range transport by
the meteorology and lead to ozone episodes far from the pollutant sources. It is pos-
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sible to tune the wind magnitude in order to modify the space and time scale of the
model. Moreover, it has stiff equations which require the use of the same numerical
tools as high-dimensional CTMs. Last but not least, it shows a nonlinear response to
the emission rates of the ozone precursors. It thus includes several of the hardships of
high-dimensional chemistry models without the high numerical cost. As such, it can be5

used to experiment upon and validate new data assimilation methods in the context of
atmospheric chemistry modelling and coupled chemistry meteorology modelling.

To illustrate the use of advanced data assimilation methods on these models, and
specifically ensemble variational methods, we first performed new experiments on the
L95-T with the iterative ensemble Kalman smoother (including the ensemble Kalman10

filter). We showed that this model is suitable to test online and offline strategies for data
assimilation, as well as to emulate model error stemming from a meteorological field,
or an ensemble forecast of meteorological fields.

More specifically, we experimented on the offline version of the L95-T model, where
the meteorology and the tracer subsystems are integrated and assimilated separately.15

This decoupling introduces model error on the tracer subsystem. In this context, having
an ensemble of analyses from a data assimilation on the meteorology as an input to the
tracer subsystem gives us a representative sample of this model error. By doing so, we
have avoided the use of inflation and obtained optimal performance. We noticed as well
that, for data assimilation purposes, the coupling of the two subsystems is only relevant20

when they have similar evolution timescales. In the case where the tracer subsystem
evolves too quickly or too slowly compared to the meteorology, the coupling of these
two parts fails to improve the results of the data assimilation compared to an offline
case.

The use of data assimilation methods was also illustrated on the L95-GRS model.25

The iterative ensemble Kalman smoother performs well despite the nonlinearities of
the model and even if the observation network is sparse. In particular, the model can
help testing parameter estimation techniques with multiple parameters usually met in
CCMMs and CTMs. The use of localisation was also successfully tested with L95-GRS.
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By making this wide range of experiments, we concluded that the L95-GRS model is
suitable to test advanced data assimilation schemes.

If need be, a hierarchy of models could be developed, by exchanging the L95 mete-
orological part with another low-order model. For instance, L95 could be replaced with
the Lorenz 2005-II model (Lorenz, 2005) which could offer a more complex setup for5

testing localisation. Alternatively, the L95 meteorological part could be exchanged with
the multiscale Lorenz 2005-III model to explore the impact of subgrid-scale model er-
ror. Finally, following this study, we are planning to test the IEnKS on the Polair3D CTM
of the research and operational Polyphemus modelling platform (Mallet et al., 2007;
Sartelet et al., 2012) building on the experience acquired with the L95-T and L95-GRS10

low-order models.

Appendix A: Algorithm of the IEnKS

The following algorithm specifies a variant of the IEnKS, called the single data as-
similation (SDA) IEnKS (Bocquet and Sakov, 2014). The minimisation of the nonlinear
cost function is based on a Gauss-Newton scheme (other schemes such as BFGS15

or Levenberg–Marquardt are possible). The sensitivities are computed by a finite-
difference scheme (bundle variant, as in Bocquet and Sakov, 2012). They could also
be computed using the propagation of the ensemble (ensemble transform variant, as
in Sakov et al., 2012) as well. The data assimilation window is of length L∆t. In the
algorithm, tL is present time. The forward model from tk to tk+1 is Mk+1←k ; the ob-20

servation operator at tk is Hk . ε, e, jmax are algorithmic parameters with values taken
to be 10−4,10−3 and 20 respectively. The outcome is largely independent of these pa-
rameters. E0 is the ensemble matrix at t0, whose columns are the ensemble vectors:
x

0
1,x0

2, . . .,x0
N . yk is the observation vector at tk . λ is the inflation factor. U is an orthog-

onal matrix in RN×N satisfying U1 = 1, where 1 = (1,1, . . .,1)T. In between two updates,25

the ensemble is forecast over S∆t. The configuration L = 0,S = 1 corresponds to the
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Algorithm 1 A cycle of the lag-L / shift-S / SDA / bundle / Gauss-Newton IEnKS.

1: j = 0, w = 0
2: x

(0)
0 = E01/N

3: A0 = E0 −x
(0)
0 1T

4: repeat
5: x0 = x

(0)
0 +A0w

6: E0 = x01T +εA0
7: for k = 1, . . .,L do
8: Ek =Mk←k−1(Ek−1)
9: if k ∈ [L−S +1,L−1] then

10: yk = Hk(Ek)1/N
11: Yk = (Hk(Ek)−yk)/ε
12: end if
13: end for
14: yL = HL(EL)1/N
15: YL = (HL(EL)−yL)/ε
16: ∇J̃ = (N −1)w −

∑L
k=L−S+1YT

kR−1
k (yk −yk)

17: H̃ = (N −1)IN +
∑L
k=L−S+1YT

kR−1
k Yk

18: Solve H̃∆w = ∇J̃
19: w :=w −∆w
20: j := j +1
21: until ||∆w || ≤ e or j ≥ jmax

22: E0 = x01T +
√
N −1A0H̃

− 1
2 U

23: ES =MS←0(E0)
24: xs = ES1/N

25: ES := xS1T + λ
(

ES −xS1T
)
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ensemble transform Kalman filter, L = 1,S = 1 corresponds to the iterative ensemble
Kalman filter, and for any L, S = 1 corresponds to the generic quasi-static IEnKS.

Appendix B: Full equations and parameters of L95-GRS

Equations for the Lorenz variables xm, m ∈ [1,M]:

dxm
dt

= (xm+1 −xm−2)xm−1 −xm + F5

Equations of the chemical species concentrations:

d[ROC]m+ 1
2

dt
= ψROC

m −ψROC
m+1 − λ[ROC]m+ 1

2
+EROC

m+ 1
2

(B1)

d[RP]m+ 1
2

dt
= ψRP

m −ψRP
m+1 − λ[RP]m+ 1

2
+k1[ROC]m+ 1

2
[RP]m+ 1

2

− [RP]m+ 1
2

(
k2[NO]m+ 1

2
+2k6[NO2]m+ 1

2
+k5[RP]m+ 1

2

)
d[NO]m+ 1

2

dt
= ψNO

m −ψNO
m+1 − λ[NO]m+ 1

2
+ENO

m+ 1
2

(B2)10

+k3[NO2]m+ 1
2
− [NO]m+ 1

2

(
k2[RP]m+ 1

2
+k4[O3]m+ 1

2

)
(B3)

d[NO2]m+ 1
2

dt
= ψNO2

m −ψNO2

m+1 − λ[NO2]m+ 1
2
+ENO2

m+ 1
2

+k4[NO]m+ 1
2
[O3]m+ 1

2

+k2[NO]m+ 1
2
[RP]m+ 1

2
− [NO2]m+ 1

2

(
k3 +2k6[RP]m+ 1

2

)
d[O3]m+ 1

2

dt
= ψ

O3
m −ψ

O3

m+1 − λ[O3]m+ 1
2
+k3[NO2]m+ 1

2
−k4[NO]m+ 1

2
[O3]m+ 1

2
(B4)

d[S(N)GN]m+ 1
2

dt
= ψS(N)GN

m −ψS(N)GN
m+1 − λ[S(N)GN]m+ 1

2
+2k6[NO2]m+ 1

2
[RP]m+ 1

2
(B5)15
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with the following definitions of the fluxes:

ψC
m = xm[C]m− 1

2
if xm ≥ 0 ψC

m = xm[C]m+ 1
2

if xm < 0, (B6)

the constants:

M = 40, F = 8, λ = 0.02day−1 , (B7)

the emissions rates (in ppbCday−1 for ROC or ppbday−1 for NOx):5

EROC
m+ 1

2

= 0.0235 , ENO
m+ 1

2

= 0.27×0.9 = 0.243 , ENO2

m+ 1
2

= 0.27×0.1 = 0.027 , (B8)

and the kinetic rates computed at T = 300K (all in ppb−1 min−1, except for k1 in min−1):

k1 = 0.00152×k3 , k2 = 12.3 , k4 = 0.275 , k5 = 10.2 , k6 = 0.12 . (B9)

k3 is the photolysis rate of NO2 in min−1, which is a function of solar radiation. It was
computed using FastJ-X (Voulgarakis et al., 2009). We then took the value on 21 March10

at the equator and used it repeatedly without attenuation. If k3 is required between two
hours, a linear interpolation is performed. Specifically, hourly values of k3 used are
reported in Table 1.

The quasi-steady-state approximation (QSSA) consists in replacing Eq. (B2) by di-
agnosing the concentration of RP at each grid point assuming steady-state for a given15

time step:

[RP]m+ 1
2
=
k2[NO]m+ 1

2
+2k6[NO2]m+ 1

2

2k5


√√√√√1+

4k1k5[ROC]m+ 1
2(

k2[NO]m+ 1
2
+2k6[NO2]m+ 1

2

)2
−1

 . (B10)

The model is integrated with an autonomous second-order Rosenbrock method with
a time step of δt = 1h. With this time step, an adaptive time step is unnecessary with
the QSSA version of the model but is required in the non-QSSA case.20
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Code availability

The code for the models L95-T and L95-GRS can be downloaded from the following
website: http://cerea.enpc.fr/l95-grs/
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Table 1. Hourly values of k3 in min−1.

t k3 t k3 t k3 t k3

00 h 0 06 h 0.1972314 12 h 0.622824 18 h 0.00675528
01 h 0 07 h 0.3910734 13 h 0.611526 19 h 0
02 h 0 08 h 0.5074326 14 h 0.5755002 20 h 0
03 h 0 09 h 0.5755002 15 h 0.5074326 21 h 0
04 h 0 10 h 0.611526 16 h 0.3910734 22 h 0
05 h 0.00675528 11 h 0.622824 17 h 0.1972314 23 h 0
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Figure 1. Time evolution of the L95-GRS variables at one grid point. The L95 variables, flagged
“Wind”, are shown with the original Lorenz unit, while the concentration unit is ppb (ppbC for
ROC).
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Figure 2. Maximal ozone concentration (in ppb) averaged over the domain depending on max-
imal averaged ROC (in ppbC) and NOx concentrations (in ppb). Each dot corresponds to a run
with a different emission rate for ROC and NOx leading to different maximal averaged concen-
trations. The reference run is circled in black.
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Figure 3. Time evolution of the L95-GRS variables over the whole domain in the case of a con-
tinent/ocean division. The L95 variables, flagged “Wind”, are shown with the original Lorenz
unit, while the concentration unit is ppb (ppbC for ROC).
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Figure 4. Time evolution of the L95-GRS variables at one grid point with a time rescaling of
α = 20 applied to the L95 model. The L95 variables, flagged “Wind”, are shown with the original
Lorenz unit, while the concentration unit is ppb (ppbC for ROC).
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Figure 5. Average RMSEs of the L95-T data assimilation system using the IEnKS, as a function
of the DAW length (in units of ∆t = 0.05 of the L95 model). The two top panels show the filtering
RMSEs, while the two bottom panels show the smoothing RMSEs. The scores of the wind
variables are on the left, while scores of the concentration variables are on the right. The case
L = 0 corresponds to the ensemble transform EnKF.

7388

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7347/2015/gmdd-8-7347-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7347/2015/gmdd-8-7347-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 7347–7394, 2015

A low-order online
and offline

atmospheric
chemistry model

J.-M. Haussaire and M.
Bocquet

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

10−2 10−1 100 101

Scavenging ratio λ

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A
ve

ra
ge

ro
ot

m
ea

n
sq

ua
re

er
ro

r WindWindL = 0
L = 15

10−2 10−1 100 101

Scavenging ratio λ

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

A
ve

ra
ge

ro
ot

m
ea

n
sq

ua
re

er
ro

r ConcentrationConcentration L = 0
L = 15

Figure 6. Average filtering analysis RMSEs of the wind variables (left) and concentration vari-
ables (right) of the L95-T, as a function of the scavenging ratio for the ensemble transform EnKF
(IEnKS with L = 0) and the IEnKS with L = 15.
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Figure 7. Average filtering analysis RMSEs of the wind variables (left) and concentration vari-
ables (right) of the L95-T, as a function of the number of concentration observations for the
IEnKS with several DAW lengths. The case L = 0 corresponds to the ensemble transform EnKF.
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Figure 8. Average filtering analysis RMSEs of the L95-GRS variables, as a function of the
number of concentration observations for the IEnKS with several DAW lengths. The case L = 0
corresponds to the ensemble transform EnKF. The RMSEs are normalised by the standard
deviations of the observations.
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Figure 9. Average filtering and smoothing analysis RMSEs of the L95-GRS variables, as a func-
tion of the DAW length (in units of ∆t = 6h). The case L = 0 corresponds to the ensemble
transform EnKF. The RMSEs are normalised by the standard deviations of the observations.
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Figure 10. Time evolution (days) of the parameter variables for several DAW lengths without
spin up (main) or after a long time (inset). The case L = 0 corresponds to the ensemble trans-
form EnKF. F is shown with the original Lorenz unit, while the emission rate unit is ppbCday−1

or ppbday−1.
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Figure 11. Average filtering analysis RMSEs of the L95-GRS variables, as a function of the
ensemble size for the DEnKF without localisation or with optimally tuned localisation radius. The
L95 variables, flagged “Wind”, are shown with the original Lorenz unit, while the concentration
unit is ppb (ppbC for ROC).
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