
Author’s Response

November 12, 2015

1 Response to Referee #1, Stéphane Vannitsem

We would like to thank the referee for his time, his useful input on our manuscript,
and his interest in our work. Please find below the response to your comments
and how the manuscript was modified accordingly.

1. First, it is not very clear to me what is the nature of the nonlinearities of
the chemical module. Could you clarify that aspect (maybe when discussing
Eq. 12)? If there are nonlinearities, what are their impact of the presence
of these nonlinearities on the emergence of different solutions (for fixed
parameters)? And would you please clarify (or comment) if this chemistry
module could lead to complex dynamics (e.g. chaotic dynamics)?

This chemistry doesn’t lead to chaotic dynamics. On the contrary, it
is actually stable (there are well known chemical reactions, such as Be-
lousov–Zhabotinsky, that can lead to oscillatory dynamics, but not really
unstable in the dynamical system sense). To emphasize this point, we
changed the first sentence of the second paragraph of the section 2.3 as
follows: “This model, even if not chaotic, is highly nonlinear, exhibiting
distinct chemical regimes”.

Nonetheless, the nonlinearities are strong in the sense that linearization is
usually too gross an approximation. It physically shows in unexpected be-
havior. Such typical behaviour is illustrated by EKMA diagram of Fig.2.
It represents the response of ozone concentrations regarding the concen-
trations of the precursors of ozone, the ROC and the NOx species. Since
these two species are considered as the precursors of the ozone, one could
have expected that increasing their concentrations would have impacted in
proportion the resulting ozone concentrations. But the graph shows that
this intuition is not fulfilled because of the nonlinearities in the model.

2. Second as far as I remember the L95 model displays features like anti-
correlations in space that looks to me quite unrealistic. Moreover I am not
aware if this system can display more space-time intermittent behaviors,
regimes that could be very interesting to explore when dealing with more
realistic dynamics close the surface of the Earth (and at smaller scales).
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Personally I would have chosen an advection model with turbulent prop-
erties like the Burgers model or the Kuramoto-Sivashinsky model that are
displaying very rich dynamics with potentially intermittent behaviors, and
very interesting predictability properties (e.g. Vannitsem and Nicolis, Pre-
dictability experiments on a simplified thermal convection model: The role
of spatial scales, J. Geophys. Res., 99,1037710385, 1994). Could you
comment on the limitations of the L95 system for such an investigation
(This could be part of the discussion in your conclusions on the extension
of the model)?

Thank you very much for raising this point and for the reference.

Indeed the L95 model has anti-correlations in space (and time!) that are
not observed in more realistic models. The L95 model could be replaced
with any model that would stand for the meteorology. One main difference
between the models you propose and the L95 is that they are continuous,
unlike L95. In the case where a continuous model would have been used,
we could have discussed the use of Lorenz05-II model alongside the ones
you are proposing.

The interest of the L95 is that it has some elementary representation
of Rossby waves. The Burgers equation could be interesting to assess the
impact of a front on the chemistry, but would not emulate the meteorology
of an atmospheric chemistry model. The Kuramoto-Sivashinsky model is
less related to atmospheric transport, but does indeed have a rich range
of different dynamics, including space-time intermittent behaviors as you
mention, which are interesting to study.

We have extended our discussion at the end of the conclusion to include
a broader variety of models and comment upon their interest.

3. Finally I am wondering whether there is any impact of the daily variations
of the rate constant k3 (non-autonomous dynamics) on the performances
of the data assimilation schemes. Does this temporal variation have no
impact?

In CTMs, where the chemistry is integrated with a time-step of the order
of 10 minutes, the equations are usually considered autonomous. In our
case, even if the time-step is raised to an hour, the adaptive scheme allows
to reduce it when it gets critical, thus updating the value of k3 within the
time-step. Therefore, the use of non-autonomous equations to integrate
the chemical part of the model is not required.

Regarding the impact of the temporal variation of the rate k3 on the
outcome of data assimilation, a test was performed where a geographical
variation of this rate is implemented. That is to say, instead of being the
same time all around our domain, we assume that there are parts of our
domain where it is day and some where it is night. In this context, the
free-run results (without data assimilation) are usually identical. The data
assimilation is also little impacted by it, except for NO. For example, with

2



L = 0 and the same setup as in the Fig. 9., the RMSE is actually closer
to 0.09 (instead of roughly 0.06). This is probably due to the fact that
the morning episode is harder to follow for the data assimilation system
and since sunrise is occurring somewhere in the domain at any time, the
performance is impacted.
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2 Response to Referee #2

We would like to thank the referee for his/her time, his/her useful input on the
manuscript, and his/her interest in our work. Please find below the response to
your comments and how the manuscript was modified accordingly.

• 1. Page 7350 last line. You might want to say that the direction is given
by the sign of the variable.

We agree with your comment. We have therefore modified the sentence as
follows: “The 40 scalar variables of L95 are considered to be the magnitude
of winds at 40 locations, their sign giving their direction.”

• 2. Page 7352 lines 5-9. This part may need improvements. There is
a mix between the origin of the uncertainty (initial condition error in the
meteorology and parametric error in the transport part) and the mechanism
of increasing uncertainty (i.e. the exponential grow in the chaotic part).
Uncertainty is inherent to the initialization procedure and is later increased
via exponential growth. I understand that the uncertainty on xm affects
cm via φm (Eq. 3 and 4), but it is not clear what do the author mean by
”...grow within the transport subsystem”. Furthermore, have you perfect
initial conditions in the concentration ? I understand that this may be a
minor issue if that part of the model dynamics is stable, but this should be
clarified here.

Indeed, “does not significantly grow within the transport subsystem”
means that this part of the model is stable, hence there is no exponential
growth of the error in that subsystem. We have changed the paragraph
into the following:

“Uncertainty in the meteorology comes from errors on the initial condi-
tions, which grow due to the chaotic dynamics. Uncertainty in transport
comes from the uncertainty in the emission field and from the wind un-
certainty, but the dynamics being stable, there is no exponential growth
of the error in the transport subsystem.”

The initial concentrations are not generated as perfect, but a noisy repre-
sentation of the truth.

• 3. Last paragraph of Section 1.1. You might want to specify here in which
section L95-GRS will be described.

We have modified line 16 of page 7352 as follows: “... and the coupled
model, which will be introduced in detail in Sect 2., will be called L95-
GRS”

• 4. Page 7353 lines 1-4. This fact and its consequence may not be clear
for a general reader without expertise in data assimilation. It is not just
the reduced size of the ensemble that matters, but the mere fact that an
ensemble exist and that the way how ensemble perturbations evolve is used
to estimate the linear and adjoint dynamics.
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We agree with your remark. We have added the following to the para-
graph: “Indeed, one can for instance use the ensemble of perturbations
within the DAW to estimate the sensitivities using finite differences.”

• 5. Page 7353 lines 5-6. Do you expect this in the present study ? In the
present form this is not clear in the text, and given that results already exist
in the literature that shows the ability of IEnKS to estimate parameters in
nonlinear model, the ”expected” can be confusing.

Instead we wrote in the revised manuscript that the IEnKS is known to
handle well parameter estimation.

• 6. Page 7353 lines 8-12. These two sentences can be condensed into one
by saying that, under its conditions of use, the IEnKS solves the full Gaus-
sian estimation smoothing problem, that is to say it provides an updated
ensemble which is used to compute the covariances. Also, what is the
difference between 4D-Var and ”standard” 4D-Var for you?

For the sake of clarity, we have kept both sentences, but removed the
second “Unlike standard 4D-Var”. We found the use of ”standard 4D-
Var” sometimes necessary because current operational 4D-Vars (such as
those in the ECMWF or Meteo-France) are evolutions of the basic 4D-Var,
which partly propagate the uncertainty. The expression has disappeared
in the revised manuscript.

The text has been modified into: “Unlike 4D-Var, a posterior ensemble
is generated as the output of the analysis using techniques known in de-
terministic ensemble Kalman filtering. The IEnKS then propagates the
updated ensemble, allowing a better transfer of the errors from an update
to the next.”

• 7. Page 7354 line 16. The use of the verb ”replace” here can be con-
fusing, given that the resulting L95-GRS model still has a transport part
which is structurally similar to L95-T, but it also has an additional GRS
component.

The transport part (as in the advection equations) is indeed similar in the
two models. However, the tracer species is replaced by the set of species
of the GRS. The fact that the ROC species behaves like the tracer of the
L95-T is a rather fortunate but involuntary coincidence. We would not say
here that the tracer part is enhanced by adding the rest of the chemistry
of the GRS since the ROC species, even if it numerically behaves like
the unreactive tracer of the L95-T, is considered like a reactive species of
the whole chemical scheme. We changed “replace” by “substitute” in the
revised manuscript.

• 8. Page 7355 line 1. Do you mean ROC instead of ”VOC”?

No, we do mean VOC here, even though we agree that the difference is
subtle. As explained by Venkatram et al. (1994) at page 3666, VOCs are
emitted and ROC is a surrogate for all the products of the oxidation of
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these emitted VOCs. There is therefore more to ROC than simply VOC
in a chemical sense. Therefore, when explaining in a general manner the
purpose of the GRS model, we would rather talk about the VOC emissions.

• 9. Equation 11. More explanation and details on how Eq. (11) is obtained
via the QSSA approximation are required. Also, I suggest to say at the
very beginning of Section 2.1 that full details are provided in Appendix
B. In the present form the reader may think that only specific points are
highlighted therein.

We agree with you to warn the reader early of the content of Appendix B,
where more details and justification about the QSSA are given. We first

corrected the equation of
d[RP]

m+1
2

dt , which should have been numbered
(B2), and which should have been :

d[RP]m+ 1
2

dt
= ψRP

m − ψRP
m+1 − λ[RP]m+ 1

2
+ k1[ROC]m+ 1

2

− [RP]m+ 1
2

(
k2[NO]m+ 1

2
+ 2k6[NO2]m+ 1

2
+ k5[RP]m+ 1

2

)

Moreover, we have changed the paragraph page 7376 line 14-17 into : “ The
quasi-steady-state approximation (QSSA) consists in replacing Eq.(B2) by
diagnosing the concentration of RP at each grid point assuming steady-
state for a given time step. This means that there is a dynamical equilib-
rium between the chemical production and decay of the RP, which implies

0 =
d[RP]

dt
= k1[ROC]− [RP] (k2[NO] + 2k6[NO2] + k5[RP])

⇔ [RP] =
k2[NO] + 2k6[NO2]

2k5

(√
1 +

4k1k5[ROC]

(k2[NO] + 2k6[NO2])
2 − 1

)
.

• 10. Page 7357 lines 21-23. Note that when defining the value of k3, the
reference at the equator has been taken (Appendix B). I guess this will not
lead to significant quantitative difference, but it is worth mentioning why
it was not used a mid-latitude reference in that case.

We agree that it would have been more logical to choose a coefficient at
mid-latitude, since the wind is supposed to be of mid-latitude as well.
This will indeed not lead to significant differences. As can be seen in
the following figure, the value of the photolysis coefficient at mid-latitude
(50oN) on 21 March (blue line) is of the same order of magnitude than
at the equator (green line). Moreover, this coefficient at mid-latitude in
summer (21 June, red line) reaches values as high as the one that we used
in our reference run.
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• 11. Page 7357 lines 26-28. Do you mean that you have tuned EROC and
λROC in the model to fit the real value of ROC ?

Since ROC is a surrogate compound for COV and other radical producers,
it is not straightforward as to what “real values” of ROC are. However,
we roughly know what the “real values” of O3 or NOx are and we tried
to fit λ (unique and identical for each species) and EROC to match these
values. One should bear in mind that λ is kept like in the L95-T model.

• 12. I think all figures need to be improved, in particular in their labels and
titles size. In the printed version they are barely readable. I understand
this may be fixed at a later stage, but it has to be done.

We agree with you on this point and we have made our best to improve
the readability of the pictures.

• 13. Page 7359 line 10. By looking at the O3 panel, I would not say that
O3 remains at high levels, but just that it remains small but not zero.

Even if in the panel, the O3 concentrations can get close to 0, it is however
not happening particularly because of the day/night cycle, but rather
because of the transport. The impact of the night, which is to consume
O3 and NO through Eq. (R4) does not influence the O3 concentration to
the extent of bringing it down to 0. This fact can actually be seen on the
Fig. 3, where there are some clear black stripes on the NO concentrations,
unlike for the O3, meaning it does remain at “high levels”, regardless of
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the fact that some cells in the grid do have close to zero concentration
levels.

• 14. Section 2.3, 2nd paragraph. How do you define the maximal ozone
concentration ? Is it the maxima in space and in time over a specified
long simulation ? Then, if my understanding is correct, you are doing
an analysis of the model behavior (the maximal ozone concentration) by
changing two of its parameters (the emission of ROC and NOx). This
type of analysis, which is of course worth doing and much informative,
does not automatically teach us about the nonlinear behavior of the model
in terms of the relation between state-variables, but rather about the model
phase diagram, that is to say how the structural properties of the model
change (for instance from periodic to aperiodic) by changing parameters.

As we tried to explicit in the caption, the maximum is calculated as an
“average over the domain”. By averaging in space like this, we get a
response (after the transitory regime) of O3, NOx or ROC which are merely
daily oscillations which amplitudes are solely determined by the emission
factors. This way, we show that there is a nonlinear response of the ozone
concentration to its precursor concentrations. We invite you to read as well
the answer to the first comment of the referee #1, Stéphane Vannitsem.
The EKMA model can also be considered as a phase diagram, whose
structure can only be obtained with a significantly nonlinear chemistry.

• 15. Section 2.3, last paragraph. It should be said that changing β the
forcing and advection terms are changed, so that a modification of the sta-
bility properties of the L95 model is obtained in terms of, for instance, the
number and amplitude of positive Lyapunov exponents or the Kolmogorov
entropy. The consequence for the performance of the data assimilation
methods are significant. For some value of β L95 may no longer be chaotic.
See Carrassi, Vannitsem and Nicolis (2008, Q.J.Roy.Meterol.Soc.) for a
more extensive analysis of the L95 properties for different values of the
forcing, dissipation and advection, and in relation with another data as-
similation strategy.

The α and β parameters that are considered are merely unit change fac-
tors. Technically, defining new variables T = 1

α t and X = 1
βx, one can

write :

dXm

dT
=
α

β

dxm
dt

=
α

β
[(xm+1 − xm−2)xm−1 − xm + F ] (1)

= α

[
β(Xm+1 −Xm−2)Xm−1 −Xm +

F

β

]
(2)

which is the equation number (15). Considering this new equation, chang-
ing β should only mean converting the unit of x into another one. The
dynamics of a wind variable and the stability of its underlying model
should not be impacted by the choice of the unit in which it is expressed.
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We believe that changing the advection term and inversely proportion-
ately changing the forcing one should then not impact the properties of
the L95 model. We made the following change in the revised manuscript
to account for your remark. “Note that α, β are only rescaling parameters
that do not fundamentally impact the nature of the model dynamics in
contrast to, e.g., Carrassi et al. 2008.”

• 16. Page 7362 lines 10-13. I would not just say with ”state-of-the-art
data assimilation methods”, cause this may one think on methods that are
operational in prediction centers. On the other hand those methods do
not necessarily (and indeed almost never) make possible the propagation
of information across model compartments. For this to happen one has to
use global error covariance matrices defined over the full system, as you
do here.

Thank you for pointing out to this potential confusion. We have conse-
quently amended the paragraph as follows:

“... both ways in advanced data assimilation methods, as long as the error
covariance matrices are defined over both subsystems.”

• 17. Page 7363 line 5. How do you select the dynamical regime ? Or am
I getting wrong on what you mean by this.

The dynamical regime is the one stated in the parameters of the model
(F=8, α = β = 1). In this regime, the unstable subspace being of size 14,
a set of members of size 20 is sufficient not to need localisation. There is
nothing hidden behind this statement.

• 18. Page 7363 line 12. What do you mean by ”extrinsic model error”.

The statement could be confusing, so that we clarified the sentence and
changed it into “However, note that the finite-size approach does not ac-
count for model error but sampling errors.”

• 19. Page 7363 line 13. Typo ”offlne” ⇒ ”offline”.

We do not notice, in the printable version of the manuscript, the typo you
are referencing.

• 20. Page 7363 line 17. Do you mean ”second” instead of ”first” ?

It is indeed the second offline system, but the first variation from the
baseline. We changed the text for the sake of clarity.

• 21. Page 7364 lines 5-10. You might want to add the explicit formulas
for RMSEfilter/smoother

Following this very relevant remark, we have added the following expla-
nations in the revised manuscript:
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“For a DAW of length L, a run of length Nt (both in units of ∆t), and a
state vector of size M , the formulas of the RMSEs are

RMSEfiltering =
1

Nt

Nt∑
i=1

√
1

M
||ML←0(xi

a)− xi+L
t ||2

and

RMSEsmoothing =
1

Nt

Nt∑
i=1

√
1

M
||xi

a − xi
t||2

where xk
a is the average of the updated ensemble at time k, xk

t is the truth

at time k and for a vector x of size M , ||x||2 =
M∑
j=1

x2
j ”

• 22. Page 7368 lines 1-7. Can you comment on the choice of the values of
observational standard deviations for the different variables ? Also, I sug-
gest to state clearly that the normalization is done using the observational
error standard deviation.

The concentrations of each species have been averaged over the domain,
leading, as explained in the answer to the comment 14, to a daily oscilla-
tion curve of fixed amplitude. 10% of the maximum of this oscillation is
taken as the observational error standard deviation. For ozone, this ratio
of 10% is reasonable and in accordance with usual observational standard
deviations used in data assimilation experiments. For instance, Wu et
al.(2008) used a standard deviation of 10 µg.m−3 while noting a mean of
ozone observations of about 70 µg.m−3. We assume this choice to be valid
for other species as well.

Regarding, the second point of your comment, we have changed the sen-
tence line 4-5 into “All the RMSEs shown in this section are normalised by
the observational error standard deviation of the corresponding species.”

• 23. Page 7368 lines 9-16. It is not clear how the observations are dis-
tributed. Are they evenly distributed as in the results of Fig. 7 ?

Yes they are. We assumed the first sentence of the paragraph, stating “as
in Sect 3.4”, where Fig 7 is presented, was explicit enough. We changed
the text to make it clearer: “At first, the number and distribution of
observations of the concentration variables have been varied following the
same setup as in Sect. 3.4.“

• 24. Page 7369 line 20. Do you 40 instead of 240 ?

As explained in the p.7356 L.19-21, the whole state is composed of 240
variables, which are the wind and 5 species at 40 grid points. So here, we
do mean “240”.

• 25. Page 7369 lines 24-25. Why do you chose to have an unbiased initial
ensemble for the emission rate (i.e. centred around the truth) and a biased
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one for the forcing ? You comment on this a bit later in the text, but it
would be better to say something about this choice when you present it.

In the article of Bocquet and Sakov (2013), the setup of the experiment of
parameter estimation with the L95-T chooses to have a biased initial en-
semble around F = 7 but has an unbiased initial ensemble for the emission
rate of the tracer species. We just kept the same experimental setup as
this reference. If the two emission rates would have been centered around
the true value minus 10% (instead of the true value), the convergence
speed of the parameters would have been slightly faster.

• 26. Page 7375. The numbering of equation seems to be incorrect. (B3)
should move one line forward.

You are right. Thank you very much for noticing this detail! This has
been corrected.

• 27. Caption of Fig. 8. I would change ”several” into ”three”, and I would
better say ”observational error” instead of just ”...observations.” at the
end of the caption.

This has been taken into account and modified. Thank you for the sug-
gestion.
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3 Response to Referee #3

We would like to thank the referee for his/her time, his/her useful input on the
manuscript, and his/her interest in our work. Please find below the response to
your comments and how the manuscript was modified accordingly.

• 1. For advection of the minor species the authors use a Godunov scheme.
This scheme is usually found very diffusive, so the gradients are not very
well conserve. I would have rather used a slope scheme or a PPM scheme,
which can be easily implemented in a 1D framework. Have you any indi-
cations on the impact of your choice on the results of your assimilation
experiments?

The Godunov scheme is indeed very diffusive. It was chosen in Bocquet
and Sakov, 2013, because it is very simple, conserves mass and positiv-
ity. It also accounts for the effective diffusion often present in chemical
transport models at coarse resolution.

If the L95 model is exchanged for another meteorological model which is
continuous, such as the Burgers equation or the Kuramoto-Sivashinsky
model, the advection scheme would need to be revised and a more ac-
curate, less diffusive scheme could be chosen (such as a direct spacetime
third-order scheme with a flux limiter, or a semi-Lagrangian scheme) as
you have suggested.

We have included a short discussion about this issue in the conclusion,
where we discussed the extension of the model to different meteorological
models (in connection with the first referee’s remarks).

• 2. As expected the impact of species assimilation on the coupled system
is very different from one species to another. I would have expected more
insight on that point and discussions on the relative role of dynamics and
chemistry on the observed decoupling. This could certainly be done in
comparing the time scales for dynamics and the lifetimes of the various
species. A discussion around those ideas would certainly be of interest for
future work using more complex models.

The aim of the article is to introduce a new low-order model and demon-
strate how it could stand for a rich playground for testing data assimilation
schemes and the influence of various parameters. With this perspective in
mind, we have introduced throughout the article several key parameters
relevant to the physics, chemistry, coupling of models and to the obser-
vation of the system. We have even experimented on some of them, such
as α, E or λ. But we believe it would be too far reaching in this paper
to consider sketching a phase diagram depending on the value of these
parameters and of the kinetic constants of the species.

We can nonetheless suggest additional experiments that we contemplate
or that we have already partially studied but not reported. First of all,

12



an experiment similar to the one in Sect. 3.3 (regime driven by the emis-
sion/deposition ratio) could have been carried out to compare the impact
of the time scales on the result of data assimilation. Another experiment
consists in assimilating observations of only a given set of species, instead
of all of them, and witness which ones are necessary to avoid the filter’s
divergence. This requirement could probably be discussed from the time
scales of the species which could affect observability. Another test that we
have carried out was to study the impact of the α coefficient of the L95
model (Eq.(15)) on the data assimilation results, thus actually altering the
time scale of the meteorology to possibly fit the time scale of the chem-
istry. Finally, some experiments on the decoupled L95-GRS, similar to
the ones performed on L95-T could have been shown. These experiments
present interesting results and raise challenging questions, many of them
we have not satisfyingly answered yet.

In conclusion, we see this article as an invitation to such exploration of
the phase diagram of the data assimilation system which depends on the
many space and time scales set by the model. We hope to have provided
tools for this exploration.

We have changed the conclusion of the manuscript to partially reflect this
discussion.
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4 Response to the Executive Editor Comment

Dear Dr. Kerkweg,
We apologize for the fact that our submitted article did not comply with the

requirements of papers published in GMD.
Following your remark, we modified the title as follows
”A low-order coupled chemistry meteorology model for testing online and

offline data assimilation schemes: L95-GRS (v1.0)”
The authors
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5 Marked-up manuscript
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Abstract

Bocquet and Sakov (2013) have introduced a low-order model based on the coupling of the
chaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with the trans-
port of a tracer species advected by this zonal wind field. This model, named L95-T, can
serve as a playground for testing data assimilation schemes with an online model. Here,
the tracer part of the model is extended to a reduced photochemistry module. This cou-
pled chemistry meteorology model (CCMM), the L95-GRS model, mimics continental and
transcontinental transport and the photochemistry of ozone, volatile organic compounds
and nitrogen oxides. Its numerical implementation is described. The model is shown to re-
produce the major physical and chemical processes being considered. L95-T and L95-GRS
are specifically designed and useful for testing advanced data assimilation schemes, such
as the iterative ensemble Kalman smoother (IEnKS) which combines the best of ensemble
and variational methods. These models provide useful insights prior to the implementation
of data assimilation methods on

:::
into

:
larger models. We illustrate their use with data assim-

ilation schemes on preliminary, yet instructive numerical experiments. In particular, online
and offline data assimilation strategies can be conveniently tested and discussed with this
low-order CCMM. The impact of observed chemical species concentrations on the wind
field

:::::::::
estimate

:
can be quantitatively estimated

::::::::::
assessed. The impacts of the wind chaotic

dynamics and of the chemical species non-chaotic but highly nonlinear dynamics on the
data assimilation strategies are illustrated.

1 Introduction

Several data assimilation methods have been used in the field of atmospheric chemistry and
air quality in many studies (as exemplified in the reviews of Carmichael et al., 2008; Sandu
and Chai, 2011; Zhang et al., 2012; Bocquet et al., 2015a). Yet, how efficiently data as-
similation schemes operate in high-dimensional and heterogeneous models such as those
used in the field remains largely unclear. Indeed, atmospheric chemistry models are be-
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coming increasingly complex, with multiphasic chemistry, size-resolved particulate matter,
and possibly coupled to numerical weather prediction models. In the meantime, data assim-
ilation methods have also become more sophisticated. Let us briefly and non-exhaustively
describe this evolution. Kalman filters have been used with atmospheric chemistry models
by Ménard et al. (2000). The numerical cost of this algorithm was addressed by the use of
the ensemble Kalman filter and variants thereof in Segers et al. (2000); Eben et al. (2005);
Hanea et al. (2007); Wu et al. (2008); Sekiyama et al. (2011). In order to address rank
deficiencies and sampling issues, localisation and inflation have been used in this context
(Constantinescu et al., 2007a, b; Schutgens et al., 2010). Moreover, 3D- and 4D-Var tech-
niques have been applied to chemichal

::::::::
chemical

:
transport models (CTMs) in the wake of

their success in operational meteorology (Elbern et al., 2000; Quélo et al., 2005; Errera
et al., 2008; Wu et al., 2008). These methods, however, require the development of the
adjoint models (e.g., Hakami et al., 2007; Henze et al., 2007) and this has led to the im-
plementation of easier approximate adjoints (Bocquet, 2005, 2012; Koohkan and Bocquet,
2012; Singh and Sandu, 2012). Attention has been paid to the construction of the back-
ground error covariance matrix (Elbern et al., 2007; Singh et al., 2011). Getting the best of
the ensemble Kalman filter and variational methods through an hybrid ensemble-variational
approach is a quest recently initiated in meteorology (Buehner et al., 2010; Clayton et al.,
2013; Bocquet and Sakov, 2014; Desroziers et al., 2014; Nino Ruiz and Sandu, 2016),
that could be applied to atmospheric chemistry models (Bocquet and Sakov, 2013). Fi-
nally, the recent development of coupled chemistry meteorology models (CCMMs) opens
the Pandora’s box of data assimilation in coupled systems characterized

::::::::::::::
characterised by

heterogeneous dynamics with distinct timescales, heterogeneous sources of uncertainty,
and complex interactions.

Hence, it will become increasingly difficult to disentangle the merits of data assimi-
lation schemes, of models, and of their numerical implementation in a successful high-
dimensional data assimilation study. That is why we believe that the increasing variety of
problems encountered in the field of atmospheric chemistry data assimilation puts forward
the need for simple low-order models, albeit complex enough to capture the relevant dynam-
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ics, physics and chemistry that could impact the performance of data assimilation schemes.
Low-order models, also called toy models, are models of reduced dimension meant to cap-
ture the prominent characteristics of the dynamics of larger models, but at a much lower
computational cost. They are not meant to be realistic, but their study provides insights into
the larger models and their dynamics. Their low numerical cost also comes with the ability
to compute reliable statistical scores in various regimes and hence to validate methods with
greater confidence. Moreover, they can be distributed and used with the goal to benchmark
data assimilation methods since their baseline performance can easily be reproduced.

1.1 The Lorenz-95 and tracer model

The Lorenz-95 (L95) model is a very popular low-order meteorology model (Lorenz and
Emanuel, 1998). It is a one-dimensional model whose M = 40 state variables extend over
a mid-latitude circle. It is defined by the following set of ordinary differential equations :

dxm
dt

= (xm+1−xm−2)xm−1−xm +F , (1)

for m= 1, . . . ,M , and the
:
.
::::
The

:
domain is periodic (circle-like, i.e. x−1 = x39, x0 = x40 and

x41 = x1). F is chosen to be 8 so that the dynamics is chaotic with a doubling time of about
0.42 Lorenz time units and with 13 positive Lyapunov exponents. A time step of ∆t= 0.05
is meant to represent a time interval of 6 h in the real atmosphere. The L95 model has been
extensively used as a testbed and benchmark for data assimilation experiments.

Bocquet and Sakov (2013) have added a tracer field to the L95 model state vector. The
field is discretised into 40 additional variables meant to represent 40 tracer concentrations.
The 40 scalar variables of L95 are considered to be the magnitude and direction of winds
at 40 locations,

:::::
their

:::::
sign

:::::::
giving

:::::
their

:::::::::
direction. The tracer field is advected by these winds

with a simple Godunov/upwind scheme. These 80 variables are defined on the circle using
an Arakawa C-grid as shown below:

:
.
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1.1 The Lorenz-95 and tracer model

The Lorenz-95 (L95) model is a very popular low-order meteorology model (Lorenz and Emanuel,

1998). It is a one-dimensional model whoseM = 40 state variables extend over a mid-latitude circle.

It is defined by the following set of ordinary differential equations:60

dxm
dt

= (xm+1−xm−2)xm−1−xm +F , (1)

for m= 1, . . . ,M , and the domain is periodic (circle-like, i.e. x−1 = x39, x0 = x40 and x41 = x1).

F is chosen to be 8 so that the dynamics is chaotic with a doubling time of about 0.42 Lorenz time

units and with 13 positive Lyapunov exponents. A time step of ∆t= 0.05 is meant to represent a

time interval of 6 hours in the real atmosphere. The L95 model has been extensively used as a testbed65

and benchmark for data assimilation experiments.

Bocquet and Sakov (2013) have added a tracer field to the L95 model state vector. The field is

discretised into 40 additional variables meant to represent 40 tracer concentrations. The 40 scalar

variables of L95 are considered to be the magnitude and direction of winds at 40 locations. The

tracer field is advected by these winds with a simple Godunov/upwind scheme. These 80 variables70

are defined on the circle using an Arakawa C-grid as shown below:

xm−1 cm− 1
2

xm cm+ 1
2

xm+1

• • •

Φm−1 Em− 1
2

Φm Em+ 1
2

Φm+1

The equations of the model are those of Eq. (1) together with

dcm+ 1
2

dt
= Φm−Φm+1−λcm+ 1

2
+Em+ 1

2
, (2)

where Φm = xmcm− 1
2

if xm ≥ 0 , (3)75

Φm = xmcm+ 1
2

if xm < 0 . (4)

This model will be called L95-T in the following. Because the meteorological and tracer state vec-

tors are simulated together, it is an online model. The tracer is emitted over the whole domain and

the emission fluxes are denoted Em+ 1
2

. It is deposited over the whole domain, using a simple scav-

enging scheme parametrised by a scavenging ratio λ. The reference values for those parameters in80

Bocquet and Sakov (2013) are: Em+ 1
2

= 1 and λ= 0.1. Additional details and illustrations can be

found in Bocquet and Sakov (2013). L95-T is a one-way coupled model in the sense that there is

no physical feedback from the transport part to the meteorology part. However, when applying data

assimilation to the model, information is exchanged both ways through covariances between the

meteorological and transport subsystems. In particular, observations of tracer concentrations can in85

principle improve the estimation of the meteorological variables.

Hence, L95-T represents an instructive model for more ambitious CCMMs (Bocquet et al., 2015).

From a dynamical perspective, this model couples chaotic meteorology with non-chaotic transport,

3

The equations of the model are those of Eq. (1) together with

dcm+ 1
2

dt
= Φm−Φm+1−λcm+ 1

2
+Em+ 1

2
, (2)

where Φm = xmcm− 1
2

if xm ≥ 0 , (3)

Φm = xmcm+ 1
2

if xm < 0 . (4)

This model will be called L95-T in the following. Because the meteorological and tracer
state vectors are simulated together, it is an online model. The tracer is emitted over the
whole domain and the emission fluxes are denoted Em+ 1

2
. It is deposited over the whole

domain, using a simple scavenging scheme parametrised by a scavenging ratio λ. The
reference values for those parameters in Bocquet and Sakov (2013) are: Em+ 1

2
= 1 and

λ= 0.1. Additional details and illustrations can be found in Bocquet and Sakov (2013). L95-
T is a one-way coupled model in the sense that there is no physical feedback from the
transport part to the meteorology part. However, when applying data assimilation to the
model, information is exchanged both ways through covariances between the meteorolog-
ical and transport subsystems. In particular, observations of tracer concentrations can in
principle improve the estimation of the meteorological variables.

Hence, L95-T represents an instructive model for more ambitious CCMMs (Bocquet et al.,
2015a). From a dynamical perspective, this model couples chaotic meteorology with non-
chaotic transport, as any realistic online tracer model would do. Uncertainty in the meteo-
rology comes from the exponential growth of errors

::::::
errors

:::
on

::::
the

::::::
initial

::::::::::::
conditions,

:::::::
which

5
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:::::
grow

:
due to the chaotic dynamics. Uncertainty in transport comes from the uncertainty in

the emission field and from the wind uncertaintywhich, however, does not significantly grow
within ,

::::
but

::::
the

:::::::::::
dynamics

::::::
being

::::::::
stable,

::::::
there

::
is

::::
no

::::::::::::
exponential

::::::::
growth

::
of

::::
the

::::::
error

:::
in

:
the

transport subsystem. This is meant to mimic CCMMs. Data assimilation techniques applied
to the model, which are meant to reduce these uncertainties, should be able to control the
growing error modes as done in numerical weather prediction, and also estimate forcings,
typically emissions, as done with CTMs.

However, in order to develop a qualitatively representative low-order CCMM, nonlinear
chemistry must be added. The primary goal of this article is to extend the L95-T model with
a simple photochemical kinetic mechanism. To that end, we will use the Generic Reaction
Set (GRS; Azzi et al., 1992)and the coupled model.

:::::
The

::::::::::
resulting

::::::::
coupled

::::::::
model,

:::::::
which

:::
will

::::
be

:::::::::::
introduced

:::
in

::::::
detail

:::
in

::::::
Sect.

:::
2,

:
will be called L95-GRS. In particular, it is meant

to be useful to test a state-of-the-art data assimilation and parameter estimation method
with a significant potential for such coupled models with heterogeneous observations and
dynamics.

1.2 The iterative ensemble Kalman smoother
:::::::::
(IEnKS)

Hence, the secondary goal of this work is to illustrate the usefulness of low-order CCMMs
to better understand the application of specific data assimilation techniques to CCMMs
and CTMs. The data assimilation method we shall use is the iterative ensemble Kalman
smoother (IEnKS). It has been introduced and developed by Bocquet and Sakov (2014).
A short account of the scheme can be found in Bocquet and Sakov (2013), which we do
not repeat here. However, the main characteristics of the method are recalled in the fol-
lowing and its algorithm is recalled in Appendix A. The IEnKS is an ensemble variational
(EnVar) method. It solves a variational problem over a data assimilation window (DAW), as
4D-Var would do. However, because the variational problem is solved in the reduced space
generated by an ensemble of state vectors, the adjoint of the model can easily be esti-
mated without the burden of generating the full adjoint model.

::::::::
Indeed,

::::
one

::::
can

::::
for

:::::::::
instance

::::
use

::::
the

::::::::::
ensemble

:::
of

::::::::::::::
perturbations

::::::
within

::::
the

::::::
DAW

:::
to

:::::::::
estimate

::::
the

::::::::::::
sensitivities

::::::
using

::::::
finite

6
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::::::::::::
differences. Because it can solve nonlinear variational problems, it has an edge over a state-
of-the-art ensemble Kalman filter. In particular, we expect it

:
it
:::
is

:::::::
known

:
to handle very well

parameter estimation, as well as nonlinear models (Bocquet and Sakov, 2013, 2014). As
such, it is as good a candidate method as 4D-Var (Elbern and Schmidt, 1999, 2001) when
accounting for nonlinear chemistry such as in a photochemical model. Unlike 4D-Var, a pos-
terior ensemble is generated as

:::
the

:
output of the analysis using techniques known in de-

terministic ensemble Kalman filtering. Unlike standard 4D-Var, the IEnKS propagates this
updated ensemblein between two variational updates, which allows for

::::
The

:::::::
IEnKS

::::::
then

:::::::::::
propagates

::::
the

:::::::::
updated

:::::::::::
ensemble,

:::::::::
allowing

:
a better transfer of the errors from an update

to the next.
It was shown with the L95 and L95-T models that the IEnKS outperforms the ensemble

Kalman filter (EnKF) and 4D-Var for filtering applications (i.e. present time estimation and
forecasting), especially in strongly nonlinear conditions. It was also shown to outperform the
EnKF, 4D-Var and the standard ensemble Kalman smoother for smoothing (i.e. reanalysis).
As for any EnVar method, the toll for applying these methods to high-dimensional models is
to use ad hoc techniques to regularise the error statistics obtained by empirical ensemble
statistics that are prone to sampling errors. As a consequence, localisation and possibly
inflation are required when implementing the IEnKS in high-dimensional systems.

If ∆t is the time interval between two batches of observations, L∆t is the DAW length
over which the IEnKS variational analysis is performed. The simplest variant of the IEnKS
algorithm is given in Appendix A. Note that the case L= 0 corresponds to the ensemble
square root Kalman filter in its ensemble transform implementation (Hunt et al., 2007), while
the case L= 1 corresponds to the iterative ensemble Kalman filter (Sakov et al., 2012).

1.3 Outline

In Sect. 2, the L95-GRS model with a reduced photochemistry module is introduced and
justified. This entails numerical complications similar to what is experienced in larger nu-
merical CTMs and CCMMs due to numerical stiffness of the chemical reactions. Its physical
and chemical relevance is also discussed. The following sections illustrate the usefulness

7
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of these models. In Sect. 3, additional experiments with the IEnKS on L95-T are described,
focusing on features not discussed in Bocquet and Sakov (2013). In particular, data as-
similation for the full L95-T model is compared to an offline variant where the tracer data
assimilation system is operated independently from the L95 data assimilation system. We
also demonstrate the importance of the emission regime for the efficiency of the data as-
similation scheme and we assess the impact of the tracer observation network density. In
Sect. 4, the EnKF and IEnKS are applied to the newly developed L95-GRS model, with
emphasis on the precision, localisation, and parameter estimation. Conclusions are given
in Sect. 5.

2 A low-order photochemical and transport model

In this section, we replace
::::::::::
substitute the tracer part of L95-T with

:::
for a reduced order pho-

tochemical kinetic mechanism to form the low-order coupled chemistry meteorology model
L95-GRS. We will first describe the resulting model, then we will evaluate its ability to re-
produce major physical and chemical characteristics of the processes considered.

:::
All

::::
the

:::::::::::
parameters

:::::
and

:::::::::::
equations

::::::::::
described

:::
in

::::
the

::::::::::
following,

:::::
with

::::::::::
additional

::::::::
details,

::::
are

::::::::::
gathered

::
in

::::::::::
Appendix

:::
B.

2.1 Description of the model

The photochemistry module is based on the Generic Reaction Set (GRS) of Azzi et al.
(1992). GRS consists of 7 chemical species meant to represent the atmospheric chemistry
of ozone formation from VOC and NOx emissions. The chemical reactions are:

ROC + hν
O2−→
k1

RP + ROC (R1)

RP + NO
k2−→ NO2 (R2)

NO2 + hν
k3−→ NO + O3 (R3)

8
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NO + O3
O2−→
k4

NO2 (R4)

RP + RP
k5−→ RP (R5)

RP + NO2
k6−→ SGN (R6)

RP + NO2
k7−→ SNGN (R7)

where ROC represents the reactive organic compounds, RP is the radical pool, SGN is the
stable gaseous nitrogen product and SNGN is the stable non-gaseous nitrogen product.
The kinetic rate constants, taken from Venkatram et al. (1994), are as follows :

k1 = 10000× e− 4710
T × k3 min−1 (5)

k2 = 5.482× e 242
T ppb−1 min−1 (6)

k4 = 2.643× e− 1370
T ppb−1 min−1 (7)

k5 = 10.2ppb−1 min−1 (8)

k6 = 0.12ppb−1 min−1 (9)

k7 = 0.12ppb−1 min−1 (10)

where T is the temperature, chosen to be constant equal to 300K for the sake of simplicity
and k3 is the photolysis rate for NO2 in min−1 which is a function of sunlight. Details are
given in Appendix B.

Since k6 = k7 and Reactions (R6) and (R7) are similar, one can merge the last two
species of the scheme into a lumped species and use a kinetic rate of 0.24ppb−1 min−1

that represents the formation of all the stable nitrogen products, whether gaseous or non-
gaseous, i.e. :

RP + NO2
k=2·k6−−−−→ S(N)GN . (R8)

To further reduce the GRS scheme and improve the efficiency of its numerical implemen-
tation, we use the quasi-steady-state approximation (QSSA) for the radical pool species

9
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RP, which is highly reactive and has the shortest lifetime among all the GRS species. This
means that the radical pool is in a dynamic equilibrium, adjusting rapidly to the other species
concentrations. Solving the algebraic second-order equation for the concentration of the
radical pool, we obtain:

[RP] =
k2[NO] + 2k6[NO2]

2k5

(√
1 +

4k1k5[ROC]

(k2[NO] + 2k6[NO2])2
− 1

)
. (11)

This approximation has been validated a posteriori. There was little to no impact on the sim-
ulated concentrations, while the mean adaptive time step of the chemistry solver increased
significantly.

:::::::
Further

:::::::::::::
explanations

::::
on

::::
how

::::
Eq.

:::::
(11)

::
is
::::::::::
obtained

::::
are

::::::
given

::
in

::::::::::
Appendix

:::
B.

:

GRS was
::
is

:
coupled to the L95 model. As for the L95-T model, the L95 variables are seen

as wind speeds that advect the GRS chemical species. The objective is, therefore, to create
a simplified model that is able to reproduce the temporal variability of ozone chemistry
on

::
at

:
a regional to transcontinental scale. There is a total of 40 wind variables and 200

concentration variables, namely the ROC, NO, NO2, O3, S(N)GN concentrations at each of
the 40 grid points defined on the circle using the C-grid. Note that the RP concentrations
are obtained from Eq. (11).

The transport equations for species [Ci] are consequently :

d[Ci]m+ 1
2

dt
= ψi

m−ψi
m+1 +Ri ([Cj ]j=1,...,6)−λi[Ci]m+ 1

2
+Ei

m+ 1
2

(12)

with ψi
m = xm[Ci]m− 1

2
, if xm ≥ 0 , (13)

ψi
m = xm[Ci]m+ 1

2
if xm < 0 . (14)

where λi is the scavenging ratio, Ei is the emission rate andRi ([Cj ]) is the production term
for Ci. There is no such production term for ROC (RROC = 0) so that ROC behaves as the
tracer of L95-T. The full equations are given in Appendix B for completeness.

10
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When L95-GRS is seen as a global low-order model, the photolysis rate constant k3,
which depends on sunlight, should vary around the domain and with the season since it
is directly linked to the solar zenith angle at a given grid point. Hence, there are points
on the grid where it is nighttime, with k3 = 0 and some

:::::::
others where it is daytime, with

k3 6= 0. However, for the sake of simplicity, it has been chosen constant over the domain
and it varies according to a uniform daily cycle. This choice does not impact the order of
magnitude of the simulated concentrations. A test where the coefficient varies around the
domain was performed and led to the same visual result as in Fig. 3 but with a delay around
the domain: the black stripes of the figure that signal the time when the NO concentrations
reach 0, are slanted instead of straight.

As ROC is not consumed in Reaction (R1), it will eventually produce enough RP to con-
sume all the NO, NO2 and O3. Therefore, we have added emission fluxes for ROC and
NOx and a single scavenging ratio for all the species. The emissions are considered con-
stant over time and uniform over the domain, even though a distinction between conti-
nent and ocean will also be made in the following. These constants have been chosen
using a genuine emission inventory. Since the domain of our model is supposed to be
a mid-latitude circle discretised with 40 grid points, one cell of our domain is roughly of
length a few hundred kilometres. We used an emission rate for NOx of 0.27 ppb day−1,
where NO accounts for 90% of these emissions and NO2 for 10%. This corresponds
to an emission of 3 kg year−1 inhabitant−1 of NO for 60 million inhabitants in a volume of
700km× 700km× 3km (typically France). We have fitted the values of the ROC emission
and scavenging coefficients

:::::::::::
coefficient so as to obtain concentrations

::
of O3 :::

and
:
NOx within

the range of realistic continental concentrations. Specifically, we used an emission rate of
0.0235 ppb C day−1 for the ROC species and a scavenging ratio of 0.02 day−1. This ratio
is the same as the reference value of the L95-T model, since one Lorenz time unit corre-
sponds to 5 days. All parameters are listed in Appendix B.
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2.2 Time integration of the model

The L95-T model is integrated in time using a fourth-order Runge–Kutta (RK4) scheme with
a time step of δt= 0.05 in Lorenz time units, i.e. 6 h (Bocquet and Sakov, 2013).

Similarly, the L95 subsystem of the L95-GRS model and the transport part are integrated
with the RK4 scheme. A first-order splitting of this integration and the chemistry integra-
tion is performed, integrating first the L95 and species transport part, followed by the GRS
integration.

The chemical reactions of L95-GRS have a wide range of rates, which leads to numer-
ical stiffness. Hence, the RK4 scheme is an inadequate solver to integrate the chemistry,
even though it is more precise. An implicit or semi-implicit scheme is required. That is why
the GRS chemical scheme is integrated with a second-order Rosenbrock method, following
Hundsdorfer and Verwer (2003). This method is costly since it is based on a semi-implicit
scheme that requires using the tangent linear model and solving two linear systems. This
is potentially the most time-consuming operation of the whole model integration. Since the
chemistry is local and because of the splitting, the Rosenbrock scheme is actually imple-
mented block-wise, one block per grid point. The linear systems to be solved point-wise
have a size equal to the number of species. Because the integration of the chemistry is
block-wise, it can easily be parallelised. The tangent linear model of GRS required by the
Rosenbrock scheme is simple to derive analytically and implement given the limited number
of reactions.

Furthermore, an adaptive time stepping has been implemented that adjusts the time
step to the instantaneous stiffness of the reaction rates. However, it has often been proven
unnecessary in the free model run (i.e. without data assimilation) in conjunction with the
QSSA used for the radical pool.

The typical integration time step for the chemistry is δt= 1h. The L95 and transport
subsystem

::
of

::::::::::
L95-GRS

:
is integrated with δt= 1h (δt= 0.05/6 in L95

:::::::
Lorenz unit).
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2.3 Qualitative analysis of the L95-GRS model

The outcome of a free run (after spin-up) at a grid point is shown in Fig. 1. One notices
the daily cycle induced

:::::
onto

::::
the

:
NO

:
,
:
NO2 ::::

and
:
O3 :::::::::::::::

concentrations
:
by the variation of the

photolysis coefficient k3on the , and concentrations, since they are directly related to the
value of that coefficient through Reactions (R3) and (R4). The wind speed and orientation
variations are responsible for the wave with a period of about one week. In real situations,
O3 and NO concentrations can drop close to zero at night (Finlayson-Pitts and Pitts Jr,
1986). In our simulation results, only NO reaches zero at night while O3 remains at high
levels. However, if the ROC emissions are sufficiently lowered or if the NOx emissions are
sufficiently increased, the opposite behaviour occurs.

This model,
::::::
even

::
if

:::
not

:::::::::
chaotic,

:
is highly nonlinear, exhibiting distinct chemical regimes.

This can be seen in Fig. 2 which represents ozone isopleths for different mean ROC and
NOx concentrations. This feature is typical of lower troposphere ozone chemistry and is
commonly known as an Empirical Kinetic Modeling Approach (EKMA) diagram (Dimitriades,
1977). Two different regimes are visible in this graph. The top part of the diagram, where
the isopleths are steep, corresponds to a ROC-limited regime. In this regime, a reduction in
the emissions of the ozone precursor NOx leads to an increase of the ozone concentrations
(as long as the regime does not change), while a diminution of ROC emissions reduces the
ozone concentrations significantly. This is due to the fact that in that ROC-poor regime, RP
concentrations are low and NO reacts preferentially with O3. On the contrary, the bottom
part of the diagram, where the isopleths are flat, corresponds to a NOx-limited regime. In
this regime, a reduction in the emissions of the ozone precursor NOx leads to a strong
decrease in the ozone concentrations, whereas the ROC emissions have little to no impact
on the ozone concentrations. Since the black circle corresponds to our reference case, it is
located in the ROC-limited regime.

In the NOx-limited regime, the low levels of NO concentrations reduce the amplitude
of the daily cycle of the ozone. Hence, the resulting concentrations rather correspond to
a background ozone simulation, with very low concentrations of NOx and little daily vari-
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ability of ozone. Because GRS is meant to be used with concentrations typical of urban
areas, we chose to remain in a ROC-limited regime even though a global simulation should
be NOx-limited. Nevertheless, several free runs and data assimilation experiments have
been performed as well in a NOx-limited regime and lead to one noteworthy result: ROC
concentration estimations are worse than in our reference case, unlike NO2. This makes
sense because the NO2 concentrations mainly control the model and an error on the ROC
concentrations has less impact on other species in this context.

To emphasise the impact of the transport of the chemical species by the wind in the
model, an experiment was performed, where the domain was split into a continental zone
and an oceanic zone. In this experiment, we set the ROC and NOx emissions on the con-
tinent to Ei > 0 for i in [1,20] and on the ocean to Ei = 0 for i in [21,40]. The results of
this experiment, displayed in Fig. 3, show that puffs of ozone and its precursors can cross
the ocean, similarly to what is witnessed over the Pacific (Lin et al., 2012) and the Atlantic
(Guerova et al., 2006). Moreover, ozone concentrations are higher above the ocean in the
absence of NO emissions. Note also that the tracer plumes move eastward (increasing in-
dices) which is consistent with a positive group velocity for the L95 model, while the peaks
and lows of the L95 field move westward according to the L95 negative phase velocity
(Lorenz and Emanuel, 1998).

So far, the wind kinetics (amplitude and variability) has been determined by the original
L95 model characteristics. In the reference experiment, the waves of the wind extend over
several days. The concentrations are driven by this wind kinetics but vary within those waves
according to the photochemical daily cycles. However, other types of behaviour are possible
with L95-GRS by choosing differently the time scale of the L95 model. If time within the L95
model is rescaled by α and the wind variables are rescaled by β,

dxm
dt

= α

[
β(xm+1−xm−2)xm−1−xm +

F

β

]
, (15)

it is possible to reduce the period of the wind wave and to match that of the chemical
daily cycles. This way, the species concentrations are significantly modulated by the wind
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variations. In terms of spatial scale, this would correspond to regional modelling rather
than continental to global modelling of the species fields. Figure 4 illustrates this time scale
change with α = 20 and β = 1. The winds fluctuate at a higher rate than the concentrations,
quite differently from the reference configuration of Fig. 1. Adjusting β, it is also possible
to rescale the amplitude of the winds in the L95 equations to match a more regional/lower
troposphere transport behaviour with weaker mean wind magnitude.

:::::
Note

::::
that

:::
α,

::
β
::::
are

:::::
only

:::::::::
rescaling

::::::::::::
parameters

:::::
that

:::
do

:::
not

:::::::::::::::
fundamentally

:::::::
impact

::::
the

:::::::
nature

:::
of

:::
the

:::::::
model

::::::::::
dynamics

:::
in

::::::::
contrast

:::
to,

:::::
e.g.,

:
Carrassi et al. (2008)

:
.

3 Numerical experiments with the L95-T model

In this section, we experiment on the use of data assimilation techniques for forecasting
and reanalysis with the tracer model (L95-T) beyond the preliminary results of Bocquet and
Sakov (2013). The aim is to demonstrate the advantages brought by this model to study
certain data assimilation strategies. Several of the results and interpretations in this section
will also apply to data assimilation systems operating with the L95-GRS model.

3.1 Definition of online and offline data assimilation systems

A typical offline model is a chemical transport model (CTM) where the meteorological fields
have been generated externally and are given as an input to the model. These fields usu-
ally stem from operational meteorological prediction centres or from any independently run
meteorological model. On the other hand, online models consistently process meteorology,
chemistry, and transport of species all together, but at a higher numerical cost. The choice
of an offline or online approach is a crucial issue as far as modelling is concerned (Zhang
et al., 2012). It is even more so when data assimilation techniques are applied to offline or
online models because of the fluxes of information between the two subsystems: chemistry
and transport on the one hand and meteorology on the other hand (Milewski and Bourqui,
2011; Bocquet et al., 2015a).
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The L95-T model stands as a well-suited simple tool to experiment on this issue. In the
following, we apply the

:::::::::::
quasi-static

:
IEnKS to L95-T using either an offline or an online

approach. A distinction is made between:

– The full online data assimilation system for the L95-T model. Even though the L95
subsystem of the model does not depend on the tracer subsystem, it should be kept
in mind that information propagates both ways with state-of-the-art

::
in

::::::::::
advanced

:
data

assimilation methods
:
,
:::
as

:::::
long

:::
as

::::
the

:::::
error

::::::::::::
covariance

:::::::::
matrices

::::
are

::::::::
defined

:::::
over

:::::
both

::::::::::::
subsystems.

– The offline data assimilation system for the L95-T model. The L95 subsystem is run
separately. The IEnKS is applied to L95 with a DAW length Lw (in units of ∆t). The
IEnKS is applied separately to the tracer subsystem (transport, deposition and emis-
sion) with a DAW length Lc (in units of ∆t). For advection, the winds are provided by
the analyzes

:::::::::
analyses

:
of the independent L95 data assimilation system. Therefore,

no feedback from the tracer subsystem to the L95 subsystem is to be expected. The
information gained from the observations flows one way. Moreover, for the tracer sub-
system, the uncertainty of the wind field constitutes a realistic and significant source
of model error. We believe that this is an elegant way to create consistent model error,
beyond stochastic noise or offset parameters.

We conduct synthetic data assimilation experiments, applying the IEnKS to the L95-T
model. A simulation of L95-T that represents the truth is generated, with E = 1, λ= 0.1.
Synthetic observations are generated from the truth every ∆t= 0.05. The system is fully
observed, on both wind and concentration variables. A

::
An

::::::::::
unbiased

:
Gaussian white noise

is used to perturb the observations. The
::
At

:::::
any

::::::::::::
observation

::::::
time,

::::
the

:
observation error

covariance matrix for the wind and the tracer is in both cases R = I the identity matrix. The
analysis, output of the data assimilation system, is compared to the truth using a root mean
square error (RMSE), for the meteorological subsystem as well as for the tracer subsystem.
Reliable statistics are computed over runs of 105×∆t with a burn-in period of 5×103×∆t.
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The ensemble size of the IEnKS has been chosen to be N = 20 in a dynamical regime
of L95-T where localisation is unnecessary. Yet, sampling errors due to the finite-size of the
ensemble would require the use of inflation of the errors. To avoid this issue, we use the
finite-size scheme of Bocquet (2011); Bocquet and Sakov (2012); Bocquet et al. (2015b)
where no inflation tuning is necessary. Practically, it means that whenever the IEnKS is
mentioned, the IEnKS-N has been used instead or, equivalently, that we enforced optimal
inflation meant to account for sampling errors. However, note that the finite-size approach
does not account for extrinsic model error

::::::
model

::::::
error

::::
but

:::::::::
sampling

:::::::
errors.

We consider several practical variants of the offline data assimilation system for the tracer
model. In the first offline system, called Offline 1a in the following, the mean analysis wind
is provided to the IEnKS of the tracer subsystem, both for the forecast step and the analysis
step of the IEnKS. In this baseline case, we choose Lw = Lc. In a first

::::::::
second variant, the

winds are obtained through an EnKF, i.e. Lw = 0 and Lc is varied (experiment Offline 1b).
In another

:
a
::::::

third variant, the winds are obtained from an IEnKS with a given Lw and an
EnKF is run for the tracer subsystem,

::::
i.e.

:
Lc = 0 (experiment Offline 1c).

Because the uncertain winds are a source of model error for the offline system, we
also implement a multiplicative inflation on top of the IEnKS-N. It is applied on the prior
by a rescaling of the anomalies. We shall choose the inflation that leads to the best RMSE.

In a last variant of the offline model, called Offline 2, the analysis mean wind is still
provided for the analysis step of the IEnKS applied on the tracer subsystem. Yet, the full
analysis wind ensemble, rather than the mean, is provided in the forecast step of the IEnKS
applied on the tracer subsystem. If the wind ensemble spread is representative of the wind
ensemble uncertainty, it is hoped that the uncertainty in the winds will be properly accounted
for. As in the Offline 1 experiments, a multiplicative inflation is also applied for any residual
model error.

The full online data assimilation system is also run for comparison (experiment Online),
without any

:::::::::::::
multiplicative

:
inflation.
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3.2 Comparison of online and offline data assimilation systems

The performance of these systems is reported in Fig. 5 as a function of the DAW length

::
is

:::::::::
reported

:::
in

::::
Fig.

::
5. The best estimate of the present time wind and concentration state

vectors are compared to the truth leading to the filtering RMSE, which is a good indication of
the forecasting quality in this context. Best estimates for the past state vectors (reanalysis)
are also compared to the truth, leading to the smoothing RMSE.

:::
For

::
a
::::::
DAW

:::
of

:::::::
length

:::
L,

:
a
::::
run

:::
of

:::::::
length

:::
Nt::::::

(both
:::
in

:::::
units

:::
of

:::::
∆t),

:::::
and

::
a

:::::
state

:::::::
vector

:::
of

:::::
size

::::
M ,

::::
the

:::::::::
formulas

:::
of

::::
the

::::::::
RMSEs

::::
are

RMSEfiltering =
1

Nt

Nt∑
i=1

√
1

M
||ML←0(xi

a)−xi+L
t ||2

:::::::::::::::::::::::::::::::::::::::::::::::::::

::::
and

RMSEsmoothing =
1

Nt

Nt∑
i=1

√
1

M
||xi

a−xi
t||2

:::::::::::::::::::::::::::::::::::::::::

::::::
where

::::
xk

a ::
is

::::
the

:::::
state

:::::::::
analysis

:::
at

:::::
time

::
k,

::::
xk

t ::
is

::::
the

:::::
truth

:::
at

:::::
time

::
k

::::
and

::::
for

:
a
:::::::
vector

::
x
:::
of

:::::
size

:::
M ,

:::::::::::::::
||x||2 =

M∑
j=1

x2
j:

First of all, the online system has a very significant edge over the offline systems because
of the two-way information flows, both for the concentration variables and for the wind vari-
ables. This shows that concentration observations can significantly improve meteorological
forecasts, in agreement with the results of Semane et al. (2009) obtained when assimilating
real observations of lower stratospheric ozone. For all offline systems, the wind variables
cannot benefit from the assimilation of concentrations, but only from the L95 observations.
Therefore, from now on, we shall focus on the tracer subsystem.

The extrinsic model error due to the uncertain winds must be accounted for in the tracer
subsystems. Otherwise, the ensemble of the tracer subsystem collapses (the ensemble
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method diverges). In the absence of any correction for model error, we observed
::::::::
observe

that the estimation was
:
is
:
close to a free run, with an average filtering RMSE of about 0.65.

Yet, as expected, accounting for model error offers better performance. Let us first con-
sider cases 1a, 1b, and 1c that use the best estimate of the mean wind and apply multiplica-
tive inflation to account for model error. Configuration offline 1a, i.e. when Lc = Lw, offers
a baseline performance for the filtering and smoothing RMSEs, which improves as the joint
DAW length increases. It remains quite far from the performance of the online system since
multiplicative inflation cannot compete with a better wind estimate.

With configuration Offline 1b, where the mean wind estimate comes from an EnKF
(Lw = 0), the average filtering RMSE does not benefit from an extended DAW for the tracer,
while the smoothing RMSE only marginally benefits from short DAW (up to Lc = 2) be-
fore degrading. Hence a longer window for this CTM system is inefficient. We attribute this
important property to the stable and linear dynamics of transport.

With configuration Offline 1c, the tracer data assimilation system is based on an EnKF,
while the wind estimation gets better as Lw gets larger. Therefore, the improvement that is
observed for the filtering RMSE comes from reduced model errors. In this configuration, the
filtering and smoothing RMSEs coincide since the concentrations are merely estimated by
an EnKF (Lc = 0).

In the light of these results, we understand that the improvement that is observed in
configuration 1a comes from the reduced uncertainty in the wind fields in the first place.
Note that as Lc = Lw gets larger, the tracer analysis within the DAW of length Lc uses
wind fields with lower error thanks to smoothing. This explains why the improvement in the
RMSEs is more pronounced than in configuration 1b, which only benefits from the filtered
winds at present time.

With configuration Offline 2, model error is addressed by not only multiplicative inflation
but also the ensemble of winds in the forecast steps. Each wind member is ascribed to
a tracer member. This is similar to stochastic parametrisation where one changes the model
input parameters for each member of the CTM (Wu et al., 2008). This shows much better
performance. As far as filtering is concerned, the optimal inflation is an increasing function
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of Lc (with an inflation of 1.06 for anomalies at Lc = 25), whereas the absence of inflation
is optimal for smoothing.

One lesson is that a variational analysis over a long DAW is useless for the offline trans-
port subsystem, because of its linear dynamics; an IEnKS, or a 4D-Var analysis does not
better perform than an EnKF analysis in this context. This conclusion will not necessarily
hold with the L95-GRS model because of the nonlinear chemistry.

3.3 Emission/deposition regime

The scavenging ratio λ and the emission rate E control the tracer mass budget in the
domain. Their ratio can lead to different regimes of the physics of the model. It can impact
the performance of data assimilation. In the reference case (E = 1, λ= 0.1), parcels of
tracer travel over large distances before deposition. Hence, an observation of the tracer
concentration at a grid point gives information about the wind magnitude and direction at
other grid points several time steps in the past.

A synthetic experiment where the scavenging ratio λ is varied over several orders of mag-
nitude has been setup to highlight this point. The emission flux E is tuned in order to keep
the ratio E/λ constant. Thus, the order of magnitude of the concentrations is unchanged
so that the relative precision of the concentration observations remains the same with an
unchanged error covariance matrix. The setup of this experiment is the same as in the pre-
vious section, but only the online data assimilation system based on the L95-T model is
used.

The average filtering RMSE of the concentration variables and of the wind variables are
plotted in Fig. 6 as a function of the scavenging ratio. The RMSE remains rather constant
for both the concentrations and the winds for small scavenging ratios, with the same perfor-
mance as in the reference case (E = 1, λ= 0.1). However, as soon as λ > 1, the behaviour
changes. With such higher values of the scavenging ratio, the wind does not have sufficient
time to transport the tracer over significant distances. The information about the wind em-
bedded in the observations of the concentrations diminishes and the wind RMSE increases.
On the contrary, the absence of transport of the tracer by the wind reduces the detrimen-
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tal impact of diffusion making the concentrations easier to estimate (in the fully observed
configuration at least). Moreover, the benefit of using a larger DAW (L= 15 here) is greater
with lower scavenging ratios because the tracer is advected farther in space. Indeed, pieces
of information contained in concentration observations help estimate the wind back in time
before the tracer was advected by that wind. These results stress that variational schemes
implemented over large DAW have an advantage over the EnKF in that context.

3.4 Observation network

The performance of the EnKF and of the IEnKS is now studied with the L95-T model when
the observations of the tracer concentrations are sparser. The setup of this synthetic experi-
ment remains unchanged except for the density of the observations. The wind variables are
observed on all grid points while only some of the observations of the tracer concentrations
are assimilated. The observations of the concentrations are chosen to be evenly spread.
The number of observations is a divisor of 40 and belongs to {1,2,4,5,8,10,20,40}. The
performance of the IEnKS is studied for several DAW lengths L= 0,1,2,3,4,5,10,20. The
resulting average filtering RMSEs for the concentration variables and the wind variables are
shown in Fig. 7. In both cases, the gain derived from using a longer DAW is undeniable: the
gain in RMSE is greater for large L than for small L, but the marginal gain decreases with
L.

4 Applying the IEnKS to the L95-GRS model

The IEnKS is now applied to the L95-GRS model introduced in Sect. 2. We showed that the
model could reproduce the main physical and chemical processes of interest. The aim in
this section is to show that it offers a rich playground for testing data assimilation methods.
The approach is similar to the one applied in Sect. 3. Apart from an overall performance
test, we will focus on specific aspects not addressed in Sect. 3 of relevance for this type of
model.

21



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Twin experiments are conducted where each chemical species is observed. The observa-
tions are drawn from the truth every ∆t= 6h and perturbed using a Gaussian white noise.
The standard deviations of the error for the concentrations have been chosen to corre-
spond to about 10 % of the average value of the concentration over the domain. Specifically,
the observation error covariance matrix of each species is of the form Rd = σ2Id::::::::

R = σ2I,
where σ2 = 1 for the wind in Lorenz units, σ2 = 0.01ppb C2 for ROC, σ2 = 0.16ppb2 for NO,
σ2 = 1ppb2 for NO2, σ2 = 4ppb2 for O3, σ2 = 0.01ppb2 for S(N)GN. All the RMSEs shown
in this section are normalised by the corresponding standard deviation values

::::::::::::::
observational

:::::
error

:::::::::
standard

::::::::::
deviation

:::
of

::::
the

:::::::::::::::
corresponding

:::::::::
species. All the data assimilation runs use

the same setup as used with the L95-T model. The size of the ensemble is set again to
N = 20, except when localisation will be

::
is tested.

4.1 Performance

At first, the number
:::
and

::::::::::::
distribution of observations of the concentration variables has been

varied
:::::
have

:::::
been

:::::::
varied

::::::::::
following

:::
the

:::::::
same

::::::
setup

:
as in Sect. 3.4. All the chemical species

are observed but only at selected grid points. The resulting average filtering RMSEs for the
concentration variables and the wind variables are shown in Fig. 8. We found that with poor
observability of the concentrations, the system’s state estimate can be imprecise. When the
concentrations are only observed at one point, the EnKF diverges from the truth. The IEnKS
with L= 1 also fails to estimate the S(N)GN better on average over the whole domain than
the standard deviation of the single observation.

To be more realistic, further experiments will assimilate sparse concentration observa-
tions. We choose to keep 8 observations in the domain per species, that is to say at 1
every 5 grid points. In this context, the DAW length has been varied over a wider range of
values. The time averaged analysis filtering and smoothing RMSEs for the wind and the
concentrations are shown in Fig. 9. Even though the model is strongly nonlinear, the IEnKS
method can account for these nonlinearities and, therefore, it performs well and improves
with L for both the filtering and smoothing RMSEs. The S(N)GN species is still the one with
the worst results, probably because it is little correlated with the other species except for
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ROC. A misevaluation
::::::::::::::
misestimation

:
of its concentration has no consequences on the other

species.

4.2 Parameter estimation

In atmospheric chemistry, there is a strong dependency of the model on the values of the
various forcings, such as the boundary conditions (Roustan et al., 2010), the meteorological
fields (Dawson et al., 2007) or the emission rates of the pollutants and their precursors
(Cohan et al., 2005). It is therefore important to estimate these inputs and data assimilation
can be a powerful tool in this context. Here, we show how the L95-GRS model allows us to
test parameter estimation strategies, which is illustrated using the IEnKS.

To estimate a set of model parameters θ ∈ RP along with the state variables, the state
vector is augmented from x ∈ RM to a vector

z =

(
x
θ

)
∈ RM+P , (16)

in the joint state and parameter space. It is also necessary to define a forward model for the
parameters. The persistence model is chosenhere: ,

::::
i.e.

:
θk+1 = θk.

The estimation of the main parameters of the L95-T model (forcing of the L95 and emis-
sion rate of the tracer) with various data assimilation methods, including the IEnKS, has
been experimented upon by Bocquet and Sakov (2013). Similarly, we conduct a twin ex-
periment with the L95-GRS model where, in addition to the state variables, the F forcing of
the L95 model and the emission rates of ROC and NOx are estimated simultaneously. The
state space is, therefore, augmented from a 240- to a 240 + 3-vector of the joint state and
parameter space. The parameter variables in the ensemble are set as follows: .

:

– For the emission rates: the ensemble is initialised around the truth by adding a
::
an

:::::::::
unbiased

:
Gaussian noise of standard deviation 10% of the true value.

– For F : the ensemble is initialised around the value F = 7 by adding a
::
an

::::::::::
unbiased

Gaussian noise of standard deviation 10% of the true value.
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Rather than the Single Data Assimilation (SDA) version of the IEnKS presented in Appendix
A, we use the Multiple Data Assimilation (MDA) one, which is very similar, less precise

:::::::::
accurate for small L but more stable for large L. The MDA IEnKS algorithm is described in
detail by

::
in Bocquet and Sakov (2014).

Let us first mention that the RMSEs of the state variables are barely changed by the joint
state and parameter estimation, as well as by the use of a different variant of the IEnKS
in this experiment. Hence, the results in Fig. 9 for state variables still hold. The parameter
values are plotted in Fig. 10, over time intervals of different lengths. We observe that only
a few days are required to converge to the right value for the forcing parameter of the
meteorology F while a few dozens of days are necessary for the emission rates to stabilise.
This is due to the high sensitivity of both wind and concentration variables to the forcing F
of the wind model which controls its chaotic behaviour.

This is due ,
::::
as

::::
well

::::
as to the fact that there is a bias on the initial value of F . At the

end of a long data assimilation run, the algorithm has converged to the right values with
a precision of less than a percent. The use of a long DAW improves the estimation of the
parameters and the smoothness of the results. The case L= 1 shows that the method can
sometimes converge to a biased value for a long period of time.

It could be possible to estimate chemical reaction rates, for instance, the ROC photolysis
rate. However, our experiments have shown that the filter diverges. It probably happens
because this rate is equal to 0 at night. Hence, it is imperative to set a prior distribution
on this type of parameters to avoid divergence when the model becomes insensitive to the
parameter, which

:
.
::::
But,

::::
this

:
is out of the scope of this work.

4.3 Localisation

Estimating covariances from a limited size ensemble of state vectors produces spurious
long distance correlations between variables. This degrades the estimation of the error
statistics and can lead to divergence in ensemble data assimilation methods. To address
this issue, localisation is used in high-dimensional systems implementing ensemble meth-
ods. There are two main localisation methods known as covariance localisation and lo-
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cal/domain analysis (Sakov and Bertino, 2011, and references therein). The first method
consists in tapering the empirical covariance matrix using a Schur product with short-
range correlation function. The second method performs the analysis in a local domain
around each grid point, using only nearby observations. Both localisation methods have
been tested with success with EnKF techniques applied to the L95-GRS model. Here, we
provide an illustration of such experiments.

We tested covariance localisation on the L95-GRS model using the DEnKF data assim-
ilation method from Sakov and Oke (2008). This method has the advantage of being com-
putationally efficient while allowing a straightforward use of Schur localisation. The RMSEs
are shown in Fig. 11, as a function of the ensemble size, with optimally tuned inflation and
localisation radius. For comparison, the results without localisation are shown as well. We
see how localisation allows us to reduce the size of the ensemble below 18 without di-
verging, even though it leads to a degradation of the scores for very small ensemble sizes
(N < 10).

5 Conclusions

The aim of this article was to introduce low-order models on which to test advanced data
assimilation methods so as to get insights on some of the many difficulties encountered in
data assimilation applied to meteorology and atmospheric chemistry. Amongst them, the
questions of inflation, localisation for ensemble methods, model error, online and offline
modelling or nonlinearities have been addressed.

Building on the L95-T model, where the transport of a tracer is coupled to the L95 model,
we introduced a new model, L95-GRS, where the tracer part is replaced with a simplified
ozone chemistry. The L95-GRS model shows important peculiarities typical of tropospheric
ozone chemistry. It has been adjusted to simulate pollutant concentrations of realistic mag-
nitude. Ozone precursors can experience long-range transport by the meteorology and lead
to ozone episodes far from the pollutant sources. It is possible to tune the wind magnitude
in order to modify the space and time scale of the model. Moreover, it has stiff equations
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which require the use of the same numerical tools as high-dimensional CTMs. Last but not
least, it shows a nonlinear response to the emission rates of the ozone precursors. It thus
includes several of the hardships of high-dimensional chemistry models without the high
numerical cost. As such, it can be used to experiment upon and validate new data assim-
ilation methods in the context of atmospheric chemistry modelling and coupled chemistry
meteorology modelling.

To illustrate the use of advanced data assimilation methods on these models, and specif-
ically ensemble variational methods, we first performed new experiments on the L95-T with
the iterative ensemble Kalman smoother (including the ensemble Kalman filter). We showed
that this model is suitable to test online and offline strategies for data assimilation, as well
as to emulate model error stemming from a meteorological field, or an ensemble forecast
of meteorological fields.

More specifically, we experimented on the offline version of the L95-T model, where the
meteorology and the tracer subsystems are integrated and assimilated separately. This
decoupling introduces model error on

::::
into

:
the tracer subsystem. In this context, having an

ensemble of analyses from a data assimilation on the meteorology as an input to the tracer
subsystem gives us a representative sample of this model error. By doing so, we have
avoided the use of inflation and obtained optimal performance. We noticed as well that,
for data assimilation purposes, the coupling of the two subsystems is only relevant when
they have similar evolution timescales. In the case where the tracer subsystem evolves too
quickly or too slowly compared to the meteorology, the coupling of these two parts fails to
improve the results of the data assimilation compared to an offline case.

The use of data assimilation methods was also illustrated on
::::
with

:
the L95-GRS model.

The iterative ensemble Kalman smoother performs well despite the nonlinearities of the
model and even if the observation network is sparse. In particular, the model can help
testing parameter estimation techniques with multiple parameters usually met in CCMMs
and CTMs. The use of localisation was also successfully tested with L95-GRS. By making
this wide range of experiments, we concluded that the L95-GRS model is suitable to test
advanced data assimilation schemes.
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If need be, a hierarchy
:
A
:::::::
broad

:::::
class

:
of models could be developed , by exchanging the

L95 meteorological part with another low-order model. For instance,
::::
The L95

::::::
model

:::::
has

::::::::::::::::
anti-correlations

:::
in

::::::
space

:::::
and

:::::
time

::::
that

::::
are

::::
not

::::::::::
observed

:::
in

::::::
more

::::::::
realistic

:::::::::
models.

::
It could

be replaced with
:::
by

:::
its

::::::::::::
continuous

:::::::::::
extension,

:
the Lorenz 2005-II model (Lorenz, 2005)

which could offer a more complex setup for testing localisation,
::::
but

::::
still

:::::::
suffers

:::::
from

::::::::
similar

:::::::::::
correlation

::::::::
patterns. Alternatively, the L95 meteorological part could be exchanged with the

multiscale Lorenz 2005-III model to explore the impact of subgrid-scale model error.
:::
To

:::::
study

::::::::::::
space-time

::::::::::::
intermittent

:::::::::::::
behaviours,

::::
the

:::::::
model

::
of

::::::::::::::::::::::::
Kuramoto-Sivashinsky (Vannitsem

and Nicolis, 1994, and references within)
:::::
could

:::
be

:::::::::::::::
implemented.

:::::::::::::
Alternatively,

::::
the

:::::::::
Burgers

:::::::::
equation

::::::
could

::::
be

:::::
used

:::
to

:::::::
study

::::
the

:::::::
impact

:::
of

::
a
::::::

front
:::::::::::::::::::::::::::
(concentration/rarefaction)

::::
on

::::
the

::::::::::
chemistry.

::
If
::::::
such

:::::::::::
continuous

::::::::::::::::
meteorological

::::::::
models

::::
are

::::::
used,

::::
the

:::::::
choice

:::
of

:::
the

:::::::::::
advection

::::::::
scheme

::::::
could

:::
be

::::::::
revised

::::
as

:::::
well,

::::
and

::
a
::::::
more

::::::::::
accurate

:::::::::::::
higher-order

::::
one

:::::::::::
compared

:::
to

::::
the

:::::::
upwind

:::::::::
scheme

::::::
could

:::
be

::::::
used,

:::::::::::
alongside

::::
with

::
a
::::
flux

:::::::
limiter.

:

::::
The

::::::::::
L95-GRS

:::::::
model

::::::::::
depends

:::
on

::::::::
several

::::
key

::::::::::::::::::::
species-dependent

:::::::::
chemical

:::::
and

:::::::::
physical

:::::::::::
parameters

:::::
that

:::::::::::
introduce

::::::
many

:::::::
space

:::::
and

:::::
time

:::::::
scales

:::
in

::::
the

::::::
data

:::::::::::::
assimilation

::::::::
system

::::
and

:::::
that

::::::::
impact

:::
its

::::::::::::::
observability

:::::
and

::::::::::::::
controllability.

::::::::
These

::::::::::::
parameters

:::::
are

::::::
likely

:::
to

::::
be

::::::::::::::
representative

:::
of

:::::::
those

:::
of

:::::::::
realistic

:::::::::
CCMMs

:::::
and

::::::::
CTMs.

::::
We

::::::
have

:::::
only

:::::::::::::
investigated

:::::
the

:::::::
impact

::
of

::
a
::::
few

:::
of

::::::
those

:::::::::::::
parameters,

::::::
fixing

::::
the

:::::::
others.

::::
But

::
a
::::::
more

::::::::
general

:::::::::::::::::
parameter-wise

:::::::::::
exploration

:::
of

:::::
data

::::::::::::
assimilation

:::::::::
systems

:::::
built

:::
on

::::::::::
L95-GRS

::
is
:::::::::::
desirable.

Finally, following this study, we are planning to test the IEnKS on the Polair3D CTM of
the research and operational Polyphemus modelling platform (Mallet et al., 2007; Sartelet
et al., 2012) building on the experience acquired with the L95-T and L95-GRS low-order
models.

Appendix A: Algorithm of the IEnKS

A cycle of the lag-L / shift-S / SDA / bundle / Gauss-Newton IEnKS. j = 0, w = 0

x
(0)
0 = E01/N A0 = E0−x(0)

0 1T x0 = x
(0)
0 +A0w E0 = x01T + εA0 Ek =Mk←k−1(Ek−1)

yk =Hk(Ek)1/N Yk = (Hk(Ek)−yk)/ε yL =HL(EL)1/N YL = (HL(EL)−yL)/ε
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∇J̃ = (N − 1)w−∑L
k=L−S+1Y

T
kR
−1
k (yk−yk) H̃= (N − 1)IN +

∑L
k=L−S+1Y

T
kR
−1
k Yk

Solve H̃∆w =∇J̃ w :=w−∆w j := j + 1 E0 = x01T +
√
N − 1A0H̃−

1
2U

ES =MS←0(E0) xs = ES1/N ES := xS1
T +λ

(
ES −xS1

T
)

The following algorithm
::::
The

::::::::::
following

::::::::::::::::::
pseudo-algorithm

:
specifies a variant of the IEnKS,

called the single data assimilation (SDA) IEnKS (Bocquet and Sakov, 2014). The minimi-
sation of the nonlinear cost function is based on a Gauss-Newton scheme (other schemes
such as BFGS or Levenberg–Marquardt are possible). The sensitivities are computed by
a finite-difference

:::::
finite

::::::::::
difference

:
scheme (bundle variant, as in Bocquet and Sakov, 2012).

They could also be computed using the propagation of the ensemble (ensemble trans-
form variant, as in Sakov et al., 2012) as well. The data assimilation window is of length
L∆t. In the algorithm, tL is present time. The forward model

:::::::::
resolvent

:
from tk to tk+1 is

Mk+1←k; the observation operator at tk is Hk. ε, e, jmax are algorithmic parameters with
values taken to be 10−4,10−3 and 20 respectively. The outcome is largely independent of
these parameters. E0 is the ensemble matrix at t0, whose columns are the ensemble vec-
tors: x0

1,x
0
2, . . . ,x

0
N . yk is the observation vector at tk. λ is the inflation factor. U is an

orthogonal matrix in RN×N satisfying U1 = 1, where 1 = (1,1, . . . ,1)T. In between two up-
dates, the ensemble is forecast over S∆t. The configuration L= 0,S = 1 corresponds to
the ensemble transform Kalman filter,

:
;
:
L= 1,S = 1 corresponds to the iterative ensemble

Kalman filter,
:
; and for any L, S = 1 corresponds to the generic quasi-static IEnKS.

Appendix B: Full equations and parameters of L95-GRS

Equations for the Lorenz variables xm, m ∈ [1,M ]:

dxm
dt

= (xm+1−xm−2)xm−1−xm +F

Equations of the chemical species concentrations:

d[ROC]m+ 1
2

dt
= ψROC

m −ψROC
m+1−λ[ROC]m+ 1

2
+EROC

m+ 1
2

(B1)
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Algorithm 1
:
A
::::::
cycle

:::
of

::::
the

:::::
lag-L

:
/
::::::::
shift-S

:
/
:::::
SDA

:
/
::::::::
bundle

:
/
::::::::::::::::
Gauss-Newton

:::::::
IEnKS.

1:
::::::
j = 0,

:::::::
w = 0

2:
::::::::::::::
x

(0)
0 = E01/N:

3:
::::::::::::::::::
A0 = E0−x(0)

0 1T

4: repeat
5:

:::::::::::::::::
x0 = x

(0)
0 +A0w:

6:
:::::::::::::::::
E0 = x01T + εA0:

7: for k = 1, . . . ,L do
8:

::::::::::::::::::::::
Ek =Mk←k−1(Ek−1)

9: if k ∈ [L−S + 1,L− 1] then
10:

::::::::::::::::::
yk =Hk(Ek)1/N

:

11:
::::::::::::::::::::::::::
Yk = (Hk(Ek)−yk1T)/ε

12: end if
13: end for
14:

:::::::::::::::::::
yL =HL(EL)1/N

15:
:::::::::::::::::::::::::::
YL = (HL(EL)−yL1T)/ε

16:
:::::::::::::::::::::::::::::::::::::::::::::::::
∇J̃ = (N − 1)w−∑L

k=L−S+1Y
T
kR
−1
k (yk−yk)

17:
::::::::::::::::::::::::::::::::::::::::
H̃= (N − 1)IN +

∑L
k=L−S+1Y

T
kR
−1
k Yk:

18:
::::::
Solve

:::::::::::::
H̃∆w =∇J̃

:

19:
:::::::::::::::
w :=w−∆w

20:
::::::::::
j := j + 1

21: until ||∆w|| ≤ e or j ≥ jmax

22:
:::::::::::::::::::::::::::::::
E0 = x01T +

√
N − 1A0H̃−

1
2U

:

23:
:::::::::::::::::
ES =MS←0(E0)

:

24:
:::::::::::::
xs = ES1/N:

25:
::::::::::::::::::::::::::::::
ES := xS1

T +λ
(
ES −xS1

T
)
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d[RP]m+ 1
2

dt
= ψRP

m −ψRP
m+1−λ[RP]m+ 1

2
+ k1[ROC]m+ 1

2
[RP]m+ 1

2

− [RP]m+ 1
2

(
k2[NO]m+ 1

2
+ 2k6[NO2]m+ 1

2
+ k5[RP]m+ 1

2

)
(B2)

d[NO]m+ 1
2

dt
= ψNO

m −ψNO
m+1−λ[NO]m+ 1

2
+ENO

m+ 1
2

+ k3[NO2]m+ 1
2
− [NO]m+ 1

2

(
k2[RP]m+ 1

2
+ k4[O3]m+ 1

2

)
(B3)

d[NO2]m+ 1
2

dt
= ψNO2

m −ψNO2
m+1−λ[NO2]m+ 1

2
+ENO2

m+ 1
2

+ k4[NO]m+ 1
2
[O3]m+ 1

2

+ k2[NO]m+ 1
2
[RP]m+ 1

2
− [NO2]m+ 1

2

(
k3 + 2k6[RP]m+ 1

2

)
(B4)

d[O3]m+ 1
2

dt
= ψO3

m −ψO3
m+1−λ[O3]m+ 1

2
+ k3[NO2]m+ 1

2
− k4[NO]m+ 1

2
[O3]m+ 1

2
(B5)

d[S(N)GN]m+ 1
2

dt
= ψS(N)GN

m −ψS(N)GN
m+1 −λ[S(N)GN]m+ 1

2
+ 2k6[NO2]m+ 1

2
[RP]m+ 1

2
(B6)

with the following definitions of the fluxes :

ψC
m = xm[C]m− 1

2
if xm ≥ 0 ψC

m = xm[C]m+ 1
2

if xm < 0 ,; (B7)

the constants :

M = 40 , F = 8 , λ= 0.02day−1 ,; (B8)

the emissions
::::::::
emission

:
rates (in ppb C day−1 for ROC or ppb day−1 for NOx) :

EROC
m+ 1

2
= 0.0235 , ENO

m+ 1
2

= 0.27× 0.9 = 0.243 , ENO2

m+ 1
2

= 0.27× 0.1 = 0.027 ,; (B9)
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and the kinetic rates computed at T = 300K (all in ppb−1 min−1, except for k1 in min−1) :

k1 = 0.00152× k3 , k2 = 12.3 , k4 = 0.275 , k5 = 10.2 , k6 = 0.12 . (B10)

k3 is the photolysis rate of NO2 in min−1, which is a function of solar radiation. It was
computed using FastJ-X (Voulgarakis et al., 2009). We then took the value on 21 March at
the equator and used it repeatedly without attenuation. If k3 is required between two hours,
a linear interpolation is performed. Specifically, hourly values of k3 used are reported in
Table 1.

The quasi-steady-state approximation (QSSA) consists in replacing Eq. (B2) by diagnos-
ing the concentration of RP at each grid point assuming steady-state for a given time step:

:
.
:::::
This

:::::::
means

:::::
that

::::::
there

::
is
:::

a
:::::::::::
dynamical

:::::::::::
equilibrium

::::::::::
between

::::
the

::::::::::
chemical

:::::::::::
production

:::::
and

::::::
decay

:::
of

:::
the

:::::
RP,

::::::
which

::::::::
implies

0 =
d[RP]

dt
= k1[ROC]− [RP](k2[NO] + 2k6[NO2] + k5[RP])

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

⇔ [RP] =
k2[NO] + 2k6[NO2]

2k5

(√
1 +

4k1k5[ROC]

(k2[NO] + 2k6[NO2])2 − 1

)
.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(B11)

[RP]m+ 1
2

=
k2[NO]m+ 1

2
+ 2k6[NO2]m+ 1

2

2k5


√√√√√1 +

4k1k5[ROC]m+ 1
2(

k2[NO]m+ 1
2

+ 2k6[NO2]m+ 1
2

)2 − 1

 . (B12)

The model is integrated with an autonomous second-order Rosenbrock method with a time
step of δt= 1h. With this time step, an adaptive time step is unnecessary with the QSSA
version of the model but is required in the non-QSSA case.
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Code availability

The code for the models L95-T and L95-GRS can be downloaded from the following web-
site: http://cerea.enpc.fr/l95-grs/
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Table 1. Hourly values of k3 in min−1.

t k3 t k3 t k3 t k3

00 h 0 06 h 0.1972314 12 h 0.622824 18 h 0.00675528
01 h 0 07 h 0.3910734 13 h 0.611526 19 h 0
02 h 0 08 h 0.5074326 14 h 0.5755002 20 h 0
03 h 0 09 h 0.5755002 15 h 0.5074326 21 h 0
04 h 0 10 h 0.611526 16 h 0.3910734 22 h 0
05 h 0.00675528 11 h 0.622824 17 h 0.1972314 23 h 0
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Figure 1. Time evolution of the L95-GRS variables at one grid point. The L95 variables, flagged
“Wind”, are shown with the original Lorenz unit, while the concentration unit is ppb (ppb C for ROC).
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Figure 2. Maximal ozone concentration (in ppb) averaged over the domain depending on maximal
averaged ROC (in ppb C) and NOx concentrations (in ppb). Each dot corresponds to a run with
a different emission rate for ROC and NOx leading to different maximal averaged concentrations.
The reference run is circled in black.
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Figure 3. Time evolution of the L95-GRS variables over the whole domain in the case of a con-
tinent/ocean division. The L95 variables, flagged “Wind”, are shown with the original Lorenz unit,
while the concentration unit is ppb (ppb C for ROC).
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Figure 4. Time evolution of the L95-GRS variables at one grid point with a time rescaling of α = 20
applied to the L95 model. The L95 variables, flagged “Wind”, are shown with the original Lorenz unit,
while the concentration unit is ppb (ppb C for ROC).
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Figure 5. Average RMSEs of the L95-T data assimilation system using the IEnKS, as a function of
the DAW length (in units of ∆t= 0.05 of the L95 model). The two top panels show the filtering RM-
SEs, while the two bottom panels show the smoothing RMSEs. The scores of the wind variables are
on the left, while scores of the concentration variables are on the right. The case L= 0 corresponds
to the ensemble transform EnKF.
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Figure 6. Average filtering analysis RMSEs of the wind variables (left) and concentration variables
(right) of the L95-T, as a function of the scavenging ratio for the ensemble transform EnKF (IEnKS
with L= 0) and the IEnKS with L= 15.
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Figure 7. Average filtering analysis RMSEs of the wind variables (left) and concentration variables
(right) of the L95-T, as a function of the number of concentration observations for the IEnKS with
several DAW lengths. The case L= 0 corresponds to the ensemble transform EnKF.
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Figure 8. Average filtering analysis RMSEs of the L95-GRS variables, as a function of the number
of concentration observations for the IEnKS with several

:::::
three DAW lengths. The case L= 0 corre-

sponds to the ensemble transform EnKF. The RMSEs are normalised by the standard deviations of
the observations
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error.
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Figure 9. Average filtering and smoothing analysis RMSEs of the L95-GRS variables, as a function
of the DAW length (in units of ∆t= 6h). The case L= 0 corresponds to the ensemble transform
EnKF. The RMSEs are normalised by the standard deviations of the observations
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Figure 10. Time evolution (daysdays) of the parameter variables for several DAW lengths without
spin up (main) or after a long time (inset). The case L= 0 corresponds to the ensemble trans-
form EnKF. F is shown with the original Lorenz unit, while the emission rate unit is ppb C day−1 or
ppb day−1.
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Figure 11. Average filtering analysis RMSEs of the L95-GRS variables, as a function of the en-
semble size for the DEnKF without localisation or with optimally tuned localisation radius. The L95
variables, flagged “Wind”, are shown with the original Lorenz unit, while the concentration unit is ppb
(ppb C for ROC).
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