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Abstract 33 

This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest 34 

Ecosystem Model (FEM) in simulating gross primary productivity (GPP), against eddy 35 

covariance GPP data for ten FLUXNET forest sites across Europe. A new carbon allocation 36 

module, coupled with new both phenological and autotrophic respiration schemes, was 37 

implemented in this new daily version. Model ability in reproducing timing and magnitude of 38 

daily and monthly GPP fluctuations is validated at intra-annual and inter-annual scale, 39 

including extreme anomalous seasons. With the purpose to test the 3D-CMCC FEM 40 

applicability over Europe without a site-related calibration, the model has been deliberately 41 

parameterized with a single set of species-specific parameterizations for each forest 42 

ecosystem. The model consistently reproduces both in timing and in magnitude daily and 43 

monthly GPP variability across all sites, with the exception of the two Mediterranean sites. 44 

We find that 3D-CMCC FEM tends to better simulate the timing of interannual anomalies 45 

than their magnitude within measurements uncertainty. In six of eight sites where data were 46 

available the model well reproduces the 2003 summer drought event. Finally, for three sites 47 

we evaluate if a more accurate representation of forest structural characteristics (i.e. cohorts, 48 

forest layers) and species composition can improve model results. In two of the three sites 49 

results reveal that model slightly increases its performances, although, statistically speaking, 50 

not in a relevant way. 51 

  52 



1 Introduction 53 

Terrestrial ecosystems have a relevant role in the global carbon cycle, acting also as climate 54 

regulators (Peters et al., 2007; Bonan, 2008; Huntingford et al., 2009). In fact terrestrial 55 

ecosystems store large carbon stocks and cause most of the variance of carbon exchange 56 

between the atmosphere and land surfaces (Batlle Bayer et al., 2012). Among terrestrial 57 

ecosystems, forests are an essential component in the global carbon cycle because of their 58 

high capacity to store carbon in the vegetation and soil pools (Kramer et al., 2002). Through 59 

Gross Primary Production (GPP) plants fix atmospheric carbon dioxide (CO2) as organic 60 

compounds, enabling terrestrial ecosystems to offset part of the anthropogenic CO2 emissions 61 

(Janssens et al., 2003; Cox & Jones, 2008; Battin et al., 2009). Consequently, changes in GPP 62 

could have relevant impacts on atmospheric CO2 concentration. Thus, accurately simulating 63 

terrestrial GPP is key to quantifying the global carbon cycle and predicting the future 64 

trajectories of the atmospheric CO2 concentration (Wu et al., 2015), and taking into account 65 

the various spatial and temporal scales of the processes is a major challenge (Yuan et al., 66 

2007). Terrestrial ecosystem models, used to simulate carbon, water and energy fluxes, are 67 

valuable tools for advancing the knowledge of the role of ecosystems in maintaining a 68 

multitude of their fundamental services, like the provision of products and the regulation of 69 

climate (Ibrom et al., 2006). Such numerical models are also useful to: 1) predict the impacts 70 

of climate variability on terrestrial biosphere and related carbon fluxes (Ciais et al., 2005; 71 

Brèda et al., 2006; Richardson et al., 2007), ranging from long term anomalies (Santini et al., 72 

2014) up to extreme events (Zscheischler et al., 2014); and 2) reproduce biophysical and 73 

biogeochemical feedbacks of vegetation cover and change on climate, especially when 74 

coupled to atmosphere-ocean climate models through land surface schemes (Bonan, 2008; 75 

Arneth et al., 2012; Taylor et al., 2012). 76 

At European level, terrestrial ecosystems have been reported to be a significant sink of CO2 77 

(Luyssaert et al., 2012), with forests playing a relevant role in absorbing anthropogenic 78 

emissions for about 10% (Nabuurs et al., 2003; UNECE and FAO, 2011). 79 

In the last decades some studies have identified systematic errors when modelling terrestrial 80 

ecosystem sensitivity to climate variability at multiple time scales (Friedlingstein et al., 2006; 81 

Piao et al., 2013; Dalmonech et al., 2015) while sometimes differences in model predictions 82 

are stubbornly very large (Wang et al, 2014a). 83 



To improve the models capacity in reproducing relevant processes related to the land carbon 84 

cycle, detailed representation of missing processes should be increasingly developed (Sykes et 85 

al., 2001; Campioli, et al., 2013; Nolè et al., 2013; Ciais et al., 2013; Prentice et al., 2014). 86 

For instance, spatial and temporal environmental hetereogeneity is known to play an 87 

important role in the dynamics of populations and communities (Kobe, 1996; Chesson, 2000; 88 

Clark et al., 2010, 2011). However, the implications of this hetereogeneity for developing and 89 

testing regional to global scale forest dynamics models that are also able to take into account 90 

forest management are still largely unexplored to be explored (Zhang et al., 2014). As 91 

reported by Wramneby et al. (2008), incorporating increased mechanistic details is expected 92 

to improve the explanatory power of a model. Many models for example calculate leaf 93 

photosynthesis through the Farquhar model (Farquhar et al., 1980; Farquhar & Sharkey, 94 

1982), while few models take in proper consideration theof canopy vertical stratification. 95 

Increasing model complexity can sometimes mask a lack of understanding, although models 96 

including a larger subset of important processes should be more realistic than a simpler 97 

model. However, complex models are tuned to perform well at standard tests but produce 98 

widely divergent results when projected beyond the domain of calibration (Prentice et al., 99 

2014). Since European forests are mostly managed and not homogeneous in terms of 100 

structure, composition and cohorts, only a few models are able to represent this particular 101 

ecosystem complexity and heterogeneity (Grote et al., 2011; Morales et al., 2005; Seidl et al., 102 

2012; Yin et al., 2014). For simulating the impact of forest management on the carbon cycle, 103 

it is important to consider the vertical structure of forests and the age-related changes in 104 

structure and physiology. 105 

In this study we investigate the performance of the new version of the 3D-CMCC Forest 106 

Ecosystem Model (FEM, Collalti et al. 2014) in quantifying GPP across different forest types 107 

and climate conditions in Europe. In contrast to Dynamic Global Vegetation Models 108 

(DGVMs), 3D-CMCC FEM incorporates accurate processes description focusing on the 109 

effects of hierarchy in vertical forest structure and ages on productivity and growth at species 110 

level. The model has been designed to maintain computational efficiency, as postulated for 111 

the Light Use Efficiency (LUE) Models (Monteith, 1977), coupled to the accuracy of the 112 

Process-Based Models (PBMs) (Makela, et al., 2000). As described by Wang et al. (2014a,b), 113 

a model with both high accuracy and computation efficiency is highly desirable for the 114 

purpose of simulating long time series of GPP at high spatial resolution. 115 



Thanks to FLUXNET, a global network of flux tower sites, half hourly net CO2, water and 116 

energy eddy covariance (EC) flux measurements (Baldocchi, 2003) are now available for a 117 

wide range of forest ecosystems. The network provides a continuously increasing set of 118 

annual series of half-hourly data (Balzarolo et al., 2014). These data provide valuable 119 

information to investigate seasonal phasing and amplitudes of carbon fluxes (Aubinet, et al., 120 

2000; Falge et al., 2002; Gielen et al., 2013; Slevin et al., 2015) and to test terrestrial models 121 

at the ecosystem scale (e.g. Richardson et al., 2010; Blyth et al., 2011; Chang et al., 2013; 122 

Wißkirchen et al., 2013; Bagnara et al., 2014; Balzarolo et al, 2014; Liu et al., 2014; Wang et 123 

al., 2014a; Wu et al., 2015). In the present paper daily meteorological and GPP data are 124 

provided by FLUXNET. GPP data are exploited as an independent dataset to compare, over 125 

different time-scales, 3D-CMCC FEM simulations for ten European forest stands varying in 126 

species composition, forest structure, cohorts and climates. 127 

The objective of this work is to answer to the following questions: 128 

1 Does the model reproduce the magnitude and the timing of seasonal fluctuations in GPP 129 

and their effects across different forest types and forest canopy structures? 130 

2 Does the model reproduce the observed inter-annual GPP variability? 131 

3 Is the model generic enough so that a single set of species-specific parameterizations (i.e. 132 

without a site-related calibration) allows reproducing GPP behaviour across different 133 

biomes? 134 

4 Do the model outputs improve when considering a complex heterogeneous three-135 

dimensional canopy structure compared to a simple “big leaf” model canopy 136 

representation? 137 

To investigate these issues, we introduced a 3D canopy representation into the 3D-CMCC 138 

FEM, while otherwise maintaining its flexibility and the generic features to be applied to 139 

different forest ecosystems. The new model can now run on a daily time step and includes an 140 

as main changes an improved allocation-phenology scheme (with new carbon pools including 141 

the non-structural carbon pool, NSC), an implemented water cycle (including snow processes) 142 

and an improvedthe computation of autotrophic respiration. 143 

 144 



2 Materials and Methods 145 

2.1 Model dDescription 146 

The three-dimensional Forest Ecosystem Model, 3D-CMCC FEM (Collalti, 2011; Collalti et 147 

al., 2014) (source code and the executable is available upon request at 148 

http://www.cmcc.it/models/3d-cmcc-fem-three-dimension-forest-ecosystem-model 149 

http://dev.cmcc.it/git/3D-CMCC-FEM-git) is hybrid between an empirical and a process-150 

based model relying on the concepts of the LUE approach at canopy level for carbon fixation 151 

(see Appendix A for a detailed description of algorithms). The 3D-CMCC FEM is designed to 152 

simulate at hectare scale and on a daily time step tree growth at hectare scale and on a daily 153 

time step, as well as carbon and water fluxes, at species level, representing ecophysiological 154 

processes in hetereogeneous forest ecosystems including complex canopy structures. The 3D-155 

CMCC FEM v.5.1 uses daily meteorological data, site-specific data and ecophysiological data 156 

(e.g. maximum canopy conductance, specific leaf area, etc,; see Table S3 and Collalti et al., 157 

2014) to simulate forest processes. The model code architecture allows aggregating trees into 158 

representative classes, each characterized with its variables (e.g. carbon pools, leaf area index, 159 

tree height) based on their ages, species-specific and structural traits. These variables  that are 160 

identified by the model through four indexes: i.e. species (x index), diameter class (Diameter 161 

at Breast Height , DBH) (y index), height class (z index), and age cohort (k index); such 162 

indexes represent the main state variables considered by the model in distinguishing 163 

ecosystems across sites). To deal with forest hetereogenity within and across different 164 

ecosystems, 3D-CMCC FEM v.x.x (all model versions follow the same architecture) uses a 165 

species-specific parameterization for each species simulated. Moreover, based on the 166 

assumption made by Magnani et al. (2007) that the above-ground net primary production 167 

decreases with the ageing of a forest, the model explicitly takes into account all ages within 168 

the stand, reproducing a year by year reduction due to senescence (Landsberg & Waring, 169 

1997; Waring & McDowel, 2002). Height classes and the tree position within the forest 170 

vertical profile are explicitly treated by the model to estimate the light availability (version 171 

5.1 includes also the albedo effects) using the Monsi-Saeki formulation of exponential 172 

attenuation coupled with the “Big-leaf” approach developed for a multi-layered model 173 

(Collalti et al., 2014; Medlyn et al., 2003). DBH together with stand density control grid cell 174 

horizontal canopy coverage (and gaps) through the computation of the single tree crown 175 



coverage and then upscale to grid-cell level (Collalti et al., 2014). In this way, the model is 176 

able to reproduce different combinations of uneven-aged, multi-layered and multi-species 177 

forests, by optional simulation of e.g. light competition, age related decline and different 178 

species-specific traits. This aspect makes the model flexible to be theoretically used for a 179 

wide range of applications in forests and allows quantifying the effects of a particular 180 

simulation of forest structure on model performance. In this study, the 3D-CMCC FEM 181 

described in Collalti et al. (2014) has been advanced to version 5.1 to improve the 182 

representation of forests processes, like phenology, canopy photosynthesis, including 183 

autotrophic respiration and, tree carbon-nitrogen allocation and water flows. The improved 184 

phenology routine is based on a new C allocation scheme, that include new carbon pools 185 

among which the Non-Structural-Carbon (NSC) pool, related to five phenological transitions 186 

for deciduous species, and three phenological transitions for evergreen species, both updated 187 

once per day. Autotrophic respiration is explicitly simulated and separated into mainteinance 188 

and growth respiration. Mainteinance respiration is the function of the nitrogen content (a new 189 

added pools) in the living pools, while growth respiration is computed proportionally to the 190 

carbon allocated to the different tree compartments (See Appendix A).. 191 

2.2 Model implementations 192 

Photosynthesis and net primary production 193 

As in the Collalti et al. (2014) in 3D-CMCC FEM the carbon flux is still estimated in 3D-194 

CMCC FEM through the Light Use Efficiency approach multiplying, for a particular species 195 

x, the absorbed photosynthetic active radiation (APAR, i.e. the radiation intercepted by the 196 

canopy) with the leaf area index (LAI, m
2
m

-2
) with either the prognostic potential radiation 197 

use efficiency (εx, grams of dry matter MJ
-1

) or the maximum canopy quantum use efficiency 198 

(αx, µmol CO2 µmol
-1

 PAR) (for a full list of model parameters see Table S3). Parameters εx 199 

or αx are controlled by the product of several environmental factors (modifiers) indicated as 200 

modx,k (dimensionless values varying between 0 and 1 and differing for each species x and age 201 

class k) depending on: vapour pressure deficit, daily maximum and minimum air 202 

temperatures, soil water content and site nutrient status (for a full modifiers description see 203 

Landsberg & Waring, 1997). Gross primary production (GPP; gCm
-2

day
-1

) is thus calculated 204 

using the following equation: 205 

                                   (1) 206 



where APAR is the absorbed radiation by the trees at the z
th

 layer (where z represents the 207 

layer of representative height for each height class), while y represents the tree diameter class. 208 

Conversely from the previous version were Autotrophic Respiration (AR) was set as a 209 

constant fraction of GPP (Waring & Landsberg, 1998), in this version AR is explicitly 210 

simulated. AR is treated distinguishing into Maintenance Respiration (MR), governed by a 211 

Q10 type response function (Ryan, 1991; Bond-Lamberty et al., 2005) and Growth Respiration 212 

(GR) assumed to be a constant proportion (30%) of all new tissues produced (Larcher, 2003). 213 

Net Primary Production (NPP), is then calculated as follows: 214 

                                       (2) 215 

NPP is then partitioned into biomass compartments and litter production following dynamic 216 

allocation patterns that reflect environmental constraints (i.e. light and water competition) and 217 

age. 218 

 219 

Daily meteorological forcing and snow dynamics 220 

The model implements a daily time step (previous version was at monthly time step) 221 

thanksdue to the temporal frequency of meteorological forcing input data; average maximum 222 

(Tmax) and minimum air temperature (Tmin), soil temperature (Tsoil), vapour pressure deficit, 223 

global solar radiation and precipitation. In addition, the model uses the day-time (Tday) and 224 

night-time (Tnight) average temperature computed as follows (Running & Coughlan, 1988): 225 

                                 (3) 226 

                             (4) 227 

When the soil temperature, is missing among in situ observed data, the model estimates it for 228 

the upper 10 cm of the soil layer through an 11-day running weighted average of daily 229 

average air temperature and further corrected by the presence of a snowpack as in Thornton 230 

(2010), Kimball et al. (1997) and Zeng et al. (1993). The variable related to the snowpack 231 

thickness was included as a water cycle component by reproducing the daily amount (mm 232 

day
-1

) of snow melt driven by average air temperature (T_avg) and incident net global 233 

radiation (Radsoil), while snow sublimation is only driven by average air temperature. 234 



In case of snow presence, if the average air temperature is higher than 0°C, considered the 235 

melting point as in Running & Coughlan (1988) and Marks et al. (1992), the rate of daily 236 

snowmelt is estimated by: 237 

                        
             

    
       (5) 238 

where tcoeff is the snowmelt coefficient (0.65 Kg m
-2

 °C
-1

day
-1

), εsnow is the absorptivity of 239 

snow (0.6), Hfus is the latent heat of fusion (335 kJ kg
-1

), Radsoil is the incident net global 240 

radiation at the soil surface (kJ m
-2

 day
-1

). 241 

Otherwise, if the average air temperature is lower than 0°C snow sublimation is computed by: 242 

          
             

    
          (6) 243 

where Hsub is the latent heat of sublimation (2845 kJ kg
-1

). 244 

 245 

Phenology and Carbon allocation  246 

Phenology plays a fundamental role in regulating photosynthesis and other ecosystem 247 

processes (e.g. carbon and nitrogen dynamics), as well as inter-individual and inter-species 248 

competitive relations and feedbacks to the climate system (Richardson et al., 2012a). In the 249 

updated model version phenology and carbon allocation depend on six different carbon and 250 

nitrogen pools (in the previous version were three carbon pools). Five pools represent the 251 

main tree organs: foliage, (fine and coarse) roots, stem, branch and bark fraction. One new 252 

pool corresponds to non-structural carbon (starch and sugar) stored in the whole tree. Woody 253 

pools are furthermore distinguished between live and dead wood. This is necessary to 254 

represent NSC mobilization and consequently leaf phenology (e.g. leaf production during 255 

spring for deciduous trees) and carbon allocation. In the new version of 3D-CMCC FEM LAI 256 

values are predicted for sun and shaded leaves (De Pury & Farquhar, 1997; Thornton & 257 

Zimmermann, 2007; Wu et al., 2015), minimizing the effects of the “Big-leaf” approach 258 

(Monteith, 1965; Sellers et al., 1997), as a function of the amount of carbon allocated to the 259 

leaf pool. It is noteworthy that each pool and each structural state variables is daily updated 260 

according to the meteorological data, forest structure and simulated fluxes.  261 

Following Arora & Boer (2005), for deciduous species the model considers five phenological 262 

transitions (in the previous version these were four: bud burst, peak LAI, leaf fall period and 263 



dormancy) that drive the seasonal progression of vegetation through phases of 264 

dormancy/quiescence, budburst, maximum growth, active growth, and senescence as in the 265 

following: 266 

1. Leaf onset starts from quiescence when thermic sum (the sum of the Tday air 267 

temperatures exceeding the threshold Tbase value of 5°C) exceeds a species- and site-268 

specific temperature threshold value (Rötzer et al., 2004; Dufrene et al., 2005) and up 269 

to LAI = max(LAI) * 0.5. The costs of expanding buds during this period of high 270 

carbon demand are supported by NSC (Landhausser, 2010; Dickmann & Kozlowski, 271 

1970) 272 

2. During the budburst phase, carbon and NSC are allocated to the foliage pool, as long 273 

as the balance between GPP and AR is positive (Barbaroux & Bréda, 2002; Campioli 274 

et al., 2013; Scartazza et al., 2013). 275 

3. During the succeeding maximum growth phase and lasting up to peak LAI, carbon is 276 

allocated into foliage and fine root pools (Sabatè et al., 2002), based on the pipe model 277 

theory (Shinozaki et al., 1964 a, b), to optimize photosynthesis; otherwise, no growth 278 

occurs and NSC is used. 279 

4. Successively, the full growing phase lasts up to the day when day length (in hours) is 280 

shorter than a species-specific threshold value. In this phase carbon is allocated into 281 

stem, fine and coarse roots, branch and bark, and into non-structural carbon pools in 282 

order to refill the reserves for the next years. 283 

5. Finally, during the leaf fall (i.e. yellowing or senescence) phase, lasting until the leaf 284 

fall (assumed linear) is complete, the total positive carbon balance is allocated to the 285 

NSC pool. 286 

Outside the growing season (dormancy) trees consume NSC for fuelling maintenance 287 

respiration (Ogren, 2000). 288 

For evergreen species the model follows a similar but simplified approach simulating a first 289 

maximum growth phase, when the model allocates NSC to foliage and fine roots up to reach 290 

peak LAI, and a second full growing phase, when the model allocates to the other pools. As in 291 

Lawrence et al. (2011) for litterfall we assume and simplify that there are no distinct periods, 292 

but rather a continuous shedding of foliage and fine roots of the previous years. 293 



All tree pools are updated at a daily time step depending on NPP balance. Nitrogen 294 

concentration for each pool is considered as a C/N ratio following Dufrene et al. (2005) and 295 

Thornton (2010) and Dufrene et al. (2005). The C/N stoichiometry is constant and depends on 296 

species;, unfortunately, the model still lacks of an interactive C-N cycle. Forest stand 297 

structural attributes, e.g. diameter at breast height (DBH), tree height, and crown competition 298 

are also updated at a daily timestep based on species-specific biometric relationships. 299 

 300 

Autotrophic respiration 301 

Based on the approach of BIOME-BGC model (Thornton, 2010) 3D-CMCC FEM computes 302 

the daily RAR of all living tissues. MR is a modified Van’t Hoff function (Davidson et al., 303 

2006; Mahecha et al., 2010) of temperature with the temperature sensitivity parameter Q10 304 

(see below) and a linear function of the nitrogen content (Ncontent = 0.218 kgC kgN
-1 

day
-1

; 305 

Ryan, 1991) in the living compartments. The Q10 function is an exponential function for 306 

which a 10°C increase in temperature relates to a Q10 factor change in the rate of respiration. 307 

MR is partitioned into day time and night time respiration using, in place of temp in Eq.(7): 308 

tday and tnight for foliage, tsoil for fine and live coarse roots, and tavg for live stem and branch. 309 

                                    
            

     (7) 310 

GRx,y,z,k is considered as a fixed ratio (30%) of all newly grown (i.e. living) tissues as 311 

proposed by Larcher (2003). 312 

 313 

2.22.3 Data description 314 

Model validation has been performed for ten different forest sites (Table 1) included in the 315 

European EC fluxes database cluster (URL: http://www.europe-fluxdata.eu). For each site, 316 

3D-CMCC FEM v.5.1 simulations were performed averagely for 10 years, forced with gap-317 

filled daily meteorological data, according to the available time series. The selected sites 318 

cover a wide range of European forest ecosystems across different latitudes, landscapes and 319 

three climatic zones: temperate, Mediterranean and subalpine. 320 

For all the sites, daily time series of meteorological variables (maximum and minimum air 321 

temperature, precipitation, vapour pressure deficit and incoming solar global radiation) were 322 

http://www.europe-fluxdata.eu/


used as drivers, while GPP was used for model output validation. The GPP derives from Net 323 

Ecosystem Exchange (NEE) measurements that have been previously quality checked and 324 

processed including storage correction, spike detection, and low turbulence condition (u*) 325 

filtering according to the method in Papale et al. (2006) and gapfilled using the Marginal 326 

Distribution Sampling method (MDS; Reichstein et al., 2005). The GPP is not directly 327 

measured by the eddy covariance technique but it is estimated using a partitioning technique 328 

as described in Reichstein et al. (2005). In the rest of the paper, we will refer to these data as 329 

“measured” or “observed” GPP for simplicity but it is important to highlight that they are 330 

obtained using a modeling approach (although strongly based on direct measurements). 331 

2.32.4 Model and experimental set-up 332 

Site data needed for model initialization concerned information on forest structure (Diameter 333 

at Breast Height - DBH, tree height, age, and density), its species composition, and soil 334 

characteristics (e.g. soil depth, texture and bulk density). These data were used for each site to 335 

initialize the model, i.e. to describe soil characteristics and the initial forest conditions at 336 

which the model starts to simulate forest processes. Initialization data were taken from the 337 

BADM (Biological, Ancillary, Disturbance, Metadata) files, available at http://www.europe-338 

fluxdata.eu, for each of the selected sites, and complemented by a literature review and 339 

personal contacts with the sites Principal Investigators. Length of model simulations, basic 340 

sites description and forest attributes used for model initialization are shown in Table 1. As a 341 

whole, for all sites, the species-specific ecophysiology has been parameterized generically 342 

(i.e. not related to the simulated site) using only data from the literature data (e.g. Breuer et 343 

al., 2003; Mollicone et al., 2003; Pietsch et al., 2005; White et al., 2000) independently from 344 

site-related measurements (for a full list of model ecophysiological and structural species-345 

related parameters see Table S3Collalti et al., 2014). As in Naudts et al. (2014) in case of 346 

multiple values for a single parameter, the mean values were used. Using the mean parameter 347 

estimates avoided hidden model-tuning and largely reduces the likelihood that simulation 348 

results are biased by hidden calibration.  349 

In addition, several studies (Bolstad et al., 1999; Griffin et al., 2001; Ibrom et al., 2006; 350 

Misson et al., 2007; Cescatti et al., 2012; Guidolotti et al., 2013; Migliavacca et al., 2015) 351 

claim that beside environmental variables, spatial heterogeneity (horizontal and vertical) of 352 

http://www.europe-fluxdata.eu/
http://www.europe-fluxdata.eu/


the stand structure and composition (age, species) also plays an important role at the 353 

ecosystem level. 354 

To evaluate if a more detailed simulation of forest heterogeneity improves model 355 

performances, a number of replicated simulations were performed for three heterogeneous 356 

sites (BE-Bra, IT-Ren and DE-Tha), based on different model initializations in terms of forest 357 

layers, species composition and/or ages (Table 1). These replicates start from a forest 358 

representation very close to reality (e.g. cohorts, mixed species composition and different 359 

canopy layers) to a more generalized one. For reasons of comparability, in these test sites the 360 

model has been forced with the same meteorological input data, and eco-physiological 361 

species-related parameterizations, i.e. only model initializations data, related to stand 362 

attributes, differ. These data are based on different sources: site measurements and/or 363 

literature data and/or experimental settings. 364 

In the case of BE-Bra we initialized the model with near all possible combinations of 365 

initialization datasets. The first simulation (BE-Bra P_Q-3L) has explicitly taken into account 366 

the site heterogeneity (vertical and horizontal) (following Gielen et al., 2013, and ancillary 367 

data sources) consisting in mixed species composition at a different canopy coverage rate of 368 

Quercus robur (Q) and Pinus sylvestris (P) (20 and 80%, respectively), with two cohorts 369 

(oaks and pines, 65 and 72 years old, respectively) and three forest layers. In the second 370 

simulation (BE-Bra P), only a single-layer of Scots pines was considered (following Janssens 371 

et al., 2002 and Verbeeck et al., 2007). In the third, fourth and fifth simulations (BE-Bra 372 

Q_3L, BE-Bra Q_2L, BE-Bra Q_1L, respectively) only three, two and one layers of 373 

pedunculate oaks (following Curiel Yuste et al., 2005 and experimental set up) were assumed. 374 

Additionally, two more experimental set-ups combined two layers of oaks and one layer of 375 

pine (BE-Bra P_Q-2L) and one layer of oak and pine (BE-Bra P_Q-1L). 376 

For IT-Ren, in the first simulation, two layers and two cohorts were considered (IT-Ren 377 

2L_2C) following Montagnani et al. (2009). In the second case, stand heterogeneity has been 378 

grouped into one layer, i.e. minimizing forest structure, and one single averaged cohort (IT-379 

Ren 1L_1C; experimental set up). 380 

For DE-Tha, two species (DE-Tha 2S) (spruce 80% and pine 20%, respectively) were 381 

modelled in the first simulation (following Grünwald & Bernhofer, 2007), while in the second 382 

experiment only the dominant species (spruce; DE-Tha 1S) was were was considered (BADM 383 

source). 384 



2.42.5 Validation approach 385 

In order to analyse model performance, we used time series of daily (Xdaily), monthly 386 

(Xmonthly) and annual (Xannual) time series for modelled and observed GPP values, which were 387 

compared at the different time scales. At first, we conducted a comparison via appropriate 388 

performance indices on long-term annual average (i.e. over the full series of all the available 389 

years)., tThen we evaluated how the model performed in the different seasons aggregating 390 

values for months of the same season.  391 

In addition, to avoid misleading results in the daily and monthly signal comparisons due to the 392 

strong seasonality for both daily and monthly signals, we followed the decomposition 393 

technique proposed by Zhao et al. (2012). To partially remove the seasonal cycle signal, we 394 

build a new daily (Ydaily) and a new monthly (Ymonthly) dataset for both observed and modelled 395 

data, respectively. The Ydaily is created by substracting the daily time series from the daily 396 

mean of the month, and the Ymonthly by substracting the monthly time series from the annual 397 

mean (see Table S1-b). 398 

For both X and Y datasets Wwe firstly adopted the Pearson coefficient of correlation (r). 399 

Then, we calculated the Normalized Root Mean Square Error (NRMSE) (Anav et al., 2010; 400 

Keenan et al., 2012) as a standardized index of error. The NRMSE reports the mean 401 

difference between observed and modelled GPP values (GPPEC and GPPMD, respectively) 402 

normalized on the variability in the GPPEC, in order to have an indication of the average 403 

distance between GPPMD and GPPEC, comparable among the different sites. NRMSE was 404 

quantified as: 405 

         
         

       
 
 

 
   

        
 

       (18) 406 

where i represents the day (or month), and σ(GPPEC) is the standard deviation of the full daily 407 

(or monthly) series of observed GPP consisting of N records. 408 

In addition, model performances were measured for the same series through the ‘Model 409 

Efficiency’ index (MEF) following Reichstein et al. (2002) and Migliavacca et al. (2015): 410 

      
        

       
 
 

 
   

        
            

 
 
   

       (29) 411 



In contrast to correlation coefficient r, the MEF index (Bowman & Azzalini, 1997) measures 412 

not only the correlation between modelled and observed data (in other words, how well they 413 

reproduce the phase of observations), but also their ‘coincidence’, i.e. the deviation from the 414 

1:1 line, and it is sensitive to systematic deviations between model and observations 415 

(Reichstein et al. 2002). 416 

Another index used in model evaluation is the standardized ‘Mean Absolute Bias’ (MABstd) 417 

(Li et al., 2010) instead of classical Bias index to avoid compensations for errors of opposite 418 

signs and standardized (as for NRMSE) to allow comparison across sites : 419 
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An additional index was the Bias (Bi): 422 

   
 

 
        

       
  

           (3) 423 

calculated at both annual and seasonal level, positive biases indicate an overestimation and 424 

negative values indicate an underestimation, respectively, by the simulation (see Balzarolo et 425 

al., 2014). 426 

To evaluate the model performances in terms of variability patterns, we adopted a procedure 427 

to compare each GPPMDEC value to both its correspondent GPPECMD value and the GPPEC-428 

GPPMD difference, at daily and monthly levels. Since the different sites have different ranges 429 

of GPP, we grouped time series values into 18 clusters, with a 5 percentile criteria, from the 430 

5
th

 to the 95
th

 (Vetter et al., 2008), and we calculated the median for each group. 431 

In order to assess the Inter-Monthly and Inter-Annual Variability (IMV and IAV 432 

respectively), individual GPP values for each month and year considered were normalized 433 

following Vetter et al. (2008) and Keenan et al. (2012). Shortly, we subtracted the respective 434 

observed or modelled average from individual (monthly and yearly) observed and modelled 435 

value as follows: 436 

                                                                    (411) 437 

where avg(GPP) is the long-term (full series of all the available years) average of monthly 438 

(for IMV) or yearly (for IAV) GPP from observations (EC) and modeling (MD), respectively. 439 

A kernel density estimation (kde) was performed to qualitatively observe probability 440 



distribuition functions (PDFs) respectively of the IMV and IAV values (Bowman & Azzalini, 441 

1997). 442 

To evaluate 3D-CMCC FEM ability in reproducing the observed IMV and IAV, we 443 

calculated the NRMSE based on monthly and annual time series of IMV and IAV values, 444 

respectively. The NRMSE, adopted as a normalized index of error allowing comparability 445 

among different sites, was thus calculated as in Eq. 1 8 but using IMV and IAV instead of 446 

GPP individual values, following the approach of Keenan et al. (2012). 447 

3 Results 448 

3.1 GPP evaluation over long-term annual and seasonal scale 449 

Both monthly and daily simulated (MD) GPP show high correlations with EC data and these 450 

results are consistent with MEF values as well as withfor NRMSE and MABstd , with low 451 

biases (Table S1a, and Figure 1-a and 1-b). On average, deciduous forests reveal better 452 

correlation between MD and EC data than evergreen forests, with a mean r of 0.86, while 453 

evergreen and mixed stands show average r of 0.810 and 0.77, respectively. For all stations 454 

p<0.00010.0001. These results are confirmed by Taylor diagrams (Taylor, 2001) (Figure 2a) 455 

which show that the model performs satisfactorily for daily fluxes, in four (i.e. DE-Hai, DK-456 

Sor, DE-Tha, FI-Hyy) of ten sites falling within ±0.5 normalized standard deviations from the 457 

reference point (representing observed data) and having correlation of around 0.9. For six 458 

sites (all the evergreen needleleaf plus deciduous except FR-Hes), the normalized standard 459 

deviation of simulated data is really close to that of observed data (represented by reference 460 

line with normalized standard deviation, i.e. radial distance from the axis origin, equal to 1). 461 

Simulated data for IT-Cpz, FR-Hes and FR-Pue have, respectively, a normalized standard 462 

deviation around of approximately +0.2, +0.3 and +0.4 (as difference from that of 463 

observations) ; consistently with the lower correlation values; BE-Bra shows the highest 464 

negative difference, in terms of standard deviation, of around -0.3. On average, the worst least 465 

performing result is for IT-Cpz that shows a correlation below 0.60 and, and  falls outside ±1 466 

normalized standard deviation from the reference point. For all stations p<0.0001.  467 

Considering the mean monthly cycle, the Taylor diagram (Figure 2b) shows the model’s 468 

capability to better simulate GPP at monthly scale. For seven sites (all deciduous and 469 

evergreen needleleaf), the normalized standard deviations of modelled data are close to that of 470 



observations (reference line), the correlation is above 0.90 and within ±0.5 normalized 471 

standard deviation from the reference point. IT-Cpz and BE-Bra show improved results with 472 

respect to daily data: respectively, their correlation increases of by more than 0.1 units, they 473 

fall within the +0.2 and -0.2 units of normalized standard deviation differences with respect to 474 

that of observations, and they enter in the field of ±1 and ±0.5 normalized standard deviation 475 

from the reference point, respectively, although for IT-Cpz the values for all statistical 476 

indexes are consistently the lowest. Although less strongly, also FR-Pue monthly data also 477 

have better performances than daily data results in terms of higher correlation (0.89) and 478 

closer position in terms of normalized standard deviations units from the reference point even 479 

ifalthough the other indexes are a little bit far from the average values of the other sites. 480 

To reduce the effects of seasonality, we also examine model performance using 481 

decomposition method (section 2.5). In the daily time-step, the overall model performance is 482 

much lower in Y dataset (Figure 1-c and Table S1b) than in X dataset, that is, r= 0.51, MEF = 483 

-0.43, NRMSE = 1.18 and MABstd = 0.8 in Y dataset vs r= 0.82, MEF = 0.63, NRMSE = 484 

0.57 and MABstd = 0.44 in X dataset. The large model error at synoptic scale have been well 485 

recognized by previous studies (Dietze et al., 2011; Zhao et al., 2012).The model shows to be 486 

less predictive for DK-Sor and FR-Hes and a good predictor for DE-Tha and FR-Pue. 487 

Accordingly, for FR-Pue comparisons between X and Y datasets show that this site is less 488 

affected by seasonality while DK-Sor is the most affected one. As expected, in the monthly 489 

time-step, the decomposition technique returns more similar results between X and Y 490 

datasets. Worst results are for IT-Cpz while best results are for DE-Hai, DK Sor, DE-Tha and 491 

IT-Ren (see Table S1b and Figure 1-d). Overall, flattening the seasonality model shows to be 492 

slightly more predictive with average values among sites consistent with observed data (r = 493 

0.94, MEF = 0.85, NRMSE = 0.36 and MABstd = 0.27). Comparison between X and Y 494 

datasets shows that DE-Hai is less affected by seasonality and IT-Cpz is the most affected 495 

one. In brief, comparison between X and Y datasets shows similar skill in the monthly-step, 496 

but very different in the daily-step because X dataset contains the feature of large seasonality. 497 

Given one of the objects of this study focuses on seasonality fluctuation, we mainly show the 498 

results based on X dataset hereafter without specification. 499 

To summarize, although with similar inter-sites variability, monthly correlations across 500 

different sites are higher than daily ones, with average correlations of 0.94 for deciduous, 501 

0.890 for evergreen and 0.921 for mixed stand (Figure 1 and Table S1a). 502 



Daily and monthly NRMSE are low, 0.63 and 0.412 on average, respectively (Table S1a), 503 

confirming that the model performs better at a monthly than at a daily time scale (Figure 1), 504 

likely because of averaging effects of daily variability in GPP estimation. 505 

The same consistency is shown by for MEF index that is on average 0.79 (monthly) and 0.578 506 

(daily), with largely lower values for the two Mediterranean forests (IT-Cpz and FR-Pue) at 507 

both the daily and monthly time scale (Table S1a and Figure 1). 508 

Considering the annual mean in deciduous forests (Table S1a), the model slightly 509 

underestimates the GPP by -2.48% (average among DE-Hai, DK-Sor and IT-Col), while ith 510 

only in FR-Hes and IT-Col it showsing an overestimation of 5.26.4% on average. Concerning 511 

evergreen forests, we find an overall model underestimation of 2.11.3%, with higher 512 

variability compared to deciduous forests, and more divergent in the case of the two 513 

Mediterranean ecosystems, ranging from underestimation of 18.4% (318 gC m
-2

 year
-1

; IT-514 

Cpz) to overestimation of 12.1% (158 gC m
-2

year
-1

; FR-Pue). 515 

Results for the mixed forest site of BE-Bra are reasonable, with an underoverestimation of 516 

about 4.45%. 517 

In terms of inter-annual variability of the yearly mean, GPPMD falls well within the range of 518 

GPPEC standard deviations for all sites except at IT-Cpz (Figure 3). Deciduous broadleaved 519 

forests and the evergreen needleleaf are the best reproduced (average bias of about 70 gC m
-2

 520 

year
-1

). 521 

Performance indices from daily and monthly observed and modelled GPP series analysed at 522 

seasonal level are shown in Table S2 and Figures 4 and 5. Winter (DJF) and summer (JJA) 523 

correlations were generally lower than those in autumn (SON) and spring (MAM). 524 

Specifically, DJF and JJA showed a correlation of 0.456 and 0.468 respectively on a daily 525 

scale and a value of 0.594 and 0.503 on a monthly scale; MAM and SON showed on a daily 526 

scale an average correlation of 0.72 and 0.77 respectively, while on monthly scale a 527 

correlation of 0.82 and 0.86 with two low values of 0.05 and 0.06 for monthly DJF and MAM 528 

for IT-Cpz was shown. 529 

Winter and summer monthly average NRMSE of 1.139 and 1.00.97, respectively, were not 530 

significantly different to the 0.667 and 0.578 of spring and fall. MEF and MABstdBi indexes 531 

values suggest similar findings than NRMSE. 532 



Figure 6 shows overall modelled vs. observed fluxes over daily and monthly scales, and the 533 

absolute difference (GPPMD minus GPPEC) vs. observed fluxes (GPPEC) as calculated by the 534 

difference matrix described in section 2.54. Overall, the aggregated data reveal high 535 

correlation also due to a progressively reduced range of data, and then variability, at higher 536 

GPP values (Figures 6a-b). Figures 6c-d show patterns of absolute difference between GPPMD 537 

and GPPEC with increasing GPPEC. These differences result in strong reduction of 538 

discrepancies for GPPEC greater than 8.5 gC m
-2

 d
-1

 for daily, or 7.3 gC m
-2

 d
-1

 for monthly 539 

timeemporal series (data extracted from Figure 6c-d). 540 

The average intra-annual GPP variations are analysed by calculating the long-term average 541 

and standard deviation values for each month of the year (Figure 7). In spring, the modelling 542 

results from deciduous forests present a larger variability than the observed data, especially 543 

during budburst and in late spring. The model generally matches the observed phenology 544 

timing (budburst, peak LAI, leaf senescence and their fall, i.e. length of growing season, data 545 

not shown). Consistent biases were observed in late summer. 546 

3.2 Inter-monthly and inter-annual variability 547 

The distribution of the IMV for the analysed sites reveals in general lower variance for 548 

modelled than observed data (Figure 8 and Table 2). Regarding deciduous forests, both DK-549 

Sor and FR-Hes show IMVMD distributions with a narrower interquartile range in comparison 550 

with IMVEC (p-value < 0.05). Conversely, for DE-Hai and IT-Col the IMVMD variance is 551 

statistically representative for the IMVEC; however IT-Col shows a significantly biased 552 

median (p-value < 0.05). Less variability than IMVEC is generally observed for IMVMD of 553 

conifers. While DE-Tha shows significant agreement for both variance and central tendency 554 

(average/median) (p-value >< 0.05), at FI-Hyy the IMVMD appears statistically in 555 

disagreement with IMVEC for both variance and central mean tendency (p-value < 0.05).Table 556 

2). We find a small difference between IMVMD and IMVEC probability density modal values 557 

in IT-Ren (Table 2). Concerning broadleaved evergreen vegetation, we observe very good 558 

agreement between observed and modelled IMV central tendency measures in FR-Pue with 559 

most of the frequencies between ± 2 gCm
-2

d
-1

. In FR-Pue, however, we notice that the 560 

distributions are slightly shifted, especially around the median, with resulted variance from 561 

modelled data in disagreement with that from observed data. We detect high IMV 562 

distributions disagreement in IT-Cpz, where the PDF from observed IMV is normally 563 



distributed, while and the one from modelled IMV is not (as resulted by a χ2 goodness of fit 564 

test). IMVMD series in BE-Bra (mixed forest) are in low agreement with those from EC. 565 

Modelled variance is low, and especially positive IMV values are especially scarcely 566 

represented. Table 2 also shows the NRMSE for IAV and IMV series. There is no apparent 567 

correlation neither between sites species and average error, nor between distributions 568 

uniformity and NRMSE. In fact, the lowest NRMSE for IMV was found in BE-Bra and IT-569 

Col,  and the highest in DE-Hai and DK-Sor. On average the model has a NRMSE for IMVs 570 

of about 1.2. 571 

Figure 9 shows the modelled and measured individual IAV values for each studied site. The 572 

magnitude of IAVMD was on average of the same order than as IAVEC, showing the model’s 573 

ability to reproduce the inter-annual variability range, and capturing about 62% of the 574 

anomalies signs (i.e. timing) for the total set of years. The model generally better captured 575 

conifers’ IAV sign (i.e. DE-Tha, FI-Hyy, and IT-Ren), with 66% of the times against about 576 

59% for the deciduous forests (i.e. DE-Hai, DK-Sor, FR-Hes, IT-Col) and 55% for the 577 

Mediterrenean ones (i.e. FR-Pue and IT-Cpz). However, the IAV difference in magnitude was 578 

better represented for deciduous forests rather than conifers, as inferred by the average 579 

NRMSE of respectively 1.45 and 1.676 (calculated by averaging values reported in Table 2). 580 

Although the model reproduced well the timing of anomalies satisfactory in more than half of 581 

cases (a little bit more than in a random selection), the correlations had a wide spread across 582 

sites. Quantitatively, modelled anomalies suggest better results for FR-Pue (r = 0.765) and 583 

worse results for IT-Ren (r = -0.543). 584 

In the case of the year 2003 with its summer heat and drought extreme (Ciais et al., 2005; 585 

Vetter et al., 2008), the anomaly sign has been well captured by the model on for six of the 586 

eight sites analyzed for that year (not enough observations were available for BE-Bra and IT-587 

Col, while 2003 was recognized as not anomalous at IT-Col) (Figure 9). At IT-Cpz and DK-588 

Sor, average IAVMD has the opposite sign than to IAVEC. Similarly, the model results matches 589 

with twhat found by Delpierre et al. (2009) about the anomalous carbon uptake during the 590 

warm spring of 2007 compared with the decadal mean for FR-Pue, FR-Hes, and DE-Tha. 591 

3.3 Comparison within different forest structure simulations 592 

Considering the presence of only one species (either pines or oaks) strongly limits the model 593 

to simulate the daily and monthly GPP patterns in BE-Bra (Table 3). This site represents a 594 



mixed stand of deciduous and evergreen tree species that assimilates CO2 all year round, 595 

although low temperatures in winter and spring reduce photosynthesis also for pines also. The 596 

observed GPP fluxes are then caused by the ‘mixture’, at a varying degree, of both oak and 597 

pine trees. Considering BE-Bra as a pure oak forest with a variable number of layers 598 

(simulation codes: BE-Bra Q_3L, BE-Bra Q_2L, BE-Bra Q_1L) the model results for annual 599 

GPP deviate from -0.6 up to +6%; considering a pure pine forest (BE-Bra P) or a combination 600 

of pines and one layer of oak (BE-Bra P_Q-1L) the model underestimates annually from -601 

9.8% to -56%, respectively. It is noteworthy that the daily GPP values markedly show a 602 

markedly different seasonal distribution on fluxes (data not shown). Conversely, there is no 603 

clear evidence that in simulating pines coupled with one, two or three oak layers (BE-Bra 604 

P_Q, BE-Bra P_Q-3L BE-Bra P_Q-2L) model results largely benefitted of this differentiation 605 

both on a daily, monthly and annual scale. Similar results are obtained for DE-Tha site when 606 

simulating one single species (DE-Tha 1S) or two (DE-Tha 2S), with annual bias of +1.5%, 607 

since the similar phenology behaviour of modelled species does not cause a marked 608 

difference in the seasonal GPP cycle. DifferentlyOn the other hand, IT-Ren initialized as a 609 

single layer and with one single cohort (IT-Ren 1L_1C) instead of two layers and two cohorts 610 

(IT-Ren 2L_2C) and differs strongly from observed GPP values overestimating for 43.2% the 611 

annual cumulated GPP by 43.2%. However, for this site, the analysis of performance indices 612 

based on daily and monthly series shows no evidence of improved model results. 613 

4 Discussions 614 

In this paper, we have analyzed the capability of the latest version of the 3D-CMCC FEM 615 

(v.5.1) to simulate intra-annual to inter-annual GPP variability over ten heterogeneous 616 

European forest sites representative of different ecosystems and bioclimatic regions by 617 

comparing model results with observations based on the EC technique. Although the model 618 

provides a reasonable reproduction of the observed values, we may evince some critical 619 

issues. First, the observed GPP data are affected by high uncertainties (Kenan et al., 2002; 620 

Papale et al., 2006; Richardson et al., 2012a, b). According to Luyssaert et al. (2007) these 621 

uncertainties in the ten case studies here considered here, although at the biome level, have a 622 

very high spread, varying from ±557.9 (for FI-Hyy) to ±700 gC m
-2

yr
-1

 (for IT-Cpz). Besides 623 

uncertainty in the EC technique, model assumptions and parameterizations can increase 624 

discrepancies compared to observed GPP data. 625 



A potential further source of error in the model runs that may need to be considered or 626 

accounted for is related to our choice of not making a site-specific parameterization. Since we 627 

used general parameterizations, large uncertainties could be detected especially in the 628 

variables that determine, for example, the length of the growing season (Richardson et al., 629 

2010), and the latitudinal differences (acclimation) of the maximum, minimum and optimum 630 

temperatures for photosynthesis. Improvement could be achieved with a site-specific 631 

parameterization, but this falls beyond our goal to make the model generally applicable. In 632 

addition, to avoid a misleading model evaluation coming from strong seasonality (especially 633 

for deciduous sites) we followed the decomposition technique proposed by Zhao et al. (2012).  634 

On average, 10 years of simulations for each site have been conducted for each site. In 635 

addition, in three sites different model initializations (i.e. considering different forest 636 

structure, composition and cohorts) were used to quantify improvements in model results 637 

when a more detailed heterogeneity forest structure representation and processes are 638 

simulated. Modelled GPP results were compared against those from EC observations 639 

collected for these sites encompassing three mono-specific (pure) stands of Beech, Holm oak 640 

and Scots pine, and three uneven-aged, multi-layered and mixed stands. 641 

Based on results, we can now provide answers to the four initial questions: 642 

1. Does the model reproduce the magnitude and timing of seasonal fluctuations in 643 

GPP and their effects across different forest types, structures and compositions? 644 

Overall, as desirable, the model is skilful in reproducing the annual cumulated and intra-645 

annual (seasonal) cycle of GPP, calculated as both daily and monthly value averages, with the 646 

monthly scale performing better across all statistical indices indexes considered for both 647 

datasets. These results can be anyway considered as a “false positive” due to the strong 648 

seasonality of GPP patterns that influences and causes higher values of correlation more than 649 

the model’s capabilities to reproduce GPP fluxes (Zhao, et al., 2012). This is clearly related to 650 

the tendency to linearize the relationship between among CO2 flux and PAR and/or 651 

temperature, as also reported by Ruimy et al. (1995) and Wu et al. (2015). Overall, statistical 652 

indexes of average annual daily and monthly for both X and Y datasets of modelled values 653 

were highly consistent with EC data, except for the Mediterranean sites (where seasonality is 654 

less pronounced) and where indexes are below the average value among all sites (see Table 655 

S1a and b)(where seasonality is less pronounced). HereIn these sites, summer drought stress 656 

showed appeared to be the most limiting factor on photosynthesis at FR-Pue (Falge et al., 657 



2002; Reichstein et al., 2002; Sabatè et al., 2002) while the presence of shallow groundwater 658 

table at IT-Cpz seems seemed to reducing reduce the severity of summer drought. This 659 

reductions cause a flattening of seasonality well highlighted in the Y dataset (see Table S1-b) 660 

where IT-Cpz showed to be unanimously one of the worst simulated site at both daily and 661 

monthly timescale and FR-Pue and DE-Tha (evergreens) the less affected by seasonal 662 

patterns. This behaviour is confirmed by the daily values of DK-Sor and IT-Col for monthly 663 

data (both deciduous) that showed to be the most affected, in other words if we smooth over 664 

the seasonal trends results get worse while the model indicated to be less sensitive for those 665 

evergreen sites where seasonality is not marked with high values of correlation for DE-Tha, 666 

FI-Hyy and Fr-Pue. These results confirm that seasonality has a remarkable effects on a 667 

model evaluation. 668 

However, the modelall statistical indexes divided by seasons in Table S2 are consistent in 669 

showing showed a non-negligible uncertainties in representing GPP patterns, as well as 670 

inferred by temporal mismatches in variance. The overall agreement despite temporal 671 

mismatches suggested that errors compensated over the year, but are cumulated in specific 672 

time windows (e.g. seasons). As reported for other models (Morales et al., 2005 and Naudts et 673 

al., 2014), Tthe model’s performances are generally worse in winter (DJF) and summer (JJA). 674 

Biases and differences in winter GPP variance may be related to the model algorithms used to 675 

simulate LAI and to the algorithm used to calculate GPP from EC data (Reichstein et al., 676 

2005), since GPP variability should be low during DJF, especially as like as for deciduous 677 

forests. However, mismatches are also related to the way in which 3D-CMCC FEM 678 

represents winter and early spring ecosystem processes. The model in fact does not consider 679 

the influence of ground vegetation that appears to be not negligible in some cases (Kolari et 680 

al., 2006). 681 

High GPP variance for evergreen species could be strongly related to low temperatures during 682 

winter (Del pPierre et al., 2009). Systematic overestimation in winter and spring GPP could 683 

then be associated with a lacks in representing conifers acclimation or to soil and atmosphere 684 

thermal constraints. At high latitudes and altitudes, another source of uncertainty may be 685 

related to freezing and thawing dynamics in soil water (Beer et al., 2007) which are not 686 

considered by the model, as like aswith snow sublimation and melting, which are still 687 

simplistically represented. 688 



GPP of deciduous forests in summer and autumn are also affected by uncertainties for 689 

surface, which is represented by LAI in the model. In addition, GPP is linear with respect to 690 

PAR (Monteith, 1977) over monthly or annual time scales, while the relation is strongly 691 

nonlinear at the daily scale (Leuning et al., 1995; Gu et al., 2002; Turner et al., 2003; Wu et 692 

al., 2015). The linear response of GPP to PAR led to the underestimation/overestimation of 693 

GPP under conditions of low/high incident PAR (Propastin et al., 2012; He et al., 2013). In 694 

the case of stress or photoinhibition, leaves reduce or stop the photosynthesis at too high 695 

levels of radiation, while in normal conditions, photosynthesis is light-saturated at high PAR 696 

(Mäkelä et al., 2008) which lets canopy photosynthesis saturated at relatively low PAR even 697 

in dense tropical forests with high LAI (Ibrom et al., 2008). The model overestimation of 698 

summer GPP may thus be partially related to the lack of representation of the canopy 699 

photosynthesis saturation processes. 700 

Although adopting a more complex phenology scheme, in the comparison between decidous 701 

and evergreen forests, our model showed better performances for deciduous compared to 702 

evergreen forests. This behaviour is due to the strong seasonality patterns that the deciduous 703 

species show, which is consistent with the findings of Zhao et al. (2012) at the two french 704 

sites, but contrasts to the results of Morales et al. (2005) who showed that it is generally easier 705 

for models to simulate evergreen forests due to the simpler phenology. The present results for 706 

evergreen forests are, however, highly affected by the low model performances for the two 707 

evergreen Mediterranean forests. As saidpreviously stated, overestimation during summer at 708 

FR-Pue, and during winter and spring for IT-Cpz, are mostly related to neglecting species-709 

specific drought stress response functions. As in Landsberg & Waring (1997), the water 710 

modifier is only based on soil physical characteristics and no consideration is given to the 711 

stress tolerance or strategy of the species (Larcher, 2003), suggesting that further model 712 

developments should focus on this aspect. 713 

Other discrepancies affecting other sites could probably be reduced with a site-specific 714 

parameterization. 715 

2. Does the model reproduce the observed inter-annual GPP variability? 716 

Overall, the distribution of the modelled inter-monthly variability was sufficiently consistent 717 

with the observed one. The model, however, showed reduced variability in the distribution for 718 

both conifers and deciduous species. The model’s ability in better representing higher rather 719 

than lower anomalies suggests that it may still be less sensitive to some drivers of variability. 720 



In this context, the phenological cycle may have an important role, since it influences canopy 721 

cover and it is controlled by environmental drivers (Richardson et al., 2010). According to 722 

Suni et al. (2003) and Jeong et al (2013), spring phenology largely affects the summertime 723 

carbon budget. Hence, uncertainties in the growing season starting date may affect 3D-724 

CMCC-FEM’s ability to reproduce IMV. In summer and autumn, petioles loss of turgor, 725 

cavitation in xylem vessels and leaf yellowing may have an important role in the GPP 726 

variability of temperate forests (Reichstein et al., 2007). 727 

Even though evergreen forests do not experience complete dormancy in winter, changes in 728 

‘greenness’ can be attributed to seasonal variation in canopy biochemistry, the production of 729 

new foliage by canopy species and, particularly where the overstorey is sparse, the phenology 730 

of understory vegetation (Richardson et al., 2010). Leaves of different ages have different 731 

efficiency, sensitivity to solar radiation, temperature and water related stresses (Chabot & 732 

Hicks, 1982). All these elements may have an important role in affecting GPP dynamics, but 733 

are still scarcely or not represented by mechanistic ecosystem or forest models. As a 734 

confirmation of these suspects, slight modifications in representing phenology and leaf 735 

turnover resulted in general improvement of model consistency with EC data (Marconi, 736 

2014). 737 

Distribution of IMV values showed specific patterns attributable to the dominant species. 738 

Beech forests IMV PDFs were concentrated around the average value and strongly influenced 739 

by high biases. This pattern was probably due to the fact that half of the months in one year 740 

have no or little photosynthesis (i.e. early spring, fall and winter) and most of the 741 

photosynthetic activity occurs in late spring and summer, when carbon assimilation is 742 

influenced by temperatures and solar radiation (Mercado, et al.; 2009). Conifers PDFs were 743 

usually smoother, non-skewed, with reduced variability and fitted by a statistical normal 744 

curve. 745 

The model showed an average NRMSE for IMV of 1.22 but still captured about two thirds of 746 

the annual anomalies sign. 747 

The results for IAV (see Figure 9) are quite contrasting, and largely depend on the site and the 748 

number of annual-by-annual comparisons. The recent modelling studies, that we are aware, 749 

show unanimously the difficulties of models to explain the large interannual variability in 750 

cases where no obvious triggers like management or climatic extreme are at work (e.g. 751 

Keenan, et al., 2012;  Wuet al., 2013). In 3D-CMCC FEM Bbetter results have been obtained 752 



for FI-Hyy and FR-Pue, so there is not apparent correlation with latitudes and forest species. 753 

Interestingly, the performance of a DGVM for IAV in FR-Pue is also higher than other sites 754 

(Zhao et al., 2012), indicating the main determinant factor for GPP simulation in this 755 

Mediterranean site may not come from the treatment of canopy representation. However, the 756 

advantage of a 3D canopy representation needs to be revalued in the future. Similarly, lower 757 

results are reported for IT-Ren, IT-Cpz and BE-Bra where the number of annual correlations 758 

are lower than the other sites. The magnitude of differences in the standard deviation 759 

generally follows generally the same tendency, particularly for BE-Bra, IT-Ren and IT-Cpz. 760 

These results confirm the model’s limited ability to represents the inter-annual variability in 761 

these specific sites rather than in these ecosystems. The comparison between modelled and 762 

observed data at the inter-annual time scale shows the model to be sufficiently able to 763 

reproduce the sign of variability through the years including the extreme events (heat wave 764 

combined to drought) during the summer 2003 summer (Ciais et al., 2005; Vetter et al., 2008) 765 

and, for some sites, the anomalous carbon uptake during the warm spring of 2007 described 766 

by Del Pierre et al. (2009). Potentially negative effects from the anomalous 2003 were 767 

modelled into negative GPP anomaly at DK-Sor and IT-Cpz due to model simulation of 768 

summer drought stress, while such anomalies are not evident from measurements for DK-Sor 769 

(Pilegaard et al., 2011). This could be due to the more maritime climate for DK-Sor and the 770 

presence of shallow groundwater for IT-Cpz that weakened the effects in the first part of the 771 

summer. In both sites, and included DE-Tha, the effects during July to September were 772 

captured by the model (data not shown). As reported by Ciais et al. (2005), Mediterranean 773 

sites showed a smaller degree in carbon fluxes, largely dominated by less respiration. It is 774 

noteworthy that IT-Col, differently from other european beech stands, does not seems having 775 

to have suffered from this anomalous heat wave in 2003 (G. Matteucci, personal 776 

communication). Both simulated and observed data showed a positive GPP anomaly, 777 

demonstrating that this beech forest benefited by moderate higher temperature values and 778 

consequently had “extra” days for assimilation and growth (see also Churkina et al., 2002; 779 

Richardson et al., 2010). A similar behaviour was reported also by Jolly et al. (2005) for the 780 

Swiss Alps, especially between in the months from March to and July. This pattern seems to 781 

be mostly related to an untimely beginning of the growing season (see Piao et al., 2006), to a 782 

reduction in plant transpiration that causes an increase in plant water use efficiency throught 783 

the partial closure of stomata (Warren et al., 2011) and to high fluxes related to forest floor 784 

vegetation. 785 



It is also noticeable that in FR-Hes during the summer of 2004 a negative anomaly occurred, 786 

larger than in 2003, occurred; and while its sign was captured by the model, its magnitude 787 

was not. This can be explained by the modelled postponed effects of a low NSC allocation 788 

during the year 2003 to the subsequent periods (Granier et al., 2007; Gough et al., 2009). 789 

These results highlight that model has a sort of “memory” linked to short-term events (e.g. 790 

drought stress) and that these events affect the long-term processes. 791 

Quantitatively, modelled inter-annual anomalies show a very large spread across the sites. 792 

Correlations vary widely, without any apparent relation with latitude and/or species. If 793 

modelled anomalies anomaly signs are potentially agreeing with the observed ones most of 794 

the times time, their magnitude was not. This behaviour seems to be related to several aspects, 795 

mainly to an over/under estimation of the causes that reproduce anomalies, e.g. processes 796 

simulated linked to the type of climate anomaly, mismatches in phenology or to a missed 797 

representation of others processes (e.g. mast years, disturbances, shallow water). Keenan et al. 798 

(2012) asserts that a lacks in phenological variability and in canopy and soil dynamics are the 799 

main culprits of these mismatches but also that flux measurements are affected by random 800 

errors especially when fluxes are higher. Poulter et al. (2009) founded a similar magnitude of 801 

errors also with models that were driven by remote-sensing data. Open questions remain as to 802 

the proportion of interannual variability in land-atmosphere carbon exchange that is directly 803 

explainable by variability in climate (Hui, et al., 2003; Richardson et al., 2007) 804 

3. Is the model generic enough that a single set of species-specific parameterization 805 

allows reproducing GPP behaviour across different ecosystems without further need of a 806 

site-related calibration? 807 

Overall, the model showed good flexibility although the sites showed a pronounced spatial 808 

and temporal heterogeneity (i.e. a variable number of forest layers, different cohorts and 809 

species). It The model was able to reliably represent the ecophysiology of beech and spruce 810 

species at different latitudes, without modifying or tuning the parameterization sets. However, 811 

annual and seasonal performance indices, calculated exploiting daily and monthly series, 812 

evidenced different performances between the two northern beech sites and the two southern 813 

ones. Tables S1 and S2 show a systematic difference in all the statistics used, suggesting the 814 

presence of a latitudinal gradient in 3D-CMCC FEM’s ability to represent beech forest 815 

processes. This gradient could be explained by how the model represents the different limiting 816 

factors and their impacts on GPP. For example, we expect low temperatures to be the most 817 



important limiting factor at higher latitudes, whereas compared to soil water availability at 818 

lower latitudes (Chapin et al., 2002). 819 

We had similar results for the two spruce sites. The model showed better performance at 820 

higher latitudes. While phenotypic plasticity, and thus the parameter set, may influence the 821 

model results, it is noteworthy that the IT-Ren site has different topographic and climatic 822 

conditions. Lower average temperatures, higher slopes, and non-negligible encroachment of 823 

different species in a more complex canopy, may negatively influence the model performance 824 

in IT-Ren with respect to DE-Tha. Since the model showed unrealistic results for the two 825 

Mediterranean forests, we think it is not easy to determine if and how differences in 826 

performances are related to the generality of the model rather than to bad assumptions behind 827 

the simulated processes. From our findings, we conclude that for non-water limited conditions 828 

it is possible to yield satisfying results with general parameter sets. 829 

4. Do the model’s results improve when considering a complex 3D canopy structure? 830 

We evaluated possible improvements that could be made if a more accurate model 831 

representation at a higher rate of heterogeneity of: forest structure, differences in ages and 832 

species composition and their linked structural-ecophysiological processes, are assumed. 833 

These analyses helped us to understand the importance of each process within the represented 834 

combination (i.e. light competition, age related decline and the specific differences in 835 

ecophysiology) on modelled GPP. Doubtless, a direct comparison between modelled and 836 

observed GPP data is not possible due to the lack of partitioned measurements of GPP across 837 

different layers, cohorts and species. However, in situations where the different 838 

ecophysiological behaviours express themselves in the species specific canopy responses 839 

during certain periods of the seasonal cycle, the test of a mixed forest tree model with flux 840 

measurements is possible, as the results by Oltchev et al. (2002) showed using the model 841 

MixFor-SVAT. 842 

This preliminary analysis can be considered as a sensitivity analysis in terms of processes 843 

explicitly simulated instead of lumped parameterisation. As a whole, model results using 844 

different initialization data are within the observed GPP uncertainties but a quantitative 845 

assessment for two sites, BE-Bra and IT-Ren showed tohe potentially potential to increase of 846 

the model’s ability in simulating fluxes, while for DE-Tha there is no evidence that model 847 

performances could benefit of these efforts. For BE-Bra, taking into account two species (that 848 

differ especially for their phenological traits) was beneficial in terms of model performances, 849 



the same occurred for different layers (with the exception of BE-Bra P_Q-3L vs. BE-Bra 850 

P_Q-2L whose results were similar) and different cohorts. Better performances, in terms of 851 

seasonal GPP representations, were obtained when each of the above mentioned 852 

characteristics was accounted for by the model. For IT-Ren, similar results were obtained, 853 

although no differences were found in the simulation of phenological patterns in daily and 854 

monthly results. Differently, for DE-Tha a differentiation between the two evergreen 855 

coniferous species did not cause marked differences in model results, due to low differences 856 

in species ecophysiological traits, justifying in these cases the use of a Plant Functional Type 857 

(PFT) level of parameterization instead species level (Poulter et al., 2015). 858 

5 Conclusions 859 

This study aimed at evaluating the performances of the updated version of 3D-CMCC FEM 860 

compared to nearly 10x10 sites x years GPP data across eddy-covariance European forest 861 

sites. Although the sites showed high spatial and temporal environmental heterogeneity Tthe 862 

model appears able to reproduce trends in all of the ten sites. Different performance indexes 863 

showed that daily and monthly level model results matches well, both for the annual and 864 

seasonal scale, against observed data, with some exceptions. Mediterranean sites (IT-Cpz and 865 

FR-Pue) showed to be the most problematic in reproducing carbon fluxes. This is likely due 866 

to their specific ecosystem peculiarity, e.g. shallow groundwater for IT-Cpz and for both sites, 867 

to a low pronounced seasonality. In these two sites, the model showed to be of less 868 

generalisation unless to include additional processes were included. Differently from other 869 

models 3D-CMCC FEM both for daily and monthly simulations and for both X and Y 870 

datasets, performs better for deciduous species rather than for evergreen, although deciduous 871 

species have a more complex phenology and a more pronounced seasonality. Some 872 

mismatches in the simulation over the seasons and over the sites still remain, especially 873 

during winter and summer. The first reason for these low agreements in winter can be 874 

attributable to errors during the estimate estimation of GPP from NEE and Ecosystem 875 

Respiration values from measurements data. The second can be related to the model’s lack or 876 

simplicity in representation of snow pack dynamics as reported by Krishnan et al. (2008; 877 

2009), especially for evergreen sites (Keenan et al., 2012). Disagreements in summer could be 878 

related to model simplicity in simulating soil drought and, using the Monteith approach 879 

(Monteith, 1977), to the strong nonlinearity at the daily scale of GPP and PAR, and to the lack 880 

of representation of the light saturation processes. In addition, as reported by Keenan et al. 881 



(2012), the apparent high variability in the data during the summer season could therefore be 882 

due to random errors in the flux measurements, generating larger variability and then lower 883 

correlations against modelled data. 884 

No marked differences were found in simulations across different latitudes, so model 885 

parameterizations for the different tree species could be useful over Europe with a quite a high 886 

rate of confidence, with the exception of specific cases in Mediterranean forests. 887 

As for other models, 3D-CMCC FEM showed to have the potential to correctly reproduce the 888 

signs of interannual variability, like the 2003 heat wave and drought extreme and the 889 

anomalous carbon uptake during the warm spring of 2007 and their instantaneous biological 890 

response to these events. Significant disagreements were, however, found in reproducing the 891 

magnitude of these anomalies. 892 

The consideration of stand hetereogeneity, when possible or existing (i.e. layers, cohorts and 893 

mixed composition), led the model to improve its results in two of the three sites compared to 894 

generalized simulations of forest attributes. This plasticity makes the model able to be used in 895 

a wider range of forest ecosystems.  896 
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 924 

Appendix A: Model description 925 

A1 Photosynthesis 926 

As in the Collalti et al. (2014) 3D-CMCC FEM version, the carbon flux is still estimated by 927 

multiplying, for a particular species x, the absorbed photosynthetic active radiation (APAR, 928 

i.e. the radiation intercepted by the canopy) with the leaf area index (LAI, m
2
m

-2
) with either 929 

the prognostic potential radiation use efficiency (εx, grams of dry matter MJ
-1

) or the 930 

maximum canopy quantum use efficiency (αx, µmol CO2 µmol
-1

 PAR) (for a full list of model 931 

parameters, algorithms, and indexes see Collalti et al., 2014). Parameters εx or αx are 932 

controlled by the product of several environmental factors (modifiers) indicated as modx,k 933 

(dimensionless values varying between 0 and 1 and differing for each species x and age class 934 

k) depending on: vapour pressure deficit, daily maximum and minimum air temperatures, soil 935 

water content and site nutrient status (for a full modifiers description see Landsberg & 936 

Waring, 1997). Gross primary production (GPP; gCm
-2

day
-1

) is thus calculated using the 937 

following equation: 938 

                                   (A1) 939 

where APAR is the absorbed radiation by the trees at the z
th

 layer (where z represents the 940 

layer of representative height for each height class), while y represents the tree diameter class. 941 

Autotrophic Respiration (AR) is treated distinguishing into Maintenance Respiration (MR), 942 

governed by a Q10 type response function (see Sect. A4) (Ryan, 1991; Bond-Lamberty et al., 943 

2005) and Growth Respiration (GR) assumed to be a constant proportion (30%) of all new 944 

tissues produced (Larcher, 2003). Net Primary Production (NPP), is calculated as follows: 945 

                                       (A1) 946 

NPP is then partitioned into biomass compartments and litter production following dynamic 947 

allocation patterns that reflect environmental constraints (i.e. light and water competition) and 948 

age. 949 

A2 Daily meteorological forcing and snow dynamics 950 

The model implements a daily time step due to the temporal frequency of meteorological 951 

forcing input data; average maximum (Tmax) and minimum air temperature (Tmin), soil 952 



temperature (Tsoil), vapour pressure deficit, global solar radiation and precipitation. In 953 

addition, the model uses the day-time (Tday) and night-time (Tnight) average temperature 954 

computed as follows (Running & Coughlan, 1988): 955 

                                 (A3) 956 

                             (A4) 957 

When the soil temperature, is missing among in situ observed data, the model estimates it for 958 

the upper 10 cm of the soil layer through an 11-day running weighted average of daily 959 

average air temperature and further corrected by the presence of a snowpack as in Thornton 960 

(2010), Kimball et al. (1997) and Zeng et al. (1993). The variable related to the snowpack 961 

thickness was included as a water cycle component by reproducing the daily amount (mm 962 

day
-1

) of snow melt driven by average air temperature (T_avg) and incident net global 963 

radiation (Radsoil), while snow sublimation is only driven by average air temperature. 964 

In case of snow presence, if the average air temperature is higher than 0°C, considered the 965 

melting point as in Running & Coughlan (1988) and Marks et al. (1992), the rate of daily 966 

snowmelt is estimated by: 967 

                        
             

    
       (A5) 968 

where tcoeff is the snowmelt coefficient (0.65 Kg m
-2

 °C
-1

day
-1

), εsnow is the absorptivity of 969 

snow (0.6), Hfus is the latent heat of fusion (335 kJ kg
-1

), Radsoil is the incident net global 970 

radiation at the soil surface (kJ m
-2

 day
-1

). 971 

Otherwise, if the average air temperature is lower than 0°C snow sublimation is computed by: 972 

          
             

    
          (A6) 973 

where Hsub is the latent heat of sublimation (2845 kJ kg
-1

). 974 

A3 Phenology and Carbon/Nitrogen allocation  975 

Phenology plays a fundamental role in regulating photosynthesis and other ecosystem 976 

processes (e.g. carbon and nitrogen dynamics), as well as inter-individual and inter-species 977 

competitive relations and feedbacks to the climate system (Richardson et al., 2012a). In the 978 

updated model version phenology and carbon allocation depend on six different carbon and 979 

nitrogen pools. Five pools represent the main tree organs: foliage, (fine and coarse) roots, 980 



stem, branch and bark fraction. One pool corresponds to non-structural carbon (starch and 981 

sugar) stored in the whole tree. Woody pools are furthermore distinguished between live and 982 

dead wood. This is necessary to represent NSC mobilization and consequently leaf phenology 983 

(e.g. leaf production during spring for deciduous trees) and carbon allocation. In the new 984 

version of 3D-CMCC FEM LAI values are predicted for sun and shaded leaves (De Pury & 985 

Farquhar, 1997; Thornton & Zimmermann, 2007; Wu et al., 2015), minimizing the effects of 986 

the “Big-leaf” approach (Monteith, 1965; Sellers et al., 1997), as a function of the amount of 987 

carbon allocated to the leaf pool. It is noteworthy that each pool and each structural state 988 

variables is daily updated according to the meteorological data, forest structure and simulated 989 

fluxes. Following Arora & Boer (2005), for deciduous species the model considers five 990 

phenological transitions that drive the seasonal progression of vegetation through phases of 991 

dormancy/quiescence, budburst, maximum growth, active growth, and senescence as in the 992 

following: 993 

1. Leaf onset starts from quiescence when thermic sum (the sum of the Tday air 994 

temperatures exceeding the threshold Tbase value of 5°C) exceeds a species- and site-995 

specific temperature threshold value (Rötzer et al., 2004; Dufrene et al., 2005) and up 996 

to LAI = max(LAI) * 0.5. The costs of expanding buds during this period of high 997 

carbon demand are supported by NSC (Landhausser, 2010; Dickmann & Kozlowski, 998 

1970) 999 

2. During the budburst phase, carbon and NSC are allocated to the foliage pool, as long 1000 

as the balance between GPP and AR is positive (Barbaroux & Bréda, 2002; Campioli 1001 

et al., 2013; Scartazza et al., 2013). 1002 

3. During the succeeding maximum growth phase and lasting up to peak LAI, carbon is 1003 

allocated into foliage and fine root pools (Sabatè et al., 2002), based on the pipe model 1004 

theory (Shinozaki et al., 1964 a, b), to optimize photosynthesis; otherwise, no growth 1005 

occurs and NSC is used. 1006 

4. Successively, the full growing phase lasts up to the day when day length (in hours) is 1007 

shorter than a species-specific threshold value. In this phase carbon is allocated into 1008 

stem, fine and coarse roots, branch and bark, and into non-structural carbon pools in 1009 

order to refill the reserves for the next years. 1010 



5. Finally, during the leaf fall (i.e. yellowing or senescence) phase, lasting until the leaf 1011 

fall (assumed linear) is complete, the total positive carbon balance is allocated to the 1012 

NSC pool. 1013 

Outside the growing season (dormancy) trees consume NSC for fuelling maintenance 1014 

respiration (Ogren, 2000). 1015 

For evergreen species the model follows a similar but simplified approach simulating a first 1016 

maximum growth phase, when the model allocates NSC to foliage and fine roots up to reach 1017 

peak LAI, and a second full growing phase, when the model allocates to the other pools. As in 1018 

Lawrence et al. (2011) for litterfall we assume and simplify that there are no distinct periods, 1019 

but rather a continuous shedding of foliage and fine roots of the previous years. 1020 

All tree pools are updated at a daily time step depending on NPP. Nitrogen concentration for 1021 

each pool is considered as a C/N ratio following Thornton (2010) and Dufrene et al. (2005). 1022 

The C/N stoichiometry is constant and depends on species, unfortunately, the model still lacks 1023 

of an interactive C-N cycle. Forest stand structural attributes, e.g. diameter at breast height 1024 

(DBH), tree height, and crown competition are also updated at a daily timestep based on 1025 

species-specific biometric relationships. 1026 

A4 Autotrophic respiration 1027 

Based on the approach of BIOME-BGC model (Thornton, 2010) 3D-CMCC FEM computes 1028 

the daily RA of all living tissues. MR is a modified Van’t Hoff function (Davidson et al., 1029 

2006; Mahecha et al., 2010) of temperature with the temperature sensitivity parameter Q10 1030 

(see below) and a linear function of the nitrogen content (Ncontent = 0.218 kgC kgN
-1 

day
-1

; 1031 

Ryan, 1991) in the living compartments. The Q10 function is an exponential function for 1032 

which a 10°C increase in temperature relates to a Q10 factor change in the rate of respiration. 1033 

MR is partitioned into day time and night time respiration using, in place of temp in Eq.(A7): 1034 

tday and tnight for foliage, tsoil for fine and live coarse roots, and tavg for live stem and branch. 1035 

                                    
            

     (A7) 1036 

GRx,y,z,k is considered as a fixed ratio (30%) of all newly grown (i.e. living) tissues as 1037 

proposed by Larcher (2003). 1038 
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 1040 

Table captions 1041 

Table 1 Main characteristics of the study sites. IGBP (International Geosphere Biosphere 1042 

Program) legend: MF=mixed forest; DBF=deciduous broadleaf forest; EBF=evergreen 1043 

broadleaf forest; ENF=evergreen needle leaf forest. Year of simulation starting and ending 1044 

depend on available time series of observed data. 1045 

Table 2 IMV and IAV NRMSE for the analyzed sites. Each specific IMV distribution was 1046 

tested for normality goodness of fit (N = normal distribution, P = non normal distribution). A 1047 

test for equivalence of central tendency was performed between IMVMD and IMVEC values. 1048 

(na) refers to the case of sites with inconsistent distributions (one normal, one not normal 1049 

distributed). (*) marks refer to the acceptance of the null hypothesis that the two distributions 1050 

are equivalent for the specific statistic (α=0.05). ECT stands for “Equivalence for Central 1051 

Tendency”; EV for “Equivalence for Variance”. 1052 

Table 3 Performance statistics (r, NRMSE, MEF, MABstdBi) are reported as derived from 1053 

daily and monthly series of GPPEC and GPPMD values over long-term annual scale, for the 1054 

different forest structure simulations. The (*) refers to p-value < 0.0001 in correlation 1055 

between GPPEC and GPPMD data. In addition, long term average of annual GPPMD and GPPEC 1056 

values (gC m
-2

 yr
-1

) for the different forest structures are shown. 1057 
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Figure captions 1059 

Figure 1 3D-CMCC FEM performance indices at different time scales; daily (on the 1060 

leftFigure 1-a) and daily aggregated to month (Figure 1-b) for X and Y dataset. (on the right). 1061 

Figure 1-c and 1-d refer to Y daily and Y monthly dataset following decomposition technique 1062 

proposed in Zhao et al. (2012). DE-Tha refers to the 1S simulation, IT-Ren to the 2L_2C 1063 

simulation, BE-Bra to the P_Q-3L simulation (see text). The red horizontal line refers to the 1064 

value calculated for the whole data aggregated per IGBP vegetation class. 1065 

Figure 2 Taylor diagrams for daily (a), daily aggregated to month (b) GPP evaluated by: the 1066 

deviation of model results from observations (REF) in terms of normalized standard deviation 1067 

of observations, represented by the distance from the site point to the point on the x-axis 1068 

identified as reference (REF); the difference of model normalized standard deviation from 1069 

that of observations, represented by the distance of the site point with respect to the quarter 1070 

arc crossing REF; and the correlation, given by the azimuthal position of the site point to the 1071 

x-axis. The sites are numbered in ascending order as follows: (1) DE-Hai, (2) DK-Sor, (3) 1072 

FR-Hes, (4) IT-Col, (5) FR-Pue, (6) IT-Cpz, (7) DE-Tha, (8) FI-Hyy, (9) IT-Ren, (10) BE-1073 

Bra. Colors refer to different IGBPs: DBF (yellow), EBF (orange), ENF (light-blue), MF 1074 

(green). 1075 

Figure 3 Distributions of annual GPP (gC m
-2

 yr
-1

). MD (red) are model results, EC (blue) 1076 

measured by eddy covariance. The vertical bars represent ± 1 standard deviation. DE-Tha 1077 

refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L 1078 

simulation (see text). 1079 

Figure 4 3D-CMCC FEM performances indices of daily (D) GPP at different seasons. DE-1080 

Tha refers to the DE-Tha (1S) simulation, IT-Ren to the (2L-2C), BE-Bra to the (P_Q-3L). 1081 

The red horizontal line refers to the value calculated for the whole data aggregated per IGBP; 1082 

“a” refer to p-value < 0.001. Strongly negative MEF are represented out of scale, but flanked 1083 

with their respective numerical value. 1084 

Figure 5 3D-CMCC FEM performances indices of daily GPP aggregated to months (M) at 1085 

different seasons. DE-Tha refers to the DE-Tha (1S) simulation, IT-Ren to the (2L-2C), BE-1086 

Bra to the (P_Q-3L). The red horizontal line refers to the value calculated for the whole data 1087 

aggregated per IGBP;. “a”, “b”, “c” refer to p-value < 0.001, 0.01 and 0.05 respectively.  1088 

Strongly negative MEF are represented out of scale, but flanked with their respective 1089 

numerical value. 1090 



Figure 6 Comparison between GPPMD and GPPEC data. The top plots show the average 1091 

GPPEC:GPPMD correlation for (a, left) monthly (gC m
-2

 month
-1

) and (b; right) daily (gC m
-2

d
-

1092 

1
) and monthly (gC m

-2
 month

-1
) data. The bottom plots show absolute difference range 1093 

between GPPMD and GPPEC while increasing GPPEC values. Negative values are excluded 1094 

because of model assumptions. DE-Tha refers to the 1S simulation, IT-Ren to the 2L_2C 1095 

simulation, BE-Bra to the P_Q-3L simulation (see text). 1096 

Figure 7 Seasonal (monthly) cycle of GPP across the ten sites. The grey line and margins of 1097 

the grey area represent long-term average of monthly GPPEC (gCm
-2

month
-1

) and its ±1 1098 

standard deviation, respectively. The green and red dashed lines represent the long-term 1099 

average of monthly GPPMD (gCm
-2

month
-1

) and its ±1 standard deviation, respectively. DE-1100 

Tha refers to the 1S simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L 1101 

simulation (see text). 1102 

Figure 8 Distribution of the magnitude for the inter-monthly variability values (IMVs, gC m
-

1103 

2
d

-1
) for each specific site, resulted by standard kernel density estimation. The vertical red line 1104 

is the media, the box plot limit the 25
th

 and 75
th

 percentiles, the dashed black bars represent 1105 

the rest of the distribution range excluding outliers (red crosses) DE-Tha refers to the 1S 1106 

simulation, IT-Ren to the 2L_2C simulation, BE-Bra to the P_Q-3L simulation (see text). 1107 

Figure 9 Inter-Annual Variability (IAV) based on Keenan et al. (2012). Red and blue bars 1108 

indicate the observed and modelled IAV values, respectively; r values refer to correlation 1109 

between observed and modelled variations. DE-Tha refers to the 1S simulation, IT-Ren to the 1110 

2L_2C simulation, BE-Bra to the P_Q-3L simulation (see text). 1111 



Table 1. 1 

Site Name 

(Site code) 

Lat (°) / Lon 

(°) 
IGBP 

Ssimulation year 

(Starting - 

Ending) 

Mean Annual 

Temperature 

(°C) 

Mean Annual 

Precipitation (mm yr-

1) 

Elevation 

(m a.s.l.) 
Main species and forest description 

Main Rreferences 

Hainich 

(DE-Hai) 
51.08 / 10.45 DBF 2000 – 2007 8.3 720 445 

Uneven-aged, unmanaged multi-layered forest 

of beech (Fagus sylvatica, 250 years, mean 

DBH 30.8 cm, mean tree height 23.1 m, stand 

density 334 trees/ha) 

Knohl et al., 2003 + BADM files 

 

Sorø 

(DK-Sor) 
55.49 / 11.64 DBF 2001 – 2009 8.2 660 40 

Beech (Fagus sylvatica, averagely 80 yrs, 

mean DBH 36.13 cm, mean tree height 25 m, 

stand density 283 trees/ha) 

Pilegaard et al. 2003 + BADM files 

 

Hesse 

(FR-Hes) 
48.67 / 7.07 DBF 2001 – 2007 9.2 820 300 

Beech (Fagus sylvatica, averagely 35 yrs, 

mean DBH 8.19 cm, mean tree height 13 m, 

stand density 3384 trees/ha) 

Granier et al., 2000 + BADM files 

Collelongo 

(IT-Col) 
41.85 /13.59 DBF 1997 – 2012 6.3 1180 1550 

Beech (Fagus sylvatica, averagely 100 yrs, 

mean DBH 20.2 cm, mean tree height 19.8 m, 

stand density 900 trees/ha) 

Scartazza et al., 2013 + BADM files 

Puechabon 

(FR-Pue) 
43.74 /3.60 EBF 2000 – 2011 13.5 883 270 

Holm oak (Quercus ilex, averagely 59 yrs, 

mean DBH 7 cm, mean tree height 6 m, stand 

density 8500 trees/ha) 

Loustau et al., 2005 + BADM files 

Castelporziano 

(IT-Cpz) 
41.71 /12.38 EBF 2000 – 2008 15.6 780 3 

Holm oak (Quercus ilex, averagely 45 yrs, 

mean DBH 16 cm, average tree height 12.5 m, 

stand density 458 trees/ha) 

Vitale et al., 2003 + BADM files 

Tharandt 

(DE-Tha) 
50.96/ 13.57 ENF 2000 – 2010 7.7 820 380 

Mixed Norway spruce (Picea abies, averagely 

113 yrs, mean DBH 33 cm, tree height 26, 

density 396 trees/ha) and 

Scots Pine (Pinus sylvestris, averagely 113 

yrs, mean DBH 33.1 cm, tree height 26.1 m, 

density 81 trees/ha) 

Grünwald & Bernhofer,  2007 + BADM files 

 

Hyytiälä 

(FI-Hyy) 
61.85 / 24.29 ENF 2001 – 2011 3.8 709 170 

Scots pine (Pinus sylvestris, 39 yrs, mean 

DBH 30.8 cm, mean tree height 23.1 m, stand 

density 334 trees/ha) 

Suni, et al., 2003 + BADM files 



Renon 

(IT-Ren) 
46.59 / 11.43 ENF 2006 - 2010 4.7 809 1735 

Uneven-aged multi-layered forest of 

Norway spruce (Picea abies averagely, 190 

and 30 yrs, average DBH 30.8 cm, average 

tree height 23.1m, stand density 334 trees/ha) 

Montagnani et. al.(2009) 

 

Brasschaat  

(BE-Bra) 
51.30/4.52 MF 2001 - 2010 9.8 750 16 

Mixed, uneven-aged multi-layered forest of  

Scots pine (Pinus sylvestris, averagely 72 yrs) 

and  

Pedunculate oak (Quercus robur, averagely 65 

yrs) 

Gielen et al., 2013 
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Table 2  1 

   DE-Hai DK-Sor FR-Hes IT-Col FR-Pue IT-Cpz 
DeDE-

Tha 
(1S) 

FI-Hyy 
IT-Ren 
(2L-2C) 

BE-Bra 
(P_Q-3L) 

 NRMSE IAVs 2.4 1.8 1.3 0.3 0.6 1.1 1.0 2.7 1.3 0.9 

 NRMSE IMVs 1.7 2.7 1.1 0.6 1.1 1.2 1.1 1.2 1.0 0.5 

 ECT p-value 1.00*
 N

 0.12*
 N

 0.54*
 N

 0.00 
 N

 0.15*
 N

 1.00*
 na

 1.00*
 P

 0.04
 N

 0.88*
 P

 0.85*
 N 

 EV  p-value 0.53*
 N

 0.00
 N

 0.00
 N

 0.46*
 N

 0.00
 N

 0.02
 na

 0.78*
 P

 0.00
 N

 0.27*
 P

 0.01
  N 

 2 
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Table 3.  1 

 2 

Site  
Model 
set-up 
code 

Daily Monthly Yearly 

r NRMSE MEF MABstd r NRMSE MEF MABstd 

GPPMD GPPEC 

gC m
-2

 yr
-

1
 

gC m
-2

 yr
-

1
 

BE-Bra 

P 0.72* 0.73 0.47 0.51 0.86* 0.55 0.70 0.39 1003 

1112 

Q_3L 0.76* 0.91 0.18 0.67 0.84* 0.71 0.49 0.52 1105 

Q_2L 0.74* 0.89 0.21 0.66 0.86* 0.74 0.45 0.55 1179 

Q_1L 0.75* 0.95 0.01 0.70 0.86* 0.68 0.53 0.50 1147 

P_Q-3L 0.77* 0.64 0.58 0.32 0.91* 0.42 0.82 0.28 1169 

P_Q-2L 0.75* 0.67 0.55 0.46 0.91* 0.44 0.81 0.30 1037 

P_Q-1L 0.75* 0.66 0.56 0.46 0.91* 0.68 0.53 0.50 1056 

IT-Ren 
2L_2C 0.81* 0.62 0.61 0.44 0.95* 0.30 0.91 0.23 1348 

1362 
1L_1C 0.83* 0.85 0.27 0.61 0.96* 0.61 0.62 0.45 1950 

DE-Tha 
1S 0.89* 0.48 0.80 0.31 0.96* 0.29 0.91 0.19 1898 

1869 
2S 0.89* 0.46 0.79 0.31 0.95* 0.27 0.93 0.19 1837 

 3 
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