o~ W

~N O

10
11

12
13

14
15

16
17

18
19
20

21
22

23
24

25
26

27
28

Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against
eddy covariance data for ten European forest sites

A. Collalti*?, S. Marconi*?, A. Ibrom® C. Trotta?, A. Anav’, E. D’Andrea®, G. Matteucci’®, L.
Montagnani’, B. Gielen®, I. Mammarella®, T. Grinwald'®, A. Knohl*, F. Berninger, Y. Zhao®, R.
Valentini*? M. Santini'

[1]{EuroMediterranean Center on Climate Change — Division on Impacts on Agriculture,
Forest and Ecosystem Services (IAFES), 01100 Viterbo, Italy}

[2]{University of Tuscia — Department for Innovation in Biological, Agro-Food and Forest
Systems (DIBAF), 01100 Viterbo, Italy}

[3]{Centre for Ecosystems and Environmental Sustainability, Dept. Chem. Engineering,
Technical University of Denmark (DTU), Roskilde, Denmark}

[4]{College of Engineering, Mathematics, and Physical Sciences, University of Exeter,
Exeter, United Kingdom}

[5]{CNR-IBAF — National Research Council of Italy, Institute of Agroenvironmental and
Forest Biology, 00015 Monterotondo Scalo, RM, Italy}

[6]{CNR-ISAFOM — National Research Council of Italy, Institute for Agriculture and
Forestry Systems in the Mediterranean, 87036 Rende, CS, ltaly}

[7]{Forest Services, Autonomous Province of Bolzano, 39100, Bolzano, Italy; and Faculty of

Science and Technology, Free University of Bolzano, Piazza Universita 5, 39100 Bolzano,
Italy}

[8]{Research Group of Plant and Vegetation Ecology, Department of Biology, University of
Antwerp, Belgium}

[9]1{University of Helsinki — Department of Physics, Division of Atmospheric Sciences,
00014 Helsinki, Finland}

[10]{Technische Universitat (TU) Dresden, Institute of Hydrology and Meteorology, Chair of
Meteorology, D-01062 Dresden, Germany}

[11]{Bioclimatology, Faculty of Forest Sciences and Forest Ecology, Georg-August
University of Gottingen, Bisgenweg 2, 37077, Gottingen, Germany}



29

30
31

32

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

[12]{ Department of Forest Sciences, University of Helsinki, POBox 27, 00014, Helsinki}

[13]{LOCEAN/IPSL, UMR 7159, Sorbonne Universites, Unite mixte UPMC-CNRS-IRD-
MNHN, 4 place Jussieu, 75005, Paris, France}

Correspondence to: A. Collalti (alessio.collalti@cmcc.it)

Abstract

This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest
Ecosystem Model (FEM) in simulating gross primary productivity (GPP), against eddy
covariance GPP data for ten FLUXNET forest sites across Europe. A new carbon allocation
module, coupled with new both phenological and autotrophic respiration schemes, was
implemented in this new daily version. Model ability in reproducing timing and magnitude of
daily and monthly GPP fluctuations is validated at intra-annual and inter-annual scale,
including extreme anomalous seasons. With the purpose to test the 3D-CMCC FEM
applicability over Europe without a site-related calibration, the model has been deliberately
parameterized with a single set of species-specific parameterizations for each forest
ecosystem. The model consistently reproduces both in timing and in magnitude daily and
monthly GPP variability across all sites, with the exception of the two Mediterranean sites.
We find that 3D-CMCC FEM tends to better simulate the timing of inter-annual anomalies
than their magnitude within measurements’ uncertainty. In six of eight sites where data are
available the model well reproduces the 2003 summer drought event. Finally, for three sites
we evaluate if a more accurate representation of forest structural characteristics (i.e. cohorts,
forest layers) and species composition can improve model results. In two of the three sites
results reveal that model slightly increases its performances although, statistically speaking,

not in a relevant way.
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1 Introduction

Terrestrial ecosystems have a relevant role in the global carbon cycle, acting also as climate
regulators (Peters et al., 2007; Bonan, 2008; Huntingford et al., 2009). In fact terrestrial
ecosystems store large carbon stocks and cause most of the variance of carbon exchange
between the atmosphere and land surface (Batlle Bayer et al., 2012). Among terrestrial
ecosystems, forests are an essential component in the global carbon cycle because of their
high capacity to store carbon in the vegetation and soil pools (Kramer et al., 2002). Through
Gross Primary Production (GPP) plants fix atmospheric carbon dioxide (CO;) as organic
compounds, enabling terrestrial ecosystems to offset part of the anthropogenic CO, emissions
(Janssens et al., 2003; Cox & Jones, 2008; Battin et al., 2009). Consequently, changes in GPP
could have relevant impacts on atmospheric CO, concentration. Thus, accurately simulating
terrestrial GPP is key to quantify the global carbon cycle and predict the future trajectories of
the atmospheric CO, concentration (Wu et al., 2015), and taking into account the various
spatial and temporal scales of the processes is a major challenge (Yuan et al., 2007).
Terrestrial ecosystem models, used to simulate carbon, water and energy fluxes, are valuable
tools for advancing the knowledge of the role of ecosystems in maintaining a multitude of
their fundamental services, like the provision of products and the regulation of climate (Ibrom
et al., 2006). Such numerical models are also useful to: 1) predict the impacts of climate
variability on terrestrial biosphere and related carbon fluxes (Ciais et al., 2005; Breda et al.,
2006; Richardson et al., 2007), ranging from long term anomalies (Santini et al., 2014) up to
extreme events (Zscheischler et al., 2014); and 2) reproduce biophysical and biogeochemical
feedbacks of vegetation cover and change on climate, especially when coupled to atmosphere-
ocean climate models through land surface schemes (Bonan, 2008; Arneth et al., 2012; Taylor
etal., 2012).

At European level, terrestrial ecosystems have been reported to be a significant sink of CO,
(Luyssaert et al., 2012), with forests playing a relevant role in absorbing anthropogenic
emissions for about 10% (Nabuurs et al., 2003; UNECE and FAO, 2011).

In the last decade some studies have identified systematic errors when modelling terrestrial
ecosystem sensitivity to climate variability at multiple time scales (Friedlingstein et al., 2006;
Piao et al., 2013; Dalmonech et al., 2015) while sometimes differences in model predictions

are very large (Wang et al., 2014a).
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To improve the models capability in reproducing relevant processes related to the land carbon
cycle, detailed representation of missing processes should be increasingly developed (Sykes et
al., 2001; Campioli et al., 2013; Nole et al., 2013; Ciais et al., 2013; Prentice et al., 2014). For
instance, spatial and temporal environmental hetereogeneity is known to play an important
role in the dynamics of populations and communities (Kobe, 1996; Chesson, 2000; Clark et
al., 2010; 2011). However, the implications of this hetereogeneity for developing and testing
regional to global scale forest dynamics models that are also able to take into account forest
management have still largely to be explored (Zhang et al., 2014). As reported by Wramneby
et al. (2008), incorporating increased mechanistic details is expected to improve the
explanatory power of a model. Many models for example calculate leaf photosynthesis
through the Farquhar model (Farquhar et al., 1980; Farquhar & Sharkey, 1982), while few
models take in proper consideration the canopy vertical stratification. Increasing model
complexity can sometimes mask a lack of understanding, although models including a larger
subset of important processes should be more realistic than a simpler model. However,
complex models are tuned to perform well at standard tests but produce widely divergent
results when projected beyond the domain of calibration (Prentice et al., 2014). Since
European forests are mostly managed and not homogeneous in terms of structure,
composition and cohorts, only a few models are able to represent this particular ecosystem
complexity and heterogeneity (Grote et al., 2011; Morales et al., 2005; Seidl et al., 2012; Yin
et al., 2014). For simulating the impact of forest management on the carbon cycle, it is
important to consider the vertical structure of forests and the age-related changes in structure

and physiology.

In this study we investigate the performance of the new version of the 3D-CMCC Forest
Ecosystem Model (3D-CMCC FEM, Collalti et al. 2014) in quantifying GPP across different
forest types and climate conditions in Europe. In contrast to Dynamic Global Vegetation
Models (DGVMs), 3D-CMCC FEM incorporates accurate process description focusing on the
effects of hierarchy in vertical forest structure and ages on productivity and growth at species
level. The model has been designed to maintain computational efficiency, as postulated for
the Light Use Efficiency (LUE) Models (Monteith, 1977), coupled to the accuracy of the
Process-Based Models (PBMs) (Makela et al., 2000). As described by Wang et al. (2014a; b),
a model with both high accuracy and computation efficiency is highly desirable for the

purpose of simulating long time series of GPP at high spatial resolution.
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Thanks to FLUXNET, a global network of flux tower sites, half hourly net CO,, water and
energy eddy covariance (EC) flux measurements (Baldocchi, 2003) are now available for a
wide range of forest ecosystems. The network provides a continuously increasing set of
annual series of half-hourly data (Balzarolo et al., 2014). These data provide valuable
information to investigate seasonal phasing and amplitudes of carbon fluxes (Aubinet et al.,
2000; Falge et al., 2002; Gielen et al., 2013; Slevin et al., 2015) and to test terrestrial models
at the ecosystem scale (e.g. Richardson et al., 2010; Blyth et al., 2011; Chang et al., 2013;
WiRkirchen et al., 2013; Bagnara et al., 2014; Balzarolo et al., 2014; Liu et al., 2014; Wang et
al., 2014a; Wu et al., 2015). In the present paper daily meteorological and GPP data are
provided by FLUXNET. GPP data are exploited as an independent dataset to compare, over
different time-scales, 3D-CMCC FEM simulations for ten European forest stands varying in

species composition, forest structure, cohorts and climates.
The objective of this work is to answer the following questions:

1 Does the model reproduce the magnitude and the timing of seasonal fluctuations in GPP
and their effects across different forest types and forest canopy structures?

2  Does the model reproduce the observed inter-annual GPP variability?

3 Is the model generic enough so that a single set of species-specific parameterizations (i.e.
without a site-related calibration) allows reproducing GPP behaviour across different

biomes?

4 Do the model outputs improve when considering a complex heterogeneous three-
dimensional canopy structure compared to a simple “big leaf” model canopy

representation?

To investigate these issues, we introduced a 3D canopy representation into the 3D-CMCC
FEM, while however maintaining its flexibility and the generic features to be applied to
different forest ecosystems. The new model can now run on a daily time step and includes as
main changes an improved allocation-phenology scheme (with new carbon pools including
the non-structural carbon pool, NSC), an implemented water cycle (including snow processes)

and the computation of autotrophic respiration.
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2 Materials and Methods

2.1 Model description

The three-dimensional Forest Ecosystem Model, 3D-CMCC FEM (Collalti, 2011; Collalti et
al., 2014) (source code and executables are available upon request to the corresponding
authors and downloadable at http://dev.cmcc.it/git/3D-CMCC-FEM-qit) is hybrid between an

empirical and a process-based model relying on the concepts of the LUE approach at canopy
level for carbon fixation. The 3D-CMCC FEM is designed to simulate forest ecosystems at
flexible scale (from hectare to 1km per 1km) and on a daily time step. The model simulates
tree growth as well as carbon and water fluxes, at species level, representing ecophysiological
processes in hetereogeneous forest ecosystems including complex canopy structures. The 3D-
CMCC FEM v.5.1 uses daily meteorological data, site-specific data and ecophysiological data
(e.g. maximum canopy conductance, specific leaf area, etc.; see Table S3 and Collalti et al.,
2014) to simulate forest processes. The model code architecture allows aggregating trees into
representative classes, each characterized with its variables (e.g. carbon pools, leaf area index,
tree height) based on their ages, species-specific and structural traits. These variables are
identified by the model through four indexes: i.e. species (x index), diameter class (Diameter
at Breast Height, DBH) (y index), height class (z index), and age cohort (k index); such
indexes represent the main state variables considered by the model in distinguishing
ecosystems across sites. To deal with forest hetereogenity within and across different
ecosystems, 3D-CMCC FEM v.x.x (all model versions follow the same architecture) uses a
species-specific parameterization for each species simulated. Moreover, based on the
assumption made by Magnani et al. (2007) that the above-ground net primary production
decreases with the ageing of a forest, the model explicitly takes into account all ages within
the stand, reproducing a year by year reduction due to senescence (Landsberg & Waring,
1997; Waring & McDowel, 2002). Height classes and the tree position within the forest
vertical profile are explicitly treated by the model to estimate the light availability (version
5.1 includes also the albedo effects) using the Monsi-Saeki formulation of exponential
attenuation coupled with the “Big-leaf” approach developed for a multi-layered model
without considering canopy depth (Collalti et al., 2014; Medlyn et al., 2003). DBH together
with stand density control grid cell horizontal canopy coverage (and gaps) through the
computation of the single tree crown coverage and then upscale to grid-cell level (Collalti et


http://dev.cmcc.it/git/3D-CMCC-FEM-git

176
177
178
179
180

181

182
183
184
185
186
187
188
189
190
191
192

193
194

195
196
197
198
199
200
201
202
203
204
205
206

al., 2014). In this way, the model is able to reproduce different combinations of uneven-aged,
multi-layered and multi-species forests, by optional simulation of e.g. light competition, age
related decline and different species-specific traits. This aspect makes the model flexible to be
theoretically used for a wide range of applications in forests and allows quantifying the effects

of a particular simulation of forest structure on model performance.

2.2 Model implementations

In this study, the 3D-CMCC FEM described in Collalti et al. (2014) has been advanced to
version 5.1 to improve the representation of forest processes, like phenology, canopy
photosynthesis, including autotrophic respiration, tree carbon allocation and water dynamics.
The improved phenology routine is based on a new C allocation scheme, that includes new
carbon pools among which the Non-Structural-Carbon (NSC) pool, related to five
phenological transitions for deciduous species, and three phenological transitions for
evergreen species, both updated once per day. Autotrophic respiration is explicitly simulated
and separated into maintenance and growth respiration. Maintenance respiration is the
function of the nitrogen content (a new added pool) in the living pools, while growth
respiration is computed proportionally to the carbon allocated to the different tree

compartments.

Photosynthesis and net primary production

As in the Collalti et al. (2014) the carbon flux is still estimated in 3D-CMCC FEM through
the Light Use Efficiency approach multiplying, for a particular species x, the absorbed
photosynthetic active radiation (APAR, i.e. the radiation intercepted by the canopy) with the
leaf area index (LAI, m’m™) with either the prognostic potential radiation use efficiency (e,
grams of dry matter MJ™) or the maximum canopy quantum use efficiency (ay, pmol CO,
umol™ PAR) (for a full list of model parameters see Table S3). Parameters & or ay are
controlled by the product of several environmental factors (modifiers) indicated as mody
(dimensionless values varying between 0 and 1 and differing for each species x and age class
k) depending on: vapour pressure deficit, daily maximum and minimum air temperatures, soil
water content and site nutrient status (for a full modifiers description see Landsberg &
Waring, 1997). Gross Primary Production (GPP; gCmday™) is thus calculated using the
following equation:
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GPPyy k= (ex0T Xy) * APAR, * mod, 1)

where APAR, is the absorbed radiation by the trees at the z™" layer (where z represents the

layer of representative height for each height class).

Conversely from the previous version where Autotrophic Respiration (AR) was set as a
constant fraction of GPP (Waring & Landsberg, 1998), in this version AR is explicitly
simulated. AR is treated distinguishing into Maintenance Respiration (MR), governed by a
Q1o type response function (Ryan, 1991; Bond-Lamberty et al., 2005) and Growth Respiration
(GR) assumed to be a constant proportion (30%) of all new tissues produced (Larcher, 2003).

Net Primary Production (NPP), is then calculated as follows:
NPPx,y,Z,k = GPPx,y,z,k - ARx,y,Z,k (2)

NPP is then partitioned into biomass compartments and litter production following dynamic
allocation patterns that reflect environmental constraints (i.e. light and water competition) and

age.

Daily meteorological forcing and snow dynamics

The model implements a daily time step (previous version was at monthly time step) thanks to
the temporal frequency of meteorological forcing input data: daily maximum (Tmax; °C) and
minimum air temperature (Tmin; °C), soil temperature (Ts;; °C), vapour pressure deficit (hPa),
global solar radiation (MJ m~2day ') and precipitation amount (mm day™). In addition, the
model uses the day-time (Tqay; °C) and night-time (Tnign;; C°) average temperature computed

as follows (Running & Coughlan, 1988):
Tday = 0.45 * (Tmax - Tavg) + Tavg (3)

Tnight = (Tday + Tinin) /2 (4)

Where Tayq is the daily average air temperature (°C). When the soil temperature is missing
among in situ observed data, the model estimates it for the upper 10 cm of the soil layer
through an 11-day running weighted average of T,y and further corrected by the presence of a
snowpack as in Thornton (2010), Kimball et al. (1997) and Zeng et al. (1993). The variable
related to the snowpack thickness was included as a water cycle component by reproducing
the daily amount (mm day™) of snow melt driven by average air temperature (Tavg) and

incident net global radiation (Radsi;; W m™2), while snow sublimation is only driven by Tavg-
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In case of snow presence, if Tayg is higher than 0°C, considered the melting point as in

Running & Coughlan (1988) and Marks et al. (1992), the rate of daily snowmelt is estimated
by:

Radspir*Esnow
SNowper = (tcoeff * Tavg) T (#) ©)

where teefr is the snowmelt coefficient (0.65 Kg m? °C™day™), emow i the absorptivity of
snow (0.6), Hy is the latent heat of fusion (335 kJ kg™), Rads is the incident net global
radiation at the soil surface (kJ m? day™).

Otherwise, if Tayg is lower than 0°C snow sublimation is computed by:

_ (Radspir*€snow
Snowsubl - ( H (6)
sub

where Hgyp is the latent heat of sublimation (2845 kJ kg'l).

Phenology and Carbon allocation

Phenology plays a fundamental role in regulating photosynthesis and other ecosystem
processes (e.g. carbon and nitrogen dynamics), as well as inter-individual and inter-species
competitive relations and feedbacks to the climate system (Richardson et al., 2012a). In the
updated model version phenology and carbon allocation depend on six different carbon and
nitrogen pools (while three carbon pools where considered in the previous versions). Five
pools represent the main tree organs: foliage, (fine and coarse) roots, stem, branch and bark
fraction. One new pool corresponds to non-structural carbon (NSC; starch and sugar) stored in
the whole tree. The inclusion of this new pool was necessary to represent NSC mobilization
and consequently leaf phenology (e.g. leaf production during spring for deciduous trees) and
carbon allocation. Woody pools are furthermore distinguished between live and dead wood.
In the new version of 3D-CMCC FEM, LAI values are predicted for sun and shaded leaves
(De Pury & Farquhar, 1997; Thornton & Zimmermann, 2007; Wu et al., 2015), minimizing
the effects of the “Big-leaf” approach (Monteith, 1965; Sellers et al., 1997), as a function of
the amount of carbon allocated to the leaf pool. It is noteworthy that each pool and each
structural state variables is daily updated according to the meteorological data, forest structure

and simulated fluxes.
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Following Arora & Boer (2005), for deciduous species the model considers five phenological
transitions (being just four in the previous versions: bud burst, peak LAI, leaf fall period and
dormancy) that drive the seasonal progression of vegetation through phases of
dormancy/quiescence, budburst, maximum growth, active growth, and senescence as in the

following:

1. Leaf onset starts from quiescence when thermic sum (the sum of the Tgay air
temperatures exceeding the threshold Tpase Value of 5°C) exceeds a species- and site-
specific temperature threshold value (Rétzer et al., 2004; Dufrene et al., 2005) and
when the LAI value reaches LAI = max(LAI) * 0.5. The costs of expanding buds
during this period of high carbon demand are supported by NSC (Landhausser, 2010;
Dickmann & Kozlowski, 1970).

2. During the budburst phase, carbon and NSC are allocated to the foliage pool, as long
as the balance between GPP and AR is positive (Barbaroux & Bréda, 2002; Campioli
et al., 2013; Scartazza et al., 2013).

3. During the succeeding maximum growth phase and lasting up to peak LAI, carbon is
allocated into foliage and fine root pools (Sabate et al., 2002), based on the pipe model
theory (Shinozaki et al., 1964 a; b), to optimize photosynthesis; otherwise, no growth

occurs and NSC is used.

4. Successively, the full growing phase lasts up to the day when day length (in hours) is
shorter than a species-specific threshold value. In this phase carbon is allocated into
stem, fine and coarse roots, branch and bark, and into non-structural carbon pools in

order to refill the reserves for the next years.

5. Finally, during the leaf fall (i.e. yellowing or senescence) phase, lasting until the leaf
fall (assumed linear) is complete, the total positive carbon balance is allocated to the
NSC pool.

Outside the growing season (dormancy) trees consume NSC for fuelling maintenance
respiration (Ogren, 2000).

For evergreen species the model follows a similar but simplified approach simulating a first
maximum growth phase, when the model allocates NSC to foliage and fine roots up to reach

peak LAI, and a second full growing phase, when the model allocates to the other pools. As in
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Lawrence et al. (2011) for litterfall we assume and simplify that there are no distinct periods,

but rather a continuous shedding of foliage and fine roots of the previous years.

All tree pools are updated at a daily time step depending on NPP balance. Nitrogen
concentration for each pool is considered as a C/N ratio following Dufrene et al. (2005) and
Thornton (2010). The C/N stoichiometry is constant and depends on species; unfortunately,
the model still lacks of an interactive C-N cycle. Forest stand structural attributes, e.g. DBH,
tree height, and crown competition are also updated at a daily time step based on species-

specific biometric relationships.

Autotrophic respiration

Based on the approach of BIOME-BGC model (Thornton, 2010) 3D-CMCC FEM computes
the daily AR of all living tissues. MR is a modified Van’t Hoff function (Davidson et al.,
2006; Mahecha et al., 2010) of temperature with the temperature sensitivity parameter Qi
(see below) and a linear function of the nitrogen content (Nconent = 0.218 kgC kgN™ day™;
Ryan, 1991) in the living compartments. The Qo function is an exponential function for
which a 10°C increase in temperature relates to a Qo factor change in the rate of respiration.
MR is partitioned into day time and night time respiration using, in place of temp in Eq.(7):

taay and tnign: for foliage, tsi for fine and live coarse roots, and tayq for live stem and branch.
MR, .k = 0.218 * Ncontent,,, , . * S)emp—zo)/m (7

GRyy,zx 1s considered as a fixed ratio (30%) of all newly grown (i.e. living) tissues as
proposed by Larcher (2003).

2.3 Data description

Model validation has been performed for ten different forest sites (Table 1) included in the

European EC fluxes database cluster (URL: http://www.europe-fluxdata.eu). For each site,

3D-CMCC FEM v.5.1 simulations were performed averagely for 10 years, forced with gap-
filled daily meteorological data, according to the available time series. The selected sites
cover a wide range of European forest ecosystems across different latitudes, landscapes and

three climatic zones: temperate, Mediterranean and subalpine.
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For all sites, daily time series of meteorological variables (maximum and minimum air
temperature, precipitation, vapour pressure deficit and incoming solar global radiation) were
used as drivers, while GPP was used for model output validation. The GPP derives from Net
Ecosystem Exchange (NEE) measurements that have been previously quality checked and
processed including storage correction, spike detection, and low turbulence condition (u*)
filtering according to the method in Papale et al. (2006) and gap filled using the Marginal
Distribution Sampling method (MDS; Reichstein et al., 2005). The GPP is not directly
measured by the eddy covariance technique but it is estimated using a partitioning technique
as described in Reichstein et al. (2005). In the rest of the paper, we will refer to these data as
“measured” or “observed” GPP for simplicity but it is important to highlight that they are

obtained using a modeling approach (although strongly based on direct measurements).

2.4 Model and experimental set-up

Site data needed for model initialization concerned information on forest structure (DBH, tree
height, age and density), its species composition, and soil characteristics (e.g. soil depth,
texture and bulk density). These data were used for each site to initialize the model, i.e. to
describe soil characteristics and the initial forest conditions at which the model starts to
simulate forest processes. Initialization data were taken from the BADM (Biological,
Ancillary, Disturbance, Metadata) files, available at http://www.europe-fluxdata.eu, for each

of the selected sites, and complemented by a literature review and personal contacts with the
sites’ Principal Investigators. Length of model simulations, basic sites description and forest
attributes used for model initialization are shown in Table 1. As a whole, for all sites, the
species-specific ecophysiology has been parameterized generically (i.e. not related to the
simulated site) using only data from the literature (e.g. Breuer et al., 2003; Mollicone et al.,
2003; Pietsch et al., 2005; White et al., 2000) independently from site-related measurements
(for a list of model ecophysiological and structural species-related parameters see Table S3).
As in White et al. (2000) and in Naudts et al. (2014) in case of multiple values available for a
single parameter, the mean values were used. Using the mean parameter estimates avoided
hidden model-tuning (i.e. the use of unrealistic value to obtain the best fit) and largely reduces

the likelihood that simulation results are biased by hidden calibration.

In addition, several studies (Bolstad et al., 1999; Griffin et al., 2001; Ibrom et al., 2006;
Misson et al., 2007; Cescatti et al., 2012; Guidolotti et al., 2013; Migliavacca et al., 2015)
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claim that beside environmental variables, spatial heterogeneity (horizontal and vertical) of
the stand structure and composition (age, species) also plays an important role at the
ecosystem level. To evaluate if a more detailed simulation of forest heterogeneity improves
model performances, a number of replicated simulations were performed for three
heterogeneous sites (BE-Bra, IT-Ren and DE-Tha), based on different model initializations in
terms of forest layers, species composition and/or ages (Table 1). These replicates start from a
forest representation very close to reality (e.g. cohorts, mixed species composition and
different canopy layers) to a more generalized one. For reasons of comparability, in these test
sites the model has been forced with the same meteorological input data, and eco-
physiological species-related parameterizations, i.e. only model initializations data, related to
stand attributes, differ. These data are based on different sources: site measurements and/or

literature data and/or experimental settings.

In the case of BE-Bra we initialized the model with near all possible combinations of
initialization datasets. The first simulation (BE-Bra P_Q-3L) has explicitly taken into account
the site heterogeneity (vertical and horizontal) (following Gielen et al., 2013, and ancillary
data sources) consisting in mixed species composition at a different canopy coverage rate of
Quercus robur (Q) and Pinus sylvestris (P) (20 and 80%, respectively), with two cohorts
(oaks and pines, 65 and 72 years old, respectively) and three forest layers. In the second
simulation (BE-Bra P), only a single-layer of Scots pines was considered (following Janssens
et al., 2002 and Verbeeck et al., 2007). In the third, fourth and fifth simulations (BE-Bra
Q 3L, BE-Bra Q 2L, BE-Bra Q_1L, respectively) only three, two and one layer of
pedunculate oaks (following Curiel Yuste et al., 2005 and experimental set up) were assumed.
Additionally, two more experimental set-ups combined two layers of oak and one layer of
pine (BE-Bra P_Q-2L) and one layer of oak and pine (BE-Bra P_Q-1L).

For IT-Ren, in the first simulation, two layers and two cohorts were considered (IT-Ren
2L_2C) following Montagnani et al. (2009). In the second case, stand heterogeneity has been
grouped into one layer, i.e. minimizing forest structure, and one single averaged cohort (IT-

Ren 1L_1C; experimental set up).

For DE-Tha, two species (DE-Tha 2S) (spruce 80% and pine 20%, respectively) were
modelled in the first simulation (following Griinwald & Bernhofer, 2007), while in the second
experiment only the dominant species (spruce; DE-Tha 1S) was considered (BADM source).
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2.5 Validation approach

In order to analyse model performance, we used daily (Xgaily), monthly (Xmontiy) and annual
(Xannuat) time series for modelled and observed GPP values, which were compared at the
different time scales. At first, we conducted a comparison via appropriate performance indices
on long-term annual average (i.e. over the full series of all the available years), then we
evaluated how the model performed in the different seasons aggregating values for months of

the same season.

In addition, to avoid misleading results in the daily and monthly signal comparisons due to the
strong seasonality for both daily and monthly signals, we followed the decomposition
technique proposed by Zhao et al. (2012). To partially remove the seasonal cycle signal, we
build a new daily (Y gaity) and a new monthly (Ymontniy) dataset for both observed and modelled
data, respectively. The Ygay is created by subtracting the daily time series from the daily
mean of the month, and the Ymontiy by substracting the monthly time series from the annual
mean (see Table S1-b).

For both X and Y datasets we firstly adopted the Pearson coefficient of correlation (r).Then,
we calculated the Normalized Root Mean Square Error (NRMSE) (Anav et al., 2010; Keenan
et al., 2012) as a standardized index of error. The NRMSE reports the mean difference
between observed and modelled GPP values (GPPgc and GPPyp, respectively) normalized on
the variability in the GPPgc, in order to have an indication of the average distance between

GPPyp and GPPgc, comparable among the different sites. NRMSE was quantified as:

Jz{‘;l(GPPECi—GPPMDi)Z
sN o(GPPgc,)

NRMSEGPP = (8)

where i represents the day (or month), and o(GPPgc) is the standard deviation of the full daily

(or monthly) series of observed GPP consisting of N records.

In addition, model performances were measured for the same series through the ‘Model

Efficiency’ index (MEF) following Reichstein et al. (2002) and Migliavacca et al. (2015):

Z?Ll(GPPECi—GPPMDi)Z

MEF =1 — _
Z’ivzl(GPPECi—avg(GPP)EC)

(9)

In contrast to correlation coefficient r, the MEF index (Bowman & Azzalini, 1997) measures

not only the correlation between modelled and observed data (in other words, how well they
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reproduce the phase of observations), but also their ‘coincidence’, i.c. the deviation from the
1:1 line, and it is sensitive to systematic deviations between model and observations
(Reichstein et al. 2002).

Another index used in model evaluation is the standardized Mean Absolute Bias (MABstd)
(Li et al., 2010) instead of classical Bias index to avoid compensations for errors of opposite

signs and standardized (as for NRMSE) to allow comparison across sites:

(10)

GPPpyp.—GPPEc,
MABstd = Zﬁ\lzl <| MD; ECL|> 1

o(GPPEc,) N
To evaluate the model performances in terms of variability patterns, we adopted a procedure
to compare each GPPyp value to both its correspondent GPPgc value and the GPPgc-GPPyp
difference, at daily and monthly levels. Since the different sites have different ranges of GPP,
we arranged in ascending order GPPgc time series, then divided the whole series in 18 classes,
each one containing values of a 5 percentile class. For each group of GPPgc we calculated the
median and reported the range. We calculated the same statistics for the values of GPPyp
arranged so that dates of GPPyp and GPPgc matched. We chose the median rather than the
average because it is less influenced by outliers. We decided to use the range rather than the
variance as a measure of variability, because giving information on asymmetry.

In order to assess the Inter-Monthly and Inter-Annual Variability (IMV and IAV
respectively), individual GPP values for each month and year considered were normalized
following Vetter et al. (2008) and Keenan et al. (2012). Shortly, we subtracted the respective
observed or modelled average from individual (monthly and yearly) observed and modelled

value as follows:

IMV(gc or mp)i O LAV gc or Mp)i = GPP(gc or MD)i — avg(GPP)(EC or MD) (11)

where avg(GPP) is the long-term (full series of all the available years) average of monthly
(for IMV) or yearly (for IAV) GPP from observations (EC) and modeling (MD), respectively.
A kernel density estimation (kde) was performed to qualitatively observe probability
distribuition functions (PDFs) respectively of the IMV and IAV values (Bowman & Azzalini,
1997).

To evaluate 3D-CMCC FEM ability in reproducing the observed IMV and IAV, we
calculated the NRMSE based on monthly and annual time series of IMV and IAV values,

respectively. The NRMSE, adopted as a normalized index of error allowing comparability
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among different sites, was thus calculated as in Eg. 8 but using IMV and IAV instead of GPP
individual values, following the approach of Keenan et al. (2012).

3 Results

3.1 GPP evaluation over long-term annual and seasonal scale

Both monthly and daily simulated (MD) GPP show high correlations with EC data and these
results are consistent with MEF values as well as with NRMSE and MABstd (Table Sla, and
Figure 1-a and 1-b). On average, deciduous forests reveal better correlation between MD and
EC data than evergreen forests, with a mean r of 0.86, while evergreen and mixed stands
show average r of 0.81 and 0.77, respectively. For all stations p<0.0001. These results are
confirmed by Taylor diagrams (Taylor, 2001) (Figure 2a) which show that the model
performs satisfactorily for daily fluxes, in four (i.e. DE-Hai, DK-Sor, DE-Tha, FI-Hyy) of ten
sites falling within £0.5 normalized standard deviations from the reference point (REF;
representing observed data) and having correlation around 0.9. For six sites (all the evergreen
needleleaf plus deciduous except FR-Hes), the normalized standard deviation of simulated
data is close to that of observed data (represented by reference line with normalized standard
deviation, i.e. radial distance from the axis origin equal to 1). Simulated data for IT-Cpz, FR-
Hes and FR-Pue have, respectively, a normalized standard deviation of approximately +0.2,
+0.3 and +0.4 (as difference from that of observations) consistently with the lower correlation
values; BE-Bra shows the highest negative difference, in terms of standard deviation, of
around -0.3. On average, the least performing result is for IT-Cpz that shows a correlation
below 0.60 and falls outside £1 normalized standard deviation from the reference point. The
Taylor diagram in Figure 2b shows the model’s capability to better simulate GPP at monthly
scale. For seven sites (all deciduous and evergreen needleleaf), the normalized standard
deviations of modelled data are close to that of observations (reference line), the correlation is
well above 0.90 and within £0.5 normalized standard deviation from the reference point. IT-
Cpz and BE-Bra show improved results with respect to daily data: respectively, their
correlation increases by more than 0.1 units, they fall within the +0.2 and -0.2 units of
normalized standard deviation differences with respect to that of observations, and they enter
in the field of £1 and 0.5 normalized standard deviation from the reference point,
respectively, although for IT-Cpz the values for all statistical indexes are consistently the
lowest. Although less strongly, FR-Pue monthly data also have better performances than daily
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data results in terms of higher correlation (0.89) and closer position in terms of normalized
standard deviations units from the reference point even if the other indexes are a little bit far
from the average values of the other sites.

To reduce the effects of seasonality, we also examine model performance using
decomposition method (section 2.5). In the daily time-step, the overall model performance is
much lower in Y dataset (Figure 1-c and Table S1b) than in X dataset, that is, r= 0.51, MEF =
-0.43, NRMSE = 1.18 and MABstd = 0.8 in Y dataset vs r= 0.82, MEF = 0.63, NRMSE =
0.57 and MABstd = 0.44 in X dataset. The large model error at synoptic scale have been well
recognized by previous studies (Dietze et al., 2011; Zhao et al., 2012). The model shows to be
a good predictor for DE-Tha and FR-Pue and to be less predictive for DK-Sor and FR-Hes
with respect to the X dataset. Accordingly, for FR-Pue comparisons between X and Y datasets
show that this site is less affected by seasonality while DK-Sor is the most affected one. As
expected, in the monthly time step, the decomposition technique returns more similar results
between X and Y datasets. Worst results are for IT-Cpz while best results are for DE-Hai,
DK-Sor, DE-Tha and IT-Ren (see Table S1b and Figure 1-d). Overall, after smoothing the
seasonality the model shows to be slightly better predictive with average values among sites
consistent with observed data (r = 0.94, MEF = 0.85, NRMSE = 0.36 and MABstd = 0.27).
Comparison between X and Y datasets shows that DE-Hai is less affected by seasonality and
IT-Cpz is the most affected one. In brief, comparison between X and Y datasets shows similar
reconstruction ability in the monthly time step, but very different in the daily time step
because X dataset contains the feature of large seasonality. Given that one of the objects of
this study focuses on seasonality fluctuation, we mainly show the results based on X dataset
hereafter without specification.

To summarize, although with similar inter-sites variability, monthly correlations across
different sites are higher than daily ones, with average correlations of 0.94 for deciduous, 0.90

for evergreen and 0.92 for mixed stand (Figure 1 and Table Sla).

Daily and monthly NRMSE are usually less than 1.00. Monthly NRMSE is less than daily
NRMSE, 0.41 vs. 0.63 on average, respectively (Table S1a). These results confirm that the
model performs better at a monthly than at a daily time scale (Figure 1), likely because of

averaging effects of daily variability in GPP estimation.
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The same consistency is shown for MEF index that is on average 0.79 (monthly) and 0.57
(daily), with largely lower values for the two Mediterranean forests (IT-Cpz and FR-Pue) at
both the daily and monthly time scale (Table S1a and Figure 1).

Considering the annual mean in deciduous forests (Table Sla), the model slightly
underestimates the GPP by -2.4% (average among DE-Hai, DK-Sor), while in FR-Hes and
IT-Col it shows an overestimation of 5.2% on average. Concerning evergreen forests, we find
an overall model underestimation of 2.1%, with higher variability compared to deciduous
forests, and more divergent in the case of the two Mediterranean ecosystems, ranging from
underestimation of 18.4% (318 gC m™ year™; IT-Cpz) to overestimation of 12.1% (158 gC m’
?year'; FR-Pue). Results for the mixed forest site of BE-Bra are reasonable, with an
underestimation of about 4.4%.

In terms of inter-annual variability of the yearly mean, GPPyp falls well within the range of
GPPgc standard deviations for all sites except at IT-Cpz (Figure 3). Deciduous broadleaved

and the evergreen needleleaf are the best reproduced.

Performance indices from daily and monthly observed and modelled GPP series analysed at
seasonal level are shown in Table S2 and Figures 4 and 5. Winter (DJF) and summer (JJA)
correlations were generally lower than those in autumn (SON) and spring (MAM).
Specifically, DJF and JJA showed a correlation of 0.45 and 0.46 respectively on a daily scale
and a value of 0.59 and 0.50 on a monthly scale; MAM and SON showed on a daily scale an
average correlation of 0.72 and 0.77 respectively, while on monthly scale a correlation of 0.82
and 0.86 with two low values of 0.05 and 0.06 for monthly DJF and MAM for IT-Cpz was
shown. Winter and summer monthly average NRMSE of 1.13 and 1.00, respectively, were not
significantly different to the 0.66 and 0.57 of spring and fall. MEF and MABstd indexes
values suggest similar findings than NRMSE.

Figure 6 shows overall modelled vs. observed fluxes over daily and monthly scales, and the
absolute difference (AGPP MD, i.e. GPPyp minus GPPgc) vs. observed fluxes (GPPgc) as
calculated by the difference matrix described in section 2.5. Overall, the aggregated data
reveal high correlation also due to a progressively reduced range of data, and then variability,
at higher GPP values (Figures 6; top plots). Figures 6 (bottom plots) show patterns of AGPP
MD with increasing GPPgc. These differences result in strong reduction of discrepancies for
GPPgc greater than 8.5 gC m™ d™ for daily, or 7.3 gC m™ d™* for monthly time series.
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The average intra-annual GPP variations are analysed by calculating the long-term average
and standard deviation values for each month of the year (Figure 7). In spring, the modelling
results from deciduous forests present a larger variability than the observed data, especially
during budburst and in late spring. The model generally matches the observed phenology
timing (budburst, peak LAI, leaf senescence and their fall, i.e. length of growing season, data

not shown). Consistent biases were observed in late summer.

3.2 Inter-monthly and inter-annual variability

The distribution of the IMV for the analysed sites reveals in general lower variance for
modelled than observed data (Figure 8 and Table 2). Regarding deciduous forests, both DK-
Sor and FR-Hes show IMVp distributions with a larger interquartile range in comparison
with IMVgc (p-value < 0.05). Conversely, for DE-Hai and IT-Col the IMV\yp variance is
statistically representative for the IMVgc; however IT-Col shows a significantly biased
median (p-value < 0.05). Less variability than IMVgc is generally observed for IMVyp of
conifers. While DE-Tha shows significant agreement for both variance and central tendency
(median) (p-value > 0.05), at FI-Hyy the IMV\p appears statistically in disagreement with
IMVgc for both variance and central mean tendency (p-value < 0.05). We find a small
difference between IMV\yp and IMVgc probability density modal values in IT-Ren (Table 2).
Concerning broadleaved evergreen vegetation, we observe very good agreement between
observed and modelled IMV central tendency measures in FR-Pue with most of the
frequencies between + 2 gCm™ d™. In FR-Pue, however, we notice that the distributions are
slightly shifted, especially around the median, with resulted variance from modelled data in
disagreement with observed data. We detect high IMV distributions disagreement in IT-Cpz,
where the PDF from observed IMV is normally distributed and the one from modelled IMV is
not (as resulted by a y* goodness of fit test). IMVyp series in BE-Bra (mixed forest) are in
low agreement with those from EC. Modelled variance is low, and positive IMV values are
especially scarcely represented. Table 2 also shows the NRMSE for IAV and IMV series.
There is no apparent correlation either between sites species and average error, or between
distributions uniformity and NRMSE. In fact, the lowest NRMSE for IMV was found in BE-
Bra and IT-Col and the highest in DE-Hai and DK-Sor. On average the model has a NRMSE
for IMVs of about 1.2.
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Figure 9 shows the modelled and measured individual 1AV values for each studied site. The
magnitude of IAVp was on average of the same order as IAVgc, showing the model’s ability
to reproduce the inter-annual variability range, and capturing about 62% of the anomalies
signs (i.e. timing) for the total set of years. The model generally better captured conifers’ IAV
sign (i.e. DE-Tha, FI-Hyy, and IT-Ren), with 66% of the times against about 59% for the
deciduous forests (i.e. DE-Hai, DK-Sor, FR-Hes, IT-Col) and 55% for the Mediterrenean
ones (i.e. FR-Pue and IT-Cpz). However, the IAV difference in magnitude was better
represented for deciduous forests rather than conifers, as inferred by the average NRMSE of
respectively 1.45 and 1.67 (calculated by averaging values reported in Table 2). Although the
model reproduced the timing of anomalies satisfactory in more than half of cases (a little bit
more than in a random selection), the correlations had a wide spread across sites.
Quantitatively, modelled anomalies suggest better results for FR-Pue (r = 0.76) and worse
results for IT-Ren (r = -0.54).

In the case of the year 2003 with its summer heat and drought extreme (Ciais et al., 2005;
Vetter et al., 2008), the anomaly sign has been well captured by the model for six of the eight
sites analyzed for that year (no observations were available for BE-Bra and 1T-Ren) (Figure
9). At IT-Cpz and DK-Sor, average IAV\p has the opposite sign to IAVgc, while 2003 was
recognized as not remarkably anomalous at IT-Col. Similarly, the model results match with
that found by Delpierre et al. (2009) about the anomalous carbon uptake during the warm

spring of 2007 compared with the decadal mean for FR-Pue, FR-Hes, and DE-Tha.

3.3 Comparison within different forest structure simulations

Considering the presence of only one species (either pines or oaks) strongly limits the model
to simulate the daily and monthly GPP patterns in BE-Bra (Table 3). This site represents a
mixed stand of deciduous and evergreen tree species that assimilates CO; all year round,
although low temperatures in winter and spring reduce photosynthesis for pines also. The
observed GPP fluxes are then caused by the ‘mixture’, at a varying degree, of both oak and
pine trees. Considering BE-Bra as a pure oak forest with a variable number of layers
(simulation codes: BE-Bra Q_3L, BE-Bra Q_2L, BE-Bra Q_1L) the model results for annual
GPP deviate from -1.2 up to -7.4%; considering a pure pine forest (BE-Bra P) or a
combination of pines and one layer of oak (BE-Bra P_Q-1L) the model underestimates

annually from -15.9% to -11.5%, respectively. It is noteworthy that the daily GPP values
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show a markedly different seasonal distribution on fluxes (data not shown). Conversely, there
IS no clear evidence that in simulating pines coupled with one, two or three oak layers (BE-
Bra P_Q-1L, BE-Bra P_Q-3L BE-Bra P_Q-2L) model results largely benefitted of this
differentiation both on a daily, monthly and annual scale. Similar results are obtained for DE-
Tha site when simulating one single species (DE-Tha 1S) or two (DE-Tha 2S), since the
similar phenology behaviour of modelled species does not cause a marked difference in the
seasonal GPP cycle. On the other hand, IT-Ren initialized as a single layer and with one
single cohort (IT-Ren 1L_1C) instead of two layers and two cohorts (IT-Ren 2L_2C) differs
strongly from observed GPP values overestimating the annual cumulated GPP by 43.2%.
However, for this site, the analysis of performance indices based on daily and monthly series

shows no evidence of improved model results.
4 Discussion

In this paper, we have analyzed the capability of the latest version of the 3D-CMCC FEM
(v.5.1) to simulate intra-annual to inter-annual GPP variability over ten heterogeneous
European forest sites, representative of different ecosystems and bioclimatic regions, by
comparing model results with observations based on the EC technique. Although the model
provides a reasonable reproduction of the observed values, we may evince some critical
issues. First, the observed GPP data are affected by high uncertainties (Kenan et al., 2002;
Papale et al., 2006; Richardson et al., 2012a, b). According to Luyssaert et al. (2007) these
uncertainties in the ten case studies considered here, although at the biome level, have a very
high spread, varying from +557.9 (for FI-Hyy) to 700 gC m™yr? (for IT-Cpz). Besides
uncertainty in the EC technique, model assumptions and parameterizations can increase

discrepancies compared to observed GPP data.

A potential further source of error in the model runs that may need to be considered or
accounted for is related to our choice of not making a site-specific parameterization. Since we
used general parameterizations, large uncertainties could be detected especially in the
variables that determine, for example, the length of the growing season (Richardson et al.,
2010), and the latitudinal differences (acclimation) of the maximum, minimum and optimum
temperatures for photosynthesis. Improvement could be achieved with a site-specific
parameterization, but this falls beyond our goal to make the model generally applicable. In
addition, to avoid a misleading model evaluation coming from strong seasonality (especially

for deciduous sites) we followed the decomposition technique proposed by Zhao et al. (2012).
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On average, 10 years of simulations have been conducted for each site. In addition, in three
sites different model initializations (i.e. considering different forest structure, composition and
cohorts) were used to quantify improvements in model results when a more detailed
heterogeneity forest structure representation and processes are simulated. Modelled GPP
results were compared against those from EC observations collected for these sites
encompassing three mono-specific (pure) stands of Beech, Holm oak and Scots pine, and
three uneven-aged, multi-layered and mixed stands.

Based on results, we can now provide answers to the four initial questions:

1. Does the model reproduce the magnitude and timing of seasonal fluctuations in

GPP and their effects across different forest types, structures and compositions?

Overall, as desirable, the model is skilful in reproducing the annual GPP and its intra-annual
(seasonal) cycle, calculated as both daily and monthly value averages, with the monthly scale
performing better across all statistical indexes considered. These results can be however
considered as a “false positive” due to the strong seasonality of GPP patterns that influences
and causes higher values of correlation than the model’s capabilities to reproduce GPP fluxes
(Zhao et al., 2012). This is clearly related to the tendency to linearize the relationship among
CO, flux and PAR and/or temperature, as also reported by Ruimy et al. (1995) and Wu et al.
(2015). Overall, statistical indexes of daily and monthly modelled values for both X and Y
datasets were highly consistent with EC data, except for the Mediterranean sites (where
seasonality is less pronounced) (see Table Sla and b). Summer drought stress appeared to be
the most limiting factor on photosynthesis at FR-Pue (Falge et al., 2002; Reichstein et al.,
2002; Sabate et al., 2002) while the presence of shallow groundwater table at IT-Cpz seemed
to reduce the severity of summer drought. This reduction cause a smoothing of seasonality
well highlighted in the Y dataset (see Table S1-b) where IT-Cpz showed to be unanimously
one of the worst simulated site at both daily and monthly timescale while FR-Pue and DE-
Tha, both evergreens, the less affected by seasonal patterns. This behaviour is confirmed by
the daily values of DK-Sor and IT-Col for monthly data, both deciduous, that showed to be
the most affected, in other words if we smooth over the seasonal trends results get worse
while the model indicated to be less sensitive for those evergreen sites where seasonality is
not marked with high values of correlation for DE-Tha, FI-Hyy and Fr-Pue. These results

confirm that seasonality has a remarkable effects on a model evaluation.
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Concerning the seasonality, all statistical indexes divided by seasons in Table S2 are
consistent in showing a non-negligible uncertainties in representing GPP patterns, as well as
inferred by temporal mismatches in variance. The overall agreement despite temporal
mismatches suggested that errors compensated over the year, but are cumulated in specific
time windows (e.g. seasons). As reported for other models (Morales et al., 2005 and Naudts et
al., 2014), the model’s performances are generally worse in winter (DJF) and summer (JJA).
Biases and differences in winter GPP variance may be related, among other things, to the
model algorithms used to simulate LAI and to the algorithm used to calculate GPP from EC
data (Reichstein et al., 2005), since GPP variability should be low during DJF or absent for
deciduous forests. However, mismatches are also related to the way in which 3D-CMCC
FEM represents winter and early spring ecosystem processes. The model in fact does not
consider the influence of ground vegetation that appears to be not negligible in some cases
(Kolari et al., 2006). High GPP variance for evergreen species could be strongly related to
low temperatures during winter (Del Pierre et al., 2009). Systematic overestimation in winter
and spring GPP could then be associated with a lack in representing conifers acclimation or to
soil and atmosphere thermal constraints. At high latitudes and altitudes, another source of
uncertainty may be related to freezing and thawing dynamics in soil water (Beer et al., 2007)
which are not considered by the model, as with snow sublimation and melting, which are still
simplistically represented.

GPP of deciduous forests in summer and autumn are also affected by uncertainties for
surface, which is represented by LAI in the model. In addition, GPP is linear with respect to
PAR (Monteith, 1977) over monthly or annual time scales, while the relation is strongly
nonlinear at the daily scale (Leuning et al., 1995; Gu et al., 2002; Turner et al., 2003; Wu et
al., 2015). The linear response of GPP to PAR led to the underestimation/overestimation of
GPP under conditions of low/high incident PAR (Propastin et al., 2012; He et al., 2013). In
the case of stress or photoinhibition, leaves reduce or stop photosynthesis at too high levels of
radiation, while in normal conditions, photosynthesis is light-saturated at high PAR (Makela
et al., 2008) which lets canopy photosynthesis saturate at relatively low PAR even in dense
tropical forests with high LAI (Ibrom et al., 2008). The model overestimation of summer GPP
may thus be partially related to the lack of representation of the canopy photosynthesis

saturation processes.
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Although adopting a more complex phenology scheme in the comparison between decidous
and evergreen forests, our model showed better performances for deciduous compared to
evergreen forests. This behaviour is due to the strong seasonality patterns that the deciduous
species show, which is consistent with the findings of Zhao et al. (2012) at the two french
sites, but contrasts to the results of Morales et al. (2005) who showed that it is generally easier
for models to simulate evergreen forests due to the simpler phenology. The present results for
evergreen forests are, however, highly affected by the low model performances for the two
evergreen Mediterranean forests. As previously stated, overestimation during summer at FR-
Pue, and during winter and spring for IT-Cpz, are mostly related to neglecting species-
specific drought stress response functions. As in Landsberg & Waring (1997), the water
modifier is only based on soil physical characteristics and no consideration is given to the
stress tolerance or strategy of the species (Larcher, 2003), suggesting that further model

developments should focus on this aspect.

Other discrepancies affecting other sites could probably be reduced with a site-specific

parameterization.

2. Does the model reproduce the observed inter-monthly and inter-annual GPP

variability?

Overall, the distribution of the modelled inter-monthly variability was sufficiently consistent
with the observed one. The model, however, showed reduced variability in the distribution for
both conifers and deciduous species. The model’s ability in better representing higher rather
than lower anomalies suggests that it may still be less sensitive to some drivers of variability.
In this context, the phenological cycle may have an important role, since it influences canopy
cover and is controlled by environmental drivers (Richardson et al., 2010). According to Suni
et al. (2003) and Jeong et al. (2013), spring phenology largely affects the summertime carbon
budget. Hence, uncertainties in the growing season start date may affect 3D-CMCC FEM’s
ability to reproduce IMV. In summer and autumn, petioles loss of turgor, cavitation in xylem
vessels and leaf yellowing may have an important role in the GPP variability of temperate
forests (Reichstein et al., 2007).

Even though evergreen forests do not experience complete dormancy in winter, changes in
‘greenness’ can be attributed to seasonal variation in canopy biochemistry, the production of
new foliage by canopy species and, particularly where the overstorey is sparse, the phenology

of understory vegetation (Richardson et al., 2010). Leaves of different ages have different
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efficiency, sensitivity to solar radiation, temperature and water related stresses (Chabot &
Hicks, 1982). All these elements may have an important role in affecting GPP dynamics, but
are still scarcely or not represented by mechanistic ecosystem or forest models. As a
confirmation of these suspects, slight modifications in representing phenology and leaf
turnover resulted in general improvement of model consistency with EC data (Marconi,
2014).

Distribution of IMV values showed specific patterns attributable to the dominant species.
Beech forests IMV PDFs were concentrated around the average value and strongly influenced
by high biases. This pattern was probably due to the fact that half of the months in one year
have no or little photosynthesis (i.e. early spring, fall and winter) and most of the
photosynthetic activity occurs in late spring and summer, when carbon assimilation is
influenced by temperatures and solar radiation (Mercado, et al.; 2009). Conifers PDFs were
usually smoother, non-skewed, with reduced variability and fitted by a statistical normal
curve. The model showed an average NRMSE for IMV of 1.22 but still captured about two
thirds of the annual anomalies sign (a little bit more than the fifty percent that represents a

simple causality).

The results for IAV (see Figure 9) are quite contrasting and largely depend on the site and the
number of annual-by-annual comparisons. The recent modelling studies, that we are aware,
show unanimously the difficulties of models to explain the large interannual variability in
cases where no obvious triggers like management or climatic extreme are at work (e.g.
Keenan et al., 2012; Wu et al., 2013). In 3D-CMCC FEM better results have been obtained
for FI-Hyy and FR-Pue, so there is no apparent correlation with latitudes and forest species.
Interestingly, the performance of a DGVM for IAV in FR-Pue is also higher than other sites
(Zhao et al., 2012), indicating the main determinant factor for GPP simulation in this
Mediterranean site may not come from the treatment of canopy representation. However, the
advantage of a 3D canopy representation needs to be revalued in the future. Similarly, worse
results are reported for IT-Ren, IT-Cpz and BE-Bra where the number of annual correlations
are lower than the other sites. The magnitude of differences in the standard deviation
generally follows the same tendency, particularly for BE-Bra, IT-Ren and IT-Cpz. These
results confirm the model’s limited ability to represents the inter-annual variability in these

specific sites rather than in these ecosystems.
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The comparison between modelled and observed data at the inter-annual time scale shows the
model to be sufficiently able to reproduce the sign of variability through the years including
the extreme events (heat wave combined to drought) during the summer 2003 (Ciais et al.,
2005; Vetter et al., 2008) and, for some sites, the anomalous carbon uptake during the warm
spring of 2007 described by Del Pierre et al. (2009). Potentially negative effects from the
anomalous 2003 were modelled into negative GPP anomaly at DK-Sor and IT-Cpz due to
model simulation of summer drought stress, while such anomalies are not evident from
measurements for DK-Sor (Pilegaard et al., 2011) and IT-Cpz. This could be due to the more
maritime climate for DK-Sor and the presence of shallow groundwater for IT-Cpz that
weakened the effects in the first part of the summer. In both sites, and included DE-Tha, the
effects during July to September were captured by the model (data not shown). As reported by
Ciais et al. (2005), Mediterranean sites showed a smaller degree in carbon fluxes, largely
dominated by less respiration. It is noteworthy that IT-Col, differently from other european
beech stands, does not seems to have suffered from this anomalous heat wave in 2003 (G.
Matteucci, personal communication). Both simulated and observed data showed a positive
GPP anomaly, demonstrating that this beech forest benefited by moderate higher temperature
values and consequently had “extra” days for assimilation and growth (see also Churkina et
al., 2002; Richardson et al., 2010). A similar behaviour was reported also by Jolly et al.
(2005) for the Swiss Alps, especially between March and July. This pattern seems to be
mostly related to an untimely beginning of the growing season (see Piao et al., 2006), to a
reduction in plant transpiration that causes an increase in plant water use efficiency throught
the partial closure of stomata (Warren et al., 2011) and to high fluxes related to forest floor
vegetation.

It is also noticeable that in FR-Hes during the summer of 2004 a negative anomaly occurred,
larger than in 2003; and while its sign was captured by the model, its magnitude was not. This
can be explained by the modelled postponed effects of a low NSC allocation during the year
2003 to the subsequent periods (Granier et al., 2007; Gough et al., 2009). These results
highlight that model has a sort of “memory” linked to short-term events (e.g. drought stress)

and that these events affect the long-term processes.

Quantitatively, modelled inter-annual anomalies show a very large spread across the sites.
Correlations vary widely, without any apparent relation with latitude and/or species. If

modelled anomaly signs are potentially agreeing with the observed ones most of the time,
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their magnitude was not. This behaviour seems to be related to several aspects, mainly to an
over/under estimation of the causes that reproduce anomalies, e.g. processes simulated linked
to the type of climate anomaly, mismatches in phenology or to a missed representation of
other processes (e.g. mast years, disturbances, shallow water). Keenan et al. (2012) asserts
that a lack in phenological variability and in canopy and soil dynamics are the main culprits of
these mismatches but also that flux measurements are affected by random errors especially
when fluxes are higher. Poulter et al. (2009) found a similar magnitude of errors with models
that were driven by remote-sensing data. Open questions remain as to the proportion of
interannual variability in land-atmosphere carbon exchange that is directly explainable by
variability in climate (Hui et al., 2003; Richardson et al., 2007)

3. Is the model generic enough that a single set of species-specific parameterization
allows reproducing GPP behaviour across different ecosystems without further need of a

site-related calibration?

Overall, the model showed good flexibility although the sites showed a pronounced spatial
and temporal heterogeneity (i.e. a variable number of forest layers, different cohorts and
species). The model was able to reliably represent the ecophysiology of beech and spruce
species at different latitudes, without modifying or tuning the parameterization sets. However,
annual and seasonal performance indices, calculated exploiting daily and monthly series,
evidenced different performances between the two northern beech sites and the two southern
ones. Tables S1 and S2 show a systematic difference in all the statistics used, suggesting the
presence of a latitudinal gradient in 3D-CMCC FEM’s ability to represent beech forest
processes. This gradient could be explained by how the model represents the different limiting
factors and their impacts on GPP. For example, we expect low temperatures to be the most
important limiting factor at higher latitudes, compared to soil water availability at lower
latitudes (Chapin et al., 2002).

We obtained similar results for the two spruce sites. The model showed better performance at
higher latitudes. While phenotypic plasticity, and thus the parameter set, may influence the
model results, it is noteworthy that the 1T-Ren site has different topographic and climatic
conditions. Lower average temperatures, higher slopes, and non-negligible encroachment of
different species in a more complex canopy, may negatively influence the model performance
in IT-Ren with respect to DE-Tha. Since the model showed unrealistic results for the two

Mediterranean forests, we think it is not easy to determine if and how differences in



818
819
820

821

822
823
824
825
826
827
828
829
830
831
832
833

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

performances are related to the generality of the model rather than to bad assumptions behind
the simulated processes. From our findings, we conclude that for non-water limited conditions

it is possible to yield satisfying results with general parameter sets.
4. Do the model’s results improve when considering a complex 3D canopy structure?

We evaluated possible improvements that could be made if a more accurate model
representation at a higher rate of heterogeneity of: forest structure, differences in ages and
species composition and their linked structural-ecophysiological processes, are assumed.
These analyses helped us to understand the importance of each process within the represented
combination (i.e. light competition, age related decline and the specific differences in
ecophysiology) on modelled GPP. Doubtless, a direct comparison between modelled and
observed GPP data is not possible due to the lack of partitioned measurements of GPP across
different layers, cohorts and species. However, in situations where the different
ecophysiological behaviours express themselves in the species specific canopy responses
during certain periods of the seasonal cycle, the test of a mixed forest tree model with flux
measurements is possible, as the results by Oltchev et al. (2002) showed using the model
MixFor-SVAT.

This preliminary analysis can be considered as a sensitivity analysis in terms of processes
explicitly simulated instead of lumped parameterisation. As a whole, model results using
different initialization data are within the observed GPP uncertainties but a quantitative
assessment for two sites, BE-Bra and IT-Ren showed the potential to increase the model’s
ability in simulating fluxes, while for DE-Tha there is no evidence that model performances
could benefit of these efforts. For BE-Bra, taking into account two species (that differ
especially for their phenological traits) was beneficial in terms of model performances, the
same occurred for different layers (with the exception of BE-Bra P_Q-3L vs. BE-Bra P_Q-2L
whose results were similar) and different cohorts. Better performances, in terms of seasonal
GPP representations, were obtained when each of the above mentioned characteristics was
accounted for by the model. For IT-Ren, similar results were obtained, although no
differences were found in the simulation of phenological patterns in daily and monthly results.
Differently, for DE-Tha a differentiation between the two evergreen coniferous species did
not cause marked differences in model results, due to low differences in species
ecophysiological traits, justifying in these cases the use of a Plant Functional Type (PFT)

level of parameterization instead species level (Poulter et al., 2015).
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5 Conclusions

This study aimed at evaluating the performances of the updated version of 3D-CMCC FEM
compared to nearly 10x10 sites x years GPP data across eddy-covariance European forest
sites. Although the sites showed high spatial and temporal environmental heterogeneity the
model appears able to reproduce trends in all of the ten sites. Different performance indexes
showed that daily and monthly level model results match well, both for the annual and
seasonal scale, against observed data, with some exceptions. Mediterranean sites (IT-Cpz and
FR-Pue) showed to be the most problematic in reproducing carbon fluxes. This is likely due
to their specific ecosystem peculiarity, e.g. shallow groundwater for IT-Cpz and, for both
sites, a low pronounced seasonality. In these two sites, the model showed less generalisation
unless additional processes were included. Differently from other models, 3D-CMCC FEM,
both for daily and monthly simulations and for both X and Y datasets, performs better for
deciduous species rather than for evergreen, although deciduous species have a more complex
phenology and a more pronounced seasonality. Some mismatches in the simulation over the
seasons and over the sites still remain, especially during winter and summer. The first reason
for these low agreements in winter can be also attributable to errors during the estimation of
GPP from NEE and Ecosystem Respiration values from measurements data. The second can
be related to the model’s lack or simplicity in representation of snow pack dynamics as
reported by Krishnan et al. (2008; 2009), especially for evergreen sites (Keenan et al., 2012).
Disagreements in summer could be related to model simplicity in simulating soil drought and,
using the Monteith approach (Monteith, 1977), to the strong nonlinearity at the daily scale of
GPP and PAR, and to the lack of representation of the light saturation processes. In addition,
as reported by Keenan et al. (2012), the apparent high variability in the data during the
summer season could therefore be due to random errors in the flux measurements, generating

larger variability and then lower correlations against modelled data.

No marked differences were found in simulations across different latitudes, so model
parameterizations for the different tree species could be useful over Europe with quite a high
rate of confidence, with the exception of specific cases in Mediterranean forests.

As for other models, 3D-CMCC FEM showed to have the potential to correctly reproduce the
signs of interannual variability, like the 2003 heat wave and drought extreme and the

anomalous carbon uptake during the warm spring of 2007 and their instantaneous biological
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response to these events. Significant disagreements were, however, found in reproducing the

magnitude of these anomalies.

The consideration of stand hetereogeneity, when possible or existing (i.e. layers, cohorts and
mixed composition), led the model to improve its results in two of the three sites compared to
generalized simulations of forest attributes. This plasticity makes the model able to be used in

a wider range of forest ecosystems.
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Table captions

Table 1 Main characteristics of the study sites. Sites were classified according to the IGBP
(International Geosphere Biosphere Program) legend as in the FLUXNET database:
MF=mixed forest; DBF=deciduous broadleaf forest; EBF=evergreen broadleaf forest;
ENF=evergreen needle leaf forest. Year of simulation starting and ending depend on available

time series of observed data.

Table 2 IMV and IAV NRMSE for the analyzed sites. Each specific IMV distribution was
tested for normality goodness of fit (N = normal distribution, P = non normal distribution). A
test for equivalence of central tendency was performed between IMVyp and IMVgc values.
(na) refers to the case of sites with inconsistent distributions (one normally, one not normally
distributed). (*) marks refer to the acceptance of the null hypothesis that the two distributions
are equivalent for the specific statistic (a=0.05). ECT stands for “Equivalence for Central

Tendency”; EV for “Equivalence for Variance”.

Table 3 Performance statistics (r, NRMSE, MEF, MABstd) are reported as derived from daily
and monthly series of GPPgc and GPPyp values over long-term annual scale, for the different
forest structure simulations. The (*) refers to p-value < 0.0001 in correlation between GPPgc
and GPPyp data. In addition, long term average of annual GPPyp and GPPgc values (gC m™

yrY) for the different forest structures are shown.
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Figure captions

Figure 1 3D-CMCC FEM performance indices at different time scales; daily (Figure 1-a) and
daily aggregated to month (Figure 1-b) for X dataset. Figure 1-c and 1-d refer to Y daily and
Y monthly dataset following decomposition technique proposed in Zhao et al. (2012). DE-
Tha refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L

simulation (see text).

Figure 2 Taylor diagrams for daily (a) and daily aggregated to month (b) GPP evaluated
representing: the deviation of model results from observations in terms of normalized
standard deviation of observations, represented by the distance from the site point to the point
on the x-axis identified as reference (REF); the difference of model normalized standard
deviation from that of observations, represented by the distance of the site point with respect
to the quarter arc crossing REF; and the correlation, given by the azimuthal position of the
site point to the x-axis. The sites are numbered in ascending order as follows: (1) DE-Hai, (2)
DK-Sor, (3) FR-Hes, (4) IT-Col, (5) FR-Pue, (6) IT-Cpz, (7) DE-Tha, (8) FI-Hyy, (9) IT-Ren,
(10) BE-Bra. Colors refer to different IGBP vegetation classes: DBF (yellow), EBF (orange),
ENF (light-blue), MF (green).

Figure 3 Distributions of annual GPP (gC m™ yr™). MD (red) are model results, EC (blue)
measured by eddy covariance. The vertical bars represent £ 1 standard deviation. DE-Tha
refers to the 1S simulation, IT-Ren to the 2L _2C simulation, BE-Bra to the P_Q-3L

simulation (see text).

Figure 4 3D-CMCC FEM performances indices of daily GPP at different seasons. DE-Tha
refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L

simulation (see text).

Figure 5 3D-CMCC FEM performances indices of daily GPP aggregated to months at
different seasons. DE-Tha refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-
Bra to the P_Q-3L simulation (see text).

Figure 6 Comparison between GPPyp and GPPgc data. The top plots show the average
GPPec:GPPwp correlation for (left) monthly (gC m? month™) and (right) daily (gC m?d™)
data. The bottom plots show absolute difference range between GPPyp and GPPgc while

increasing GPPgc values. Negative values are excluded because of model assumptions. DE-
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Tha refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L

simulation (see text).

Figure 7 Seasonal (monthly) cycle of GPP across the ten sites. The grey line and margins of
the grey area represent long-term average of monthly GPPec (gCm™ month™) and its +1
standard deviation, respectively. The green and red dashed lines represent the long-term
average of monthly GPPyp (gCm™month™) and its +1 standard deviation, respectively. DE-
Tha refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L

simulation (see text).

Figure 8 Distribution of the magnitude for the inter-monthly variability values (IMVs, gC m’
2d™) for each specific site, resulted by standard kernel density estimation. The vertical red line
is the media, the box plot limit the 25" and 75" percentiles, the dashed black bars represent
the rest of the distribution range excluding outliers (red crosses) DE-Tha refers to the 1S
simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L simulation (see text).

Figure 9 Inter-Annual Variability (IAV) based on Keenan et al. (2012). Red and blue bars
indicate the observed and modelled 1AV values, respectively; r values refer to correlation
between observed and modelled variations. DE-Tha refers to the 1S simulation, IT-Ren to the
2L_2C simulation, BE-Bra to the P_Q-3L simulation (see text).
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Table 1.

Simulation Main references
Site Name Lat (°)/ ear Mean Annual Annual Elevation
. o IGBP yea Temperature  Precipitation Amount Main species and forest description
(Site code) Lon (°) (Starting - C) (mm yr?) (mas.l)
Ending) 4
Uneven-aged, unmanaged multi-layered forest
Hainich of beech (Fagus sylvatica, 250 years, mean Knohl et al., 2003 + BADM files
(DE-Hai) 51.08/10.45 DBF 20002007 83 720 445 DBH 30.8 cm, mean tree height 23.1 m, stand
density 334 trees/ha)
Beech (Fagus sylvatica, averagely 80 years, . ]
(Df(o-rsﬂor) 5549/1164  DBF 20012009 82 660 40 mean DBH 36.13 cm, mean tree height 25 m, Pilegaard et al., 2003 + BADM files
stand density 283 trees/ha)
Hesse Beech (Fagus sylvatica, averagely 35 years,
48.67/7.07 DBF 2001 - 2007 9.2 820 300 mean DBH 8.19 cm, mean tree height 13 m, Granier et al., 2000 + BADM files
(FR-Hes) .
stand density 3384 trees/ha)
Collelondo Beech (Fagus sylvatica, averagely 100 years,
9 41.85/13.59 DBF 1997 - 2012 6.3 1180 1550 mean DBH 20.2 cm, mean tree height 19.8 m, Scartazza et al., 2013 + BADM files
(IT-Col) .
stand density 900 trees/ha)
puechabon Holm oak (Quercus ilex, averagely 59 years,
43.74 /3.60 EBF 2000 - 2011 135 883 270 mean DBH 7 cm, mean tree height 6 m, stand Loustau et al., 2005 + BADM files
(FR-Pue) .
density 8500 trees/ha)
Castelnorziano Holm oak (Quercus ilex, averagely 45 years,
P 41.71/12.38 EBF 2000 - 2008 15.6 780 3 mean DBH 16 cm, average tree height 12.5 m, Vitale et al., 2003 + BADM files
(IT-Cpz) .
stand density 458 trees/ha)
Mixed Norway spruce (Picea abies, averagely
113 years, mean DBH 33 cm, tree height 26,
Tharandt density 396 trees/ha) and Griinwald & Bernhofer, 2007 + BADM files
(DE-Tha) 50.96/13.57 ENF 2000 -2010 1 820 380 Scots Pine (Pinus sylvestris, averagely 113
years, mean DBH 33.1 c¢m, tree height 26.1 m,
density 81 trees/ha)
Hyvtila Scots pine (Pinus sylvestris, 39 years, mean
(F)I/—);t-lyy) 61.85/24.29 ENF 2001 -2011 3.8 709 170 DBH 30.8 cm, mean tree height 23.1 m, stand Suni, et al., 2003 + BADM files

density 334 trees/ha)




Renon
(IT-Ren)

Brasschaat
(BE-Bra)

46.59/11.43

51.30/4.52

ENF

MF

2006 - 2010

2001 - 2010

Uneven-aged multi-layered forest of
Norway spruce (Picea abies averagely, 190 Montagnani et al.(2009) + BADM files
and 30 years, average DBH 30.8 cm, average
tree height 23.1m, stand density 334 trees/ha)

4.7 809 1735

Mixed, uneven-aged multi-layered forest of
Scots pine (Pinus sylvestris, averagely 72
9.8 750 16 years) and
Pedunculate oak (Quercus robur, averagely 65
years)

Gielen et al., 2013 + BADM files
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Table 2

DE-Hai DK-Sor FR-Hes IT-Col FR-Pue IT-Cpz D(El'g)ha FI-Hyy (I2T|:-Rz%]) (E_Eé'?;ﬁ)
NRMSE IAVs 2.4 1.8 1.3 0.3 0.6 11 1.0 2.7 1.3 0.9
NRMSE IMVs 1.7 2.7 11 0.6 11 1.2 1.1 1.2 1.0 0.5
ECT p-value 1.00*N  012*N  054*N 000N 015N 100%™ 1.00*" 0.04N  0.88*° 0.85*N
EV p-value 053*N 000N 0.00V 046N 000N 0.02™ 078" 000" 0.27*° 0.01 N
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Table 3.

Model Daily Monthly Yearly
ode
Site set-up GPPwvo GPPec
ode r NRMSE  MEF MABstd r NRMSE ~ MEF  MABstd | gcm?  oCm?
yrt yrt
P 0.72% 0.73 0.47 0.51 0.86* 0.55 0.70 0.39 1003
Q3L | o076 0.91 0.18 0.67 0.84* 0.71 0.49 052 1105
Q2L | o074 0.89 0.21 0.66 0.86* 0.74 0.45 0.55 1179
QiL | 075 0.95 0.01 0.70 0.86* 0.68 0.53 0.50 1147
BE-B ] 1103
ra P?—f 0.77* 0.65 0.57 0.46 0.93* 0.39 0.84 0.28 1141
PES_ 0.75* 0.67 0.55 0.46 0.91* 0.44 0.81 0.30 1037
PIS_ 0.75* 0.66 0.56 0.46 0.91* 0.68 0.53 0.50 1056
ey | 2-2C | 082" 0.62 0.61 0.44 0.5 0.30 0.01 0.23 1349 1362
-Ren
1L.1C | 0.83* 0.85 0.27 0.61 0.96* 0.61 0.62 0.45 1950
et | 1S 0.90% 0.46 0.79 0.31 0.96* 0.27 0.93 0.19 1840 o6
25 0.89* 0.48 0.80 0.31 0.95% 0.29 0.91 0.19 1898
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