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Abstract

The Model for Prediction Across Scales (MPAS) is a novel set of earth-system simula-
tion components and consists of an atmospheric model, an ocean model and a land-ice
model. Its distinct features are the use of unstructured Voronoi meshes and C-grid dis-
cretisation to address shortcomings of global models on regular grids and of limited5

area models nested in a forcing data set, with respect to parallel scalability, numerical
accuracy and physical consistency. This makes MPAS a promising tool for conduct-
ing climate-related impact studies of, for example, land use changes in a consistent
approach.

Here, we present an in-depth evaluation of MPAS with regards to technical aspects10

of performing model runs and scalability for three medium-size meshes on four differ-
ent High Performance Computing sites with different architectures and compilers. We
uncover model limitations and identify new aspects for the model optimisation that are
introduced by the use of unstructured Voronoi meshes. We further demonstrate the
model performance of MPAS in terms of its capability to reproduce the dynamics of the15

West African Monsoon and its associated precipitation. Comparing 11 month runs for
two meshes with observations and a Weather Research & Forecasting tool (WRF) ref-
erence model, we show that MPAS can reproduce the atmospheric dynamics on global
and local scales, but that further optimisation is required to address a precipitation
excess for this region.20

Finally, we conduct extreme scaling tests on a global 3 km mesh with more than
65 million horizontal grid cells on up to half a million cores. We discuss necessary
modifications of the model code to improve its parallel performance in general and
specific to the HPC environment. We confirm good scaling (70 % parallel efficiency or
better) of the MPAS model and provide numbers on the computational requirements for25

experiments with the 3 km mesh. In doing so, we show that global, convection-resolving
atmospheric simulations with MPAS are within reach of current and next generations
of high-end computing facilities.
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1 Introduction

The weather- and climate-modelling community is currently seeing a shift in paradigm
from limited area models towards novel approaches involving global, complex and ir-
regular meshes. Yet, regional models are commonly used in numerical weather pre-
diction and to study past, current and future climate at high spatial and temporal reso-5

lution over areas of specific interest. A wealth of such models exists nowadays, which
differ in their discretisation of the computational grid, their implementation of the nu-
merical solvers, their parameterisation of physical processes, and most notably in their
simulation results (e.g., Smiatek et al., 2009; Nikulin et al., 2012). Despite these differ-
ences, they share the common principle of nested modelling: Regional climate informa-10

tion is generated by supplying a set of initial conditions as well as time-varying lateral
boundary conditions (LBCs; large-scale atmospheric fields such as wind, temperature,
geopotential height and hydrometeors) and lower boundary conditions (sea-surface
temperature, sea ice) to the regional model. The idea behind this approach is that the
LBCs keep the regional climate model (RCM) solution consistent with the forcing atmo-15

spheric circulation, while small-scale patterns are generated with higher accuracy due
to the increase in temporal and spatial resolution. Sub-grid scale processes in the RCM
are included through parameterisations, which can be entirely different from those of
the forcing global circulation model (GCM).

Supplying lateral boundary conditions to nested models can cause severe problems,20

up to the point where the RCM solution becomes inconsistent with the forcing data
(Davies, 1983; Warner et al., 1997; Harris and Durran, 2010; Park et al., 2014). Starting
off as an initial-value problem, the RCM solution gradually becomes a boundary value
problem, which from a mathematical point of view represents a fundamentally ill-posed
boundary value problem (Staniforth, 1997; Laprise, 2003). This is less of an issue in25

the context of numerical weather prediction (NWP), where typical model runtimes are
3 to 15 days, than in seasonal forecasting (weeks to months) and in regional climate
modelling (years to centuries).
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A common problem for both short- and long-term forecasting is that the solution of
the RCM seems to vary with the size of the computational domain, as well as location
and season (Caya and Biner, 2004; Leduc and Laprise, 2008; Caron, 2013). Several
authors have shown that nudging techniques (grid or spectral nudging) towards the
large-scale features of the forcing model can reduce these adverse effects, but that5

they can also hide model biases (von Storch et al., 2000; Miguez-Macho et al., 2004).
Further, the technique of grid nesting introduces discontinuities in spatial resolution

between the regional model and the coarser-grid driving model, as well as between the
nests within the regional model itself. For a typical refinement ratio of 3, two-thirds of the
spatial wave-number spectrum present in the fine mesh are absent in the coarse mesh10

(Park et al., 2014). This implies that (a) these features must be spun up for inflows into
the higher-resolution domain, and that (b) these wave numbers are reflected at the do-
main boundary for outflows from the high-resolution domain to the coarser domain. To
address the latter issue, filters that are efficient over a large range of wave numbers are
required. The temporal interpolation required by nesting can introduce further numer-15

ical artefacts, in particular when interpolating forcing LBCs, usually available at 3–6 h
timesteps, to the model integration time step of the high-resolution domain (typically
6 s per 1 km grid size).

One obvious solution is to avoid using LBCs and nesting by running a global model
at the resolution required for the area of interest. This, however, is prohibitively ex-20

pensive or simply not feasible, even on the latest generations of supercomputers. An
intermediate approach therefore is to run a global model at a moderate resolution and
use a smooth mesh transition on a variable-resolution grid, where filters are efficient
at the local scale of the corresponding grid cell (Ringler et al., 2011). Beside the here-
discussed MPAS model, few other recent developments such as ICON (ICOsahedral25

Non-hydrostatic model, Zaengel et al., 2015), adopt this strategy. Applying such models
for mid- and long-term regional climate simulations has only recently become possible
and requires substantial computational power.
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The Model for Prediction Across Scales (MPAS)1 is a recent numerical modelling
framework that includes an atmospheric model MPAS-A (Skamarock et al., 2012), an
ocean model MPAS-O (Ringler et al., 2013), and a land-ice model MPAS-LI. The MPAS
model is a collaborative project, led by the National Center for Atmospheric Research
(NCAR) and the Los Alamos National Laboratory (LANL). The three components of5

MPAS in principle form a so-called Earth System Model (ESM), but a coupler be-
tween them is not yet available. A common feature of the three MPAS constituents
are unstructured, centroidal Voronoi meshes (spherical centroidal Voronoi tessella-
tions, SCVTs Du et al., 2003), which allow the generation of global, irregular, variable-
resolution meshes with smooth transitions between areas of different refinement.10

The atmospheric model MPAS-Atmosphere is a global, fully-compressible non-
hydrostatic model using finite-volume numerics. Based on the Voronoi mesh, the model
uses a C-grid staggering for the state variables (i. e., wind components are modelled at
the faces of every cell, and the prognosed component of the wind is orthogonal to the
cell face) as described in Thuburn et al. (2009) and Ringler et al. (2010). The governing15

equations can then be cast in a way such that energy, momentum and water vapour
content are conserved. The MPAS-A model builds on existing, well-established tech-
niques of the Advanced Research Weather Research and Forecasting model (WRF-
ARW, Skamarock et al., 2008), for example the split-explicit time integration scheme
for the solution of the horizontal advection. It also contains a subset of WRF’s physics20

parameterisations that are suitable for climate modelling purposes. While WRF uses
a terrain-following hydrostatic pressure coordinate for the vertical discretisation, MPAS
employs a height-based terrain-following vertical coordinate. The latter discretisation
reduces artificial circulations caused by inaccuracies in the horizontal pressure gradi-
ent term (Klemp, 2011).25

Until recently, advances in computational power following Moore’s Law were mainly
driven by transistor speed and energy scaling, as well as by micro-architecture ad-

1http://mpas-dev.github.io
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vances. Physical limitations and practical energy concerns will create new challenges
for continued performance scaling in the coming decades. In consequence, large-scale
parallelism and the use of accelerators will be required to achieve performance and
energy efficiency (Borkar and Chien, 2011). Hence, a key aspect of modern numerical
codes is their ability to scale on massively parallel systems. The quasi-uniform cen-5

troidal Voronoi meshes used by MPAS are similar to icosahedral (hexagonal) meshes
and can provide nearly uniform resolution over the globe, as opposed to latitude–
longitude grids that require polar filtering to overcome the issue of converging grid
lines at the poles. Grids requiring polar filtering or spherical transform methods do not
scale very well on massively parallel systems (Skamarock et al., 2012). With MPAS, an10

efficient parallelisation can be achieved by aligning all grid cells in a 1-D array, with the
vertical coordinate stacked on top as the second dimension (MacDonald et al., 2011).
Good scaling has been achieved in early weak and strong scaling tests. However,
a thorough investigation of the scalability of MPAS on parallel and massively parallel
systems has not yet been conducted.15

In this study, we investigate the performance of MPAS for different problem sizes on
four HPC facilities in Europe. For each problem, strong scaling tests are conducted on
all four platforms, which cover a range of different architectures to reflect the large vari-
ety of computational systems available for research. Additionally, we conduct extreme
scaling tests using a 3 km global mesh to study the scalability of MPAS up to nearly half20

a million tasks and to demonstrate that global, convection-resolving simulations are be-
coming possible. We explore the limits of the MPAS model when its parallel efficiency
breaks down and identify opportunities for improvement. We further derive estimates
on the feasibility to conduct longer runs at convection-resolving resolution on current
HPC facilities.25

We also assess the quality of the MPAS model output in terms of its accuracy for
climate modelling. We have chosen to study the particular problem of reproducing the
characteristics of the West African Monsoon (WAM). The WAM is the most prominent
feature of the West African climate and accounts for the majority of the annual precipi-
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tation. Differential heating of the ocean and the land surface cause a seasonal change
of the large-scale wind systems during boreal summer, which results in the migration
of the inter-tropical convergence zone (ITCZ) and the associated rain band northwards
over the West African continent. The WAM is driven by a complex and not yet fully
understood interplay of various dynamical features (e.g., Sultan et al., 2003; Grist and5

Nicholson, 2001; Nicholson and Webster, 2007). Global circulation models (GCMs) of-
ten fail to reproduce this annual movement of the ITCZ due to their limited temporal
and spatial resolution (e.g., Hourdin et al., 2010; Sylla et al., 2010). Despite their defi-
ciencies discussed above, regional climate models can improve the representation of
precipitation in comparison to their forcing data set (Nikulin et al., 2012; Klein et al.,10

2015). Variable-resolution meshes permit resolving the region of interest (greater West
Africa in this case) at high resolution, while keeping the model aligned with large-scale
features outside of this area. It is hoped that this will lead to an improvement of the
representation of the WAM. It also opens up the possibility to study processes such as
the teleconnection between the Indian Monsoon and the West African Monsoon (Rod-15

well and Hoskins, 1996), or the impact of land use changes on weather and climate in
a consistent approach.

The paper is organised as follows: in Sect. 2, we introduce the HPC facilities used for
this study, provide details about the MPAS-A code, and present the scaling experiments
with moderate problem sizes. We continue in Sect. 3 with an analysis of the physical20

accuracy of the MPAS model in comparison to observational data and data from own
regional climate modelling experiments. Section 4 is devoted to the extreme scaling
tests, and Sect. 5 summarises our findings and gives an outlook on future modelling
activities.

2 Scaling experiments for moderate problem sizes25

We perform strong scaling experiments for three different meshes and on four HPC fa-
cilities in Europe. The problem sizes range from a regular 120 km mesh with 40 962
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cells as the smallest problem to a large, variable-resolution 60–12 km mesh with
535 554 grid cells. An intermediate test case with a variable-resolution 100–25 km
mesh with 163 842 grid cells is studied as well.

2.1 HPC facilities

Two of the four HPC systems, the Très Grand Centre de Calcul (TGCC) Curie2 and the5

Forschungszentrum Jülich (FZJ) Juqueen3, belong to the largest machines in Europe
and are part of the PRACE Tier-0 pool4. They are based on entirely different archi-
tectures, with Curie being a Bull Linux-cluster type system using Intel Sandy Bridge
CPUs, and Juqueen an IBM Bluegene/Q. The third system, the Steinbruch Centre for
Computing (SCC) ForHLR15, went into operation in September 2014 and is based on10

the Intel Ivy Bridge architecture. Lastly, the FZJ Juropatest6 is a cutting-edge proto-
type system incorporating Intel Haswell CPUs, and a pilot for the future FZJ Jureca
(successor of FZJ Juropa) system.

2.1.1 TGCC Curie

The TGCC Curie consists of 360 “fat nodes” and 16 “hybrid nodes”, not used in this15

study, and 5040 “thin nodes” of type B510 Bullx, with 2 eight-core Intel processors
Sandy Bridge EP (E5-2680) at 2.7 GHz, 64 GB RAM, and a local SSD disk each. An
InfiniBand QDR Full Fat Tree network is used for both the compute network and the I/O
to the global LUSTRE file system with 5 PB capacity (100 GBs−1 storage bandwidth).

2http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
3http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_

node.html
4http://www.prace-ri.eu/prace-resources
5http://www.scc.kit.edu/dienste/forhlr.php
6http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPATEST/

JUROPATEST_node.html
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The machine went into service in 2012, and since then two further generations of
Intel CPUs were launched (Intel Ivy Bridge, Intel Haswell). With 3 different node types,
Curie addresses a wide range of scientific challenges and offers an aggregate peak
performance of 2 Petaflops. We use the Intel compilers icc/ifort and the Bullmpi MPI
library to compile MPAS on Curie (see below for details).5

2.1.2 FZJ Juqueen

The FZJ Juqueen is an IBM Bluegene/Q system and was installed in 2012/13. It hosts
28 racks with 1024 nodes per rack and 16 cores per node, which totals to 458 752
physical cores. Simultaneous multi-threading (SMT) with 2 or 4 threads per core is sup-
ported by the hardware, but not used in this study due to the lack of threading in MPAS-10

A (see below). Each node consists of 16 IBM PowerPC A2 cores with 1.6 GHz, and
hosts 16 GB RAM. A 5-D Torus interconnect with 40 GBs−1 is used as compute net-
work, while I/O is redirected to dedicated I/O nodes (typically 8 per rack) using a 10 Gb
Ethernet to connect to the GPFS file system (200 GBs−1 bandwidth). The peak perfor-
mance was measured as 5.9 Petaflops (Linpack: 5.0 Petaflops). With a large number of15

relatively slow CPUs and a small memory per core, Juqueen most resembles the future
massively parallel systems described above. As such, porting and scaling experiments
of numerical codes onto this architecture are as challenging as instructive for future
applications. The thread-safe version of the IBM XL compilers bgxlc_r/bgxlf95_r and
their respective MPI wrappers are used to compile MPAS on Juqueen.20

2.1.3 SCC ForHLR1

The ForHLR1 is the most recent addition to the SCCs high performance computing sys-
tems and is the first of two stages in the expansion of the parallel computing facilities at
SCC. Like Curie, it hosts different types of nodes to cater for the various needs of the
modelling community: the workhorse for parallel applications, and used in this study,25

are 512 “thin nodes” with 2 ten-core Intel Ivy Bridge processors (E5-2670v2) at 2.4 GHz
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and 64 GB RAM, connected via an Infiniband FDR interconnect. The theoretical peak
performance of these 512 nodes is 216 Teraflops. A central LUSTRE filesystem is at-
tached to the nodes, using the same Infiniband interconnect for I/O as for the compute
network. We use the Intel compilers icc/ifort 14.04 and the corresponding Intel MPI
library to compile MPAS.5

2.1.4 FZJ Juropatest

The FZJ Juropatest cluster is a relatively small prototype system and consists of 60
T-Platform V210s blades with 2 fourteen-core Intel Haswell processors (E5-2695v3)
at 2.3 GHz and 128 GB RAM each. The compute network is an Infiniband FDR with
non-blocking Fat Tree topology, while I/O to the central GPFS file system is realised via10

10 Gb Ethernet. With a peak performance of 72 Teraflops, Juropatest allows users of
JSC’s current general purpose supercomputer Juropa to port and optimise their appli-
cations for the new Haswell CPU architecture. While optimising the MPAS model for the
Haswell features and instruction sets is beyond the scope of this study, it will become
an inevitable step in future model development and tuning. We use the available Intel15

Compilers, here icc/ifort 2015.1.133, and the corresponding Intel MPI library to compile
MPAS. On Juropatest, we conduct two sets of runs for each of the test cases: for the
first set (Jtest-half in the following), we use only one of the two available fourteen-core
CPUs in each node, which implies a similar number of cores per node for Curie and
Juropatest or, in other words, a similar number of nodes for the same total number of20

tasks. In this configuration, each task is bound to one core on the node. For the second
set (Jtest-full in the following), we use both CPUs, i. e., 28 cores on each node to exploit
the capabilities of the Juropatest system and possible memory bandwidth limitations of
MPAS-A.
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2.2 MPAS-A code

For the strong-scaling studies in this paper, we use MPAS-A v3.1, released on 24
November 2014. This release of the model employs a horizontal domain decomposi-
tion for parallel execution, and parallelisation is implemented using MPI only; in this
version of the code, no threading is used. The MPAS code is written almost entirely in5

Fortran 2003, with a few minor parts written in C. The MPAS build system uses only the
make utility, with settings for different compilers and architectures described as different
targets in the top-level Makefile; see Appendix A for the compiler flags used in this
study.

The optimal parallelisation and distribution of the cells of the Voronoi mesh for a given10

number of tasks is treated as a graph partitioning problem. The dual mesh of a Voronoi
tessellation is a Delaunay triangulation, which immediately provides the connectivity
graph for the primal (i. e., Voronoi) cells in the mesh. In MPAS, the graph partitioning is
computed as a separate pre-processing step, for which the METIS software is used7.
An optimal partitioning distributes equal work (by proxy, the number of cells) to each15

task while minimising the edge cut (assumed to model the communication between
tasks). METIS uses a multilevel k-way partitioning scheme, which produces partitions
of comparable quality to traditional multilevel bisection algorithms and is about two
orders of magnitude faster (Karypis and Kumar, 1998). The resulting graph partitioning
can be critical for the model performance due to, for example, a large overhead of20

communication and computational imbalances between the individual partitions.
At start-up, the MPAS-A model reads a file that assigns Voronoi cells to each of the

MPI tasks according to a partitioning produced by METIS. The set of cells assigned to
an MPI task is referred to as a “block”, and the cells in this assignment are referred to
as the “owned” cells. The dynamical solver in MPAS-A requires stencils of cells in order25

to apply various operators, and as part of the model start-up, referred to internally as
the “bootstrapping” process, a pre-determined number of layers of halo cells (some-

7http://glaros.dtc.umn.edu/gkhome/views/metis
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times referred to as “ghost” cells in other modeling systems) are added around each
block. Although the number of halo cells can vary between different MPAS models, as
illustrated in Fig. 2, MPAS-A adds two layers of halo cells around each block of cells.
At points in the MPAS-A dynamical solver where current values of fields in halo cells
are required, values are communicated between tasks, from owned cells to ghost cells,5

with point-to-point MPI communications.
An important aspect and common bottleneck in numerical weather prediction and

climate modelling is disk I/O, since large 4-D fields such as temperature, geopotential
height, or wind components need to be written to disk frequently. In MPAS v3.1, I/O
is facilitated by the parallel I/O library PIO v1.7.1, a wrapper with an easy-to-use API10

that encapsulates the complexity of parallel I/O for a number of supported formats: bi-
nary, serial NetCDF8, Parallel-NetCDF9, and recently (since v.1.9.14) parallel NetCDF-
4 through PHDF510 (Dennis et al., 2013). PIO is compiled without further optimisation
(standard settings) on all four machines. The HDF5, NetCDF and Parallel-NetCDF li-
braries are provided as modules on all four systems.15

Unless stated otherwise, all experiments are conducted with double precision floating
point precision, 41 atmospheric levels, 4 soil levels, a full suite of physics and dynamics
(see Appendix B for details), and standard disk I/O. Each experiment is run for 24 h
model time, during which an initial conditions file is read (init.nc), diagnostic output
files are written every 3 h (diag.nc), and a final restart file and a comprehensive20

output file are written at the end (restart.nc, output.nc). The model integration
time step depends on the grid resolution and is mentioned in the individual sections
below. Note that for variable resolution meshes, the global time step is determined by
the smallest grid size. By default, all tasks participate in the parallel I/O.

8http://www.unidata.ucar.edu/software/netcdf
9http://trac.mcs.anl.gov/projects/parallel-netcdf

10http://www.hdfgroup.org/HDF5
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2.3 Regular 120 km grid

The first and smallest test case consists of a global, regular 120 km mesh with 40 962
grid cells, which is roughly comparable in resolution to a 284×142 latitude–longitude
grid. It is thus in the range of current earth system models. A model integration time
step of 150 s is adopted. For a resolution of 120 km, this is an extremely conservative5

setting (1.25 s per km grid size) for MPAS-A, which implies 576 integration time steps
for a 24 h test run, compared to 120–144 integration time steps for typical values of
5–6 s per km grid size. This increases the time spent for the actual parallel integration
relative to that for model initialisation and disk I/O. The 120 km grid is illustrated in
Fig. 3, while Fig. 4 shows the scaling plots on the four HPC facilities described above.10

For an easier comparison of the scalability of the different test cases, the scaling is
displayed as parallel efficiency (i. e., the ratio of real scaling and ideal scaling) vs. the
number of tasks (bottom horizontal axis) and number of cells owned per task (top
horizontal axis). Table D1 provides further details about the scaling, whereas Table G1
summarises the size of the files to be read and written during one model run.15

Previous scaling tests on NCAR’s Yellowstone supercomputer11 suggest that for reg-
ular meshes, the parallel efficiency of MPAS-A is correlated with the number of cells
owned per task. Considering the time required for the solver only, i. e., neglecting the
setup costs and the disk I/O, a parallel efficiency of close to 70 % is obtained for more
than 160 cells per task. Here, we include the setup costs (bootstrapping and reading of20

initial conditions file) and the output to disk in the scaling to emphasise the importance
of all aspects of the system – from filesystem performance to compute performance to
the speed of the interconnect – and to estimate the necessary resource requirements.
It should be noted that this can have a negative and noticeable influence on the parallel
efficiency, depending on the performance of the parallel I/O operations and the ratio of25

the time spent for the setup of the model and the actual time integration. Hence, the
threshold of 160 cells owned per task for the breakdown of the parallel efficiency should

11https://www2.cisl.ucar.edu/resources/yellowstone
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be considered as a lower limit. In Sect. 2.6, we provide a detailed analysis of the costs
of the individual steps for the Jtest-full system.

On the three Linux-cluster type systems, test runs are conducted on single nodes up
to 32 (Curie), 20 (ForHLR1), 15 (Jtest-full) and 30 (Jtest-half) nodes. In the following,
we refer to “good scaling” as a parallel efficiency of ≈ 70 % or more. Good scaling is5

achieved up to 6 nodes on Curie (96 tasks, or 427 grid cells per task), 9 nodes on
ForHLR1 (180 tasks, or 230 grid cells per task), 8 nodes on Jtest-full (224 tasks, or
183 grid cells per task), and 15 nodes on Jtest-half (210 tasks, or 190 grid cells per
task). Comparing Curie and Jtest-half, it is evident that a single Haswell CPU with 14
cores outperforms two Sandy Bridge CPUs with 2×8 cores on the same board, and10

that (b) the parallel efficiency decreases faster with the number of nodes on Curie.
This is probably related to the interconnect: while Juropatest (as well as Yellowstone)
uses Infiniband FDR Full Fat Tree technology (Fourteen Data Rate, theoretical effective
throughput 14 Gbs−1 per connection) for the inter-process communication (MPI) and
a separate 10 Gb Ethernet connection for I/O operations, Curie uses QDR Full Fat Tree15

technology (Quad Data Rate, theoretical effective throughput 4 Gbs−1 per connection)
for the inter-process communication and for I/O operations. The transition zone for
the breakdown of the parallel efficiency is indicated as shaded blue area in Fig. 4.
A comparison of the absolute runtimes on Jtest-half and Jtest-full shows that runs
with 28 cores per node are 5–15 % slower than runs with 14 cores per node, which is20

presumably due to memory bandwidth bottlenecks.
The minimum job (and block) size on Juqueen is 32 nodes or 512 tasks, which corre-

sponds to only around 80 cells owned by each task. The parallel efficiency drops rapidly
with increasing number of nodes, since this problem size is simply too small for appli-
cation on Juqueen. Figures 8 and 9, left panels, display the communication volume and25

the number of non-contiguous partitions (number of tasks with spatially disconnected
patches) of the partitions as function of the number of tasks. While the communication
volume scales linearly with the number of tasks up to about 1000 tasks (approx. 40
owned cells per task), the relationship becomes non-linear for larger numbers of tasks.
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At the same time, the graph partitions become increasingly non-contiguous. It should
be noted that the values displayed in Figs. 8 and 9 are computed by METIS and as such
are a function of the partitioning of the cells only, which essentially assumes a single
layer of ghost cells. Since MPAS-A exchanges two layers of ghost cells at maximum,
the actual number of ghost cells, edges and vertices can be slightly different. A detailed5

study of the impact of these graph properties will be given in the following section.
Table G2 lists the cheapest model runs in terms of CPUh spent per 24 h model

integration and the fastest runs in terms of realtime per 24 h model integration for the
four HPC sites. It is important to remember that while the Jtest-half runs use only
50 % of the available cores on each node, the computational costs for the full node10

(28 CPUh per node per hour real time) are charged for the model run, since the node is
not available for other users or jobs. Also, a one-to-one relation of CPUh between Linux
cluster-type machines and an IBM Bluegene is not meaningful. By comparing typical
calls for proposals for the different HPC systems, a conversion factor of 1 : 16 seems to
be reasonable, i. e., to consider one entire node with 16 cores on Juqueen as equivalent15

to one core on the other systems. However, since applications for computing resources
usually demand estimates for the required amount of CPUh, we list the actual CPUh
here.

2.4 Variable 100–25 km grid

The second test case employs an irregular mesh with a variable resolution ranging20

from 100 km for most parts of the globe to 25 km for a circular area spanning about
60◦, and centred on West Africa (lat=12.5◦ N, lon=0◦ E). An integration time step of
120 s is used. The mesh as well as the frequency distribution of cell sizes are displayed
in Fig. 5, the scaling is illustrated in Fig. 6 and summarised in Table E1.

Tests runs are conducted on single nodes up to 192 nodes on Curie (3072 tasks, 5325

owned cells per task), 60 nodes on ForHLR1 (1200 tasks, 137 owned cells per task),
35 nodes on Jtest-full (980 tasks, 167 owned cells per task), and 60 nodes on Jtest-
half (840 tasks, 195 owned cells per task). Good scaling is achieved up to 32 nodes
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on Curie (512 tasks, 320 owned cells per task), 20 nodes on ForHLR1 (400 tasks, 410
owned cells per task), 25 nodes on Jtest-full (700 tasks, 234 owned cells per task), and
35 nodes on Jtest-half (490 tasks, 334 owned cells per task). The parallel efficiency on
average drops from about 90 to 40 % within the transition zone (shaded area in Fig. 6,
600 to 150 cells owned per task), similar to the first test case on the regular 120 km5

mesh.
Notably different to the previous test case are the measured runtimes for Jtest-full

and Jtest-half: for small numbers of tasks, the Jtest-full runs show a worse performance
due to the aforementioned memory bandwidth limitations. For large numbers of tasks
(nodes), the increase in inter-node MPI communication, which impacts the Jtest-half10

runs more than the Jtest-full runs, becomes the limiting factor and decreases the per-
formance of the Jtest-half runs below that of the Jtest-full runs. With respect to the
remaining HPC systems, a clear separation of the parallel efficiency by interconnect
technology as for the 120 km test case cannot be seen here, due to the following rea-
sons:15

Firstly, the disk I/O demand scales with the number of grid cells and is larger by
a factor of 4 for this mesh (see Table G1). As we will see in the following sections, in
particular for the extreme scaling experiments in Sect. 4, the disk I/O becomes increas-
ingly important for larger problem sizes and can consume a significant part of the total
runtime. The I/O is routed differently at the four HPC sites, the central storage systems20

have different bandwidths and block sizes, and the parallel I/O libraries might perform
differently, depending on the compilers and compilation flags. Additionally, in this test
case we adopt an integration time step of 120 s (4.8 s per km grid size), which implies
a smaller fraction of the total time spent for the actual time integration relative to the
disk I/O.25

Secondly, the graph partitioning adds another layer of complexity and variability to
the performance diagnostics. Figures 8 and 9 display key properties of the graph par-
titions for the three test cases. The above-mentioned linear relationship between the
communication volume and the number of tasks also holds for the variable 100–25 km
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mesh up to about 40 owned cells per task (4000 tasks). Different from the regular
120 km mesh, the number of non-contiguous partitions does not follow a clear pattern:
for more than 40 owned cells per task, Fig. 9 suggests that METIS by default tends
to create more non-contiguous partitions for complex mesh structures, and that this
occurs predominantly for numbers of partitions which are not powers of 2. Both graph5

partitioning algorithms implemented in METIS, recursive bisectioning and direct k-way
partitioning, are naturally embedded in the binary system and it therefore seems to be
reasonable that METIS favours partitioning into number of patches that are powers of
2.

This variability introduced by the graph partitioning is unpredictable and may have10

significant impact on the model performance. If not instructed otherwise, the graph par-
titioning tool METIS aims at minimising the edge cut (communication volume), which
potentially comes at the cost of having non-contiguous partitions. As discussed earlier
in Sect. 2.2, halo cells are added around each patch of the individual tasks, for which
communication with the neighbouring tasks is required. The additional amount of com-15

munication caused by halo cells around non-contiguous partitions can be substantial,
in particular if the number of cells owned per task is small (i. e., the ratio of halo cells to
owned cells is large).

To investigate the effect of non-contiguous partitions on the parallel efficiency, we
analyse one partition with 300 tasks for the 100–25 km mesh on ForHLR1 (546 owned20

cells per task), for which METIS by default produces a non-contiguous partition. We
create an additional, contiguous partition using the command line arguments -contig

-minconn for METIS, which results in an increase of the edge cut from 58 031 to
58 870 (1.4 %). Figure 7 displays the total number of cells (nCellsByTask), the number
of owned cells (nCellsSolveByTask), and the number of halo cells per task (nHaloCells-25

ByTask) as ratio between the non-contiguous and the contiguous partition. Since the
communication volume increases for the contiguous partition, the total number of cells
per task on average is larger, too. The average number of owned cells is identical, since
the number of cells of the graph does not change. Notably, task 200 has a 1.3 times
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larger number of halo cells for the non-contiguous partition, since its partition consists
of two separate patches, which implies a larger number of neighbouring tasks and of
surrounding halo cells. To eliminate the influence of the disk I/O on the runtimes for
the two partitions, we switch off the output to disk. We find that the measured runtimes
for the model integration is practically identical for the two runs (251 s non-contiguous5

vs. 255 s contiguous). For 300 tasks, the average ratio of halo cells to owned cells is
1 : 2.8, which might be too small to see the effect of the additional halo cells in the non-
contiguous partition. We therefore repeat the test for non-contiguous and contiguous
partitions for 2520 tasks (65 owned cells per task), with a corresponding ratio of 1.2 : 1
halo cells to owned cells. Even in this case, the measured runtimes for the model inte-10

gration are nearly identical (45.2 s contiguous vs. 45.6 s non-contiguous). We conclude
therefore that the impact of non-contiguous partitions on the runtime is negligible for
any reasonable number of tasks for a given mesh.

Although the number of grid cells is 4 times larger for this test case than for the
regular 120 km mesh, the problem size is still too small for application on Juqueen. The15

two smallest possible parallel runs with 512 and 1024 tasks correspond to 320 and 160
cells owned per task, for which the decrease in parallel efficiency is 20 %. Runs with
larger number of tasks all have parallel efficiencies of less than 60 %. Table G2 lists the
cheapest and fastest model runs for the four HPC sites.

2.5 Variable 60–12 km grid20

The third moderately-sized scaling test consists of a variable resolution mesh with max-
imum grid spacing 60 km and minimum grid spacing of 12 km. The refinement area is
an approximate ellipse, illustrated in Fig. 10, and encompasses the whole of North
and Central Africa, extends as far as India in the East and covers a large part of the
Atlantic Ocean in the West. This particular mesh is useful for studying the teleconnec-25

tion between the Indian and Atlantic Ocean and the monsoon systems in East and
West Africa. The total number of grid cells is 535 554, which corresponds to 1034×517
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grid points on a regular latitude–longitude grid and thus is in the range of current re-
analyses. A time step of 72 s (6 per km grid size) is adopted.

Figure 11 and Table F1 summarise the scaling of this mesh on the four systems.
As for the variable 100–25 km mesh, a separation of the parallel performance by in-
terconnect cannot be detected, due to the increasing variability introduced by the disk5

I/O (see Table G1) and the layout of the graph partitions (Figs. 8 and 9, right panels).
While the number of tasks is sufficiently large to obtain a linear relationship between
the communication volume and the number of tasks up to 16 384 tasks on Juqueen,
the complexity of the mesh leads to more non-contiguous partitions, in particular on
ForHLR1 and Juropatest, where the number of tasks are multiples of 20 and 14. For10

Curie, all partitions are contiguous even without the use of the -contig option in
METIS.

Tests runs are conducted on single nodes up to 384 nodes on Curie (6144 tasks, 87
owned cells per task), 100 nodes on ForHLR1 (2000 tasks, 268 owned cells per task),
55 nodes on Jtest-full (1540 tasks, 348 owned cells per task), and 55 nodes on Jtest-15

half (770 tasks, 696 owned cells per task). Good scaling is achieved up to 56 nodes
on Curie (896 tasks, 598 owned cells per task), 45 nodes on ForHLR1 (900 tasks, 595
owned cells per task), and up to the maximum number of 55 nodes on Jtest-full and
Jtest-half. In the transition zone between 600 and 150 owned cells per task, shaded in
blue, the parallel efficiency on Curie and ForHLR1 drops off quickly from about 75 % to20

as low as 30 %.
Juropatest shows the best, but most irregular scaling of the three Linux-cluster sys-

tems, a consequence of the variability of the disk I/O and of the mesh partitioning. With
a maximum of 55 available nodes on the system, the parallel performance is better
than 70 % for both Jtest-half and Jtest-full. The parallel efficiencies for ForHLR1 and25

Curie follow a more regular trend, although the number of non-contiguous partitions is
highly variable for ForHLR1, but not for Curie. This adds further support to our conclu-
sion that the impact of non-contiguous partitions on the runtime is negligible for any
reasonable number of tasks for a given mesh. With 535 554 grid cells, this test case
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also shows good scaling on Juqueen up to 128 nodes (2048 tasks, 262 owned cells per
task). For larger number of tasks, the parallel efficiency drops rapidly and constantly
and the number of non-contiguous partitions becomes highly variable.

We further address the question how the total runtimes compare on the various HPC
systems. Due to the large differences in tasks between the Linux-cluster systems and5

the Bluegene system, the problem size must be large enough for a fair comparison.
While this was not the case for the previous two test cases, the 60–12 km mesh allows
such a comparison. Figure 12 displays the total runtimes for the 24 h model runs on
the four systems. Firstly, the three Linux-type systems line up quite well, which means
that the absolute runtimes are very close for similar parallel decompositions. For more10

than 1000 tasks (less than 600 owned cells per task), the realtime required for a 24 h
model integration flattens out at about 530 s. An increase in runtime is expected for
very large parallelisations on these systems (10 000 tasks or more). The runtimes on
the Bluegene system Juqueen show the same pattern, but flatten out for more than
4000 tasks (less than 134 owned cells per task) at 2500 s, about 5 times slower than15

on the other systems. The shift in the breakdown of the parallel performance to larger
parallelisations on Juqueen can be attributed to the 5-D Torus interconnect with a max-
imum bandwidth of 40 GB s−1, 10 times more than Infiniband QDR on Curie and 3
times more than Infiniband FDR on ForHLR1 and Juropatest. For less than 4000 tasks,
the runtimes on Juqueen are up to 10 times longer than on the Linux-cluster systems.20

Table G2 lists the cheapest model runs in terms of CPUh spent per 24 h model
integration and the fastest runs in terms of realtime per 24 h model integration for the
four HPC sites.

2.6 Breakdown of parallel performance

In the following, we investigate the reasons for the breakdown of the parallel perfor-25

mance. In the previous scaling tests, we include the model setup – principally, boot-
strapping and reading of the initial conditions file – as well as the parallel output to disk
in the measurements. Here, we split up the total computational costs and the parallel

7006

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6987/2015/gmdd-8-6987-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6987/2015/gmdd-8-6987-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 6987–7061, 2015

MPAS: an extreme
scaling experiment

D. Heinzeller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

performance into three different steps: time integration, model setup, and disk output.
Over longer runs, the model initialisation costs are amortised and the parallel perfor-
mance is determined by the numerical solver (time integration) and the parallel I/O
(disk output). Accordingly, Fig. 13 displays the total computational costs, the costs for
the three steps, and for a combination of time integration and disk output for the Jtest-5

full system and all test cases. Each time, the parallel efficiency of the time integration
only is above-ideal for more than 600 owned cells per task (“left” of the transition zone,
indicated as shaded area) and slowly decreasing within the transition zone (600–150
owned cells per task). The model setup and disk output, on the other hand, are only
weakly dependent on the number of tasks and therefore their parallel efficiency drops10

rapidly. The parallel performance of longer runs than the 24 h tests conducted here is
indicated with orange stars and drops from 100 % or more to about 80 % within the
transition zone.

According to Fig. 13, the parallel performance of the dynamical solver is high down
to 150 owned cells per task, but starts to decrease within the transition zone. To exploit15

the limiting factors of the solver for large number of tasks, we use the parallel debugging
and profiling tools Scalasca12 and Score-P13. These tools are available as modules on
Juqueen, hence we focus on two particular runs on this system. We analyse in detail
the 2048-task run on the 60–12 km mesh (261 owned cells per task) and the 1024-task
run on the 100–25 km mesh (160 owned cells per task), which are both close to the20

lower limit of good scaling (70 % parallel efficiency).
As discussed previously, halo cells are added around each patch of the individual

tasks, for which communication with the neighbouring tasks is required. The larger
the number of tasks, the smaller the number of owned cells per tasks, and the larger
the ratio between halo cells and owned cells. The piecharts in Fig. 14 illustrate the25

percentages of time spent in selected routines for both runs. The total time spent for
communication (grey to black colours: exchange halo fields, bootstrapping (initial), all-

12http://www.scalasca.org
13http://www.vi-hps.org/projects/score-p
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to-all min/max values) is 30–31 % for both runs. Since the bootstrapping is only required
during model initialisation to set up the halo fields and exchange lists, it becomes less
important in the context of longer runs. On Juqueen, these longer runs will use 23–
24 % of the model integration time for MPI communication. A detailed analysis of the
Scalasca report reveals that most of this time is “wasted” in MPI_WAIT during the5

exchange of 2-D and 3-D halo fields for the 1024-task run on the 100–25 km mesh,
which accounts for 17 % of the total time spent for the 24 model run.

Another significant fraction of 24–25 % is spent for the parallel I/O (purple to violet
colours: build/write output stream, boundary updates (read), reading initial conditions).
Reading the initial conditions occurs only during model initialisation. Thus, longer runs10

will use 12 % (left panel, 100–25 km mesh) or 16 % (right panel, 60–12 km mesh) for
parallel I/O during the model integration. While most of the percentages are similar
for the two profiles, there is a noticeable difference in reading the boundary updates
(purple, 1 % left panel vs. 5 % right panel). A closer look at the Scalasca report reveals
that also computational imbalances in the parallelisation can have serious impacts. For15

the example of the 2048-task run on the 60–12 km mesh, the average time required to
update the boundary information (sea-surface temperature, sea-ice fraction) is about
11.8 s per task. However, one single task takes 19.3 s for the same action and blocks
all remaining tasks in their execution. Computational imbalances are also detected for
the 1024-task run on the 100–25 km mesh, where the execution time for the short-20

wave radiation scheme is 3.6 s on average, but 19.2 s at maximum (corresponding to
1.6 % of the total execution time). Since the model synchronisation takes places when
exchanging halo cell data, the different computing times of the model physics appear
in the time spent for communication.

Subtracting the times required for MPI communication and for parallel I/O leaves25

approximately 45 % of the total time for the actual model integration. This highlights
the importance of an efficient parallelisation and fast interconnects between the com-
pute nodes and to the central storage, in particular for future applications on massively
parallel systems and for the extreme scaling tests in Sect. 4.
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3 Reproducing the dynamics of the West African Monsoon

The second important aspect of a numerical weather prediction and climate model is
its accuracy in reproducing observed meteorological conditions on global, regional and
local level. As described in the introduction, the West African Monsoon has turned out
to be a notoriously difficult problem in climate modelling, since it is a complex interplay5

of various dynamical, microphysical and surface-related processes across scales. The
common understanding is that the intensity of the monsoon and the associated precip-
itation on local scales are regulated by the driving, large-scale atmospheric circulation.
This picture is challenged and complicated by a recent study of Klein et al. (2015), who
found that processes on local scale such as mesoscale convection and precipitation10

events, can have a noticeable influence through feedback effects on the entire mon-
soon system. Examples therefore are enhanced moisture transport and circulation,
and strengthening of westward traveling disturbances (African Easterly Waves).

In this study, we attempt a first and brief evaluation of the ability of MPAS-A to re-
produce the dynamics of the West African Monsoon. Due to computational limitations15

for this short comparison, we are restricted to 11 month long model runs. We focus
on the onset of the monsoon season in June/July 1982 for two of the meshes pre-
sented above, namely the regular 120 km mesh and the variable 60–12 km mesh. Both
models are initialised in September 1981 using CFSR data (NCEP Climate Forecast
System Reanalysis, Saha et al., 2010) at 0.5◦ ×0.5◦ resolution as initial conditions.20

Daily updates of the sea-surface temperature are taken from the NOAA Optimum In-
terpolation Sea Surface Temperature Analysis (NOAA OI SST, Reynolds et al., 2002)
at 0.25◦ ×0.25◦ resolution. The period from September 1981 to beginning of 1982 is
considered as spin up time for the model, in particular for the soil conditions. The model
output is compared to different sets of observational data to account for the large un-25

certainty in the gridded observational products in the data-sparse region of West Africa
(see, for example, Lorenz and Kunstmann, 2012; Sylla et al., 2013).
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For near-surface air temperature and precipitation, we refer to (1) the Climate Re-
search Unit (CRU) high-resolution gridded time-series dataset v. 3.22 (Harris et al.,
2014), and (2) the University of Delaware (UDEL) Air Temperature & Precipitation long
term monthly means V3.01 (Willmott and Matsuura, 2014) at 0.5◦×0.5◦. Additional ob-
servational data for near-surface air temperature is obtained from the Global Historical5

Climate Network (GHCN) gridded 2 m temperature dataset V2 (Fan and van den Dool,
2008) at 0.5◦ ×0.5◦. For precipitation, we also use the Global Precipitation Climatol-
ogy Centre (GPCC) Full Data Reanalysis Version 6 Monthly Means (Schneider et al.,
2011), also at 0.5◦ ×0.5◦.

We also compare the MPAS-A model output to reference data obtained from a set10

of novel regional climate simulations over West Africa within the WASCAL program14.
This data is produced using the regional climate model WRF at 12 km resolution with
initial and lateral boundary conditions provided by the ERA-Interim re-analysis (Dee
et al., 2011, 80 km resolution). The WRF model uses a setup that is optimised for
the region of West Africa, following a detailed analysis of the monsoon dynamics for15

different WRF model configurations by Klein et al. (2015). An extensive documentation
and analysis of this reference data set will be given in a forthcoming paper. The WRF
model run covers a region from 25◦ W to 25◦ E and 5◦ S to 25◦ N and is initialised in
January 1979. Spectral nudging is applied to the WRF limited area model to keep it
on track with the large-scale features of the driving ERA-Interim re-analysis. The sea-20

surface temperature is updated every 6 h from the ERA-Interim SST data.
The WRF model domain lies entirely within the refinement zone of the variable 60–

12 km mesh. Hence, the resolution of the MPAS-A runs is 120 km for the regular mesh
(MPAS-120r hereafter) and 12 km for the variable mesh (MPAS-12v hereafter). Fig-
ure 15 shows the model topography of the WRF reference model at 12 km resolution25

(WRF-12r hereafter) and the MPAS-A models. Also indicated is a classification of the
land area into five agro-climatical zones, which will be used in the further analysis. Nat-
urally, the topography is nearly identical for WRF-12r and MPAS-12v. Minor differences

14http://www.wascal.org
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can be seen along the coast lines and inland water bodies, which are caused by the
different grids and by the need to re-grid the MPAS model output onto a regular lat-
lon grid. This re-gridding is performed with an NCL15 script mpas_to_latlon.py

(L. Fowler, personal communication, 2014), which adds another step to the post-
processing tasks and is computationally quite demanding. For example, a minimum5

of 1.5 GB of memory and 10 s runtime is required to re-grid one 3-D variable of MPAS-
12v for one time step. For MPAS-120v, the terrain is smoothed out and the coast line
(often referred to as landmask in the models) is ill-represented. This has negative ef-
fects when verifying the model output over regions such as Guinea, as we will see
below.10

In Fig. 16, we analyse the spatial distribution of the near-surface temperature for
July 1982 (top panel) and its annual cycle between September 1981 and July 1982
(bottom panel). The observations provide data over land only and show noticeable
spatial differences in the position and intensity of the Saharan Heat Low (SHL), in par-
ticular between CRU/UDEL and GHCN, and minor differences over Ghana and along15

the coastline. Regarding the model runs, WRF-12r matches the position and tempera-
ture of the SHL best and reproduces the observed temperatures. Both MPAS models
show a slightly colder surface temperature distribution for July 1982. The cold bias in
MPAS-120r is larger on average. The sea-surface temperature distribution is similar for
the two MPAS runs, since they are using the same SST data for their daily updates.20

However, MPAS-120r shows strong artefacts along the coastline of the Golf of Guinea,
which is due to its inaccurate landmask. The WRF-12r SST, which is updated every
6 h from ERA-Interim data, is colder over the Golf of Guinea, but otherwise shows the
same patterns. With respect to the temporal evolution, the annual cycle is reproduced
well for both MPAS models, however a significant cold bias is detected over most of25

the land area from the time of model initialisation in September 1981 up to May 1982.
From June to July 1982, this bias seems to nearly vanish with the exception of the
coarser MPAS-120v over Guinea due to the limited resolution of the coast line. The

15http://http://www.ncl.ucar.edu
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observational data sets displayed in the lower panel agree in general, but show small
differences for the Saharan region (only CRU and GHCN are displayed for clarity; UDEL
is very close to CRU).

Figure 17 likewise displays the spatial distribution of the monthly precipitation for
July 1982 (top panel) and its annual cycle (bottom panel) for the three observational5

data sets and the three models. At the onset of the monsoon season, the rain band
is centred over 10◦ N for all three observational data sets. Areas of high precipitation
are found over Guinea, Sierra Leone and the Senegal in the West, and over Nigeria,
Cameroon and the Central African Republic in the East. While the spatial distribution
hardly shows any difference between the observational data sets, the temporal evo-10

lution deviates for the Saharan and Guinea regions. For the Saharan region, small
absolute values and a very small number of actual observations lead to large relative
uncertainties. For Guinea, the spatial interpolation along the coast line leads to differ-
ences in the timing of the maximum precipitation (April 1982 for CRU, May 1982 for
GPCC; as for temperature, UDEL follows CRU closely).15

The three models successfully reproduce the location of the rain band, a fact that
should not be taken for granted. In the case of WRF, Klein et al. (2015) demonstrate
that the representation of the monsoon dynamics is largely determined by the micro-
physics and the planetary boundary layer schemes, while the cumulus scheme seems
to play more of a role on daily time scales and for the actual amount of precipitation20

triggered by mesoscale convection. The WRF model configuration chosen here uses
the WSM5 microphysics scheme, the ACM2 planetary boundary layer parameterisation
and the Grell–Freitas cumulus scheme (see Wang et al., 2014, for a summary of the
WRF physics options and further references). It is highly optimised for the region and
thus not only matches the location of the rain band, but also reproduces the observed25

precipitation patterns over the Soudano, the Sahel and the Sahelo regions. The two
MPAS model runs, on the other hand, use an “out-of-the-box” setup, which consists
of the WSM6 microphysics scheme (similar to WSM5 with graupel as additional hy-
drometeor), the YSU planetary boundary layer parameterisation and the Kain–Fritsch
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cumulus scheme. This particular combination produces excessive precipitation during
the peak of the monsoon in WRF due to a non-linear response of convective precipi-
tation events to the dynamics, and it seems to exhibit the same behaviour in the two
MPAS models.

With respect to the annual cycle of precipitation, the WRF model shows excessive5

precipitation for all months and an early onset of the monsoon season for the Soudano,
Sahel and Sahelo regions. The excess in rainfall over all land area is mainly caused by
an overestimation over Guinea, which receives most rainfall over the year (more than
3000 mm day−1, compared to less than 500 mm day−1 in the Sahelo region). The “out-
of-the-box” MPAS models match the observations better, in particular the timing of the10

onset of the rainy season and the precipitation over Guinea. The coarser MPAS-120r
is closer to the observed precipitation over the inland areas than the higher-resolution
MPAS-12v during the onset of the monsoon in June/July 1982. This, however, is not
a signal of a higher accuracy of the coarser model: at 120 km resolution, the Kain–
Fritsch cumulus scheme is less active than at 12 km resolution, and consequently its15

wet bias is reduced.
To support this further, Fig. 18a displays the mean sea level pressure map for

July 1982. WRF-12r and MPAS-12r both show a distinct area of low pressure, the
Saharan Heat Low (SHL), alongside with the South–North pressure gradient that is
causing the movement of the ITCZ and the associated monsoon rain band. This SHL20

is much less pronounced in MPAS-120r. In both MPAS models, the region of low pres-
sure is displaced by about 10◦ to the East compared to WRF. Lavaysse et al. (2009)
derive a climatological mean position of 3◦ W, 23◦ N from re-analysis data between
1979 to 2001, which coincides well with WRF.

However, the Saharan Heat Low is not only a region of low surface pressure but also25

of high surface temperatures. For further comparison, Fig. 20 displays the mean near-
surface temperature and the mean sea level pressure for July 1982 for three selected
re-analyses: CFSR (used as initial conditions for MPAS on 1 January 1981), ERA-
Interim (used as lateral boundary conditions for WRF-12r with 6 hourly updates), and
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NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA,
Rienecker et al., 2011). All three data sets show a bimodal distribution of areas of
low pressure below 1008 hPa (CFSR) or 1007 hPA (others), where the western system
corresponds to the SHL and is close to the climatological mean. Large differences are
visible in the corresponding near-surface temperature, with CFSR being the coldest,5

MERRA the warmest and ERA-Interim in-between and closest to the observations.
Comparing Fig. 16 and Fig. 18a, it is apparent that the areas of low pressure and high

temperature are co-located for WRF-12r and that the model is close to reproducing the
bimodal distribution of the re-analyses. The high-temperature regions of MPAS-120r
and MPAS-12v match the WRF SHL position albeit a cold bias of about 2 ◦C, while the10

low-pressure region is shifted to the East and does not match the bimodal distribution.
This is caused by the cold bias in the two MPAS models: the SHL, like any other
non-frontal thermal low, is formed by rapid solar heating of the land surface and the
near-surface layers, which leads to a rising of hot and dense air and to the formation
of a stationary low pressure area. Thus, the cold bias in the MPAS models implies15

a less intense deepening of the pressure system at the expected location of the SHL.
As discussed above, the general cold bias over all land areas persists from the onset
of the MPAS model runs in September 1981 and only starts to vanish from June to
July 1982 on. This is reflected in the temporal evolution of the mean sea level pressure
(Fig. 19, left panel), integrated over all land areas, which is highest for MPAS-120r,20

lowest for WRF-12r, in-between for MPAS-12v, and merging towards each other from
June 1982 on.

A final investigation of the soil properties in Figs. 18b and c and 19 (middle and
right panel) reveal the root cause of the cold temperature bias and the associated
displacement of the low pressure system. Starting from the MPAS model initialisation25

in September 1981, the soil temperature is about 2 ◦C lower then for the WRF model
run, which is initialised in January 1979 and thus has more than 2 years to spin up
the land surface model (NOAH LSM for both WRF and MPAS). Over the course of
the simulated 11 months, the MPAS soil temperatures start to converge towards the
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WRF soil temperature: in July 1982, the soil temperatures distributions in Fig. 18b are
already quite similar. However, the relative soil moisture maintains a constant bias for
most of the time and still shows spatial differences in July 1982. This is due to the fact
that between the MPAS model initialisation in September 1981 and the onset of the
monsoon season in 1982, virtually no precipitation occurs over large fractions of the5

land area and that the inherently low soil moisture simply has not possibility to adapt.
We therefore conclude from this section that MPAS-A is capable of reproducing the

dynamics of the West African Monsoon and of the associated precipitation. The “out-of-
the-box” setup of MPAS even beats the optimised WRF setup with respect to the timing
of the onset of the rainy season, and the high-resolution MPAS-12v model shows better10

performance than the coarse-resolution MPAS-120r model in general, but in particular
for the coastal regions. However, deficiencies in the placement of the Saharan Heat
Low and a cold bias in the surface temperature are apparent in both MPAS model runs,
which are caused to a large extend by an insufficient spin up time of the models. The
MPAS runs also tend to over-estimate the monsoon precipitation, which we attribute to15

the combination of physical parameterisations of the “out-of-the-box” setup.

4 Extreme scaling experiment at very high resolution

In this section, we evaluate the scalability and limitations of the MPAS-A model for
a very large mesh on a massively parallel system. This experiment is motivated by the
following two aspects:20

1. Future HPC environments will most likely be massively parallel systems, with the
number of cores per node and the number of nodes increasing much faster than
the speed of the individual cores. Models such as MPAS-A have to be able to
scale on these systems in order to be used successfully in the future.

2. The typical model resolution of global and regional NWP and climate models has25

increased continuously over the past few decades. Currently, the European Cen-
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tre for Medium-Range Weather Forecasts (ECMWF) is leading the field with an
operational global NWP model at 14 km resolution16, and limited area models
have been taken down to sub-km resolution. With this experiment, we want to
demonstrate that convection-resolving (below about 4 km grid size, see Weisman
et al., 1997; Prein et al., 2013, for example), global atmospheric simulations are5

possible on current HPC environments.

To create a large-enough problem for these tests at a convection-resolving resolution,
we use a regular, global 3 km mesh with more than 65 million horizontal grid cells
and 41 vertical levels. Up to now, only a few real-data simulations on this mesh have
been conducted on NCAR’s Yellowstone supercomputer using a maximum of 16 38410

MPI tasks (approx. 4000 owned cells per task); a set of scaling benchmarks based on
an idealised case have also been run on up to 131 072 MPI tasks on Edison, a Cray
XC30 at the National Energy Research Scientific Computing Center17. Based on our
experience with the moderate scaling tests in Sect. 2, a breakdown of the parallel
performance is expected between 150 owned cells per task (corresponding to 436 90615

tasks) and 600 owned cells per task (109 226 tasks).
Among the four HPC sites presented earlier, only the FZJ Juqueen offers a large

enough number of cores to conduct this extreme scaling experiment. With a maximum
of 458 752 cores, these tests require scaling out to the full system, which is not possi-
ble during normal operations. However, following the 3rd Juqueen Tuning and Porting20

Workshop in February 2015, a few selected applications were invited to conduct ex-
treme scaling tests on the full machine during a period of 24 h. The results presented
in the following were obtained during this event, which is summarised in a technical
report by Brömmel et al. (2015).

16http://www.ecmwf.int/en/forecasts/datasets/dataset-i-i-atmospheric-fields-high-resolution-forecast
17https://www.nersc.gov/users/computational-systems/edison
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4.1 Model configuration and experiment preparation

Several modifications of the MPAS-A code are required to conduct this experiment.
Firstly, it is no longer possible to use the standard NetCDF large-file format (CDF-
2), since the maximum number of elements for some of the 4-D variables exceeds
the internal limit of 2 billion values for any particular record. One possible solution5

is to use the CDF-5 extension of CDF-2, which is supported by the Parallel-NetCDF
library. However, only very few applications understand this format, and initial testing
on Juqueen revealed problems with reading correct data in massively parallel read
operations. Another solution, which is adopted here, is to use the newer NetCDF-4
format, which supports parallel I/O through PHDF5. This requires upgrading the parallel10

I/O library PIO from v1.7.1 to 1.9.15, and modifying the I/O framework of the MPAS-
A model code. Motivated by this study, MPAS-A v4.0, released at the time of writing,
supports NetCDF-4 I/O without any need to modify the software framework.

Further, the generation of the model input data becomes a large computational prob-
lem which cannot be fit on a single machine due to time constraints and memory limi-15

tations. In MPAS release v3.1, the pre-processing of the data is partly a serial process
running on one CPU core only. Hence, a parallelisation of the pre-processing is re-
quired in addition to the above changes to the I/O routines. These changes are applied
to the basic MPAS-A v3.1 code, and this modified version is used in the following scal-
ing experiments.20

Another difference from the default model configuration presented in Sect. 2.2 is that
each test is run for 1 h model time only. This implies that the update of the surface
data (sea-surface temperature, sea-ice fraction), which occurs every 24 h in the above
moderate scaling tests, is dropped. Also, with a global resolution of 3 km, it is generally
agreed that no convection scheme is required, since the microphysics scheme is able25

to generate the convective precipitation systems on the grid scale. These modifications
are reflected in the model namelist in Appendix C.
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The pre-processing consists of two steps. First, a static data set is produced
(static.nc), which maps invariants such as terrain height, landmask and land use
classification onto the 3 km mesh. These invariant fields are required as input for the
subsequent generation of the initial conditions (init.nc), in part because the ter-
rain field is necessary for the generation of the height-based vertical grid. The parallel5

pre-processing steps require special mesh partitions, different from the partitions gen-
erated by METIS and used for the model runs. Here, both steps are conducted with
576 cores, spread across 80 nodes on the ForHLR1 to provide sufficient memory for
each task. Each step takes about 1 h 15 m realtime and requires around 4.6 TB of the
available 5.1 TB of memory. The resulting initial conditions file has a size of 1.2 TB and10

is transferred to Juqueen over the 10 Gb internet connection between the two HPC
sites. Since both pre-processing steps are only required once, no further investigation
or optimisation of the runtimes is attempted.

4.2 First attempts and optimisations

Initial test runs at 3 km resolution revealed previously unknown problems on the sys-15

tem. As described in Sect. 2.2, a bootstrapping step is required during the model initial-
isation to set up the grid and instruct individual tasks with whom to share information
about neighbouring grid cells. In the MPAS code, this is implemented using hash ta-
bles. In order to complete the bootstrapping in a reasonable time, the hash table size
(parameter TABLESIZE) is increased from the default value 27 183 to 6 000 000. Af-20

ter this adjustment, the bootstrapping step takes between 18 and 29 min on Juqueen,
depending on the number of MPI tasks (see Table 1). A second bottleneck is the read-
ing of the initial conditions file. Performance improvements for this step are achieved
by setting two runtime environment variables that were presented during the tuning
and porting workshop (BGLOCKLESSMPIO_F_TYPE, ROMIO_HINTS), and by optimis-25

ing the number of I/O tasks. While in the previous scaling tests all tasks participate in
the I/O, we find improvements when using only 128 I/O tasks per rack, with an average
read performance of 1.2 GBs−1 on 4–28 racks and an average write performance of
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0.6 GBs−1, respectively. One rack contains 16 384 nodes and is often used as conve-
nient unit instead of the large number of nodes on Juqueen.

With these optimisations, the parallel reading of the initial conditions file improves
slightly with the number of tasks, since they are located in different racks. Conversely,
the bootstrapping step takes longer for larger numbers of tasks. Hence, the overall5

model initialisation is to some degree independent of the number of tasks and takes
approximately 45 min for the 3 km mesh. One notable exception here is the run on 8
racks, for which the initial I/O is only 50 % of that of the other runs. The exact reasons
for this behaviour needs to be investigated, but we think that this combination of file
size and I/O tasks is a sweet spot on Juqueen.10

4.3 Execution of extreme scaling tests

The substantial memory requirements for the 3 km mesh do not allow to run the model
on 1 or 2 racks only. The baseline for our scaling experiment is therefore the run on
4 racks (65 536 MPI tasks, 512 I/O tasks, 65 TB memory). Contrary to the model ini-
tialisation, the time integration step scales very well up to the entire machine, with15

a parallel efficiency of 87 % for 24 racks (393 216 tasks) compared to the baseline (see
Table 1). The test run on the full system (28 racks, 458 752 tasks) shows a lower perfor-
mance than the run on 24 racks and a parallel efficiency of nearly 70 %, since the MPI
overhead becomes significant for only 142 owned cells per task. All scaling tests are
conducted with an 18 s model integration time step for a 1 h model time. However, we20

find that in order to keep the model stable when starting off the 3 km mesh from initial
conditions derived from a 48 km re-analysis dataset (CFSR), a more conservative time
step is required. MPAS currently lacks a dynamical initialisation system (e.g., digital
filters, adaptive time-stepping), which could avoid this issue. Model instabilities lead-
ing to NaNs can affect the performance in different ways: (1) the performance might25

increase in case if-NaN-tests may cause the code to return early from computationally
intensive physics routines, or (2) the performance might decrease due to the continu-
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ous generation of floating-point exceptions. We therefore repeat the runs for 4, 8, and
16 racks with a 12 s time step to obtain a stable model run. The measured realtimes
for the three 12 s runs are very close to 1.5 times the realtimes for the corresponding
18 s runs, which gives us confidence that we can scale the results for 24 and 28 racks
with an 18 s time step to a 12 s time step, despite the fact that the runs with an 18 s5

timestep produced NaNs.
Table 1 and Fig. 21 summarise the required times of the individual steps of the 3 km

runs with an 18 s integration time step. Due to walltime constraints, we only conduct
runs without writing output to disk. The last column in Table 1 estimates how many
hours the 3 km model can be advanced within 24 h walltime, and is calculated as fol-10

lows: a 12 s model integration time step is assumed, and the realtime required is scaled
from the 18 s runs by a factor of 1.5 for 24 and 28 racks, for which no 12 s runs are con-
ducted. For a typical production run, diagnostic output files of 13 GB size are written
every 3 h model time, while comprehensive output files of approximately 250 GB size
are written every 24 h model time. A restart file of 2.1 TB size is written at the end of15

the model run. Based on a parallel write performance of 0.6 GBs−1, we make a con-
servative estimate that roughly two hours of the 24 h walltime will be used up by writing
these files to disk. Tables G1 and G2 list the file sizes and the cheapest and fastest
model runs for the 3 km mesh on Juqueen.

We conclude from this extreme scaling test that the dynamical solver of MPAS scales20

on massively parallel systems out to hundreds of thousands of cores. Our results con-
firm that the model behaves similar for the 3 km mesh than for the significantly smaller
problem sizes and that the parallel efficiency is limited by the same factors, namely
the increasing number of halo cells and amount of communication for large number of
tasks. For all tests on Juqueen, this occurs around 150 owned cells per task, which cor-25

responds to roughly 437 000 tasks for the 3 km mesh. However, we find that the model
initialisation and the disk I/O become increasingly important and at the same time diffi-
cult to improve for extremely large test cases. Compared to the model integration, the
time required for the model initialisation and for reading and writing data is largely in-

7020

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6987/2015/gmdd-8-6987-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6987/2015/gmdd-8-6987-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 6987–7061, 2015

MPAS: an extreme
scaling experiment

D. Heinzeller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

dependent of the number of tasks. For a maximum walltime of 24 h on Juqueen, these
steps consume up to 3 h or 10–15 % of the total job time – in other words, hundreds
of thousands of CPUh. The cheapest run on Juqueen utilises 4 racks (65 536 tasks),
consumes 1.3 Mio CPUh for a 24 h model integration and gives a speedup of 1.2 ×
realtime. For 24 racks (393 216 tasks), a speedup of 6.3 × realtime is achieved at the5

slightly higher expense of 1.5 Mio CPUh.

5 Conclusions

In this study, we analyse the atmospheric model MPAS-A in detail for its numerical per-
formance and for its physical accuracy. We conduct scaling tests for three medium-size
problems using regular and variable meshes of different complexity on four different10

HPC facilities. We confirm an overall good scaling ('70 % parallel efficiency) of MPAS
across all systems and find that a robust limit for the breakdown of the parallel per-
formance is given by the numbers of cells owned by each task of the parallelisation.
This number ranges between 150 and 600 for a parallel efficiency of 70 % when setup
and I/O costs are included in the scaling, and depends on the interconnect of the15

system, with faster interconnects corresponding to lower values, but also on the I/O
performance and the graph partitioning. Taking into account that the setup costs are
amortised over longer runs, MPAS-A maintains a parallel efficiency of 80 % or better
for more than 150 owned cells per task. Based on these findings, we provide numbers
on the typical file sizes and optimal model configurations for conducting research and20

operational runs on the different HPC systems.
An in-depth analysis of the properties of different graph partitions for one of the

meshes shows that the impact of non-contiguous graph partitions in form of changes
in the number of halo cells is negligible for any reasonable number of tasks for a given
problem size. We further employ the parallel profiling tools Scalasca and Score-P to25

identify the bottlenecks in the MPAS-A code when the parallel performance breaks
down. Our findings confirm that most of the time in such cases is spent waiting during
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the communication with neighbouring tasks, but also demonstrate the negative impact
that computational imbalances can have on the model performance.

We also study the accuracy of MPAS-A for one common and challenging problem in
climate research, namely the capability to reproduce the dynamics of the West African
Monsoon and its associated precipitation. We conduct 11 month simulations for two5

meshes, a regular 120 km mesh and a variable 60–12 km mesh, and compare the
model output to a number of observation data sets, selected re-analyses and a refer-
ence model run. The reference model run is chosen from a novel set of regional climate
simulations over West Africa within the framework of the WASCAL programme and em-
ploys the regional climate model WRF, from which MPAS inherits several aspects of the10

dynamical solver and all of its physical parameterisation schemes.
We find that MPAS-A is able to model the monsoon dynamics and the northwards

movement of the monsoon rain band. Despite using an “out-of-the-box” configuration
of the model, both runs reproduce the timing of the onset of the monsoon season
better than the optimised WRF reference run. However, we find that the precipitation15

in the early monsoon season is overestimated, which we attribute to the choice of
physics parameterisations. The MPAS model runs also show a cold bias in the near-
surface temperature and consequently fail to place the Saharan Heat Low at the correct
location, which we believe stems from a too short spin up time of the model. To confirm
this hypothesis, longer model runs are required that span at least one entire monsoon20

season in order to adjust the soil conditions.
In the last part of this study, we conduct extreme scaling tests on a global 3 km

mesh with more than 65 million grid cells on up to 458 752 cores on Juqueen, the IBM
Bluegene/Q at the Forschungszentrum Jülich. We describe the issues that arise when
attempting such an experiment for the first time – up to now, MPAS-A has been run for25

real-data cases, which include a full physics suite, on a maximum number of 16 384
tasks on Yellowstone – and provide solutions that allow to conduct the scaling test in
the first place and improve the model performance. We find that the model scales very
well up to the entire machine with a parallel performance of nearly 70 % for 458 752
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tasks. We confirm that the limitations and rules to estimate the scaling, derived for
moderate problem sizes, are also valid for the extremely large test case. This gives
confidence for planning model experiments and estimating required runtimes, storage
and computational resources.

Furthermore, we identify additional aspects in the model that become increasingly5

relevant for larger problem sizes: the model initialisation and the disk I/O. We de-
scribe strategies to improve the performance of the model, which are partly machine-
dependent. We further give estimates on required runtimes and resources for conduct-
ing scientific experiments with the 3 km mesh on Juqueen.

Our next steps will be to conduct a number of longer simulation experiments on10

regular and variable-resolution meshes with a moderate number of grid cells. Specifi-
cally, we plan to pursue the study on the dynamics of the West African Monsoon using
a variable-resolution grid such as the 60–12 km mesh and a regular grid with a similarly
fine resolution. This will allow us to compare the accuracy of the model after a full spin
up of the soil conditions and to assess the impact of the variable mesh on the model15

results. It will also allow us to study physical processes such as the teleconnection
between the oceans and the African monsoon systems, and investigate the impact of
climate and land use changes in a consistent approach.

In conclusion, the MPAS-A model is a novel atmospheric model that scales well
on a range of architectures for small up to extremely large numbers of tasks. Based20

on an unstructured Voronoi mesh, it allows to conduct global simulations with local
refinement regions and smooth transition in-between them. This makes it possible to
study local-scale processes in regions of interest with a full coupling to the large-scale
motions and a physical consistency within the model. This is demonstrated here for
the example of the West African Monsoon. This study also shows that it is possible25

to conduct global, convection-resolving atmospheric simulations with MPAS on current
and future massively parallel systems. However, it is also evident that the application of
models such as MPAS for extremely large problem sizes and numbers of tasks require
substantial efforts to optimise the model to the problem and to the machine it is run on.
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In order to do so, interdisciplinary approaches and more intensive training of scientist
on hardware, software and programming techniques are necessary.

Appendix A: MPAS compiler flags

We use the following compiler optimisation flags for the Intel compilers icc and ifort on
Curie, ForHLR1 and Juropatest:5

CFLAGS = "-O3"

FFLAGS = "-real-size 64 -O3 -convert big_endian -FR"

For the IBM XL compilers mpixlc_r and mpixlf95_r on Juqueen, the following flags
are used:

CFLAGS = "-O3 -qstrict -qarch=qp -qtune=qp"10

FFLAGS = "-O3 -qstrict -qarch=qp -qtune=qp -qrealsize=8"

Appendix B: Configuration for moderate problem sizes

The following model configuration in terms of the usual namelist
(namelist.atmosphere) is used for the experiments in Sect. 2.3–2.5 (regular
120 km mesh, variable 100–25 km mesh, variable 60–12 km mesh). Differences in the15

setup (e.g., model integration time step) are indicated in namelist-style comments.
Details about the structure of the namelist file and the available options can be found
in the MPAS-Atmosphere Model User’s Guide (Duda et al., 2014).

&nhyd_model20

config_dt = 150.0 # 120km

config_dt = 120.0 # 100-25km
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config_dt = 72.0 # 60-12km

config_start_time = ’1981-09-02_00:00:00’

config_stop_time = ’1981-09-03_00:00:00’

config_run_duration = ’24:00:00’

config_len_disp = 120000.0 # 120km5

config_len_disp = 25000.0 # 100-25km

config_len_disp = 12000.0 # 60-12km

/

&damping10

config_zd = 22000.0

config_xnutr = 0.2

/

&io15

config_pio_num_iotasks = 0

config_pio_stride = 1

/

&decomposition20

config_block_decomp_file_prefix = ’part.’

/

&restart

config_do_restart =.true.25

/

&physics

config_frac_seaice =.true.
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config_sst_update =.true.

config_sstdiurn_update =.true.

config_deepsoiltemp_update =.true.

config_bucket_update = ’24:00:00’

config_bucket_rainc = 100.05

config_bucket_rainnc = 100.0

config_bucket_radt = 1.0e9

config_microp_scheme = ’wsm6’

config_convection_scheme = ’kain_fritsch’

config_lsm_scheme = ’noah’10

config_pbl_scheme = ’ysu’

config_gwdo_scheme = ’off’

config_radt_cld_scheme = ’cld_incidence’

config_radt_lw_scheme = ’rrtmg_lw’

config_radt_sw_scheme = ’rrtmg_sw’15

config_sfclayer_scheme = ’monin_obukhov’

/

Appendix C: Configuration for extreme scaling tests

For the 3 km extreme scaling tests on Juqueen, the following model configuration is
used. For details, the reader is referred to the MPAS-Atmosphere Model User’s Guide20

(Duda et al., 2014).

&nhyd_model

config_dt = 12.0

config_start_time = ’1981-09-01_00:00:00’25

config_stop_time = ’1981-09-01_01:00:00’

config_run_duration = ’01:00:00’
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config_len_disp = 3000.0

/

&damping

config_zd = 22000.05

config_xnutr = 0.2

/

&io

config_pio_num_iotasks = 512 # for 4 racks, 128 per rack10

config_pio_stride = 128

/

&decomposition

config_block_decomp_file_prefix = ’part.’15

/

&restart

config_do_restart =.false.

/20

&physics

config_frac_seaice =.false.

config_sst_update =.false.

config_sstdiurn_update =.false.25

config_deepsoiltemp_update =.false.

config_bucket_update = ’24:00:00’

config_bucket_rainc = 100.0

config_bucket_rainnc = 100.0
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config_bucket_radt = 1.0e9

config_microp_scheme = ’wsm6’

config_convection_scheme = ’off’

config_lsm_scheme = ’noah’

config_pbl_scheme = ’ysu’5

config_gwdo_scheme = ’off’

config_radt_cld_scheme = ’cld_incidence’

config_radt_lw_scheme = ’rrtmg_lw’

config_radt_sw_scheme = ’rrtmg_sw’

config_sfclayer_scheme = ’monin_obukhov’10

/
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Table 1. MPAS-A 3 km global simulation experiment (strong scaling tests).

Nodes Tasks (MPI only) Bootstrapping [s] Initial read [s]

4096 65 536 1260 1260
8192 131 072 1370 590
16 384 262 144 1560 1020
24 576 393 216 1680 1080
28 672 458 752 1740 1140

Nodes Integration time f. Parallel efficiency Integration in
1 h model time [s] integration only 24 h walltime∗

4096 1760 100.0 % 29 h
8192 960 91.2 % 53 h
16 384 490 90.1 % 104 h
24 576 335 87.7 % 152 h
28 672 360 69.5 % 141 h

∗ Estimated time extrapolated from 1 h integration, including initial
bootstrapping/reading, output to disk, 12 s time step
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Table D1. Scaling tests for the 120 km regular mesh on the four HPC sites.

HPC site Nodes Tasks Realtime [s] CPUh Parallel Cells/
per 24 h per 24 h efficiency task

Curie 1 16 1306 5.8 100.0 % 2560
2 32 633 5.6 103.16 % 1280
4 64 377 6.7 86.6 % 640
6 96 305 8.1 71.37 % 427
8 128 269 9.6 60.69 % 320

10 160 236 10.5 55.34 % 256
12 192 212 11.3 51.34 % 213
16 256 187 13.3 43.65 % 160
24 384 182 19.4 29.9 % 107
32 512 181 25.7 22.55 % 80

ForHLR1 1 20 863 4.8 100.0 % 2048
2 40 486 5.4 88.79 % 1024
3 60 317 5.3 90.75 % 683
4 80 255 5.7 84.61 % 512
6 120 190 6.3 75.7 % 341
8 160 149 6.6 72.4 % 256

10 200 135 7.5 63.93 % 205
12 240 128 8.5 56.18 % 171
16 320 127 11.3 42.47 % 128
18 360 131 13.1 36.6 % 114
20 400 130 14.4 33.19 % 102

Jtest-full 1 28 651 5.1 100.0 % 1463
2 56 333 5.2 97.75 % 731
4 112 177 5.5 91.95 % 366
6 168 133 6.2 81.58 % 244
8 224 109 6.8 74.66 % 183

10 280 102 7.9 63.82 % 146
12 336 92 8.6 58.97 % 122
15 420 91 10.6 47.69 % 98

Jtest-half 1 14 1172 9.1 100.0 % 2926
2 28 628 9.8 93.31 % 1463
4 56 317 9.9 92.43 % 731
6 84 220 10.3 88.79 % 488
8 112 167 10.4 87.72 % 366

10 140 142 11.0 82.54 % 293
15 210 95 11.1 82.25 % 195
20 280 87 13.5 67.36 % 146
25 350 88 17.1 53.27 % 117
30 420 99 23.1 39.46 % 98

Juqueen 32 512 661 94.0 100.0 % 80
64 1024 477 135.7 69.29 % 40
96 1536 586 250.0 37.6 % 27

128 2048 608 345.9 27.18 % 20
192 3072 751 640.9 14.67 % 13
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Table E1. Scaling tests for the 100–25 km variable mesh on the four HPC sites.

HPC site Nodes Tasks Realtime [s] CPUh Parallel Cells/
per 24 h per 24 h efficiency task

Curie 1 16 6086 27.05 100.0 % 10 240
4 64 1528 27.16 99.57 % 2560
8 128 782 27.8 97.28 % 1280

16 256 424 30.15 89.71 % 640
24 384 314 33.49 80.76 % 427
32 512 265 37.69 71.77 % 320
48 768 223 47.57 56.86 % 213
64 1024 263 74.81 36.16 % 160
96 1536 271 115.63 23.39 % 107

128 2048 293 166.68 16.23 % 80
192 3072 541 461.65 5.86 % 53

ForHLR1 1 20 4413 24.52 100.0 % 8192
4 80 1129 25.09 97.72 % 2048
8 160 555 24.67 99.39 % 1024

10 200 474 26.33 93.1 % 819
15 300 346 28.83 85.03 % 546
20 400 316 35.11 69.83 % 410
25 500 257 35.69 68.68 % 328
30 600 239 39.83 61.55 % 273
40 800 253 56.22 43.61 % 205
45 900 196 49.0 50.03 % 182
50 1000 208 57.78 42.43 % 164
55 1100 217 66.31 36.98 % 149
60 1200 210 70.0 35.02 % 137

Jtest-full 1 28 3361 26.14 100.0 % 5852
2 56 1644 25.57 102.22 % 2926
4 112 807 25.11 104.12 % 1463
8 224 418 26.01 100.51 % 731

10 280 349 27.14 96.3 % 585
15 420 260 30.33 86.18 % 390
20 560 215 33.44 78.16 % 293
25 700 186 36.17 72.28 % 234
30 840 168 39.2 66.69 % 195
40 1120 180 56.0 46.68 % 146
50 1400 186 72.33 36.14 % 117

Jtest-half 1 14 5405 42.04 100.0 % 11 703
2 28 2766 43.03 97.7 % 5852
4 56 1487 46.26 90.87 % 2926
8 112 734 45.67 92.05 % 1463

10 140 620 48.22 87.18 % 1170
15 210 407 47.48 88.53 % 780
20 280 323 50.24 83.67 % 585
30 420 233 54.37 77.32 % 390
40 560 286 88.98 47.25 % 293
50 700 229 89.06 47.21 % 234
55 770 226 96.68 43.48 % 213

Juqueen 32 512 2250 320.0 100.0 % 320
64 1024 1365 388.27 82.42 % 160
96 1536 1323 564.48 56.69 % 107

128 2048 1168 664.46 48.16 % 80
160 2560 1004 713.96 44.82 % 64
192 3072 940 802.13 39.89 % 53
256 4096 700 796.44 40.18 % 40
384 6144 554 945.49 33.84 % 27
512 8192 562 1278.86 25.02 % 20

1024 16 384 1749 7959.89 4.02 % 10
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Table F1. Scaling tests for the 60–12 km variable mesh on the four HPC sites.

HPC site Nodes Tasks Realtime [s] CPUh Parallel Cells/
per 24 h per 24 h efficiency task

Curie 1 16 27 428 121.9 100.0 % 33 472
4 64 7715 137.2 88.88 % 8368
8 128 3955 140.6 86.69 % 4184

16 256 2025 144.0 84.65 % 2092
24 384 1349 143.9 84.72 % 1395
48 768 777 165.8 73.54 % 697
64 1024 690 196.3 62.11 % 523
96 1536 567 241.9 50.39 % 349

128 2048 484 275.3 44.27 % 262
192 3072 505 430.9 28.29 % 174
256 4096 628 714.5 17.06 % 131
384 6144 604 1030.8 11.83 % 87

ForHLR1 2 40 10 967 121.9 100.0 % 13 389
4 80 5645 125.4 97.14 % 6694
8 160 2876 127.8 95.33 % 3347

15 300 1584 132.0 92.31 % 1785
20 400 1234 137.1 88.87 % 1339
30 600 922 153.7 79.3 % 893
40 800 720 160.0 76.16 % 669
50 1000 704 195.6 62.31 % 536
60 1200 649 216.3 56.33 % 446
80 1600 635 282.2 43.18 % 335

100 2000 543 301.7 40.39 % 268
120 2400 459 306.0 39.82 % 223

Jtest-full 1 28 17 151 133.4 100.0 % 19 127
2 56 8552 133.0 100.27 % 9563
8 224 2106 131.0 101.8 % 2391

10 280 1704 132.5 100.65 % 1913
15 420 1113 129.9 102.73 % 1275
20 560 862 134.1 99.48 % 956
25 700 716 139.2 95.82 % 765
30 840 613 143.0 93.26 % 638
40 1120 507 157.7 84.57 % 478
50 1400 437 169.9 78.49 % 383
55 1540 428 183.1 72.86 % 348

Jtest-half 1 14 29 000 225.6 100.0 % 38 254
2 28 14 487 225.4 100.09 % 19 127
4 56 7143 222.2 101.5 % 9563
8 112 4126 256.7 87.86 % 4782

10 140 2833 220.3 102.36 % 3825
15 210 2133 248.9 90.64 % 2550
20 280 1583 246.2 91.6 % 1913
30 420 1097 256.0 88.12 % 1275
40 560 784 243.9 92.47 % 956
50 700 624 242.7 92.95 % 765
55 770 621 265.7 84.91 % 696

Juqueen 32 512 11 800 1678.2 100.0 % 1046
64 1024 6950 1976.9 84.89 % 523
96 1536 4490 1915.7 87.6 % 349

128 2048 4100 2332.4 71.95 % 262
192 3072 2991 2552.3 65.75 % 174
256 4096 2979 3389.4 49.51 % 131
384 6144 2514 4290.6 39.11 % 87
512 8192 2468 5616.1 29.88 % 65
640 10 240 4462 12 691.9 13.22 % 52

1024 16 384 9863 44 887.6 3.74 % 33
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Table G1. File sizes of input (I) and output (O) files for all meshes (uncompressed netCDF3/4).
For a given mesh with n grid cells, an estimate of the required file sizes is calculated from the
other runs.

Mesh Cells init.nc diag.nc restart.nc output.nc

(I) (O) (O) (O)

120 km 40 962 758 MB 8.7 MB 1.6 GB 153 MB
100–25 km 163 842 3.0 GB 33 MB 6.0 GB 597 GB
60–12 km 535 554 9.7 GB 107 MB 20 GB 2.0 GB
3 km 65 536 002 1.2 TB 13 GB 2.4 TB 250 GB

n 19.7 kB×n 0.22 kB×n 38.8 kB×n 4.0 kB×n
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Table G2. Summary of the scaling tests: cheapest and fastest model run configurations for
a 24 h model integration with disk I/O enabled (rt= realtime).

HPC site Nodes CPUh Nodes Speedup
cheapest run cheapest run fastest run fastest run

Regular 120 km mesh
Curie 2 5.6 32 477× rt
ForHLR1 1 4.8 12 675× rt
Juqueen 32 94.0 64 181× rt
Jtest-half 1 9.1 20 993× rt
Jtest-full 1 5.1 15 949× rt

Variable 100–25 km mesh
Curie 1 27.1 48 387× rt
ForHLR1 1 24.5 45 441× rt
Juqueen 32 320 384 156× rt
Jtest-half 1 42.0 50 488× rt
Jtest-full 4 25.1 30 514× rt

Variable 60–12 km mesh
Curie 1 122 128 179× rt
ForHLR1 2 122 120 188× rt
Juqueen 32 1678 512 35× rt
Jtest-half 3 216 55 139× rt
Jtest-full 15 130 55 202× rt

Regular 3 km mesh
Juqueen 4096 1.3 Mio 24 576 6.3× rt
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C-grid staggering  
of state variables

Horizontal, unstructured  
Voronoi mesh (SCVTs)

Dual Delaunay  
CVT grid (triangles)

Figure 1. (left) Voronoi mesh used for the horizontal grid; (right) C-grid staggering of state
variables (adapted from Skamarock et al., 2012).
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Figure 2. A block of owned cells (blue) assigned to an MPI task, along with two layers of halo
cells (red, orange).
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Figure 3. (left) Regular 120 km mesh with 40 962 grid cells; (right) partitioning for 64 tasks.
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Figure 4. Scaling of the 120 km regular mesh test case.
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Figure 5. (left) Approximate mesh cell sizes of the variable 100–25 km mesh with 163842 grid cells; (right)

distribution of mesh cell sizes.

tasks, 167 owned cells per task), and 60 nodes on Jtest-half (840 tasks, 195 owned cells per task).325

Good scaling is achieved up to 32 nodes on Curie (512 tasks, 320 owned cells per task), 20 nodes on

ForHLR1 (400 tasks, 410 owned cells per task), 25 nodes on Jtest-full (700 tasks, 234 owned cells

per task), and 35 nodes on Jtest-half (490 tasks, 334 owned cells per task). The parallel efficiency on

average drops from about 90% to 40% within the transition zone (shaded area in Fig. 6, 600 to 150

cells owned per task), similar to the first test case on the regular 120 km mesh.330

Notably different to the previous test case are the measured runtimes for Jtest-full and Jtest-half:

For small numbers of tasks, the Jtest-full runs show a worse performance due to the aforementioned

memory bandwidth limitations. For large numbers of tasks (nodes), the increase in inter-node MPI

communication, which impacts the Jtest-half runs more than the Jtest-full runs, becomes the limiting

factor and decreases the performance of the Jtest-half runs below that of the Jtest-full runs. With335

respect to the remaining HPC systems, a clear separation of the parallel efficiency by interconnect

technology as for the 120 km test case cannot be seen here, due to the following reasons:

Firstly, the disk I/O demand scales with the number of grid cells and is larger by a factor of 4 for

this mesh (see Table 5 in G). As we will see in the following sections, in particular for the extreme

scaling experiments in Sect. 4, the disk I/O becomes increasingly important for larger problem sizes340

and can consume a significant part of the total runtime. The I/O is routed differently at the four HPC

sites, the central storage systems have different bandwidths and block sizes, and the parallel I/O

libraries might perform differently, depending on the compilers and compilation flags. Additionally,

in this test case we adopt an integration time step of 120 s (4.8 s per km grid size), which implies a

smaller fraction of the total time spent for the actual time integration relative to the disk I/O.345

Secondly, the graph partitioning adds another layer of complexity and variability to the perfor-

mance diagnostics. Figures 8–9 display key properties of the graph partitions for the three test cases.

The above-mentioned linear relationship between the communication volume and the number of

tasks also holds for the variable 100–25 km mesh up to about 40 owned cells per task (4000 tasks).

12

Figure 5. (left) Approximate mesh cell sizes of the variable 100–25 km mesh with 163 842 grid
cells; (right) distribution of mesh cell sizes.
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Figure 6. Scaling of the 100–25 km variable mesh test case.
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Figure 7. Ratio of (left) total number of cells, (mid) number of owned cells, and (right) number of halo cells

per task between the non-contiguous and the contiguous graph partition of the variable 100–25 km mesh for

300 tasks.

tition using the command line arguments -contig -minconn for METIS, which results in an

increase of the edge cut from 58031 to 58870 (1.4%). Figure 7 displays the total number of cells

(nCellsByTask), the number of owned cells (nCellsSolveByTask), and the number of halo cells per370

task (nHaloCellsByTask) as ratio between the non-contiguous and the contiguous partition. Since

the communication volume increases for the contiguous partition, the total number of cells per task

on average is larger, too. The average number of owned cells is identical, since the number of cells

of the graph does not change. Notably, task 200 has a 1.3 times larger number of halo cells for the

non-contiguous partition, since its partition consists of two separate patches, which implies a larger375

number of neighbouring tasks and of surrounding halo cells. To eliminate the influence of the disk

I/O on the runtimes for the two partitions, we switch off the output to disk. We find that the measured

runtimes for the model integration is practically identical for the two runs (251 s non-contiguous vs.

255 s contiguous). For 300 tasks, the average ratio of halo cells to owned cells is 1 : 2.8, which might

be too small to see the effect of the additional halo cells in the non-contiguous partition. We there-380

fore repeat the test for non-contiguous and contiguous partitions for 2520 tasks (65 owned cells per

task), with a corresponding ratio of 1.2 : 1 halo cells to owned cells. Even in this case, the measured

runtimes for the model integration are nearly identical (45.2 s contiguous vs. 45.6 s non-contiguous).

We conclude therefore that the impact of non-contiguous partitions on the runtime is negligible for

any reasonable number of tasks for a given mesh.385

Although the number of grid cells is 4 times larger for this test case than for the regular 120 km

mesh, the problem size is still too small for application on Juqueen. The two smallest possible par-

allel runs with 512 and 1024 tasks correspond to 320 and 160 cells owned per task, for which the

decrease in parallel efficiency is 20%. Runs with larger number of tasks all have parallel efficiencies

of less than 60%. Table 6 in G lists the cheapest and fastest model runs for the four HPC sites.390

14

Figure 7. Ratio of (left) total number of cells, (mid) number of owned cells, and (right) number
of halo cells per task between the non-contiguous and the contiguous graph partition of the
variable 100–25 km mesh for 300 tasks.

7047

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6987/2015/gmdd-8-6987-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6987/2015/gmdd-8-6987-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 6987–7061, 2015

MPAS: an extreme
scaling experiment

D. Heinzeller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 8. Communication volume as function of number of tasks for the three test cases (left:
120 km; middle: 100–25 km; right: 60–12 km). For large numbers of tasks, the relationship be-
comes non-linear.
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Figure 9. Number of non-contiguous partitions for the three test cases (left: 120 km; middle:
100–25 km; right: 60–12 km). For Juqueen, highly non-contiguous partitions occurring for large
numbers of tasks are indicated with red lines.
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Figure 10. (left) Approximate mesh cell sizes of the variable 60–12 km mesh with 535 554 grid
cells; (right) distribution of mesh cell sizes.
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Figure 11. Scaling of the 60–12 km variable mesh test case.
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Figure 12. Total runtimes [s] for the variable 60–12 km mesh with 535 554 grid cells, indicated
are time ratios between the Linux-cluster systems Curie, ForHLR1 and Juropatest, and the
Bluegene system Juqueen.
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(a) MPAS 120 km, total time (b) MPAS 100–25 km, total time (c) MPAS 60–12 km, total time

(d) MPAS 120 km, parallel efficiency (e) MPAS 100–25 km, parallel efficiency (f) MPAS 60–12 km, parallel efficiency

Figure 13. (a)–(c) Required time for a 24 h integration [s] and (d)–(f) parallel efficiency [%] separated into

time integration, model setup and disk output for the three test cases on Jtest-full. Also displayed are the total

time/efficiency and a combination of time integration and disk output to reflect the parallel performance of

MPAS-A for longer model runs, for which the initial setup costs are amortised.

per task) and the 1024-task run on the 100–25 km mesh (160 owned cells per task), which are both

close to the lower limit of good scaling (70% parallel efficiency).

As discussed previously, halo cells are added around each patch of the individual tasks, for which465

communication with the neighbouring tasks is required. The larger the number of tasks, the smaller

the number of owned cells per tasks, and the larger the ratio between halo cells and owned cells.

The piecharts in Fig. 14 illustrate the percentages of time spent in selected routines for both runs.

The total time spent for communication (grey to black colours: exchange halo fields, bootstrapping

(initial), all-to-all min/max values) is 30–31% for both runs. Since the bootstrapping is only required470

during model initialisation to set up the halo fields and exchange lists, it becomes less important in

the context of longer runs. On Juqueen, these longer runs will use 23–24% of the model integration

time for MPI communication. A detailed analysis of the Scalasca report reveals that most of this

19

Figure 13. (a–c) Required time for a 24 h integration [s] and (d–f) parallel efficiency [%] sep-
arated into time integration, model setup and disk output for the three test cases on Jtest-full.
Also displayed are the total time/efficiency and a combination of time integration and disk output
to reflect the parallel performance of MPAS-A for longer model runs, for which the initial setup
costs are amortised.
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Variable 100-25km mesh, 1024 tasks

6%
11%

19%

8%
4% 9%

3%
5%

15%

1%

12%

7%

Bootstrapping (initial) Reading initial conditions
Boundary updates (read) Physics (micro, lwrad, other)
All-to-all min/max values Solve diagnostics
Advance scalars Acoustic time step
Compute/add tendencies Exchange halo fields
Build/write output stream Miscellaneous

Variable 60-12km mesh, 2048 tasks

9%

11%

16%

8%
4% 9% 3%

7%

12%

5%

9%

7%

Figure 14. Scalasca/Score-P profiles for two selected runs on Juqueen to investigate the limita-
tions for the breakdown of the parallel efficiency: (left) 1024-task run on the variable 100–25 km
mesh with 163 842 grid cells; (right) 2048-task run on the variable 60–12 km mesh with 535 554
grid cells.
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Figure 15. Model topography (terrain height in m) for the WRF reference and the two MPAS
model runs for the West African WRF domain. The left panel also indicates five distinct agro-
climatical zones, following a gradient of decreasing annual precipitation from South to North.
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Figure 16. (top) Mean near-surface temperature (over land) in ◦C for July 1982 for the three
observational data sets CRU, UDEL, GHCN, the WRF reference and the two MPAS model runs;
(bottom) annual cycle of mean near-surface temperature over the entire land area and the five
agro-climatical zones depicted in Fig. 15.
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Figure 17. (top) Monthly precipitation (over land) in mm for July 1982 for the three observational
data sets CRU, UDEL, GPCC, the WRF reference and the two MPAS model runs; (bottom)
annual cycle of monthly precipitation over the entire land area and the five agro-climatical zones
depicted in Fig. 15.
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Figure 18. (a) Mean sea level pressure, (b) mean soil temperature, and (c) mean relative soil
moisture over land for July 1982 for the WRF reference and the MPAS model runs.
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Figure 19. Annual cycle of (left) mean sea level pressure in hPa, (middle) mean soil temperature in �C, and

(right) mean relative soil moisture in % over land for the WRF reference and the MPAS model runs.

Figure 20. Mean near-surface temperature in �C for July 1982 for the three re-analyses CFSR, ERA-Interim

and MERRA. Overlaid in white are contour lines of the mean sea level pressure in hPa in steps of 1 hPa.

does not match the bimodal distribution. This is caused by the cold bias in the two MPAS models:

The SHL, like any other non-frontal thermal low, is formed by rapid solar heating of the land surface

and the near-surface layers, which leads to a rising of hot and dense air and to the formation of a

stationary low pressure area. Thus, the cold bias in the MPAS models implies a less intense deepen-630

ing of the pressure system at the expected location of the SHL. As discussed above, the general cold

bias over all land areas persists from the onset of the MPAS model runs in September 1981 and only

starts to vanish from June to July 1982 on. This is reflected in the temporal evolution of the mean sea

level pressure (Fig. 19, left panel), integrated over all land areas, which is highest for MPAS-120r,

lowest for WRF-12r, in-between for MPAS-12v, and merging towards each other from June 1982635

on.

A final investigation of the soil properties in Fig. 18 (b)–(c) and Fig. 19 (middle and right panel)

reveal the root cause of the cold temperature bias and the associated displacement of the low pressure

system. Starting from the MPAS model initialisation in September 1981, the soil temperature is about

2�C lower then for the WRF model run, which is initialised in January 1979 and thus has more than640

2 years to spin up the land surface model (NOAH LSM for both WRF and MPAS). Over the course

28

Figure 19. Annual cycle of (left) mean sea level pressure in hPa, (middle) mean soil tempera-
ture in ◦C, and (right) mean relative soil moisture in % over land for the WRF reference and the
MPAS model runs.
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Figure 20. Mean near-surface temperature in ◦C for July 1982 for the three re-analyses CFSR,
ERA-Interim and MERRA. Overlaid in white are contour lines of the mean sea level pressure in
hPa in steps of 1 hPa.
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Figure 21. Required times for individual steps of the 3 km test runs on Juqueen (18 s time step).
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