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Abstract

The Model for Prediction Across Scales (MPAS) is a novel set of earth-system simulation
components and consists of an atmospheric model, an ocean model and a land-ice model.
Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to
address shortcomings of global models on regular grids and of limited area models nested
in a forcing data set, with respect to parallel scalability, numerical accuracy and physical
consistency. This concept allows to include the feedback of regional land use information
on weather and climate at local and global scale in a consistent way, impossible to achieve
with traditional limited area modelling approaches.

Here, we present an in-depth evaluation of MPAS with regards to technical aspects of
performing model runs and scalability for three medium-size meshes on four different High
Performance Computing sites with different architectures and compilers. We uncover model
limitations and identify new aspects for the model optimisation that are introduced by the
use of unstructured Voronoi meshes. We further demonstrate the model performance of
MPAS in terms of its capability to reproduce the dynamics of the West African Monsoon
and its associated precipitation in a pilot study. Constrained by available computational
resources, we compare 11-month runs for two meshes with observations and a reference
simulation from the Weather Research & Forecasting (WRF) model. We show that MPAS
can reproduce the atmospheric dynamics on global and local scale in this experiment, but
identify a precipitation excess for the West African region.

Finally, we conduct extreme scaling tests on a global 3 km mesh with more than 65 million
horizontal grid cells on up to half a million cores. We discuss necessary modifications of the
model code to improve its parallel performance in general and specific to the HPC environ-
ment. We confirm good scaling (70 % parallel efficiency or better) of the MPAS model and
provide numbers on the computational requirements for experiments with the 3 km mesh.
In doing so, we show that global, convection-resolving atmospheric simulations with MPAS
are within reach of current and next generations of high-end computing facilities.
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1 Introduction

The weather- and climate-modelling community is currently seeing a shift in paradigm
from limited area models towards novel approaches involving global, complex and irreg-
ular meshes. Yet, regional models are commonly used in numerical weather prediction and
to study past, current and future climate at high spatial and temporal resolution over ar-
eas of specific interest. A wealth of such models exists nowadays, which differ in their
discretisation of the computational grid, their implementation of the numerical solvers, their
parameterisation of physical processes, and most notably in their simulation results (e.g.,
Smiatek et al., 2009; Nikulin et al., 2012). Despite these differences, they share the common
principle of nested modelling: Regional climate information is generated by supplying a set
of initial conditions as well as time-varying lateral boundary conditions (LBCs; large-scale
atmospheric fields such as wind, temperature, geopotential height and hydrometeors) and
lower boundary conditions (sea-surface temperature, sea ice) to the regional model. The
idea behind this approach is that the LBCs keep the regional climate model (RCM) solution
consistent with the forcing atmospheric circulation, while small-scale patterns are gener-
ated with higher accuracy due to the increase in temporal and spatial resolution. Sub-grid
scale processes in the RCM are included through parameterisations, which can be entirely
different from those of the forcing global circulation model (GCM).

Supplying lateral boundary conditions to nested models can cause severe problems, up
to the point where the RCM solution becomes inconsistent with the forcing data (Davies,
1983; Warner et al., 1997; Harris and Durran, 2010; Park et al., 2014). Starting off as
an initial-value problem, the RCM solution gradually becomes a boundary value problem,
which from a mathematical point of view represents a fundamentally ill-posed boundary
value problem (Staniforth, 1997; Laprise, 2003). This is less of an issue in the context
of numerical weather prediction (NWP), where typical model runtimes are 3 to 15 days,
than in seasonal forecasting (weeks to months) and in regional climate modelling (years to
centuries).
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A common problem for both short- and long-term forecasting is that the solution of the
RCM seems to vary with the size of the computational domain, as well as location and
season (Caya and Biner, 2004; Leduc and Laprise, 2008; Caron, 2013). Several authors
have shown that nudging techniques (grid or spectral nudging) towards the large-scale
features of the forcing model can reduce these adverse effects, but that they can also hide
model biases (von Storch et al., 2000; Miguez-Macho et al., 2004).

Further, the technique of grid nesting introduces discontinuities in spatial resolution be-
tween the regional model and the coarser-grid driving model, as well as between the nests
within the regional model itself. For a typical refinement ratio of 3, two-thirds of the spa-
tial wave-number spectrum present in the fine mesh are absent in the coarse mesh (Park
et al., 2014). This implies that (a) these features must be spun up for inflows into the higher-
resolution domain, and that (b) these wave numbers are reflected at the domain boundary
for outflows from the high-resolution domain to the coarser domain. To address the latter
issue, filters that are efficient over a large range of wave numbers are required. The tempo-
ral interpolation required by nesting can introduce further numerical artefacts, in particular
when interpolating forcing LBCs, usually available at 3–6 h timesteps, to the model integra-
tion time step of the high-resolution domain (typically 6 s per 1 km grid size).

One obvious solution is to avoid using LBCs and nesting by running a global model at
the resolution required for the area of interest. This, however, is prohibitively expensive or
simply not feasible, even on the latest generations of supercomputers. An intermediate ap-
proach therefore is to run a global model at a moderate resolution and use a smooth mesh
transition on a variable-resolution grid, where filters are efficient at the local scale of the
corresponding grid cell (Ringler et al., 2011). Beside the here-discussed MPAS model, few
other recent developments such as ICON (ICOsahedral Non-hydrostatic model, Zaengel
et al., 2015), adopt this strategy. Applying such models for mid- and long-term regional cli-
mate simulations has only recently become possible and requires substantial computational
power.
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The Model for Prediction Across Scales (MPAS)1 is a recent numerical modelling frame-
work that includes an atmospheric model MPAS-A (Skamarock et al., 2012), an ocean
model MPAS-O (Ringler et al., 2013), and a land-ice model MPAS-LI. The MPAS model is
a collaborative project, led by the National Center for Atmospheric Research (NCAR) and
the Los Alamos National Laboratory (LANL). The three components of MPAS in principle
form a so-called Earth System Model (ESM), but a coupler between them is not yet avail-
able. A common feature of the three MPAS constituents are unstructured, centroidal Voronoi
meshes (spherical centroidal Voronoi tessellations, SCVTs Du et al., 2003), which allow the
generation of global, irregular, variable-resolution meshes with smooth transitions between
areas of different refinement.

The atmospheric model MPAS-Atmosphere is a global, fully-compressible non-
hydrostatic model using finite-volume numerics. Based on the Voronoi mesh, the model
uses a C-grid staggering for the state variables (i. e., wind components are modelled at the
faces of every cell, and the prognosed component of the wind is orthogonal to the cell face)
as described in Thuburn et al. (2009) and Ringler et al. (2010) (see Fig. 1, upper panels,
for illustration). The governing equations can then be cast in a way such that energy, mo-
mentum and water vapour content are conserved (more precisely: potential temperature,
mass and scalar mass; see Skamarock et al., 2012, Sect. 2). The MPAS-A model builds
on existing, well-established techniques of the Advanced Research Weather Research and
Forecasting model (WRF-ARW, Skamarock et al., 2008), for example the split-explicit time
integration scheme for the treatment of gravity waves and horizontally propagating acoustic
waves. It also contains a subset of WRF’s physics parameterisations that are suitable for
climate modelling purposes. While WRF uses a terrain-following hydrostatic pressure coor-
dinate for the vertical discretisation, MPAS employs a height-based terrain-following vertical
coordinate. The latter discretisation reduces artificial circulations caused by inaccuracies in
the horizontal pressure gradient term (Klemp, 2011). It should be noted here that because
MPAS was developed out of a regional climate modelling context, the typical model tops in
MPAS-A are around 30 km to 42 km, while current earth system models work with model

1http://mpas-dev.github.io
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tops of up to 100 km. At the time of writing, work is underway to increase the model tops in
MPAS-A for future applications as earth system modelling component.

Until recently, advances in computational power following Moore’s Law were mainly
driven by transistor speed and energy scaling, as well as by micro-architecture advances.
Physical limitations and practical energy concerns will create new challenges for contin-
ued performance scaling in the coming decades. In consequence, large-scale parallelism
and the use of accelerators will be required to achieve performance and energy efficiency
(Borkar and Chien, 2011). Hence, a key aspect of modern numerical codes is their ability
to scale on massively parallel systems. The quasi-uniform centroidal Voronoi meshes used
by MPAS are similar to icosahedral (hexagonal) meshes and can provide nearly uniform
resolution over the globe, as opposed to latitude–longitude grids that require polar filtering
to overcome the issue of converging grid lines at the poles. Grids requiring polar filtering
or spherical transform methods do not scale very well on massively parallel systems (Ska-
marock et al., 2012). With MPAS, an efficient parallelisation can be achieved by aligning all
grid cells in a 1-D array, with the vertical coordinate stacked on top as the second dimen-
sion (MacDonald et al., 2011). Good scaling has been achieved in early weak and strong
scaling tests. However, a thorough investigation of the scalability of MPAS on parallel and
massively parallel systems has not yet been conducted.

In this study, we investigate the performance of MPAS for different problem sizes on four
HPC facilities in Europe. For each problem, strong scaling tests are conducted on all four
platforms, which cover a range of different architectures to reflect the large variety of com-
putational systems available for research. Additionally, we conduct extreme scaling tests
using a 3 km global mesh to study the scalability of MPAS up to nearly half a million tasks
and to demonstrate that global, convection-resolving simulations are becoming possible.
We explore the limits of the MPAS model when its parallel efficiency breaks down and iden-
tify opportunities for improvement. We further derive estimates on the feasibility to conduct
longer runs at convection-resolving resolution on current HPC facilities.

We also assess the quality of the MPAS model output in terms of its accuracy for climate
modelling. We have chosen to study the particular problem of reproducing the characteris-
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tics of the West African Monsoon (WAM). The WAM is the most prominent feature of the
West African climate and accounts for the majority of the annual precipitation. Differential
heating of the ocean and the land surface cause a seasonal change of the large-scale
wind systems during boreal summer, which results in the migration of the inter-tropical
convergence zone (ITCZ) and the associated rain band northwards over the West African
continent. The WAM is driven by a complex and not yet fully understood interplay of var-
ious dynamical features (e.g., Sultan et al., 2003; Grist and Nicholson, 2001; Nicholson
and Webster, 2007). Global circulation models (GCMs) often fail to reproduce this annual
movement of the ITCZ due to their limited temporal and spatial resolution (e.g., Hourdin
et al., 2010; Sylla et al., 2010). Despite their deficiencies discussed above, regional climate
models can improve the representation of precipitation in comparison to their forcing data
set (Nikulin et al., 2012; Klein et al., 2015). Variable-resolution meshes permit resolving the
region of interest (greater West Africa in this case) at high resolution, while keeping the
model aligned with large-scale features outside of this area. It is hoped that this will lead to
an improvement of the representation of the WAM. It also opens up the possibility to study
processes such as the teleconnection between the Indian Monsoon and the West African
Monsoon (Rodwell and Hoskins, 1996), or the impact of land use changes on weather and
climate in a consistent approach.

The paper is organised as follows: in Sect. 2, we introduce the HPC facilities used for this
study, provide details about the MPAS-A code, and present the scaling experiments with
moderate problem sizes. We continue in Sect. 3 with an analysis of the physical accuracy
of the MPAS model in comparison to observational data and data from own regional cli-
mate modelling experiments. Section 4 is devoted to the extreme scaling tests, and Sect. 5
summarises our findings and gives an outlook on future modelling activities. Lastly, Sect. 6
provides information on how to access the model code and the test cases presented in
Sect. 2 and 3.
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2 Scaling experiments for moderate problem sizes

We perform strong scaling experiments for three different meshes and on four HPC facilities
in Europe. The problem sizes range from a regular 120 km mesh with 40 962 cells as the
smallest problem to a large, variable-resolution 60–12 km mesh with 535 554 grid cells. An
intermediate test case with a variable-resolution 100–25 km mesh with 163 842 grid cells is
studied as well.

2.1 HPC facilities

Two of the four HPC systems, the Très Grand Centre de Calcul (TGCC) Curie and the
Forschungszentrum Jülich (FZJ) Juqueen, belong to the largest machines in Europe and
are part of the PRACE Tier-0 pool2. The technical specifications for each of the systems
are summarised in Table 1, a brief summary is given in the following.

TGCC Curie.3 The TGCC Curie went into service in 2012 and consists of 360 “fat nodes”
and 16 “hybrid nodes”, not used in this study, and 5040 “thin nodes” with 2 eight-core Intel
Sandy Bridge CPUs. An InfiniBand QDR network is used for both the compute network
and the I/O to the global LUSTRE file system. With 3 different node types, Curie addresses
a wide range of scientific challenges.

FZJ Juqueen.4 The FZJ Juqueen is an IBM Blue Gene/Q system and was installed in
2012/13. It hosts 28 racks with 1024 nodes per rack and 16 cores per node, which totals to
458 752 physical cores. Simultaneous multi-threading (SMT) is supported by the hardware,
but not used in this study due to the lack of threading in MPAS-A (see below). A 5-D Torus
interconnect is used as compute network, while I/O is redirected to dedicated I/O nodes
using a 10 Gb Ethernet to connect to the GPFS file system. With a large number of relatively
slow CPUs and a small memory per core, Juqueen most resembles the future massively

2http://www.prace-ri.eu/prace-resources
3http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
4http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.

html
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parallel systems described above. As such, porting and scaling experiments of numerical
codes onto this architecture are as challenging as instructive for future applications.

SCC ForHLR1.5 The ForHLR1 is the most recent addition to the SCC’s high performance
computing systems, installed in September 2014. It hosts different types of nodes to cater
for the various needs of the modelling community: the workhorse for parallel applications,
and used in this study, are 512 “thin nodes” with 2 ten-core Intel Ivy Bridge CPUs, connected
via an Infiniband FDR interconnect. A central LUSTRE filesystem is attached to the nodes,
using the same Infiniband interconnect for I/O as for the compute network.

FZJ Juropatest.6 The FZJ Juropatest cluster is a small but cutting-edge prototype system
and consists of 70 T-Platform V210s blades with 2 fourteen-core Intel Haswell processors.
The MPI communication is realised over Infiniband FDR, and the I/O to the central GPFS
file system is routed via 10 Gb Ethernet. While optimising the MPAS model for the Haswell
features and instruction sets is beyond the scope of this study, it will become an inevitable
step in future model development and tuning.

On Juropatest, we conduct two sets of runs for each of the test cases: for the first set
(Jtest-half in the following), we use only one of the two available fourteen-core CPUs in
each node, which implies a similar number of cores per node for Curie and Juropatest
or, in other words, a similar number of nodes for the same total number of tasks. In this
configuration, each task is bound to one core on the node. For the second set (Jtest-full in
the following), we use both CPUs, i. e., 28 cores on each node to exploit the capabilities of
the Juropatest system and possible memory bandwidth limitations of MPAS-A.

2.2 MPAS-A code

For the strong-scaling studies in this paper, we use MPAS-A v3.1, released on 24 Novem-
ber 2014. This release of the model employs a horizontal domain decomposition for par-
allel execution, and parallelisation is implemented using MPI only; in this version of the

5http://www.scc.kit.edu/dienste/forhlr.php
6http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUROPATEST/JUROPATEST_

node.html
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code, no threading is used. The MPAS code is written almost entirely in Fortran 2003, with
a few minor parts written in C. The MPAS build system uses only the make utility, with set-
tings for different compilers and architectures described as different targets in the top-level
Makefile; see Appendix A for the compiler flags used in this study.

The optimal parallelisation and distribution of the cells of the Voronoi mesh for a given
number of tasks is treated as a graph partitioning problem. The dual mesh of a Voronoi tes-
sellation is a Delaunay triangulation, which immediately provides the connectivity graph for
the primal (i. e., Voronoi) cells in the mesh. In MPAS, the graph partitioning is computed as
a separate pre-processing step, for which the METIS software is used7. An optimal partition-
ing distributes equal work (by proxy, the number of cells) to each task while minimising the
edge cut (assumed to model the communication between tasks). METIS uses a multilevel
k-way partitioning scheme, which produces partitions of comparable quality to traditional
multilevel bisection algorithms and is about two orders of magnitude faster (Karypis and
Kumar, 1998). The resulting graph partitioning can be critical for the model performance
due to, for example, a large overhead of communication and computational imbalances
between the individual partitions.

At start-up, the MPAS-A model reads a file that assigns Voronoi cells to each of the MPI
tasks according to a partitioning produced by METIS. The set of cells assigned to an MPI
task is referred to as a “block”, and the cells in this assignment are referred to as the “owned”
cells. The dynamical solver in MPAS-A requires stencils of cells in order to apply various
operators, and as part of the model start-up, referred to internally as the “bootstrapping”
process, a pre-determined number of layers of halo cells (sometimes referred to as “ghost”
cells in other modelling systems) are added around each block. Although the number of
halo cells can vary between different MPAS models, as illustrated in Fig. 1, lower left panel,
MPAS-A adds two layers of halo cells around each block of cells. A lower bound for the

7http://glaros.dtc.umn.edu/gkhome/views/metis
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number of halo cells Nh for a given number of owned cells No can be estimated as

Nh = π

(√
No

π
+2

)2

−No . (1)

At points in the MPAS-A dynamical solver where current values of fields in halo cells are
required, values are communicated between tasks, from owned cells to ghost cells, with
point-to-point MPI communications.

An important aspect and common bottleneck in numerical weather prediction and cli-
mate modelling is disk I/O, since large 4-D fields such as temperature, geopotential height,
or wind components need to be written to disk frequently. In MPAS v3.1, I/O is facilitated
by the parallel I/O library PIO v1.7.1, a wrapper with an easy-to-use API that encapsulates
the complexity of parallel I/O for a number of supported formats: binary, serial NetCDF8,
Parallel-NetCDF9, and recently (since v.1.9.14) parallel NetCDF-4 through PHDF510 (Den-
nis et al., 2013). PIO is compiled without further optimisation (standard settings) on all four
machines. The HDF5, NetCDF and Parallel-NetCDF libraries are provided as modules on
all four systems.

Unless stated otherwise, all experiments are conducted with double precision floating
point precision, 41 atmospheric levels, 4 soil levels, a full suite of physics and dynamics (see
Appendix B for details), and standard disk I/O. Each experiment is run for 24 h model time,
during which an initial conditions file is read (init.nc), diagnostic output files are written
every 3 h (diag.nc), and a final restart file and a comprehensive output file are written at
the end (restart.nc, output.nc). The model integration time step depends on the grid
resolution and is mentioned in the individual sections below. Note that for variable resolution
meshes, the global time step is determined by the smallest grid size. By default, all tasks
participate in the parallel I/O. Each experiment is repeated once or twice, depending on
how close the measured runtimes are, to account for fluctuations of single experiments.

8http://www.unidata.ucar.edu/software/netcdf
9http://trac.mcs.anl.gov/projects/parallel-netcdf

10http://www.hdfgroup.org/HDF5
11
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2.3 Regular 120 km grid

The first and smallest test case consists of a global, regular 120 km mesh with 40 962 grid
cells, which is roughly comparable in resolution to a 284× 142 latitude–longitude grid. It is
thus in the range of current earth system models. A model integration time step of 150 s is
adopted. For a resolution of 120 km, this is an extremely conservative setting (1.25 s per km
grid size) for MPAS-A, which implies 576 integration time steps for a 24 h test run, compared
to 120–144 integration time steps for typical values of 5–6 s per km grid size. This increases
the time spent for the actual parallel integration relative to that for model initialisation and
disk I/O. The decomposition of the 120 km grid for 64 tasks is illustrated as an example in
Fig. 1, lower right panel, while Fig. 2, left panel, shows the scaling plots on the four HPC
facilities described above. For an easier comparison of the scalability of the different test
cases, the scaling is displayed as parallel efficiency (i. e., the ratio of real scaling and ideal
scaling) vs. the number of tasks (bottom horizontal axis) and number of cells owned per task
(top horizontal axis). Table D1 provides further details about the scaling, whereas Table H1
summarises the size of the files to be read and written during one model run.

Previous scaling tests on the NCAR-Wyoming Supercomputing Center’s (NWSC) Yel-
lowstone machine11 suggest that for regular meshes, the parallel efficiency of MPAS-A is
correlated with the number of cells owned per task. Considering the time required for the
solver only, i. e., neglecting the setup costs and the disk I/O, a parallel efficiency of close
to 70 % is obtained for more than 160 cells per task. Here, we include the setup costs
(bootstrapping and reading of initial conditions file) and the output to disk in the scaling
to emphasise the importance of all aspects of the system – from filesystem performance
to compute performance to the speed of the interconnect – and to estimate the necessary
resource requirements. It should be noted that this can have a negative and noticeable influ-
ence on the parallel efficiency, depending on the performance of the parallel I/O operations
and the ratio of the time spent for the setup of the model and the actual time integration.
Hence, the threshold of 160 cells owned per task for the breakdown of the parallel efficiency

11https://www2.cisl.ucar.edu/resources/yellowstone
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should be considered as a lower limit. In Sect. 2.7, we provide a detailed analysis of the
costs of the individual steps for the Jtest-full system.

On the three Linux-cluster type systems, test runs are conducted on single nodes up to
32 (Curie), 20 (ForHLR1), 15 (Jtest-full) and 30 (Jtest-half) nodes. In the following, we refer
to “good scaling” as a parallel efficiency of ≈ 70% or more. Good scaling is achieved up to
6 nodes on Curie (96 tasks, or 427 grid cells per task), 8 nodes on ForHLR1 (160 tasks,
or 256 grid cells per task), 8 nodes on Jtest-full (224 tasks, or 183 grid cells per task), and
15 nodes on Jtest-half (210 tasks, or 195 grid cells per task). Comparing Curie and Jtest-
half, it is evident that a single Haswell CPU with 14 cores outperforms two Sandy Bridge
CPUs with 2× 8 cores on the same board, and that (b) the parallel efficiency decreases
faster with the number of nodes on Curie. This is probably related to the interconnect:
while Juropatest (as well as Yellowstone) uses Infiniband FDR Full Fat Tree technology
(Fourteen Data Rate, theoretical effective, aggregated throughput 56Gb s−1 = 7GB s−1) for
the inter-process communication (MPI) and a separate 10 Gb Ethernet connection for I/O
operations, Curie uses QDR Full Fat Tree technology (Quad Data Rate, theoretical effective,
aggregated throughput 32Gb s−1 = 4GB s−1) for the inter-process communication and for
I/O operations. The transition zone for the breakdown of the parallel efficiency between 600
and 150 owned cells per task is indicated as shaded blue area in Fig. 2. A comparison of
the absolute runtimes on Jtest-half and Jtest-full shows that runs with 28 cores per node
are 5–15 % slower than runs with 14 cores per node, which is presumably due to memory
bandwidth bottlenecks. An exception here is the 420-task run (30 nodes on Jtest-half, 15
nodes on Jtest-full), for which the increase in inter-node communication is the limiting factor
(see also the discussion in Sect. 2.4).

The minimum job (and block) size on Juqueen is 32 nodes or 512 tasks, which corre-
sponds to only around 80 cells owned by each task. The parallel efficiency drops rapidly
with increasing number of nodes, since this problem size is simply too small for applica-
tion on Juqueen. Figure 3, left panel, displays the communication volume as function of the
number of tasks, which follows a power law with index 0.52 up to about 1000 tasks (approx.
40 owned cells per task). A runaway growth can be seen for larger numbers of tasks. At

13
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the same time, the graph partitions become increasingly non-contiguous (not displayed). It
should be noted that the communication volume and number of non-contiguous partitions
are computed by METIS and as such are a function of the partitioning of the cells only,
which essentially assumes a single layer of ghost cells. Since MPAS-A exchanges two lay-
ers of ghost cells at maximum, the actual number of ghost cells, edges and vertices can be
slightly different. A detailed study of the impact of these graph properties will be given in the
following section.

Table H2 lists the cheapest model runs in terms of CPUh spent per 24 h model integration
and the fastest runs in terms of realtime per 24 h model integration for the four HPC sites. It
is important to remember that while the Jtest-half runs use only 50 % of the available cores
on each node, the computational costs for the full node (28 CPUh per node per hour real-
time) are charged for the model run, since the node is not available for other users or jobs.
Also, a one-to-one relation of CPUh between Linux cluster-type machines and an IBM Blue
Gene is not meaningful. By comparing typical calls for proposals for the different HPC sys-
tems, a conversion factor of 1 : 16 seems to be reasonable, i. e., to consider one entire node
with 16 cores on Juqueen as equivalent to one core on the other systems. However, since
applications for computing resources usually demand estimates for the required amount of
CPUh, we list the actual CPUh here.

2.4 Variable 100–25 km grid

The second test case employs an irregular mesh with a variable resolution ranging from
100 km for most parts of the globe to 25 km for a circular area spanning about 60◦, and
centred on West Africa (lat=12.5◦ N, lon=0◦ E). An integration time step of 120 s is used.
The mesh as well as the frequency distribution of cell sizes are displayed in Fig. 4, top
panels, the scaling is illustrated in Fig. 2, middle panel, and summarised in Table E1.

Test runs are conducted on single nodes up to 192 nodes on Curie (3072 tasks, 53 owned
cells per task), 60 nodes on ForHLR1 (1200 tasks, 137 owned cells per task), 50 nodes on
Jtest-full (1400 tasks, 117 owned cells per task), and 55 nodes on Jtest-half (770 tasks,
213 owned cells per task). Good scaling is achieved up to 32 nodes on Curie (512 tasks,
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320 owned cells per task), 20 nodes on ForHLR1 (400 tasks, 410 owned cells per task), 25
nodes on Jtest-full (700 tasks, 234 owned cells per task), and 35 nodes on Jtest-half (490
tasks, 334 owned cells per task). The parallel efficiency on average drops from about 90
to 40 % within the transition zone (shaded area in Fig. 2, 600 to 150 cells owned per task),
similar to the first test case on the regular 120 km mesh.

Notably different to the previous test case are the measured runtimes for Jtest-full and
Jtest-half: for small numbers of tasks, the Jtest-full runs show a worse performance due to
the aforementioned memory bandwidth limitations. For large numbers of tasks (nodes), the
increase in inter-node MPI communication, which impacts the Jtest-half runs more than the
Jtest-full runs, becomes the limiting factor and decreases the performance of the Jtest-half
runs below that of the Jtest-full runs. With respect to the remaining HPC systems, a clear
separation of the parallel efficiency by interconnect technology as for the 120 km test case
cannot be seen here, due to the following reasons:

Firstly, the disk I/O demand scales with the number of grid cells and is larger by a factor
of 4 for this mesh (see Table H1). As we will see in the following sections, in particular for
the extreme scaling experiments in Sect. 4, the disk I/O becomes increasingly important
for larger problem sizes and can consume a significant part of the total runtime. The I/O
is routed differently at the four HPC sites, the central storage systems have different band-
widths and block sizes, and the parallel I/O libraries might perform differently, depending on
the compilers and compilation flags. Additionally, in this test case we adopt an integration
time step of 120 s (4.8 s per km grid size), which implies a smaller fraction of the total time
spent for the actual time integration relative to the disk I/O.

Secondly, the graph partitioning adds another layer of complexity and variability to the
performance diagnostics. Figure 3, middle panel, shows that the above-mentioned power-
law relationship between the communication volume and the number of tasks also holds
for the variable 100–25 km mesh up to about 40 owned cells per task (4000 tasks). Con-
trary to the 120 km regular mesh, METIS tends to create more non-contiguous partitions
for complex mesh structures (not displayed here). This variability introduced by the graph
partitioning is unpredictable and may have significant impact on the model performance.
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If not instructed otherwise, the graph partitioning tool METIS aims at minimising the edge
cut (communication volume), which potentially comes at the cost of having non-contiguous
partitions. As discussed earlier in Sect. 2.2, halo cells are added around each patch of the
individual tasks, for which communication with the neighbouring tasks is required. The ad-
ditional amount of communication caused by halo cells around non-contiguous partitions
can be substantial, in particular if the number of cells owned per task is small (i. e., the ratio
of halo cells to owned cells is large).

To investigate the effect of non-contiguous partitions on the parallel efficiency, we anal-
yse one partition with 300 tasks for the 100–25 km mesh on ForHLR1 (546 owned cells per
task), for which METIS by default produces a non-contiguous partition. We create an addi-
tional, contiguous partition using the command line arguments -contig -minconn for
METIS, which results in an increase of the edge cut from 58 031 to 58 870 (1.4 %). Figure 5
displays the total number of cells (nCellsByTask), the number of owned cells (nCellsSolve-
ByTask), and the number of halo cells per task (nHaloCellsByTask) as ratio between the
non-contiguous and the contiguous partition. Since the communication volume increases
for the contiguous partition, the total number of cells per task on average is larger, too. The
average number of owned cells is identical, since the number of cells of the graph does not
change. Notably, task 200 has a 1.3 times larger number of halo cells for the non-contiguous
partition, since its partition consists of two separate patches, which implies a larger number
of neighbouring tasks and of surrounding halo cells.

To eliminate the influence of the disk I/O on the runtimes for the two partitions in this test,
we switch off the output to disk. We find that the measured runtimes for the model integration
is practically identical for the two runs (251 s non-contiguous vs. 255 s contiguous). For 300
tasks, the average ratio of halo cells to owned cells is 1 : 2.8, which might be too small
to see the effect of the additional halo cells in the non-contiguous partition. We therefore
repeat the test for non-contiguous and contiguous partitions for 2520 tasks (65 owned cells
per task), with a corresponding ratio of 1.2 : 1 halo cells to owned cells. Even in this case,
the measured runtimes for the model integration are nearly identical (45.2 s contiguous vs.
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45.6 s non-contiguous). We conclude therefore that the impact of non-contiguous partitions
on the runtime is negligible for any reasonable number of tasks for a given mesh.

Although the number of grid cells is 4 times larger for this test case than for the regular
120 km mesh, the problem size is still too small for application on Juqueen. The two smallest
possible parallel runs with 512 and 1024 tasks correspond to 320 and 160 cells owned per
task, for which the decrease in parallel efficiency is 20 %. Runs with larger number of tasks
all have parallel efficiencies of less than 60 %. Table H2 lists the cheapest and fastest model
runs for the four HPC sites.

2.5 Variable 60–12 km grid

The third moderately-sized scaling test consists of a variable resolution mesh with max-
imum grid spacing 60 km and minimum grid spacing of 12 km. The refinement area is an
approximate ellipse, illustrated in Fig. 4, lower panels, and encompasses the whole of North
and Central Africa, extends as far as India in the East and covers a large part of the Atlantic
Ocean in the West. This particular mesh is useful for studying the teleconnection between
the Indian and Atlantic Ocean and the monsoon systems in East and West Africa. The total
number of grid cells is 535 554, which corresponds to 1034× 517 grid points on a regular
latitude–longitude grid and thus is in the range of current re-analyses. A time step of 72 s
(6 s per km grid size) is adopted.

Figure 2, right panel, and Table F1 summarise the scaling of this mesh on the four sys-
tems. As for the variable 100–25 km mesh, a separation of the parallel performance by
interconnect cannot be detected, due to the increasing variability introduced by the disk I/O
(see Table H1). While the number of tasks is sufficiently large to obtain a constant power law
relationship between the communication volume and the number of tasks up to 16 384 tasks
on Juqueen (Fig. 3, right panel), the complexity of the mesh leads to more non-contiguous
partitions (not displayed).

Tests runs are conducted on single nodes up to 384 nodes on Curie (6144 tasks, 87
owned cells per task), 120 nodes on ForHLR1 (2400 tasks, 223 owned cells per task),
55 nodes on Jtest-full (1540 tasks, 348 owned cells per task), and 55 nodes on Jtest-half
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(770 tasks, 696 owned cells per task). Good scaling is achieved up to 48 nodes on Curie
(768 tasks, 697 owned cells per task), 45 nodes on ForHLR1 (900 tasks, 595 owned cells
per task), and up to the maximum number of 55 nodes on Jtest-full and Jtest-half. In the
transition zone between 600 and 150 owned cells per task, shaded in blue, the parallel
efficiency on Curie and ForHLR1 drops off quickly from about 80 % to as low as 30 %.

Juropatest shows the best, but most irregular scaling of the three Linux-cluster systems.
With a maximum of 55 available nodes on the system, the parallel performance is better
than 70 % for both Jtest-half and Jtest-full. The parallel efficiencies for ForHLR1 and Curie
follow a more regular trend, although the number of non-contiguous partitions is highly
variable for ForHLR1, but not for Curie. This adds further support to our conclusion that the
impact of non-contiguous partitions on the runtime is negligible for any reasonable number
of tasks for a given mesh. With 535 554 grid cells, this test case also shows good scaling
on Juqueen up to 128 nodes (2048 tasks, 262 owned cells per task). For larger number of
tasks, the parallel efficiency drops rapidly and constantly and the number of non-contiguous
partitions becomes highly variable.

Table H2 lists the cheapest model runs in terms of CPUh spent per 24 h model integration
and the fastest runs in terms of realtime per 24 h model integration for the four HPC sites.

2.6 Comparison of HPC systems

We further address the question how the total runtimes compare on the various HPC sys-
tems. Figure 6 displays the total runtimes for the 24 h model runs on the four systems. For
all test cases, the three Linux-type systems line up quite well, which means that the abso-
lute runtimes are very close for similar parallel decompositions and that differences in the
processor architectures do not translate into model speedup. Due to the large differences
in tasks between the Linux-cluster systems and the Blue Gene system, the problem size
must be large enough for a fair comparison. Among the three test cases, only the 60–12 km
mesh test case satisfies this requirement.

A common feature across the three test cases is a minimum of the total runtimes on the
three Linux-type systems around 150 owned cells per task. The reason for the increase in
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total runtimes for smaller numbers of owned cells per task will be discussed in the following
section. Here, we attempt to fit a modified version of Amdahl’s law (Amdahl, 1967), which
also accounts for the observed increase in runtimes when the parallel performance breaks
down:

T (n) = T (1)

(
A+

1−A− (nB)X

n
+(nB)X

)
. (2)

Here, n denotes the number of parallel tasks and T (n) the total runtime in seconds. The first
term on the r. h. s. of Equation (2) represents the serial part of the code, the second term the
part that scales perfectly, and the third term the part that takes longer when more tasks are
used. This allows to quickly estimate the required resources for the test cases presented
here for Linux-type systems (and Blue Gene/Q systems) with similar specifications.

The coefficientsA andB are allowed to vary across the three test cases and two different
classes of architectures. The power law index X, on the other hand, is derived as the best
fit for the three test cases on the Linux-type systems and the 60–12 km on the Blue Gene
system. This results in a value of X = 2.85 with a good fit to all four curves, which indicates
that the increase in total runtimes below a certain number of owned cells per task occurs
for the same reason (see also the discussion in the following Sect. 2.7).

Table 2 summarises the coefficients obtained from fitting Equation (2) to each of the six
curves. Note that the fits to the 120 km mesh and the 100–25 km mesh on the Blue Gene
system are listed here as well, but should be used with precaution. The minimum of T (n) is
obtained by setting ∂T (n)/∂n= 0|n=nmin

and solving for the number of owned cells per task
No,min =Ncells/nmin. This leads to minimum values ofNo,min = {143,146,182} owned cells
per task and Tmin = {116,177,402}s for the three Linux-type systems on the 120 km mesh,
the 100–25 km mesh, and the 60–12 km mesh, respectively. For the Blue Gene system,
only the fit for the 60–12 km mesh test case can be considered as realistic and leads to
No,min = 97 owned cells per task and a minimum runtime of Tmin = 2155s.

From the discussion in this section, we infer that a lower limit of about 150 owned cells
per task is a good and quick estimate for the Linux-type systems below which the paralleli-
sation becomes highly inefficient. The shift of the minimum value to larger numbers of tasks
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(lower numbers of owned cells per task) on the Blue Gene system can be attributed to the
performance of the faster 5-D Torus interconnect relative to that of the slower CPU cores.
The resulting fitting curves are also displayed in Fig. 6.

2.7 Breakdown of parallel performance

In the following, we investigate the reasons for the breakdown of the parallel performance.
In the previous scaling tests, we include the model setup – in principle, bootstrapping and
reading of the initial conditions file – as well as the parallel output to disk in the mea-
surements. Here, we split up the total computational costs into three different steps: time
integration, model setup, and disk I/O. Over longer runs, the model initialisation costs are
amortised and the parallel performance is determined by the numerical solver (time inte-
gration) and the parallel I/O (disk output, reading of boundary updates). Accordingly, Fig. 7
displays the total computational costs, the costs for the three steps, and for a combination
of time integration and disk I/O for the Jtest-full system and all test cases. Each time, the
parallel efficiency of the combined time integration and disk I/O, indicated with orange stars,
starts to decrease for less than 600 owned cells per task. The time integration alone shows
nearly ideal scaling down to 150 owned cells per task, while the model setup and disk I/O
are only weakly dependent on the number of tasks.

According to Figs. 6 and 7, the absolute runtimes for all three test cases start to increase
for less than 150 owned cells per task on the three Linux-cluster systems. For the Blue
Gene system, this increase in absolute runtimes takes place at smaller numbers of owned
cells per task, but the picture is less clear due to the small problem sizes. However, given
the faster interconnect on the Blue Gene system and the fact that the model initialisation
and disk I/O depend only weakly on the number of tasks, this suggests a breakdown of the
parallel efficiency of the solver (i. e., the time integration) itself.

To exploit the limiting factors of the solver for large number of tasks, we use the parallel
debugging and profiling tools Scalasca12 and Score-P13. These tools are available as mod-

12http://www.scalasca.org
13http://www.vi-hps.org/projects/score-p
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ules on Juqueen, hence we focus on three particular runs on the 60–12 km mesh on this
system. We analyse in detail the 2048-task run (261 owned cells per task), the 4096-task
run (130 owned cells per task), and the 8192-task run (65 owned cells per task), for which
the latter one takes longer than the former two runs (Fig. 6).

Halo cells are added around each patch of the individual tasks, for which communication
with the neighbouring tasks is required. The larger the number of tasks, the smaller the
number of owned cells per tasks, and the larger the ratio between halo cells and owned
cells. A lower bound for the number of halo cells Nh for a given number of owned cells
No is given by Equation (1) and corresponds to a ratio of No :Nh = 261 : 127 = 2.1 for the
2048-task run, 131 : 94 = 1.4 for the 4096-task run, and 65 : 70 = 0.94 for the 8192-task run.

Table G1 summarises the percentages of time spent during the time integration step
for both runs. Leaving aside the model initialisation (initial bootstrapping, reading of initial
conditions), the total time spent for communication increases from 35 % for 2048 tasks to
70 % for 8192 tasks. A detailed analysis of the Scalasca report reveals that most of this
time is “wasted” in MPI_WAIT during the exchange of 2-D and 3-D halo fields. About 16 %
of the time is spent for parallel I/O, namely for building and writing output streams and for
reading boundary updates (sea-surface temperature, sea-ice fraction). It should be noted
here that the selection of fields written to disk is customisable at runtime using simple ASCII
files. Table H1 reports on the number of 3D and 4D fields written to disk in our tests.

The Scalasca reports also reveal that computational imbalances in the parallelisation
can have serious impacts. For the example of the 2048-task run on the 60–12 km mesh, the
average time required to update the boundary information (sea-surface temperature, sea-
ice fraction) is about 11.8 s per task. However, one single task takes 19.3 s for the same
action and blocks all remaining tasks in their execution. Since the model synchronisation
takes place when exchanging halo cell data, the different computing times of the model
physics appear in the time spent for communication.

These results highlight the importance of an efficient parallelisation and fast interconnects
between the compute nodes and to the central storage, in particular for future applications
on massively parallel systems and for the extreme scaling tests in Sect. 4.
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3 Reproducing the dynamics of the West African Monsoon

The second important aspect of a numerical weather prediction and climate model is its
accuracy in reproducing observed meteorological conditions on global, regional and local
level. As described in the introduction, the West African Monsoon has turned out to be
a notoriously difficult problem in climate modelling, since it is a complex interplay of vari-
ous dynamical, microphysical and surface-related processes across scales. The common
understanding is that the intensity of the monsoon and the associated precipitation on local
scales are regulated by the driving, large-scale atmospheric circulation. This picture is chal-
lenged and complicated by a recent study of Klein et al. (2015), who found that processes
on local scale such as mesoscale convection and precipitation events, can have a notice-
able influence through feedback effects on the entire monsoon system. Examples therefore
are enhanced moisture transport and circulation, and strengthening of westward traveling
disturbances (African Easterly Waves).

In this study, we attempt a first and brief evaluation of the ability of MPAS-A to reproduce
the dynamics of the West African Monsoon. Due to computational limitations for this short
comparison, we are restricted to 11-month long model runs. We focus on the onset of the
monsoon season in June/July 1982 for two of the meshes presented above, namely the reg-
ular 120 km mesh and the variable 60–12 km mesh. Both models are initialised in Septem-
ber 1981 using CFSR data (NCEP Climate Forecast System Reanalysis, Saha et al., 2010)
at 0.5◦× 0.5◦ resolution as initial conditions. Daily updates of the sea-surface temperature
are taken from the NOAA Optimum Interpolation Sea Surface Temperature Analysis (NOAA
OI SST, Reynolds et al., 2002) at 0.25◦×0.25◦ resolution. The period from September 1981
to beginning of 1982 is considered as spin up time for the model, in particular for the soil
conditions. An analysis of the soil properties over the 11-month runs is undertaken to in-
vestigate whether such a short spin up time is sufficient. The model output is compared
to different sets of observational data to account for the large uncertainty in the gridded
observational products in the data-sparse region of West Africa (see, for example, Lorenz
and Kunstmann, 2012; Sylla et al., 2013).
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For near-surface air temperature and precipitation, we refer to (1) the Climate Research
Unit (CRU) high-resolution gridded time-series dataset v. 3.22 (Harris et al., 2014), and
(2) the University of Delaware (UDEL) Air Temperature & Precipitation long term monthly
means V3.01 (Willmott and Matsuura, 2014) at 0.5◦× 0.5◦. Additional observational data
for near-surface air temperature is obtained from the Global Historical Climate Network
(GHCN) gridded 2m temperature dataset V2 (Fan and van den Dool, 2008) at 0.5◦× 0.5◦.
For precipitation, we also use the Global Precipitation Climatology Centre (GPCC) Full Data
Reanalysis Version 6 Monthly Means (Schneider et al., 2011), also at 0.5◦× 0.5◦.

We also compare the MPAS-A model output to reference data obtained from a set of
novel regional climate simulations over West Africa within the WASCAL program14. This
data is produced using the regional climate model WRF at 12 km resolution with initial
and lateral boundary conditions provided by the ERA-Interim re-analysis (Dee et al., 2011,
80 km resolution). The WRF model uses a setup that is optimised for the region of West
Africa, following a detailed analysis of the monsoon dynamics for different WRF model con-
figurations by Klein et al. (2015). An extensive documentation and analysis of this reference
data set will be given in a forthcoming paper. The WRF model run covers a region from
25◦ W to 25◦ E and 5◦ S to 25◦ N and is initialised in January 1979. Spectral nudging is
applied to the WRF limited area model to keep it on track with the large-scale features of
the driving ERA-Interim re-analysis. The sea-surface temperature is updated every 6 h from
the ERA-Interim SST data.

The WRF model domain lies entirely within the refinement zone of the variable 60–12 km
mesh. Hence, the resolution of the MPAS-A runs is 120 km for the regular mesh (MPAS-120r
hereafter) and 12 km for the variable mesh (MPAS-12v hereafter). Figure 8 shows the model
topography of the WRF reference model at 12 km resolution (WRF-12r hereafter) and the
MPAS-A models. Also indicated is a classification of the land area into five agro-climatical
zones, which will be used in the further analysis. Naturally, the topography is nearly identical
for WRF-12r and MPAS-12v. Minor differences can be seen along the coast lines and inland
water bodies, which are caused by the different grids and by the need to re-grid the MPAS

14http://www.wascal.org
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model output onto a regular lat-lon grid. This re-gridding is performed with an NCL15 script
mpas_to_latlon.py (L. Fowler, personal communication, 2014), which adds another
step to the post-processing tasks and is computationally quite demanding: For example,
a minimum of 1.5 GB of memory and 10 s runtime is required to re-grid one 3-D variable of
MPAS-12v for one time step. For MPAS-120v, the terrain is smoothed out and the coast line
(often referred to as landmask in the models) is ill-represented. This has negative effects
when verifying the model output over regions such as Guinea, as we will see below.

In Fig. 9, we analyse the spatial distribution of the near-surface temperature for July 1982
(top panel) and its annual cycle between September 1981 and July 1982 (bottom panel).
The observations provide data over land only and show noticeable spatial differences in the
position and intensity of the Saharan Heat Low (SHL), in particular between CRU/UDEL and
GHCN, and minor differences over Ghana and along the coastline. Regarding the model
runs, WRF-12r matches the position and temperature of the SHL best and reproduces
the observed temperatures. Both MPAS models show a slightly colder surface temperature
distribution for July 1982, and the cold bias in MPAS-120r is larger on average. The sea-
surface temperature distribution is similar for the two MPAS runs, since they are using the
same SST data for their daily updates. However, MPAS-120r shows strong artefacts along
the coastline of the Gulf of Guinea, which is due to its inaccurate landmask. The WRF-12r
SST, which is updated every 6 h from ERA-Interim data, is colder over the Golf of Guinea,
but otherwise shows the same patterns. With respect to the temporal evolution, the annual
cycle is reproduced well for both MPAS models, however a significant cold bias is detected
over most of the land area from the time of model initialisation in September 1981 up to
May 1982. From June to July 1982, this bias seems to nearly vanish with the exception
of the coarser MPAS-120v over Guinea due to the limited resolution of the coast line. The
observational data sets displayed in the lower panel agree in general, but show small differ-
ences for the Saharan region (only CRU and GHCN are displayed for clarity; UDEL is very
close to CRU).

15http://http://www.ncl.ucar.edu
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Figure 10 likewise displays the spatial distribution of the monthly precipitation for
July 1982 (top panel) and its annual cycle (bottom panel) for the three observational data
sets and the three models. At the onset of the monsoon season, the rain band is centred
over 10◦ N for all three observational data sets. Areas of high precipitation are found over
Guinea, Sierra Leone and the Senegal in the West, and over Nigeria, Cameroon and the
Central African Republic in the East. While the spatial distribution hardly shows any differ-
ence between the observational data sets, the temporal evolution deviates for the Saharan
and Guinea regions. For the Saharan region, small absolute values and a very small number
of actual observations lead to large relative uncertainties. For Guinea, the spatial interpo-
lation along the coast line leads to differences in the timing of the maximum precipitation
(April 1982 for CRU, May 1982 for GPCC; as for temperature, UDEL follows CRU closely).

The three models successfully reproduce the location of the rain band, a fact that should
not be taken for granted. In the case of WRF, Klein et al. (2015) demonstrate that the repre-
sentation of the monsoon dynamics is largely determined by the microphysics and the plan-
etary boundary layer schemes, while the cumulus scheme seems to play more of a role on
daily time scales and for the actual amount of precipitation triggered by mesoscale convec-
tion. The WRF model configuration chosen here uses the WSM5 microphysics scheme, the
ACM2 planetary boundary layer parameterisation and the Grell–Freitas cumulus scheme
(see Wang et al., 2014, for a summary of the WRF physics options and further references).
It is highly optimised for the region and thus not only matches the location of the rain band,
but also reproduces the observed precipitation patterns over the Soudano, the Sahel and
the Sahelo regions. The two MPAS model runs, on the other hand, use an “out-of-the-box”
setup, which consists of the WSM6 microphysics scheme (similar to WSM5 with graupel
as additional hydrometeor), the YSU planetary boundary layer parameterisation and the
Kain–Fritsch cumulus scheme. This particular combination produces excessive precipita-
tion during the peak of the monsoon in WRF due to a non-linear response of convective
precipitation events to the dynamics, and it seems to exhibit the same behaviour in the two
MPAS models.
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With respect to the annual cycle of precipitation, the WRF model shows excessive precip-
itation for all months and an early onset of the monsoon season for the Soudano, Sahel and
Sahelo regions. The excess in rainfall over all land area is mainly caused by an overesti-
mation over Guinea, which receives most rainfall over the year (more than 3000 mm year−1,
compared to less than 500 mm year−1 in the Sahelo region). The “out-of-the-box” MPAS
models match the observations better, in particular the timing of the onset of the rainy sea-
son and the precipitation over Guinea. The coarser MPAS-120r is closer to the observed
precipitation over the inland areas than the higher-resolution MPAS-12v during the onset of
the monsoon in June/July 1982. This, however, is not a signal of a higher accuracy of the
coarser model: at 120 km resolution, the Kain–Fritsch cumulus scheme is less active than
at 12 km resolution, and consequently its wet bias is reduced.

To support this further, Fig. 11a displays the mean sea level pressure map for July 1982.
WRF-12r and MPAS-12r both show a distinct area of low pressure, the Saharan Heat Low
(SHL), alongside with the South–North pressure gradient that is causing the movement of
the ITCZ and the associated monsoon rain band. This SHL is much less pronounced in
MPAS-120r. In both MPAS models, the region of low pressure is displaced by about 10◦ to
the East compared to WRF. Lavaysse et al. (2009) derive a climatological mean position of
3◦ W, 23◦ N from re-analysis data between 1979 to 2001, which coincides well with WRF.

However, the Saharan Heat Low is not only a region of low surface pressure but also
of high surface temperatures. Comparing Fig. 9 and Fig. 11a, it is apparent that the areas
of low pressure and high temperature are co-located for WRF-12r. The high-temperature
regions of MPAS-120r and MPAS-12v match the WRF SHL position albeit a cold bias of
about 2 ◦C, while the low-pressure region is shifted to the East. This shift is caused by the
overall cold bias in the two MPAS models: the SHL, like any other non-frontal thermal low, is
formed by rapid solar heating of the land surface and the near-surface layers, which leads
to a rising of hot and dense air and to the formation of a stationary low pressure area. Thus,
the cold bias in the MPAS models implies a less intense deepening of the pressure system
at the expected location of the SHL. As discussed above, the general cold bias over all
land areas persists from the onset of the MPAS model runs in September 1981 and only
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starts to vanish from June to July 1982 on. This is reflected in the temporal evolution of the
mean sea level pressure (Fig. 12, left panel), integrated over all land areas, which is highest
for MPAS-120r, lowest for WRF-12r, in-between for MPAS-12v, and merging towards each
other from June 1982 on.

A final investigation of the soil properties in Figs. 11b and c and 12 (middle and right
panel) reveal the root cause of the cold temperature bias and the associated displacement
of the low pressure system. Starting from the MPAS model initialisation in September 1981,
the soil temperature is about 2 ◦C lower then for the WRF model run, which is initialised
in January 1979 and thus has more than 2 years to spin up the land surface model (NOAH
LSM for both WRF and MPAS). Over the course of the simulated 11 months, the MPAS soil
temperatures start to converge towards the WRF soil temperature: in July 1982, the soil
temperatures distributions in Fig. 11b are already quite similar. However, the relative soil
moisture maintains a constant bias for most of the time and still shows spatial differences
in July 1982. This is due to the fact that between the MPAS model initialisation in Septem-
ber 1981 and the onset of the monsoon season in 1982, virtually no precipitation occurs
over large fractions of the land area and that the inherently low soil moisture simply has not
possibility to adapt.

We therefore conclude from this section that the global-to-variable resolution mesh con-
cept and its implementation in MPAS-A have the potential to reproduce the dynamics of the
West African Monsoon and its associated precipitation. In this single, 11-month experiment,
the “out-of-the-box” setup of MPAS can compete with the optimised WRF setup with respect
to the timing of the onset of the rainy season. The high-resolution MPAS-12v model shows
a better performance than the coarse-resolution MPAS-120r model in general, but in partic-
ular for the coastal regions. Deficiencies in the location of the Saharan Heat Low and a cold
bias in the surface temperature are apparent in both MPAS model runs, which are caused
to a large extend by an insufficient spin up time of the models. Detailed investigations of the
WRF reference run, not discussed here, suggest that a spin up time of at least one year is
required in order to adjust the soil moisture. The MPAS runs also tend to over-estimate the
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monsoon precipitation, which we attribute to the combination of physical parameterisations
of the “out-of-the-box” setup.

4 Extreme scaling experiment at very high resolution

In this section, we evaluate the scalability and limitations of the MPAS-A model for a very
large mesh on a massively parallel system. This experiment is motivated by the following
two aspects:

1. Future HPC environments will most likely be massively parallel systems, with the num-
ber of cores per node and the number of nodes increasing much faster than the speed
of the individual cores. Models such as MPAS-A have to be able to scale on these sys-
tems in order to be used successfully in the future.

2. The typical model resolution of global and regional NWP and climate models has
increased continuously over the past few decades. Currently, the European Centre
for Medium-Range Weather Forecasts (ECMWF) is leading the field with an opera-
tional global NWP model at 14 km resolution16, and limited area models have been
taken down to sub-km resolution. With this experiment, we want to demonstrate that
convection-resolving (below about 4 km grid size, see Weisman et al., 1997; Prein
et al., 2013, for example), global atmospheric simulations are possible on current HPC
environments.

To create a large-enough problem for these tests at a convection-resolving resolution, we
use a regular, global 3 km mesh with more than 65 million horizontal grid cells and 41 ver-
tical levels. Up to now, only a few real-data simulations on this mesh have been conducted
on NWSC’s Yellowstone supercomputer using a maximum of 16 384 MPI tasks (approx.
4000 owned cells per task); a set of scaling benchmarks based on an idealised case have

16http://www.ecmwf.int/en/forecasts/datasets/dataset-i-i-atmospheric-fields-high-resolution-forecast
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also been run on up to 131 072 MPI tasks on Edison, a Cray XC30 at the National Energy
Research Scientific Computing Center17.

Among the four HPC sites presented earlier, only the FZJ Juqueen offers a large enough
number of cores to conduct this extreme scaling experiment. With a maximum of 458 752
cores, these tests require scaling out to the full system, which is not possible during normal
operations. However, following the 3rd Juqueen Tuning and Porting Workshop in Febru-
ary 2015, a few selected applications were invited to conduct extreme scaling tests on the
full machine during a period of 24 h. The results presented in the following were obtained
during this event, which is summarised in a technical report by Brömmel et al. (2015).

4.1 Model configuration and experiment preparation

Several modifications of the MPAS-A code are required to conduct this experiment. Firstly, it
is no longer possible to use the standard NetCDF large-file format (CDF-2), since the maxi-
mum number of elements for some of the 4-D variables exceeds the internal limit of 2 billion
values for any particular record. One possible solution is to use the CDF-5 extension of
CDF-2, which is supported by the Parallel-NetCDF library. However, only very few applica-
tions understand this format, and initial testing on Juqueen revealed problems with reading
correct data in massively parallel read operations. Another solution, which is adopted here,
is to use the newer NetCDF-4 format, which supports parallel I/O through PHDF5. This
requires upgrading the parallel I/O library PIO from v1.7.1 to 1.9.15, and modifying the I/O
framework of the MPAS-A model code. Motivated by this study, MPAS-A v4.0, released at
the time of writing, supports NetCDF-4 I/O without any need to modify the software frame-
work.

Further, the generation of the model input data becomes a large computational problem
which cannot be fit on a single machine due to time constraints and memory limitations. In
MPAS release v3.1, the pre-processing of the data is partly a serial process running on one
CPU core only. Hence, a parallelisation of the pre-processing is required in addition to the

17https://www.nersc.gov/users/computational-systems/edison
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above changes to the I/O routines. These changes are applied to the basic MPAS-A v3.1
code, and this modified version is used in the following scaling experiments.

Another difference from the default model configuration presented in Sect. 2.2 is that
each test is run for 1 h model time only. This implies that the update of the surface data
(sea-surface temperature, sea-ice fraction), which occurs every 24 h in the above moderate
scaling tests, is dropped. Also, with a global resolution of 3 km, it is generally agreed that
no convection scheme is required, since the microphysics scheme is able to generate the
convective precipitation systems on the grid scale. These modifications are reflected in the
model namelist in Appendix C.

The pre-processing consists of two steps. First, a static data set is produced
(static.nc), which maps invariants such as terrain height, landmask and land use classi-
fication onto the 3 km mesh. These invariant fields are required as input for the subsequent
generation of the initial conditions (init.nc), in part because the terrain field is neces-
sary for the generation of the height-based vertical grid. The parallel pre-processing steps
require special mesh partitions, different from the partitions generated by METIS and used
for the model runs. Here, both steps are conducted with 576 cores, spread across 80 nodes
on the ForHLR1 to provide sufficient memory for each task. Each step takes about 1 h 15 m
realtime and requires around 4.6 TB of the available 5.1 TB of memory. The resulting initial
conditions file has a size of 1.2 TB and is transferred to Juqueen over the 10 Gb s−1 internet
connection between the two HPC sites. Since both pre-processing steps are only required
once, no further investigation or optimisation of the runtimes is attempted.

4.2 First attempts and optimisations

Initial test runs at 3 km resolution revealed previously unknown problems on the system. As
described in Sect. 2.2, a bootstrapping step is required during the model initialisation to set
up the grid and instruct individual tasks with whom to share information about neighbouring
grid cells. In the MPAS code, this is implemented using hash tables. In order to complete
the bootstrapping in a reasonable time, the hash table size (parameter TABLESIZE) is in-
creased from the default value 27 183 to 6 000 000. After this adjustment, the bootstrapping
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step takes between 18 and 29 min on Juqueen, depending on the number of MPI tasks
(see Table 3). A second bottleneck is the reading of the initial conditions file. Performance
improvements for this step are achieved by setting two runtime environment variables that
were presented during the tuning and porting workshop (BGLOCKLESSMPIO_F_TYPE,
ROMIO_HINTS), and by optimising the number of I/O tasks. While in the previous scaling
tests all tasks participate in the I/O, we find improvements when using only 128 I/O tasks
per 1024 nodes (1 rack, 16 384 tasks), with an average read performance of 1.2GB s−1

and an average write performance of 0.6GB s−1, respectively. Due to the large number of
parallel tasks in this extreme scaling experiment, we use the unit “nodes” instead of “tasks”
throughout this section, where 1024 nodes correspond to 1 rack or 16 384 tasks.

With these optimisations, the parallel reading of the initial conditions file improves slightly
with the number of tasks, since they are located in different racks. Conversely, the bootstrap-
ping step takes longer for larger numbers of tasks. Hence, the overall model initialisation
takes approximately 45 min for the 3 km mesh and varies only slightly with the number of
nodes. One notable exception here is the run on 8192 nodes, for which the initial I/O is only
50 % of that of the other runs. The exact reasons for this behaviour needs to be investigated,
but we think that this combination of file size and I/O tasks is a sweet spot on Juqueen.

4.3 Execution of extreme scaling tests

The substantial memory requirements for the 3 km mesh do not allow to run the model
on 1024 or 2048 nodes. The baseline for our scaling experiment is therefore the run on
4096 nodes (4 racks, 65 536 MPI tasks, 512 I/O tasks, 65 TB memory). Contrary to the
model initialisation, the time integration step scales very well up to the entire machine, with
a parallel efficiency of 87 % for 24 576 nodes (393 216 tasks, 167 cells per task) compared
to the baseline (see Table 3). The test run on the full system with 28 672 nodes (458 752
tasks, 143 cells per task) shows a lower performance than the run on 24 racks and a parallel
efficiency of nearly 70 %, which confirms the above-mentioned limit of approximately 150
owned cells per task, below which the parallelisation becomes inefficient.
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All scaling tests are conducted with an 18 s model integration time step for a 1 h model
time. However, we find that in order to keep the model stable when starting off the 3 km
mesh from initial conditions derived from a 48 km re-analysis dataset (CFSR), a more con-
servative time step is required. MPAS currently lacks a dynamical initialisation system (e.g.,
digital filters, adaptive time-stepping), which could avoid this issue. Model instabilities lead-
ing to NaNs can affect the performance in different ways: (1) the performance might in-
crease in case if-NaN-tests may cause the code to return early from computationally in-
tensive physics routines, or (2) the performance might decrease due to the continuous
generation of floating-point exceptions. We note that on Blue Gene systems, MPAS does
not by default include the “-qflttrap” compiler flag to trap floating-point exceptions, and, con-
sequently, the model will continue to run even when the simulation generates NaNs. We
therefore repeat the runs for 4096, 8192, and 16 384 nodes with a 12 s time step to obtain
a stable model run. The measured realtimes for the three 12 s runs are very close to 1.5
times the realtimes for the corresponding 18 s runs, which gives us confidence that we can
scale the results for 24 576 and 28 672 nodes with an 18 s time step to a 12 s time step,
despite the fact that the runs with an 18 s time step produced NaNs.

Table 3 and Fig. 13 summarise the required times of the individual steps of the 3 km runs
with an 18 s integration time step. Due to walltime constraints, we only conduct runs without
writing output to disk. The last column in Table 3 estimates how many hours the 3 km model
can be advanced within 24 h walltime, and is calculated as follows: a 12 s model integration
time step is assumed, and the realtime required is scaled from the 18 s runs by a factor
of 1.5 for 24 576 and 28 672 nodes, for which no 12 s runs are conducted. For a typical
production run, diagnostic output files of 13 GB size are written every 3 h model time, while
comprehensive output files of approximately 250 GB size are written every 24 h model time.
A restart file of 2.1 TB size is written at the end of the model run. Based on a parallel write
performance of 0.6GB s−1, we make a conservative estimate that roughly two hours of the
24 h walltime will be used up by writing these files to disk. Tables H1 and H2 list the file
sizes and the cheapest and fastest model runs for the 3 km mesh on Juqueen.
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We conclude from this extreme scaling test that the dynamical solver of MPAS scales
on massively parallel systems out to hundreds of thousands of cores. Our results confirm
that the model behaves similar for the 3 km mesh than for the significantly smaller problem
sizes and that the parallel efficiency is limited by the same factors, namely the increasing
number of halo cells and amount of communication for large number of tasks. This occurs
around 150 owned cells per task, which corresponds to roughly 27 300 nodes for the 3 km
mesh. However, we find that the model initialisation and the disk I/O become increasingly
important and at the same time difficult to improve for extremely large test cases. Compared
to the model integration, the time required for the model initialisation and for reading and
writing data is largely independent of the number of tasks. For a maximum walltime of 24 h
on Juqueen, these steps consume up to 3 h or 10–15 % of the total job time – in other
words, hundreds of thousands of CPUh. The cheapest run on Juqueen utilises 4096 nodes
(4 racks, 65 536 tasks), consumes 1.3 Mio CPUh for a 24 h model integration and gives
a speedup of 1.2 × realtime. For 24 576 nodes (24 racks, 393 216 tasks), a speedup of 6.3
× realtime is achieved at the slightly higher expense of 1.5 Mio CPUh.

5 Conclusions

In this study, we analyse the atmospheric model MPAS-A in detail for its numerical per-
formance and for its physical accuracy. We conduct scaling tests for three medium-size
problems using regular and variable meshes of different complexity on four different HPC
facilities. We confirm an overall good scaling ('70 % parallel efficiency) of MPAS across
all systems and find that a value 150 cells owned by each task provides a good and quick
estimate for the breakdown of the parallel performance when setup and I/O costs are in-
cluded in the scaling. This limit depends weakly on the interconnect of the system (absolute
but also relative to the core speed), with faster interconnects corresponding to lower val-
ues, but also on the I/O performance. Accordingly, it is slightly lower for the Blue Gene
system (between 100 owned cells per task for the 60–12 km mesh and 150 owned cells
per task for the 3 km mesh). Taking into account that the setup costs are amortised over

33



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

longer runs, MPAS-A maintains a parallel efficiency of 80 % or better for more than 150
owned cells (100 owned cells on Juqueen) per task. Based on these findings, we provide
numbers on the typical file sizes and optimal model configurations for conducting research
and operational runs on the different HPC systems.

An in-depth analysis of the properties of different graph partitions for one of the meshes
shows that the impact of non-contiguous graph partitions in form of changes in the number
of halo cells is negligible for any reasonable number of tasks for a given problem size. We
further employ the parallel profiling tools Scalasca and Score-P to identify the bottlenecks
in the MPAS-A code when the parallel performance breaks down. Our findings confirm that
most of the time in such cases is spent waiting during the communication with neighbouring
tasks, but also demonstrate the negative impact that computational imbalances can have
on the model performance.

We also study the accuracy of MPAS-A for one common and challenging problem in cli-
mate research, namely the capability to reproduce the dynamics of the West African Mon-
soon and its associated precipitation. We conduct 11-month simulations for two meshes,
a regular 120 km mesh and a variable 60–12 km mesh, and compare the model output to
a number of observation data sets, selected re-analyses and a reference model run. The
reference model run is chosen from a novel set of regional climate simulations over West
Africa within the framework of the WASCAL programme and employs the regional climate
model WRF, from which MPAS inherits several aspects of the dynamical solver and all of its
physical parameterisation schemes.

We find that MPAS-A is able to model the monsoon dynamics and the northwards move-
ment of the monsoon rain band in this pilot study. Despite using an “out-of-the-box” config-
uration of the model, both runs reproduce the timing of the onset of the monsoon season
better than the optimised WRF reference run. We find that the precipitation in the early
monsoon season is overestimated, which we attribute to the choice of physics parameteri-
sations. The MPAS model runs also show a cold bias in the near-surface temperature and
consequently fail to place the Saharan Heat Low at the correct location, which we believe
stems from a too short spin up time of the model. We would like to stress that our pilot
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study aims primarily at investigating the feasibility to conduct climate modelling research
with MPAS for the West African region. In order to be able to draw general conclusions on
the ability of MPAS to reproduce observed climatological properties, an ensemble of model
runs over longer time periods with sufficiently long spin up times is required.

In the last part of this study, we conduct extreme scaling tests on a global 3 km mesh with
more than 65 million grid cells on up to 458 752 cores on Juqueen, the IBM Blue Gene/Q
at the Forschungszentrum Jülich. We describe the issues that arise when attempting such
an experiment for the first time – up to now, MPAS-A has been run for real-data cases,
which include a full physics suite, on a maximum number of 16 384 tasks on Yellowstone
– and provide solutions that allow to conduct the scaling test in the first place and improve
the model performance. We find that the model scales very well up to the entire machine
with a parallel performance of nearly 70 % for 458 752 tasks. We confirm that the limitations
and rules to estimate the scaling, derived for moderate problem sizes, are also valid for
the extremely large test case. This gives confidence for planning model experiments and
estimating required runtimes, storage and computational resources.

Furthermore, we identify additional aspects in the model that become increasingly rele-
vant for larger problem sizes: the model initialisation and the disk I/O. We describe strate-
gies to improve the performance of the model, which are partly machine-dependent. We
further give estimates on required runtimes and resources for conducting scientific experi-
ments with the 3 km mesh on Juqueen.

Our next steps will be to conduct a number of longer simulation experiments on regu-
lar and variable-resolution meshes with a moderate number of grid cells. Specifically, we
plan to pursue the study on the dynamics of the West African Monsoon using a variable-
resolution grid such as the 60–12 km mesh and a regular grid with a similarly fine resolution.
This will allow us to compare the accuracy of the model after a full spin up of the soil condi-
tions and to assess the impact of the variable mesh on the model results. It will also allow
us to study physical processes such as the teleconnection between the oceans and the
African monsoon systems, and investigate the impact of climate and land use changes in
a consistent approach.
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In conclusion, the MPAS-A model is a novel atmospheric model that scales well on
a range of architectures for small up to extremely large numbers of tasks. Based on an
unstructured Voronoi mesh, it allows to conduct global simulations with local refinement re-
gions and smooth transition in-between them. This makes it possible to study local-scale
processes in regions of interest with a full coupling to the large-scale motions and a phys-
ical consistency within the model. This is shown here in a pilot study of the West African
Monsoon. We also demonstrate that it is possible to conduct global, convection-resolving
atmospheric simulations with MPAS on current and future massively parallel systems. How-
ever, it is evident that the application of models such as MPAS for extremely large problem
sizes and numbers of tasks require substantial efforts to optimise the model to the prob-
lem and to the machine it is run on. In order to do so, interdisciplinary approaches and
more intensive training of scientist on hardware, software and programming techniques are
paramount.

6 Code availability

Supplementary material and accompanying information are available at http://dx.doi.org/10.
1594/PANGAEA.849428. These contain a modified version of the MPAS release v3.1 with
extensions for detailed measurements of the performance of the individual components
of the model. This version can be used to reconstruct the three medium-sized test cases
in Sect. 2 and the 11-month study on the West African Monsoon in Sect. 3. Compressed
archives of the required input data for the three test cases are included in the supplementary
material. The initial conditions provided for the 60–12 km variable grid test case (Sect. 2.5)
are identical to those used in Sect. 3. The archive also contains a modified version of
a newer release v3.3 of MPAS, identical to v3.1 used in this publication, but with minor
bugfixes for model stability.
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Appendix A: MPAS compiler flags

We use the following compiler optimisation flags for the Intel compilers icc and ifort on Curie,
ForHLR1 and Juropatest:

CFLAGS = "-O3"
FFLAGS = "-real-size 64 -O3 -convert big_endian -FR"

For the IBM XL compilers mpixlc_r and mpixlf95_r on Juqueen, the following flags are used:

CFLAGS = "-O3 -qstrict -qarch=qp -qtune=qp"
FFLAGS = "-O3 -qstrict -qarch=qp -qtune=qp -qrealsize=8"

Appendix B: Configuration for moderate problem sizes

The following model configuration in terms of the usual namelist
(namelist.atmosphere) is used for the experiments in Sect. 2.3–2.5 (regular
120 km mesh, variable 100–25 km mesh, variable 60–12 km mesh). Differences in the
setup (e.g., model integration time step) are indicated in namelist-style comments. Details
about the structure of the namelist file and the available options can be found in the
MPAS-Atmosphere Model User’s Guide (Duda et al., 2014).

&nhyd_model
config_dt = 150.0 # 120km
config_dt = 120.0 # 100-25km
config_dt = 72.0 # 60-12km
config_start_time = ’1981-09-02_00:00:00’
config_stop_time = ’1981-09-03_00:00:00’
config_run_duration = ’24:00:00’
config_len_disp = 120000.0 # 120km
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config_len_disp = 25000.0 # 100-25km
config_len_disp = 12000.0 # 60-12km

/

&damping
config_zd = 22000.0
config_xnutr = 0.2

/

&io
config_pio_num_iotasks = 0
config_pio_stride = 1

/

&decomposition
config_block_decomp_file_prefix = ’part.’

/

&restart
config_do_restart =.true.

/

&physics
config_frac_seaice =.true.
config_sst_update =.true.
config_sstdiurn_update =.true.
config_deepsoiltemp_update =.true.
config_bucket_update = ’24:00:00’
config_bucket_rainc = 100.0
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config_bucket_rainnc = 100.0
config_bucket_radt = 1.0e9
config_microp_scheme = ’wsm6’
config_convection_scheme = ’kain_fritsch’
config_lsm_scheme = ’noah’
config_pbl_scheme = ’ysu’
config_gwdo_scheme = ’off’
config_radt_cld_scheme = ’cld_incidence’
config_radt_lw_scheme = ’rrtmg_lw’
config_radt_sw_scheme = ’rrtmg_sw’
config_sfclayer_scheme = ’monin_obukhov’

/

Appendix C: Configuration for extreme scaling tests

For the 3 km extreme scaling tests on Juqueen, the following model configuration is used.
For details, the reader is referred to the MPAS-Atmosphere Model User’s Guide (Duda et al.,
2014).

&nhyd_model
config_dt = 12.0
config_start_time = ’1981-09-01_00:00:00’
config_stop_time = ’1981-09-01_01:00:00’
config_run_duration = ’01:00:00’
config_len_disp = 3000.0

/

&damping
config_zd = 22000.0
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config_xnutr = 0.2
/

&io
config_pio_num_iotasks = 512 # for 4 racks, 128 per rack
config_pio_stride = 128

/

&decomposition
config_block_decomp_file_prefix = ’part.’

/

&restart
config_do_restart =.false.

/

&physics
config_frac_seaice =.false.
config_sst_update =.false.
config_sstdiurn_update =.false.
config_deepsoiltemp_update =.false.
config_bucket_update = ’24:00:00’
config_bucket_rainc = 100.0
config_bucket_rainnc = 100.0
config_bucket_radt = 1.0e9
config_microp_scheme = ’wsm6’
config_convection_scheme = ’off’
config_lsm_scheme = ’noah’
config_pbl_scheme = ’ysu’
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config_gwdo_scheme = ’off’
config_radt_cld_scheme = ’cld_incidence’
config_radt_lw_scheme = ’rrtmg_lw’
config_radt_sw_scheme = ’rrtmg_sw’
config_sfclayer_scheme = ’monin_obukhov’

/
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Table 1. Specifications of the four HPC facilities used for the medium-size scaling tests in Sect. 2.

TGCC Curie∗ FZJ Juqueen SCC ForHLR1∗ FZJ Juropatest

System B510 Bullx IBM Blue Gene/Q Megware MiriQuid T-Platform V210s
Processor Intel Sandy Bridge IBM PowerPC A2 Intel Ivy Bridge Intel Haswell

E5-2680, 2.7 GHz 1.6 GHz E5-2670v2, 2.4 GHz E5-2695v3, 2.3 GHz
Cores/node 2×8 1×16 2×20 2×14
Mem./node 64 GB 16 GB 64 GB 128 GB
Nodes total 5040 28 672 512 60
MPI network Infiniband QDR 5-D Torus Infiniband FDR Infiniband FDR

5 GB s−1 40 GB s−1 7 GB s−1 7 GB s−1

Filesystem LUSTRE GPFS LUSTRE GPFS
100 GB s−1 200 GB s−1 16 GB s−1 30 GB s−1

I/O network same as MPI 10 Gb Ethernet∗∗ same as MPI 10 Gb Ethernet
MPI library Bull MPI IBM MPI Intel MPI Intel MPI
Compiler Intel icc/ifort IBM bgxlc/bgxlf95 Intel icc/ifort Intel icc/ifort
Peak perf. 2 Petaflops 5.9 Petaflops 216 Teraflops 72 Teraflops

∗ “thin nodes” only, ignoring “fat nodes” (larger memory) and “hybrid nodes” (GPU accelerators)
∗∗ using dedicated I/O nodes, typically 128 I/O nodes per 1024 nodes (1 rack)
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Table 2. Fit coefficients of modified Amdahl’s law (2) for the three test cases and the two classes of
architectures, with a common value for the exponent X = 2.85. For the Blue Gene system, only the
fit to for the 60–12 km mesh should be used to estimate the required computing times.

Architecture T(1) [s] A B

120 km
Linux-Cluster 18 652 1.5× 10−3 3.3× 10−4

Blue Gene 413 440 1.8× 10−4 3.3× 10−5

100–25 km
Linux-Cluster 86 523 8.5× 10−4 5.2× 10−5

Blue Gene 1 274 880 2.4× 10−4 5.5× 10−6

60–12 km
Linux-Cluster 422 424 4.9× 10−4 1.4× 10−5

Blue Gene 6 579 200 8.4× 10−5 6.1× 10−6
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Table 3. MPAS-A 3 km global simulation experiment (strong scaling tests).

Nodes Tasks (MPI only) Bootstrapping [s] Initial read [s]

4096 65 536 1260 1260
8192 131 072 1370 590
16 384 262 144 1560 1020
24 576 393 216 1680 1080
28 672 458 752 1740 1140

Nodes Integration time f. Parallel efficiency Integration in
1 h model time [s] integration only 24 h walltime∗

4096 1760 100.0 % 29 h
8192 960 91.2 % 53 h
16 384 490 90.1 % 104 h
24 576 335 87.7 % 152 h
28 672 360 69.5 % 141 h

∗ Estimated time extrapolated from 1 h integration, including initial
bootstrapping/reading, output to disk, 12 s time step
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Table D1. Scaling tests for the 120 km regular mesh on the four HPC sites.

HPC site Nodes Tasks Realtime [s] CPUh Parallel Cells/
per 24 h per 24 h efficiency task

Curie 1 16 1306 5.8 100.0 % 2560
2 32 633 5.6 103.16 % 1280
4 64 377 6.7 86.6 % 640
6 96 305 8.1 71.37 % 427
8 128 269 9.6 60.69 % 320

10 160 236 10.5 55.34 % 256
12 192 212 11.3 51.34 % 213
16 256 187 13.3 43.65 % 160
24 384 182 19.4 29.9 % 107
32 512 181 25.7 22.55 % 80

ForHLR1 1 20 863 4.8 100.0 % 2048
2 40 486 5.4 88.79 % 1024
3 60 317 5.3 90.75 % 683
4 80 255 5.7 84.61 % 512
6 120 190 6.3 75.7 % 341
8 160 149 6.6 72.4 % 256

10 200 135 7.5 63.93 % 205
12 240 128 8.5 56.18 % 171
16 320 127 11.3 42.47 % 128
18 360 131 13.1 36.6 % 114
20 400 130 14.4 33.19 % 102

Jtest-full 1 28 651 5.1 100.0 % 1463
2 56 333 5.2 97.75 % 731
4 112 177 5.5 91.95 % 366
6 168 133 6.2 81.58 % 244
8 224 109 6.8 74.66 % 183

10 280 102 7.9 63.82 % 146
12 336 92 8.6 58.97 % 122
15 420 91 10.6 47.69 % 98

Jtest-half 1 14 1172 9.1 100.0 % 2926
2 28 628 9.8 93.31 % 1463
4 56 317 9.9 92.43 % 731
6 84 220 10.3 88.79 % 488
8 112 167 10.4 87.72 % 366

10 140 142 11.0 82.54 % 293
15 210 95 11.1 82.25 % 195
20 280 87 13.5 67.36 % 146
25 350 88 17.1 53.27 % 117
30 420 99 23.1 39.46 % 98

Juqueen 32 512 661 94.0 100.0 % 80
64 1024 477 135.7 69.29 % 40
96 1536 586 250.0 37.6 % 27

128 2048 608 345.9 27.18 % 20
192 3072 751 640.9 14.67 % 13
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Table E1. Scaling tests for the 100–25 km variable mesh on the four HPC sites.

HPC site Nodes Tasks Realtime [s] CPUh Parallel Cells/
per 24 h per 24 h efficiency task

Curie 1 16 6086 27.05 100.0 % 10 240
4 64 1528 27.16 99.57 % 2560
8 128 782 27.8 97.28 % 1280

16 256 424 30.15 89.71 % 640
24 384 314 33.49 80.76 % 427
32 512 265 37.69 71.77 % 320
48 768 223 47.57 56.86 % 213
64 1024 263 74.81 36.16 % 160
96 1536 271 115.63 23.39 % 107

128 2048 293 166.68 16.23 % 80
192 3072 541 461.65 5.86 % 53

ForHLR1 1 20 4413 24.52 100.0 % 8192
4 80 1129 25.09 97.72 % 2048
8 160 555 24.67 99.39 % 1024

10 200 474 26.33 93.1 % 819
15 300 346 28.83 85.03 % 546
20 400 316 35.11 69.83 % 410
25 500 257 35.69 68.68 % 328
30 600 239 39.83 61.55 % 273
40 800 253 56.22 43.61 % 205
45 900 196 49.0 50.03 % 182
50 1000 208 57.78 42.43 % 164
55 1100 217 66.31 36.98 % 149
60 1200 210 70.0 35.02 % 137

Jtest-full 1 28 3361 26.14 100.0 % 5852
2 56 1644 25.57 102.22 % 2926
4 112 807 25.11 104.12 % 1463
8 224 418 26.01 100.51 % 731

10 280 349 27.14 96.3 % 585
15 420 260 30.33 86.18 % 390
20 560 215 33.44 78.16 % 293
25 700 186 36.17 72.28 % 234
30 840 168 39.2 66.69 % 195
40 1120 180 56.0 46.68 % 146
50 1400 186 72.33 36.14 % 117

Jtest-half 1 14 5405 42.04 100.0 % 11 703
2 28 2766 43.03 97.7 % 5852
4 56 1487 46.26 90.87 % 2926
8 112 734 45.67 92.05 % 1463

10 140 620 48.22 87.18 % 1170
15 210 407 47.48 88.53 % 780
20 280 323 50.24 83.67 % 585
30 420 233 54.37 77.32 % 390
35 490 201 54.72 76.83 % 334
40 560 286 88.98 47.25 % 293
50 700 229 89.06 47.21 % 234
55 770 226 96.68 43.48 % 213

Juqueen 32 512 2250 320.0 100.0 % 320
64 1024 1365 388.27 82.42 % 160
96 1536 1323 564.48 56.69 % 107

128 2048 1168 664.46 48.16 % 80
160 2560 1004 713.96 44.82 % 64
192 3072 940 802.13 39.89 % 53
256 4096 700 796.44 40.18 % 40
384 6144 554 945.49 33.84 % 27
512 8192 562 1278.86 25.02 % 20

1024 16 384 1749 7959.89 4.02 % 10
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Table F1. Scaling tests for the 60–12 km variable mesh on the four HPC sites.

HPC site Nodes Tasks Realtime [s] CPUh Parallel Cells/
per 24 h per 24 h efficiency task

Curie 1 16 27 428 121.9 100.0 % 33 472
4 64 7715 137.2 88.88 % 8368
8 128 3955 140.6 86.69 % 4184

16 256 2025 144.0 84.65 % 2092
24 384 1349 143.9 84.72 % 1395
48 768 777 165.8 73.54 % 697
64 1024 690 196.3 62.11 % 523
96 1536 567 241.9 50.39 % 349

128 2048 484 275.3 44.27 % 262
192 3072 505 430.9 28.29 % 174
256 4096 628 714.5 17.06 % 131
384 6144 604 1030.8 11.83 % 87

ForHLR1 2 40 10 967 121.9 100.0 % 13 389
4 80 5645 125.4 97.14 % 6694
8 160 2876 127.8 95.33 % 3347

15 300 1584 132.0 92.31 % 1785
20 400 1234 137.1 88.87 % 1339
30 600 922 153.7 79.3 % 893
40 800 720 160.0 76.16 % 669
45 900 710 176.1 68.65 % 595
50 1000 704 195.6 62.31 % 536
60 1200 649 216.3 56.33 % 446
80 1600 635 282.2 43.18 % 335

100 2000 543 301.7 40.39 % 268
120 2400 459 306.0 39.82 % 223

Jtest-full 1 28 17 151 133.4 100.0 % 19 127
2 56 8552 133.0 100.27 % 9563
8 224 2106 131.0 101.8 % 2391

10 280 1704 132.5 100.65 % 1913
15 420 1113 129.9 102.73 % 1275
20 560 862 134.1 99.48 % 956
25 700 716 139.2 95.82 % 765
30 840 613 143.0 93.26 % 638
40 1120 507 157.7 84.57 % 478
50 1400 437 169.9 78.49 % 383
55 1540 428 183.1 72.86 % 348

Jtest-half 1 14 29 000 225.6 100.0 % 38 254
2 28 14 487 225.4 100.09 % 19 127
4 56 7143 222.2 101.5 % 9563
8 112 4126 256.7 87.86 % 4782

10 140 2833 220.3 102.36 % 3825
15 210 2133 248.9 90.64 % 2550
20 280 1583 246.2 91.6 % 1913
30 420 1097 256.0 88.12 % 1275
40 560 784 243.9 92.47 % 956
50 700 624 242.7 92.95 % 765
55 770 621 265.7 84.91 % 696

Juqueen 32 512 11 800 1678.2 100.0 % 1046
64 1024 6950 1976.9 84.89 % 523
96 1536 4490 1915.7 87.6 % 349

128 2048 4100 2332.4 71.95 % 262
192 3072 2991 2552.3 65.75 % 174
256 4096 2979 3389.4 49.51 % 131
384 6144 2514 4290.6 39.11 % 87
512 8192 2468 5616.1 29.88 % 65
640 10 240 4462 12 691.9 13.22 % 52

1024 16 384 9863 44 887.6 3.74 % 33
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Table G1. Scalasca/Score-P profile of percentages of time spent during the model integration, i. e.,
ignoring the model initialisation, for the 60–12 km mesh on Juqueen. The most significant contribu-
tors to each of the categories are listed for completeness.

Step in time integration 2048-task run 4096-task run 8192-task run

Physics 13 % 9 % 4 %
Microphysics
Radiation
PBL/CU scheme
Land surface model

Communication 35 % 41 % 70 %
All-to-all min/max values
Exchange halo fields

Dynamics 36 % 34 % 11 %
Acoustic time step
Advance scalars
Compute/add tendencies
Solve diagnostics

I/O 16 % 16 % 15 %
Build/write output stream
Boundary updates (read)
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Table H1. File sizes of input (I) and output (O) files for all meshes (uncompressed netCDF3/4).
For a given mesh with n grid cells, an estimate of the required file sizes is calculated from the
other runs. The given file sizes for the comprehensive output file output.nc correspond to a set
of 20 atmospheric variables (on 41 geometric height levels), 3 soil variables (on 4 soil levels), 32
single-level variables (surface, top of atmosphere, . . . ) and 40 static variables, required for the mesh
geometry. Likewise, the smaller diagnostic output files diag.nc contain 24 variables on single
levels (surface, pre-defined pressure levels, . . . ). It should be noted that the number of atmospheric,
soil and single-level variables can be customised for both output.nc and diag.nc at runtime
using simple ASCII files. Further, in an attempt to speed up the I/O and reduce the file sizes, the
output of the static variables could be suppressed for all but a single output.nc file.

Mesh Cells init.nc diag.nc restart.nc output.nc
(I) (O) (O) (O)

120 km 40 962 758 MB 8.7 MB 1.6 GB 153 MB
100–25 km 163 842 3.0 GB 33 MB 6.0 GB 597 GB
60–12 km 535 554 9.7 GB 107 MB 20 GB 2.0 GB
3 km 65 536 002 1.2 TB 13 GB 2.4 TB 250 GB

n 19.7 kB×n 0.22 kB×n 38.8 kB×n 4.0 kB×n
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Table H2. Summary of the scaling tests: cheapest and fastest model run configurations for a 24 h
model integration with disk I/O enabled (rt= realtime).

HPC site Nodes Tasks CPUh Nodes Tasks Speedup
cheapest run cheapest run cheapest run fastest run fastest run fastest run

Regular 120 km mesh
Curie 2 32 5.6 32 512 477× rt
ForHLR1 1 20 4.8 16 320 680× rt
Juqueen 32 512 94.0 64 1024 181× rt
Jtest-half 1 14 9.1 20 280 993× rt
Jtest-full 1 28 5.1 15 420 949× rt

Variable 100–25 km mesh
Curie 1 16 27.1 48 768 387× rt
ForHLR1 1 20 24.5 45 900 441× rt
Juqueen 32 512 320 384 6144 156× rt
Jtest-half 1 14 42.0 35 490 430× rt
Jtest-full 4 112 25.1 30 840 514× rt

Variable 60–12 km mesh
Curie 1 16 122 128 2048 179× rt
ForHLR1 2 40 122 120 2400 188× rt
Juqueen 32 512 1678 512 8192 35× rt
Jtest-half 10 140 220 55 770 139× rt
Jtest-full 15 420 130 55 1540 202× rt

Regular 3 km mesh
Juqueen 4096 65 536 1.3 Mio 24 576 393 216 6.3× rt
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C-grid staggering  
of state variables

Horizontal, unstructured  
Voronoi mesh (SCVTs)

Dual Delaunay  
CVT grid (triangles)

Figure 1. (upper left) Sketch of a variable-resolution Voronoi mesh used for the horizontal grid;
(upper right) C-grid staggering of state variables (adapted from Skamarock et al., 2012); (lower left)
a block of owned cells (blue) assigned to an MPI task, along with two layers of halo cells (red,
orange); (lower right) partitioning of the regular 120 km mesh with 40 962 grid cells for 64 tasks.
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Figure 2. Parallel efficiency [%] for the 120 km regular mesh with 40 962 grid cells, the variable
100–25 km mesh with 163 842 grid cells, and the variable 60–12 km mesh with 535 554 grid cells.
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Figure 3. Communication volume as function of number of tasks for the three test cases (left:
120 km; middle: 100–25 km; right: 60–12 km). The dashed lines correspond to an exponential re-
lation with power law index 0.52. For large numbers of tasks, a runaway growth can be seen for the
120 km and to some extent also for the 100–25 km mesh.
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Figure 4. (left) Approximate mesh cell sizes and (right) distribution of mesh cell sizes for (top) the
variable 100–25 km mesh with 163 842 grid cells and (bottom) the variable 60–12 km mesh with
535 554 grid cells.
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Figure 7. Ratio of (left) total number of cells, (mid) number of owned cells, and (right) number of halo cells

per task between the non-contiguous and the contiguous graph partition of the variable 100–25 km mesh for

300 tasks.

tition using the command line arguments -contig -minconn for METIS, which results in an

increase of the edge cut from 58031 to 58870 (1.4%). Figure 7 displays the total number of cells

(nCellsByTask), the number of owned cells (nCellsSolveByTask), and the number of halo cells per370

task (nHaloCellsByTask) as ratio between the non-contiguous and the contiguous partition. Since

the communication volume increases for the contiguous partition, the total number of cells per task

on average is larger, too. The average number of owned cells is identical, since the number of cells

of the graph does not change. Notably, task 200 has a 1.3 times larger number of halo cells for the

non-contiguous partition, since its partition consists of two separate patches, which implies a larger375

number of neighbouring tasks and of surrounding halo cells. To eliminate the influence of the disk

I/O on the runtimes for the two partitions, we switch off the output to disk. We find that the measured

runtimes for the model integration is practically identical for the two runs (251 s non-contiguous vs.

255 s contiguous). For 300 tasks, the average ratio of halo cells to owned cells is 1 : 2.8, which might

be too small to see the effect of the additional halo cells in the non-contiguous partition. We there-380

fore repeat the test for non-contiguous and contiguous partitions for 2520 tasks (65 owned cells per

task), with a corresponding ratio of 1.2 : 1 halo cells to owned cells. Even in this case, the measured

runtimes for the model integration are nearly identical (45.2 s contiguous vs. 45.6 s non-contiguous).

We conclude therefore that the impact of non-contiguous partitions on the runtime is negligible for

any reasonable number of tasks for a given mesh.385

Although the number of grid cells is 4 times larger for this test case than for the regular 120 km

mesh, the problem size is still too small for application on Juqueen. The two smallest possible par-

allel runs with 512 and 1024 tasks correspond to 320 and 160 cells owned per task, for which the

decrease in parallel efficiency is 20%. Runs with larger number of tasks all have parallel efficiencies

of less than 60%. Table 6 in G lists the cheapest and fastest model runs for the four HPC sites.390

14

Figure 5. Ratio of (left) total number of cells, (mid) number of owned cells, and (right) number of
halo cells per task between the non-contiguous and the contiguous graph partition of the variable
100–25 km mesh for 300 tasks.
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Figure 6. Total runtimes [s] for the 120 km regular mesh with 40 962 grid cells, the variable 100–
25 km mesh with 163 842 grid cells, and the variable 60–12 km mesh with 535 554 grid cells. Indi-
cated are time ratios between the Linux-cluster systems Curie, ForHLR1 and Juropatest, and the
Blue Gene system Juqueen. Fits to the total runtimes are obtained separately for the Linux-cluster
systems and the Blue Gene system, using a modified version of Amdahl’s law (see Equation (2) and
Table 2), and are displayed as dashed black lines.
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Figure 7. Required time for a 24 h integration [s] split into time integration, model setup and disk
I/O for the three test cases on Jtest-full. Also displayed are the total time and a combination of time
integration and disk I/O to reflect the parallel performance of MPAS-A for longer model runs, for
which the initial setup costs are amortised.
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Figure 8. Model topography (terrain height in m) for the WRF reference and the two MPAS model
runs for the West African WRF domain. The left panel also indicates five distinct agro-climatical
zones, following a gradient of decreasing annual precipitation from South to North.
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Figure 9. (top) Mean near-surface temperature (over land) in ◦C for July 1982 for the three obser-
vational data sets CRU, UDEL, GHCN, the WRF reference and the two MPAS model runs; (bottom)
annual cycle of mean near-surface temperature over the entire land area and the five agro-climatical
zones depicted in Fig. 8.

64



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Figure 10. (top) Monthly precipitation (over land) in mm for July 1982 for the three observational
data sets CRU, UDEL, GPCC, the WRF reference and the two MPAS model runs; (bottom) annual
cycle of monthly precipitation over the entire land area and the five agro-climatical zones depicted
in Fig. 8.
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Figure 11. (top) Mean sea level pressure, (middle) mean soil temperature, and (bottom) mean rela-
tive soil moisture over land for July 1982 for the WRF reference and the MPAS model runs.
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Figure 12. Annual cycle of (left) mean sea level pressure in hPa, (middle) mean soil temperature
in ◦C, and (right) mean relative soil moisture in % over land for the WRF reference and the MPAS
model runs.
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Figure 13. Required times for individual steps of the 3 km test runs on Juqueen (18 s time step).
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