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Abstract	15	

Determining	the	spatial	distribution	and	temporal	development	of	evaporation	at	regional	and	16	

global	scales	is	required	to	improve	our	understanding	of	the	coupled	water	and	energy	cycles	17	

and	to	better	monitor	any	changes	in	observed	trends	and	variability	of	linked	hydrological	18	

processes.	With	recent	international	efforts	guiding	the	development	of	long-term	and	globally	19	

distributed	flux	estimates,	continued	product	assessments	are	required	to	inform	upon	the	20	

selection	of	suitable	model	structures	and	also	to	establish	the	appropriateness	of	these	multi-21	

model	simulations	for	global	application.	In	support	of	the	objectives	of	the	GEWEX	LandFlux	22	

project,	four	commonly	used	evaporation	models	are	evaluated	against	data	from	tower-based	23	

eddy-covariance	observations,	distributed	across	a	range	of	biomes	and	climate	zones.	The	24	

selected	schemes	include	the	Surface	Energy	Balance	System	(SEBS)	approach,	the	Priestley-25	

Taylor	Jet	Propulsion	Laboratory	(PT-JPL)	model,	the	Penman-Monteith	based	Mu	model	(PM-26	



Mu)	and	the	Global	Land	Evaporation	Amsterdam	Model	(GLEAM).	Here	we	seek	to	examine	27	

the	fidelity	of	global	evaporation	simulations	by	examining	the	multi-model	response	to	varying	28	

sources	of	forcing	data.	To	do	this,	we	perform	parallel	and	collocated	model	simulations	using	29	

tower-based	data	together	with	a	global-scale	grid-based	forcing	product.	Through	quantifying	30	

the	multi-model	response	to	high-quality	tower	data,	a	better	understanding	of	the	subsequent	31	

model	response	to	the	coarse-scale	globally	gridded	data	that	underlies	the	LandFlux	product	32	

can	be	obtained,	while	also	providing	a	relative	evaluation	and	assessment	of	model	33	

performance.		34	

Using	surface	flux	observations	from	forty-five	globally	distributed	eddy-covariance	stations	as	35	

independent	metrics	of	performance,	the	tower-based	analysis	 indicated	that	PT-JPL	provided	36	

the	highest	overally	statistical	performance	(0.72;	61	W.m-2;	0.65),	followed	closely	by	GLEAM	37	

(0.68;	64	W.m-2;	0.62),	with	values	in	parenthesis	representing	the	R2,	RMSD	and	Nash-Sutcliffe	38	

Efficiency	 (NSE),	 respectively.	 PM-Mu	 (0.51;	 78	W.m-2;	 0.45)	 tended	 to	 underestimate	 fluxes,	39	

while	 SEBS	 (0.72;	 101	W.m-2;	 0.24)	 overestimated	 values	 relative	 to	 observations.	 A	 focused	40	

analysis	 across	 specific	biome	 types	and	climate	 zones	 showed	considerable	 variability	 in	 the	41	

performance	 of	 all	models,	with	 no	 single	model	 consistently	 able	 to	 outperform	 any	 other.	42	

Results	also	indicated	that	the	global	gridded	data	tended	to	reduce	the	performance	for	all	of	43	

the	studied	models	when	compared	to	the	tower	data,	likely	a	response	to	scale	mismatch	and	44	

issues	related	to	forcing	quality.	Rather	than	relying	on	any	single	model	simulation,	the	spatial	45	

and	temporal	variability	at	both	the	tower-	and	grid-scale	highlighted	the	potential	benefits	of	46	

developing	an	ensemble	or	blended	evaporation	product	for	global	scale	LandFlux	applications.	47	

Challenges	related	to	the	robust	assessment	of	the	LandFlux	product	are	also	discussed.		48	

	49	

1 Introduction	50	

Characterizing	the	exchange	of	water	between	the	land	surface	and	the	atmosphere	is	a	topic	51	

of	 multi-disciplinary	 interest,	 as	 the	 processes	 that	 comprise	 this	 dynamic	 cycling	 of	 water	52	

determine	the	spatial	and	temporal	variability	of	hydrological	responses	across	local	and	global	53	

scales.	In	recent	years,	there	has	been	significant	progress	in	the	development	of	regional	and	54	



global	datasets	based	largely	on	remote	sensing	retrievals.	These	data	have	provided	a	wealth	55	

of	 spatially	 and	 temporally	 varying	 information	 across	 a	 range	 of	 Earth	 system	 processes,	56	

including	 soil	 moisture	 (Liu	 et	 al.,	 2011a),	 vegetation	 change	 (Tucker	 et	 al.,	 2005;	 Liu	 et	 al.,	57	

2011b;	 Liu	 et	 al.,	 2013),	 groundwater	 (Famiglietti	 et	 al.,	 2011;	 Richey	 et	 al.,	 2015)	 and	58	

precipitation	 (Huffman	et	 al.,	 1995;	Nesbitt	 et	 al.,	 2004),	 enabling	 a	 capacity	 to	 enhance	our	59	

understanding	and	description	of	regional-	and	global-scale	water	cycles	and	their	spatial	and	60	

temporal	variability.	While	evaporation	represents	the	key	process	returning	the	Earth’s	surface	61	

water	to	the	overlying	atmosphere	and	provides	the	linking	mechanism	between	the	water	and	62	

energy	 cycles,	 it	 is	 only	 in	 relatively	 recent	 times	 that	 effort	 has	 been	 directed	 towards	 the	63	

development	of	global	products	(Mu	et	al.,	2007;	Fisher	et	al.,	2008;	Vinukollu	et	al.,	2011a).			64	

To	 address	 this	 observation	 limitation,	 a	 number	 of	 evaporation	modelling	 approaches	 have	65	

been	developed	over	the	past	few	years	to	enable	estimation	at	scales	beyond	the	field,	using	66	

satellite	 remote	 sensing	 (Sheffield	et	al.,	2010;	Miralles	et	al.,	2011a)	and	other	data	 sources	67	

(Douville	et	al.,	2013).	The	models	tend	to	differ	in	their	level	of	empiricism	and	in	the	desired	68	

scale	 of	 application,	with	 some	 exclusively	 developed	 for	 farm-scale	 operation	 and	 requiring	69	

local	calibration	(Bastiaanssen	et	al.,	1998;	Allen	et	al.,	2007).	Others	have	been	developed	for	70	

broader	 scale	 application	 and	 are	 built	 on	 physical	 relationships	 describing	 the	 water	 and	71	

energy	transfer	at	the	land	surface	(Norman	et	al.,	1995;	Su,	2002;	Fisher	et	al.,	2008;	Miralles	72	

et	 al.,	 2011a).	 While	 traditional	 applications	 of	 evaporation	 estimates	 have	 been	 directed	73	

towards	agricultural	monitoring	(Allen,	2000),	catchment	water	budgets	and	basin-scale	water	74	

management	 (Kustas	 et	 al.,	 1994;	 Granger,	 2000),	 more	 recent	 applications	 of	 evaporation	75	

products	have	included	detection	and	prediction	of	heatwaves	(Hirschi	et	al.,	2011;	Miralles	et	76	

al.,	2014a),	droughts	(Mu	et	al.,	2012;	Otkin	et	al.,	2014)	and	in	resolving	the	likely	contribution	77	

of	human-induced	climate	change	on	such	events	(Greve	et	al.,	2014).		78	

Despite	the	importance	of	understanding	the	magnitude	and	spatial	and	temporal	variability	of	79	

evaporation,	 the	 availability	 of	 long-term	 products	 required	 to	 do	 this	 are	 rather	 limited.	80	

Characterizing	the	 long-term	trends	and	variability	 in	 independent	observations	of	the	Earth’s	81	

coupled	water	and	energy	cycles	is	a	key	objective	of	the	World	Climate	Research	Programmes	82	

(WCRP)	 Global	 Energy	 and	 Water	 Cycle	 Exchanges	 (GEWEX)	 project.	 Towards	 this	 task,	 the	83	



GEWEX	Data	and	Assessments	Panels	(GDAP)	LandFlux	project	has	coordinated	two	interrelated	84	

research	 efforts	 that	 seek	 to:	 i)	 intercompare	 long-term	 gridded	 surface	 flux	 data	 sets	 and	85	

identify	their	skill	and	reliability	(i.e.	product-benchmarking),	and	ii)	simulate	and	intercompare	86	

evaporation	models	to	identify	algorithms	appropriate	for	developing	a	global	flux	product	(i.e.	87	

model-benchmarking).	 In	 one	 of	 the	 first	 global-scale	 product	 assessments,	 Jiménez	 et	 al.	88	

(2011)	 examined	 twelve	 evaporation	 products	 obtained	 from	 satellite-based,	 reanalyses	 and	89	

off-line	land	surface	model	(LSM)	simulations	for	a	3	year	period	(1993-1995),	identifying	large	90	

correlations	 between	 the	 products,	 similarity	 in	 their	 spatial	 distributions,	 as	 well	 as	 large	91	

absolute	differences	in	the	annual	average	evaporation.	A	complementary	investigation	of	the	92	

inter-product	 differences	was	 undertaken	 by	Mueller	 et	 al.	 (2011),	 which	 included	 forty-one	93	

global	 evaporation	 data	 sets	 across	 a	 range	 of	 satellite-based	 simulations,	 LSMs,	 Global	94	

Circulation	 Models	 (GCMs),	 atmospheric	 reanalyses	 datasets,	 empirical	 up-scaling	 of	 eddy-95	

covariance	 measurements,	 as	 well	 as	 atmospheric	 water	 budget	 data	 sets.	 In	 that	 study,	96	

Mueller	 et	 al.	 (2011)	 used	 seven	 years	 of	monthly	mean	 data	 for	 the	 period	 1989-1995	 and	97	

found	 strong	 similarity	 in	 the	 absolute	 magnitude	 and	 spatial	 distribution	 of	 evaporation	98	

amongst	the	products.	More	recently,	Mueller	et	al.	(2013)	examined	multi-annual	trends	and	99	

variations	 in	 evaporation	products	 from	a	 range	of	 diagnostic	 data	 sets,	 LSMs	 and	 reanalysis	100	

products	 and	 showed	 consistency	 in	 inter-annual	 variations	 of	 evaporation	 products	 that	101	

corresponded	well	with	previous	investigations	(Jung	et	al.,	2010).		102	

These	benchmarking	studies	provided	a	thorough	(and	much	needed)	assessment	of	available	103	

global	 evaporation	 products	 and	 the	 varying	 approaches	 used	 to	 derive	 them.	 However,	104	

evaluation	of	the	models	for	their	predictive	skill	was	challenging	due	to	inconsistencies	in	the	105	

forcing	 data	 used	 to	 drive	 the	models,	 as	well	 as	 to	 the	 different	 parameterization	 schemes	106	

employed.	 That	 is,	 the	 analysis	 was	 performed	 on	 the	 published	 evaporation	 output,	 rather	107	

than	 re-running	 simulations	 from	 a	 common	 forcing	 dataset.	 In	 these	 benchmarking	 studies,	108	

the	evaporation	data	sets	were	also	aggregated	to	similar	spatial	and	temporal	resolutions	for	a	109	

common	 analysis	 period,	 to	 enable	 unbiased	 comparison.	 Uncertainties	 emerging	 from	 such	110	

aggregations	can	often	reduce	the	confidence	in	any	subsequent	model	performance	ranking.	111	

One	 initial	 effort	 addressing	 this	 was	 the	 study	 of	 Vinukollu	 et	 al.	 (2011a),	 which	 used	 the	112	



Surface	Energy	Balance	System	(SEBS)	model	(SEBS;	Su,	2002),	a	two-source	Penman-Monteith	113	

scheme	by	Mu	et	al.	 (2007)	and	a	three-source	model	based	on	parameterizing	the	Priestley-114	

Taylor	model	(PT-JPL)	(Fisher	et	al.,	2008)	to	estimate	global	evaporation	for	the	period	2003-115	

2004.	 The	 Vinukollu	 et	 al.	 (2011a)	 analysis	 revealed	 that	 the	 modelled	 instantaneous	116	

evaporation	(coinciding	with	the	time	of	satellite	overpass)	was	in	reasonable	agreement	with	117	

locally-observed	evaporation	at	twelve	eddy-covariance	towers	across	the	United	States,	with	118	

correlations	 ranging	 from	0.43	 to	0.54.	However,	uncertainties	 resulting	 from	scale	mismatch	119	

between	 satellite	 data	 and	 the	 validation	 tower	 footprint	 reduced	 the	 confidence	 and	 skill	120	

ranking	of	the	models.	One	of	the	unique	aspects	of	the	present	study	 is	that	tower	data	are	121	

consistent	 across	 all	model	 simulations:	 that	 is,	 tower-bias	 is	minimized,	 by	 ensuring	 that	 all	122	

models	 are	 assessed	 against	 the	 same	 tower	 records.	 Further,	 even	 though	 sub-grid	 scale	123	

variability	is	not	explored	here	(since	none	of	the	models	explicitly	account	for	this),	the	tower-124	

to-grid	scale	analysis	acts	as	a	diagnostic	of	representativeness	and	point-to-pixel	error.		125	

Recently,	 Ershadi	 et	 al.	 (2014)	 examined	 a	 number	 of	 models	 including	 SEBS,	 PT-JPL,	 the	126	

Advection-Aridity	model	of	Brutsaert	and	Stricker	(1979)	and	a	single-source	Penman-Monteith	127	

(PM)	model	 (Monteith,	1965),	using	a	set	of	 twenty	 flux	 towers	distributed	across	a	 range	of	128	

biome	types	and	climate	zones	to	 force	the	models	with	tower-based	data	directly.	Based	on	129	

common	 forcing	 and	 considering	 overall	 results,	 the	 study	 found	 that	 PT-JPL	 was	 the	 best	130	

performing	 model,	 followed	 by	 SEBS,	 PM	 and	 Advection-Aridity.	 In	 a	 related	 contribution,	131	

Ershadi	et	al.	(2015)	provided	a	more	focused	analysis	on	the	influence	of	model	structure	and	132	

resistance	 parameterization	 on	 single,	 two-layer	 and	 three-source	 Penman-Monteith	models.	133	

The	 authors	 identified	 considerable	 variability	 in	 the	 performance	 of	 models	 due	 to	 their	134	

structure	and	parameterization	choices.	While	establishing	a	baseline	 level	of	performance	at	135	

the	tower	scale	is	important,	understanding	the	impact	of	using	the	large-scale	globally-gridded	136	

forcing	 that	 will	 ultimately	 drive	 the	 global	 products	 is	 key.	 Indeed,	 undertaking	 a	 parallel	137	

assessment	between	the	tower	and	grid	scales,	while	imposing	consistency	in	the	forcing	data	138	

and	sampling	locations	used,	allows	for	a	much	greater	understanding	of	model	response	than	139	

can	be	 achieved	 through	either	 assessment	 in	 isolation:	 an	 important	 extension	upon	 recent	140	

tower-only	analyses,	such	as	Ershadi	et	al.	(2014)	and	related	contributions.		141	



A	 parallel	 effort	 to	 the	 LandFlux	 project	 is	 the	 European	 Space	 Agency	 (ESA)	 funded	WAter	142	

Cycle	 Multi-mission	 Observation	 Strategy	 for	 EvapoTranspiration	 (WACMOS-ET;	 see	143	

http://wacmoset.estellus.eu/).	WACMOS-ET,	 which	 is	 focused	 on	 an	 analysis	 period	 covering	144	

2005-2007,	seeks	to	better	understand	the	impacts	of	model	structure	on	flux	estimation,	with	145	

an	additional	 focus	on	developing	a	consistent	 forcing	dataset	using	predominantly	European	146	

Space	 Agency	 developed	 products.	 A	 key	 result	 from	 these	 early	 works	 and	 the	 preliminary	147	

outcomes	 from	 WACMOS-ET	 support	 the	 finding	 that	 no	 single	 model	 or	 parameterization	148	

consistently	 outperformed	 any	 other	 across	 different	 biomes.	 Further	 details	 on	 these	149	

complimentary	efforts	can	be	found	in	Michel	et	al.	(2015)	and	Miralles	et	al.	(2015).		150	

The	 focus	 of	 the	 current	 investigation	 is	 to	 build	 upon	 these	 recent	 efforts	 as	 well	 as	 to	151	

complement	 ongoing	 WACMOS-ET	 investigations,	 by	 simulating	 state-of-the-art	 evaporation	152	

models	using	a	joint	assessment	of	tower-based	meteorology	and	gridded	data,	and	comparing	153	

results	 with	 available	 eddy-covariance	 flux	 observations.	 Understanding	 how	 application	 of	154	

gridded	forcing	data	might	influence	the	performance	of	the	different	models,	relative	to	their	155	

performance	 when	 forced	 with	 (presumably)	 higher-quality	 tower	 data,	 is	 a	 motivating	156	

rationale	for	this	work.	Such	evaluations	are	important	as	they	offer	insight	into	the	sensitivity	157	

of	the	models	to	 input	data	uncertainties,	provide	a	relative	assessment	of	model	quality	and	158	

also	 inform	 upon	 issues	 of	 spatial	 scale	 and	 footprint	mismatch	 (McCabe	 and	Wood,	 2006).	159	

Establishing	 model	 suitability	 for	 large-scale	 operational	 application	 as	 part	 of	 the	 GEWEX	160	

Landflux	 project	 is	 a	 further	 motivating	 goal	 for	 this	 work.	 As	 such,	 a	 major	 objective	 is	 to	161	

evaluate	the	individual	model	responses	across	a	large	range	of	biomes	and	climate	zones.	The	162	

models	selected	for	assessment	 include	SEBS,	PT-JPL,	 the	Penman-Monteith	based	Mu	model	163	

(PM-Mu)	 (Mu	 et	 al.,	 2011)	 as	well	 as	 the	Global	 Land	 Evaporation	 Amsterdam	Methodology	164	

(GLEAM)	 (Miralles	 et	 al.,	 2011a).	 These	 models	 satisfy	 a	 number	 of	 criteria	 that	 were	165	

considered	 important	 for	global	model	selection,	 including	reliance	on	a	minimum	number	of	166	

forcing	 variables,	 capacity	 to	 use	 remote	 sensing	 based	 observations,	 as	 well	 as	 previous	167	

application	at	either	the	regional	or	global	scale.		168	

	169	



2 Data	and	Methodology	170	

2.1 Data	171	

For	this	analysis,	model	simulations	cover	the	period	from	1997	to	2007	and	are	performed	at	a	172	

3-hourly	 temporal	 resolution.	 To	 examine	 model	 response	 and	 inter-product	 variability,	 a	173	

parallel	 tower-	and	grid-based	analysis	was	performed.	Data	 for	 the	 tower-based	analysis	are	174	

derived	from	a	set	of	forty-five	eddy-covariance	towers	(see	Table	A1),	while	the	gridded	data	175	

are	extracted	from	a	compilation	of	available	globally	distributed	satellite,	meteorological	and	176	

land	surface	characteristics	products.	Compared	to	the	0.5	degree	and	3-hourly	gridded	data,	177	

the	use	of	tower-based	forcing	is	expected	to	minimize	issues	related	to	footprint	uncertainties	178	

when	 evaluating	 simulations	 against	 the	 observed	 eddy-covariance	 based	 flux	 data.	 The	179	

primary	 purpose	 of	 the	 grid-based	 analysis	 is	 to	 better	 understand	 the	 effects	 of	 large-scale	180	

forcing	data	on	the	accuracy	of	global	retrievals,	relative	to	the	tower-based	evaluations.			181	

2.1.1 Description	of	tower-based	forcing	data		182	

Data	for	the	tower-based	analyses	are	derived	from	forty-five	eddy-covariance	towers	selected	183	

from	within	the	FLUXNET	database	(Baldocchi	et	al.,	2001).	Table	A1	lists	the	key	attributes	of	184	

the	selected	towers	and	Figure	A1	describes	the	varying	temporal	lengths	of	the	tower	records	185	

used	 in	 this	 study.	The	 requirement	 that	 towers	only	be	used	 if	 they	are	able	 to	provide	 the	186	

input	data	required	by	all	models	(see	Table	1)	was	a	strong	limiting	criterion	that	significantly	187	

reduced	 the	 number	 of	 available	 study	 sites.	 In	 particular,	 the	 availability	 of	 land	 surface	188	

temperature	 data,	 which	 is	 required	 for	 SEBS,	 drastically	 constrained	 the	 choice	 of	 towers.	189	

However,	ensuring	data	consistency	within	the	towers	used	for	simulation	and	assessment	was	190	

an	 important	 component	of	 this	work,	 as	 it	 removes	 the	 impact	of	 tower	bias	 in	 subsequent	191	

model	 assessment.	 Even	 with	 this	 reduced	 number,	 the	 selected	 towers	 represent	 a	192	

considerable	 spatial	 spread	 encompassing	 a	 variety	 of	 biome	 types	 and	 climate	 zones	 (see	193	

Figure	1). 194	

In	 terms	 of	 forcing	 data	 requirements,	 tower-based	 variables	 that	 were	 used	 for	 model	195	

simulations	include	air	temperature,	relative	humidity,	wind	speed,	net	radiation,	ground	heat	196	



flux	and	precipitation.	A	summary	of	the	forcing	data	requirements	for	each	model	is	provided	197	

in	 Table	 1.	 Land	 surface	 emissivity,	 leaf	 area	 index	 and	 fractional	 vegetation	 cover	 were	198	

estimated	from	Normalized	Difference	Vegetation	Index	(NDVI)	data	obtained	from	the	Global	199	

Inventory	 Monitoring	 and	 Modelling	 Study	 (GIMMS)	 dataset	 (Tucker	 et	 al.,	 2005),	 at	 8	 km	200	

spatial	 and	 bi-monthly	 temporal	 resolutions.	 Here,	 the	 emissivity	 was	 calculated	 using	 the	201	

approach	of	Sobrino	et	al.	 (2004),	 leaf	area	 index	was	estimated	following	Fisher	et	al.	 (2008)	202	

and	 the	 fractional	 vegetation	cover	was	estimated	using	 the	 technique	described	 in	 Jiménez-203	

Muñoz	et	al.	(2009).	Land	surface	temperature	was	calculated	using	tower-observed	longwave	204	

upward	 radiation	 and	 by	 inverting	 the	 Stefan-Boltzmann	 equation	 (Brutsaert,	 2005).	205	

Atmospheric	 pressure	 data,	 which	 are	 absent	 from	many	 towers,	 were	 calculated	 based	 on	206	

ground	elevation	of	 tower	 locations	using	an	equation	presented	 in	Bos	et	al.	 (2008).	Canopy	207	

height	(ℎ!),	which	is	needed	for	the	SEBS	model,	was	obtained	from	tower	metadata	and	was	208	

assumed	constant	during	the	simulation	period.	Although	ℎ! 	varies	over	many	vegetation	types,	209	

accounting	for	its	within-	and	inter-annual	variability	is	usually	not	possible,	as	observed	data	of	210	

ℎ! 	variations	are	rarely	 recorded.	Tower	data	were	aggregated	 (i.e.	 summed	for	precipitation	211	

and	averaged	for	other	input	variables)	from	their	native	resolution	of	half-hourly	or	hourly	to	212	

3-hourly,	to	match	the	temporal	resolution	of	the	gridded	data.	213	

2.1.2 Description	of	grid-based	forcing	data	(LandFlux	Version	0	forcing	dataset)	214	

Grid-based	 data	 were	 developed	 by	 Princeton	 University	 for	 the	 LandFlux	 Version	 0	 (V-0)	215	

dataset.	 The	 variables	 in	 the	 V-0	 include	 air	 temperature,	 land	 surface	 temperature,	 wind	216	

speed,	atmospheric	pressure,	specific	humidity,	precipitation,	net	radiation,	NDVI	and	leaf	area	217	

index.	 Net	 radiation	 data	 derive	 from	 the	 GEWEX	 Surface	 Radiation	 Budget	 (SRB)	 Version-3	218	

(Stackhouse	 et	 al.,	 2011),	 while	 land	 surface	 temperature	 is	 determined	 by	 employing	 a	219	

Bayesian	 post-processing	 procedure	 that	merges	 High-Resolution	 Infrared	 Radiation	 Sounder	220	

(HIRS)	 retrievals	 with	 the	 land	 surface	 temperature	 data	 from	 the	 National	 Centers	 for	221	

Environment	Prediction	(NCEP)	Climate	Forecast	System	Reanalysis	(CFSR)	(Saha	et	al.,	2010),	as	222	

described	 in	Coccia	et	al.	 (2015).	Precipitation	data	are	also	from	the	NCEP	CFSR	product	and	223	

have	been	bias-corrected	 to	 the	Global	Precipitation	Climatology	Project	 (GPCP)	V2.2	dataset	224	

(Adler	 et	 al.,	 2003).	 Likewise,	 atmospheric	 pressure,	 specific	 humidity	 and	 wind	 speed	 data	225	



were	 extracted	 from	 the	 CFSR	 reanalysis	 data.	 For	 vegetation	 based	 parameters,	 NDVI	 data	226	

were	prepared	by	aggregating	8-km	resolution	GIMMS	NDVI	data	to	0.5°	resolution,	while	leaf	227	

area	 index	data	were	developed	by	Zhu	et	al.	 (2013)	through	fitting	GIMMS	NDVI	data	to	the	228	

Moderate	 Resolution	 Imaging	 Spectroradiometer	 (MODIS)	 MOD15A2	 NDVI	 product,	 using	 a	229	

neural	network	technique.		230	

The	majority	of	 variables	 in	 the	global	 LandFlux	V-0	 forcing	dataset	are	at	0.5°	 spatial	 and	3-231	

hourly	 temporal	 resolution.	Exceptions	 include	the	net	radiation	 (1°	and	3-hourly),	NDVI	 (0.5°	232	

and	 bi-monthly)	 and	 leaf	 area	 index	 (0.5°	 and	monthly).	 For	 net	 radiation,	 the	 1°	 data	were	233	

linearly	interpolated	to	a	0.5°	resolution.	The	bi-monthly	NDVI	data	were	assumed	constant	for	234	

all	3-hourly	time	steps	during	each	15-day	interval,	while	the	leaf	area	index	data	were	assumed	235	

constant	 during	 each	 month.	 The	 canopy	 height	 over	 shrubland	 and	 forest	 biomes	 was	236	

assumed	fixed	and	was	estimated	using	a	static	canopy	height	product	developed	by	Simard	et	237	

al.	 (2011).	 For	 grassland	 and	 cropland	 biomes,	where	 the	 dynamics	 of	 canopy	 height	 can	 be	238	

considerable,	canopy	height	was	calculated	using	Equation	1,	derived	from	Chen	et	al.	(2012):	239	

ℎ! = ℎ!!"# + !!!"#!!!!"#

!"#!!"#!!"#!!"#
× !"#$ − !"#!!"# 	 (1)240	

where	ℎ!!"#		and	ℎ!!"#	are	the	minimum	and	maximum	canopy	height	and	were	obtained	from	241	

the	static	vegetation	table	of	the	North	American	Data	Assimilation	System	(NLDAS)	(available	242	

from	http://ldas.gsfc.nasa.gov/nldas/web/web.veg.table.html).	!"#!!"#	and	!"#!!"#	are	the	243	

minimum	and	maximum	NDVI,	respectively,	and	were	calculated	on	a	pixel-wise	basis	for	each	244	

calendar	 year.	 The	 JPL	 static	 vegetation	 height	 was	 aggregated	 linearly	 from	 1	 km	 to	 0.5°.	245	

Likewise,	 the	 NDVI	 derived	 canopy	 height	 was	 calculated	 at	 8	 km	 resolution	 and	 then	246	

aggregated	to	0.5°.	Similar	to	the	tower-based	data,	the	methodology	of	Jiménez-Muñoz	et	al.	247	

(2009)	was	used	for	the	gridded	forcing	to	estimate	the	fractional	vegetation	cover	data	from	248	

NDVI	data.	The	ground	heat	flux	at	the	grid-scale	was	calculated	as	a	fraction	of	net	radiation	249	

using	fractional	vegetation	cover,	following	Su	(2002).	250	



2.1.3 Model	specific	forcing	data	and	data	sources	251	

In	addition	to	the	data	described	above	and	shown	in	Table	1,	both	GLEAM	and	SEBS	have	some	252	

model	specific	forcing	data	requirements.	For	SEBS,	 information	on	land	surface	temperature,	253	

wind-speed	 and	 canopy	 height	 are	 required.	 At	 the	 tower-scale,	 these	 data	 are	 provided	 by	254	

available	meteorological	forcing	or	meta-data	descriptions	in	the	case	of	canopy	height.	At	the	255	

grid-scale	they	are	provided	by	a	combination	of	the	LandFlux	V-O	dataset	and	an	adapted	JPL	256	

static	 vegetation	 height,	 as	 described	 in	 Section	 2.1.2.	 GLEAM	 based	 simulations	 require	257	

information	 on	 soil	 properties,	 vegetation	 optical	 depth	 (VOD),	 satellite	 soil	 moisture,	 snow	258	

water	 equivalent,	 lightning	 frequency	 and	 vegetation	 cover	 fraction.	 Soil	 properties	 data	 for	259	

GLEAM	 include	 field	capacity,	 critical	 soil	moisture	and	wilting	point	 soil	moisture	 thresholds.	260	

Data	for	these	were	obtained	from	the	Global	Gridded	Surfaces	of	Selected	Soil	Characteristics	261	

dataset	 of	 the	 International	Geosphere-Biosphere	 Programmes	Data	 and	 Information	 System	262	

(IGBP-DIS),	 available	 from	 Oak	 Ridge	 National	 Laboratory	 Distributed	 Active	 Archive	 Center	263	

(http://www.daac.ornl.gov).	 Soil	 properties	 data	 were	 used	 in	 their	 native	 5	 arc-minute	264	

resolution	 for	 tower-based	 analysis,	 but	 were	 aggregated	 to	 0.5°	 for	 grid-based	 assessment.	265	

Vegetation	optical	depth	data	was	from	Liu	et	al.	(2011b)	using	a	merged	product	from	multiple	266	

microwave	based	satellite	data.	The	0.25°	spatial	and	daily	temporal	resolutions	VOD	data	were	267	

gap-filled	 as	 described	 by	 Miralles	 et	 al.	 (2011a).	 Soil	 moisture	 data	 assimilated	 in	 GLEAM	268	

comes	from	the	CCI-WACMOS	dataset	(Liu	et	al.,	2012)	produced	from	both	active	and	passive	269	

satellite	microwave	data	at	0.25°	and	daily	resolution.	Snow	water	equivalent	data	are	from	the	270	

GlobSnow	 product	 version	 1.0	 (Luojus	 et	 al.,	 2010);	 as	 GlobSnow	 covers	 the	 northern	271	

hemisphere	only,	Global	Monthly	Snow	Water	Equivalent	Climatology	data	 from	the	National	272	

Snow	and	Ice	Data	Center	(NSIDC)	(Armstrong	et	al.,	2005)	are	used	for	the	BW-Ma1	tower	(see	273	

Table	A1)	located	in	the	southern	hemisphere.	Both	GlobSnow	data	and	the	NSIDC	product	are	274	

at	approximately	0.25°	spatial	and	daily	temporal	resolutions.	Lightning	frequency	data	is	based	275	

on	the	Combined	Global	Lightning	Flash	Rate	Density	monthly	climatology	at	0.5°	(Mach	et	al.,	276	

2007)	 and	 it	 is	 used	 to	 calculate	 a	 climatology	of	 rainfall	 rates	 (Miralles	 et	 al.,	 2010).	 Finally,	277	

vegetation	cover	fractions	are	derived	from	the	MODIS	MOD44B	product	(Hansen	et	al.,	2005).	278	

The	MODIS	continuous	cover	factions	describe	every	pixel	as	a	combination	of	 its	fractions	of	279	



water,	 tall	 canopy,	 short	 vegetation	 and	bare	 soil.	 The	 temporal	 average	of	 fractions	 is	 used	280	

here	 for	 the	MODIS	period,	providing	only	a	 static	 cover	 fraction	 for	 the	GLEAM	simulations.	281	

The	 MOD44B	 product	 is	 available	 at	 250	 m	 and	 0.25°	 resolution.	 For	 tower-based	 analysis,	282	

cover	fractions	are	at	250	m	resolution,	but	for	grid-based	analysis	the	0.25°	MOD44B	product	283	

was	aggregated	to	0.5°.		284	

Table	1	summarizes	the	different	sources	and	spatio-temporal	scales	of	the	data	that	were	used	285	

for	 both	 the	 tower-	 and	 grid-based	 flux	 simulations.	 As	 noted	 earlier,	 the	 temporal	 analysis	286	

encompasses	 the	 period	 1997-2007,	 although	 as	 defined	 in	 Figure	 A1,	 the	 individual	 tower	287	

records	do	not	necessarily	provide	uninterrupted	observations	during	this	time	range.		288	

2.1.4 Definition	of	selected	biome	type	and	climate	zones	289	

The	specific	biomes	examined	in	this	work	include	wetland	(WET),	grassland	(GRA),	cropland	290	

(CRO),	shrubland	(SHR),	evergreen	needleleaf	forest	(ENF),	evergreen	broadleaf	forest	(EBF)	and	291	

deciduous	broadleaf	forest	(DBF).	Biome	type	was	specified	in	Fluxnet	metadata	records	for	292	

each	of	the	individual	tower	sites	and	follows	the	International	Geosphere-Biosphere	293	

Programme	(IGBP)	classification.	For	simplicity,	the	shrubland	biome	is	comprised	of	closed	294	

shrubland,	woody	savannah	and	mixed	forest	biomes.	The	number	of	towers	for	each	biome	295	

type	varies,	with	fourteen	for	evergreen	needleleaf	forest,	ten	for	grassland,	seven	for	296	

cropland,	seven	for	deciduous	broadleaf	forest,	four	for	shrubland,	two	for	wetland	and	only	297	

one	for	evergreen	broadleaf	forest	(see	Table	A1).	The	climate	zones	include	boreal	(BOR),	sub-298	

tropical	(subTRO),	temperate	(TEMP),	temperate-continental	(TempCONT)	and	dry	(DRY)	for	299	

arid	and	semi	arid	regions.	These	zones	were	prescribed	from	the	tower	specific	metadata,	300	

which	were	in	turn	derived	from	Rubel	and	Kottek	(2010),	based	on	a	Köppen-Geiger	climate	301	

classification.	As	with	biome	type,	the	towers	are	not	evenly	distributed	across	climate	zones,	302	

with	fifteen	for	temperate,	eleven	for	sub-tropical,	eight	for	temperate-continental,	five	for	303	

boreal	and	six	for	dry	regions	(see	Table	A1).	304	



2.2 LandFlux	Model	Descriptions	305	

Following	 are	 brief	 descriptions	 of	 the	 models	 employed	 in	 this	 analysis.	 For	 a	 more	306	

comprehensive	 explanation	 of	 the	 implementation	 of	 these	 different	 schemes,	 the	 reader	 is	307	

referred	to	the	principal	model	references	as	well	as	the	recent	contributions	of	Ershadi	et	al.	308	

(2014)	and	Ershadi	et	al.	(2015).	309	

2.2.1 SEBS	310	

SEBS	 is	 a	widely	 employed	 process-based	model	 used	 in	 the	 estimation	 of	 evaporation.	 The	311	

model	uses	a	variety	of	land	surface	and	atmospheric	variables	and	parameters	for	simulating	312	

the	transfer	of	heat	and	water	vapor	from	the	 land	surface	to	the	atmosphere.	To	do	so,	 the	313	

model	first	estimates	the	representative	roughness	of	the	land	surface	and	then	uses	roughness	314	

parameters,	temperature	gradient	and	wind	speed	data	to	estimate	sensible	heat	flux	via	a	set	315	

of	 flux-gradient	 equations	 describing	 the	 transfer	 of	 heat	 from	 the	 land	 surface	 to	 the	316	

atmosphere.	Depending	on	the	atmospheric	boundary	layer	height,	the	model	uses	either	the	317	

Monin-Obukhov	 Similarity	 Theory	 or	 the	 Bulk	 Atmospheric	 Similarity	 Theory	 equations	318	

(Brutsaert,	 2005).	 The	model	 estimates	 the	 sensible	 heat	 flux	 of	 hypothetically	 wet	 and	 dry	319	

conditions	and	uses	 these	extreme-cases	 to	calculate	 the	evaporative	 fraction.	Evaporation	 is	320	

then	calculated	as	a	fraction	of	the	available	energy.	The	model	requires	accurate	values	of	net	321	

radiation,	 land	 surface	 temperature,	 air	 temperature,	 humidity,	 wind	 speed	 and	 vegetation	322	

phenology	to	calculate	surface	fluxes.	SEBS	relaxes	the	need	for	parameterization	of	the	surface	323	

resistance,	 but	 is	 sensitive	 to	 aerodynamic	 resistance	parameterization	 (Ershadi	 et	 al.,	 2013).	324	

Further	details	on	SEBS	and	its	model	formulation	can	be	found	in	Su	(2002).	325	

2.2.2 PT-JPL	326	

The	PT-JPL	model	of	evaporation	uses	a	minimum	of	meteorological	and	remote	sensing	data	327	

and	 has	 been	 employed	 in	 a	 number	 of	 studies	 to	 estimate	 regional	 and	 global	 scales	 flux	328	

response	(Fisher	et	al.,	2008;	Sahoo	et	al.,	2011;	Vinukollu	et	al.,	2011b;	Vinukollu	et	al.,	2011a;	329	

Badgley	et	al.,	2015).	A	key	characteristic	of	the	model	is	the	use	of	bio-physiological	properties	330	

of	the	land	surface	to	reduce	Priestley-Taylor	potential	evaporation	to	actual	values.	The	PT-JPL	331	



is	a	three	source	model	in	which	the	total	evaporation	is	partitioned	into	soil	evaporation	(!!!),	332	

canopy	transpiration	(!!!),	and	wet	canopy	evaporation	(!!!),	 i.e.	!" = !!! + !!! + !!!.	The	333	

model	first	partitions	the	total	net	radiation	to	soil	and	vegetation	components	and	calculates	334	

potential	evaporation	for	soil,	for	canopy	and	for	the	wet	canopy.	The	model	then	determines	a	335	

set	of	constraint	multipliers	to	represent	the	impacts	of	green	canopy	fraction,	relative	wetness	336	

of	 the	 canopy,	 air	 temperature,	 plant	 water	 stress	 and	 soil	 water	 stress	 on	 the	 evaporative	337	

process.	The	model	uses	the	constraint	multipliers	to	reduce	the	potential	evaporation	to	actual	338	

values	for	each	component	of	the	system.	PT-JPL	does	not	calibrate	or	tune	parameter	values	339	

and	 does	 not	 use	 wind	 speed	 data	 or	 parameterizations	 of	 the	 aerodynamic	 and	 surface	340	

resistances.	 However,	 the	 model	 does	 require	 accurate	 estimates	 of	 optimum	 temperature	341	

(!!"#)	 (Potter	 et	 al.,	 1993)	 for	 canopy	 transpiration.	 The	 optimum	 temperature	 is	 the	 air	342	

temperature	 at	 the	 time	 of	 peak	 canopy	 activity,	 when	 the	 highest	 values	 of	 absorbed	343	

photosynthetically	 active	 radiation	 and	 minimum	 values	 of	 vapour	 pressure	 deficit	 occur.	344	

Further	details	of	the	PT-JPL	model	can	be	found	in	Fisher	et	al.	(2008).	345	

2.2.3 PM-Mu	346	

The	 PM-Mu	was	 expanded	 from	 a	 two-source	 Penman-Monteith	 implementation	 (Mu	 et	 al.,	347	

2007)	to	a	three-source	version	(Mu	et	al.,	2011),	which	forms	the	basis	behind	the	near	real-348	

time	estimation	of	global	evaporation	in	the	MOD16	product	(Mu	et	al.,	2013)	(n.b.	the	PM-Mu	349	

nomenclature	 used	 herein	 reflects	 an	 identical	 description	 used	 in	 Michel	 et	 al.	 (2015)	 and	350	

Miralles	et	al.	(2015),	where	it	is	referred	to	as	PM-MOD).	Evaporation	in	the	PM-Mu	model	is	351	

the	sum	of	soil	evaporation,	canopy	transpiration	and	evaporation	of	the	intercepted	water	in	352	

the	 canopy,	 i.e.	 (!" = !!! + !!! + !!!).	 Estimation	 of	 evaporation	 for	 interception	 and	353	

transpiration	components	is	based	on	the	Penman-Monteith	equation	(Monteith,	1965).	Actual	354	

soil	 evaporation	 is	 calculated	 using	 potential	 soil	 evaporation	 and	 a	 soil	 moisture	 constraint	355	

function	from	the	Fisher	et	al.	 (2008)	ET	model.	This	function	is	based	on	the	complementary	356	

hypothesis	 (Bouchet,	 1963),	 which	 defines	 land-atmosphere	 interactions	 from	 air	 vapour	357	

pressure	 deficit	 and	 relative	 humidity.	 Evaporation	 components	 are	 weighted	 based	 on	 the	358	

fractional	vegetation	cover,	relative	surface	wetness	and	available	energy.	Parameterization	of	359	



aerodynamic	 and	 surface	 resistances	 for	 each	 source	 is	 based	 on	 extending	 biome	 specific	360	

conductance	 parameters	 from	 the	 stomata	 to	 the	 canopy	 scale,	 using	 vegetation	 phenology	361	

and	meteorological	data.	In	contrast	to	the	majority	of	Penman-Monteith	type	of	models,	the	362	

PM-Mu	does	not	require	wind	speed	and	soil	moisture	data	for	parameterization	of	resistances.	363	

However,	 global	 application	 of	 the	 model	 requires	 consideration	 of	 the	 fact	 that	 resistance	364	

parameters	 were	 calibrated	 against	 data	 from	 a	 set	 of	 eddy-covariance	 towers.	 One	365	

consideration	that	may	influence	model	simulations	is	that	this	parameterization	approach	was	366	

developed	 at	 the	 daily-scale.	 However,	 both	 the	 present	 and	 also	 a	 recent	 related	 study	367	

(Miralles	 et	 al.	 2015)	 suggest	 no	 obvious	 impact	 for	 sub-daily	 application.	 Further	 details	 on	368	

PM-Mu	can	be	found	in	Mu	et	al.	(2011)	and	Mu	et	al.	(2013).	369	

2.2.4 GLEAM	370	

GLEAM	 (Miralles	 et	 al.,	 2011a)	 has	 been	 used	 not	 only	 in	 estimating	 global	 evaporation	371	

(Miralles	 et	 al.,	 2011b)	 but	 also	 in	 detection	 and	 evaluation	 of	 heatwaves	 (Miralles	 et	 al.,	372	

2014a),	 climate	variability	 (Miralles	et	al.,	2014b)	and	 land-atmospheric	 feedbacks	 (Guillod	et	373	

al.,	 2015).	 Designed	 as	 a	 satellite	 data	 based	model,	 GLEAM	 first	 estimates	 interception	 loss	374	

using	 the	analytical	method	of	Gash	 (1979)	and	 then	applies	 the	Priestley-Taylor	equation	 to	375	

calculate	potential	 evaporation	 for	 soil	 and	 vegetation.	 Like	PT-JPL,	 the	model	 constrains	 the	376	

potential	 evaporation	 values	 to	 actual	 values	 by	 applying	 a	 stress	 factor,	 although	GLEAM	 is	377	

based	on	different	assumptions	and	encompasses	both	moisture	availability	in	a	multi-layered	378	

soil	system	and	vegetation	water	content	inferred	from	vegetation	optical	depth	data	(Liu	et	al.,	379	

2011b).	In	contrast	to	SEBS,	PT-JPL	and	PM-Mu,	the	GLEAM	model	is	equipped	with	routines	to	380	

quantify	 sublimation	 of	 snow-covered	 regions,	 to	 estimate	 open-water	 evaporation	 and	 to	381	

assimilate	 remote	 sensing	 soil	 moisture	 data.	 Routine	 application	 of	 GLEAM	 is	 usually	382	

performed	 in	 time-series	mode,	 in	which	 the	model	 tracks	 the	changes	of	 soil	moisture	state	383	

across	time	steps.	Here,	to	allow	application	of	the	model	at	the	tower-scale,	gaps	in	the	tower	384	

data	 were	 filled	 by	 establishing	 correlation	 between	 the	 variables	 in	 tower-	 and	 grid-based	385	

data.	Simulated	evaporation	values	were	filtered	from	the	analysis	for	these	gap-filled	periods.	386	

Further	details	on	GLEAM	can	be	found	in	Miralles	et	al.	(2011a;b).	387	



2.3 Model	Simulation	and	Analysis	388	

The	four	selected	models	were	forced	with	both	tower-	and	grid-based	data.	The	results	were	389	

then	 filtered	 for	 daytime-only	 periods,	 defined	 as	 when	 the	 shortwave	 downward	 radiation	390	

exceeds	 20	 W.m-2,	 to	 avoid	 issues	 associated	 with	 negative	 net	 radiation	 and	 night-time	391	

condensation.	The	data	were	also	filtered	for	rain	events,	for	negative	sensible	and	latent	heat	392	

flux	observations,	 for	 low	quality	or	gap-filled	 tower	records,	 for	 frozen	 land	surfaces	and	 for	393	

times	in	which	air	temperature	was	less	than	or	equal	to	0	°C.	The	performance	of	the	models	394	

was	 evaluated	 for	 individual	 towers,	 for	 the	 collection	 of	 data	 from	 all	 towers,	 for	 towers	395	

classified	across	biome	types	and	for	towers	classified	across	climate	zones.			396	

To	 evaluate	 the	 skill	 of	 the	models,	 we	 used	 traditional	 scatterplots	 and	 common	 statistical	397	

metrics	 including	 the	 coefficient	 of	 determination	 (R2),	 slope	 (m)	 and	 y-intercept	 (b)	 of	 the	398	

linear	 regression,	 the	 root-mean-square	 difference	 (RMSD),	 relative	 error	 [RE	 =	399	

RMSD/mean(!!!"#)]	 and	 the	 Nash-Sutcliffe	 Efficiency	 (NSE)	 (Nash	 and	 Sutcliffe,	 1970).	 In	400	

developing	 these	 performance	 metrics,	 simulated	 evaporation	 was	 compared	 with	 tower-401	

observed	 evaporation	 (!!!"#)	 that	were	 corrected	 for	 non-closure	 using	 the	 energy	 residual	402	

technique,	as	described	in	Ershadi	et	al.	 (2014).	Scatterplots	of	matching	percentiles	(referred	403	

to	hereafter	as	percentile	plots)	of	observed	evaporation	versus	simulated	values	from	the	1st	404	

to	 99th	 percentile	 increment	 were	 also	 used	 (Section	 3.1).	 The	 25th	 percentile	 (Q25),	 median	405	

(Q50)	 and	 75th	 percentile	 (Q75)	 were	 used	 for	 further	 model	 assessment.	 To	 establish	 the	406	

response	of	the	models	to	water	availability	at	 individual	tower	sites,	we	calculated	an	aridity	407	

index	 as	!" = !/!!,	 with	!	 the	 annual	 precipitation	 (mm.yr-1)	 and	!!	 the	 annual	 potential	408	

evaporation	 (mm.yr-1),	 calculated	 using	 a	 Priestley-Taylor	 equation	 and	 assuming	 an	 alpha-409	

coefficient	 of	 1.26.	 LandFlux	 V-0	 data	 (Section	 2.1.2)	 at	 3-hourly	 resolution	 were	 used	 to	410	

calculate	 aridity	 index	 values	 and	 an	 average	 value	was	 calculated	 to	 represent	 the	 state	 of	411	

water	availability	at	specific	tower	locations.	412	

	413	



3 Results	414	

3.1 Relative	performance	of	the	models	when	using	tower-based	and	gridded	data	415	

Figure	2	and	Figure	3	show	scatterplots,	percentile	plots	and	relevant	statistical	metrics	of	the	416	

modelled	evaporation	 for	all	of	 the	available	3-hourly	data	 records	 from	across	 the	 forty-five	417	

towers	(representing	115,148	records	in	total).	For	the	tower-based	analysis	(see	Figure	2),	PT-418	

JPL	presents	the	best	overall	performance	with	lower	model	spread	and	an	RMSD	=	61	W.m-2,	419	

RE	=	0.41,	R2	=	0.71	and	an	NSE	=	0.65.	The	model	slightly	underestimates	evaporation,	with	a	420	

slope	of	linear	regression	equal	to	0.91	and	with	the	majority	of	the	percentile	plot	(up	to	Q75)	421	

located	 just	 under	 the	 1:1	 line.	When	 considering	 results	 across	 all	 towers,	 GLEAM	presents	422	

comparable	statistical	performance	to	PT-JPL,	with	an	RMSD	=	64	W.m-2,	RE	=	0.43	and	an	NSE	=	423	

0.62.	GLEAM	 tends	 to	 slightly	 underestimate	evaporation,	with	 the	 slope	of	 linear	 regression	424	

equal	 to	 0.84	 and	 with	 the	 percentile	 plot	 being	 located	 under	 the	 1:1	 line.	 SEBS	 generally	425	

overestimates	evaporation	and	has	the	lowest	overall	performance,	with	an	RMSD	=	101	W.m-2,	426	

RE	=	0.68	and	NSE	=	0.24,	even	though	it	has	one	of	the	highest	R2	values	at	0.72.	For	PM-Mu,	427	

the	model	 tends	 to	underestimates	evaporation,	 resulting	 in	an	RMSD	 =	78	W.m-2,	RE	 =	0.52	428	

and	an	NSE	=	0.45.	Overall,	the	PT-JPL	and	GLEAM	seem	to	present	as	more	robust	candidate	429	

models	for	estimation	of	evaporation,	at	least	in	terms	of	their	statistical	response	at	the	tower	430	

scale.	 All	 models	 show	 a	 large	 spread	 around	 the	 fitted	 linear	 regression	 line.	 While	 the	431	

summary	statistics	are	useful	metrics	of	performance,	the	inter-tower	variability	of	the	models	432	

is	an	important	element	of	this	work	and	will	be	discussed	further	in	the	following	sections.		433	

The	 effect	 of	 using	 globally-gridded	 forcing	 data	 on	 the	 evaporation	models	 is	 presented	 in	434	

Figure	 3.	 Apart	 from	 providing	 a	 direct	 evaluation	 on	 the	 accuracy	 of	 the	 global	 LandFlux	435	

product,	assessing	flux	response	to	a	change	in	forcing	aids	in	diagnosing	the	model	sensitivity	436	

to	data	uncertainties	(which	are	inherent	in	any	data	product).	Likewise,	an	indirect	assessment	437	

of	 the	 issue	of	 footprint	mismatch	between	 the	 gridded	data	 (0.5°)	 and	 the	 eddy-covariance	438	

tower	 (hundreds	of	meters)	 can	also	be	 inferred.	Figure	3	clearly	 shows	 that	use	of	 the	grid-439	

based	data	 reduces	 the	performance	of	 all	models	 relative	 to	 the	 tower-based	 runs,	with	 all	440	

statistics	degrading	with	a	change	in	forcing	resolution.	SEBS	displayed	the	largest	sensitivity	to	441	



forcing	data,	with	a	0.4	decrease	in	NSE	and	a	28	W.m-2	increase	in	RMSD.	The	sensitivity	of	PT-442	

JPL	and	GLEAM	to	the	use	of	gridded	data	was	lower,	with	both	showing	an	approximately	0.3	443	

decrease	in	NSE	and	around	22	W.m-2	increase	in	RMSD	when	assessing	the	grid-based	analysis.	444	

Overall,	 PM-Mu	 shows	 the	 lowest	 sensitivity	 to	 forcing,	with	 a	 0.26	 decrease	 in	NSE	 and	 18	445	

W.m-2	increase	in	RMSD,	albeit	presenting	the	lowest	correlation	and	slope	of	linear	regression	446	

for	all	model	responses.		447	

Overall,	these	results	confirm	that	all	models	display	a	relatively	high	sensitivity	to	changes	in	448	

the	type	and	quality	of	 input	 forcing	data.	While	gridded	forcing	data	are	expected	to	have	a	449	

mismatch	 with	 the	 tower-based	 forcing	 due	 to	 their	 larger	 pixel	 (and	 footprint)	 sizes,	 this	450	

spatial	 mismatch	 will	 impact	 all	 of	 the	 applied	 models,	 albeit	 to	 a	 lesser	 or	 greater	 extent,	451	

depending	 on	 forcing	 data	 requirements.	While	 spatial	 scale	 no	 doubt	 plays	 a	major	 role	 in	452	

decreasing	model	efficiencies	at	grid-scales,	a	key	 reason	 for	 the	differences	 in	 tower-	versus	453	

grid-based	 results	 relates	 to	 internal	 inconsistencies	 within	 the	 gridded	 forcing	 data.	 For	454	

instance,	SEBS	 is	known	to	be	particularly	sensitive	to	the	temperature	gradient	between	the	455	

land	surface	and	the	atmosphere	 (van	der	Kwast	et	al.,	2009;	Ershadi	et	al.,	2013).	While	 the	456	

temperature	gradient	at	the	tower	scale	is	more	reliable	due	to	application	of	the	tower-based	457	

sensors	for	air	temperature	and	land	surface	temperature,	obtaining	such	consistency	is	harder	458	

when	different	sources	of	forcing	data	are	employed	(see	Section	2.1).	Not	surprisingly,	results	459	

also	indicate	that	those	models	that	use	fewer	inputs	show	lower	sensitivity	to	changes	in	the	460	

forcing.	As	 such,	any	 inconsistency	between	 the	 tower	and	gridded	data	 is	 likely	 to	have	 less	461	

influence	on	the	PT-JPL,	GLEAM	and	PM-Mu	models	than	it	will	on	SEBS,	which	in	addition	to	462	

vegetation	height,	requires	both	land	surface	temperature	and	wind	speed	data:	two	variables	463	

with	considerable	spatial	variability.	Disentangling	the	varying	influence	of	model	structural	and	464	

forcing	data	uncertainty	 requires	 focused	attention	and	 is	examined	 further	 in	 the	Discussion	465	

section.	466	

The	large	spread	of	data	in	the	scatterplots	indicates	that	there	is	considerable	variability	in	the	467	

performance	of	the	models	at	individual	towers,	irrespective	of	whether	tower	or	gridded	data	468	

are	used.	Of	course,	it	may	also	be	indicative	of	systematic	biases	in	the	in-situ	data,	which	vary	469	

from	one	 tower	 to	another	and	subsequently	 impact	on	model	 spread:	however,	 this	 is	non-470	



trivial	 to	 determine.	 To	 investigate	 the	 nature	 of	 this	 variability,	 we	 extend	 the	 analysis	 by	471	

developing	time	series	of	R2,	RE	and	NSE	at	3-hourly	resolution	for	individual	tower	locations,	as	472	

shown	in	Figure	4.	To	examine	performance	as	a	function	of	hydrological	condition,	the	towers	473	

are	arranged	by	degree	of	 increasing	aridity,	as	determined	by	calculation	of	an	aridity	 index	474	

(see	Section	2.3),	with	 left-to-right	representing	the	transition	from	wet-to-dry	and	describing	475	

an	aridity	index	varying	between	approximately	2	and	0.		476	

From	Figure	4	it	can	be	observed	that	there	is	a	general	downward	trend	in	both	R2	and	NSE	as	477	

aridity	increases,	with	a	slight	upward	trend	reflected	in	RE.	In	terms	of	R2,	most	of	the	models	478	

(except	for	PM-Mu)	show	some	consistency	in	performance	until	an	aridity	index	of	around	0.7,	479	

wherein	models	start	to	diverge.	Similar	agreement	is	seen	in	the	relative	error	plot,	although	480	

the	 outlier	 here	 is	 SEBS,	 which	 shows	 variable	 performance	 unrelated	 to	 aridity	 changes.	481	

Examining	the	Nash-Sutcliffe	efficiency	allows	for	a	clearer	evaluation	of	model	response	to	be	482	

obtained.	For	this	metric,	PT-JPL	and	GLEAM	display	relatively	good	correspondence	for	most	of	483	

the	 towers,	 but	 start	 to	 diverge	more	 regularly	 for	 aridity	 indices	 below	 0.8.	 Overall,	 PT-JPL	484	

presents	a	marginally	better	response	than	GLEAM,	with	higher	values	of	NSE	and	R2	and	lowest	485	

values	of	RE	produced	across	the	majority	of	towers.	Similar	results	are	expressed	in	Figure	A2,	486	

which	presents	 the	 same	 tower	based	 inter-comparison	 as	 in	 Figure	 4,	 but	 for	 the	 grid-scale	487	

model	simulations.		488	

From	Figure	2	it	was	observed	that	SEBS	presented	the	lowest	values	of	NSE	and	highest	values	489	

of	RE,	while	PM-Mu	had	 the	 lowest	values	of	R2.	Highlighting	 the	 importance	of	examining	a	490	

range	of	statistical	metrics,	 the	R2	 values	 for	SEBS	are	actually	comparable	 to	 those	of	PT-JPL	491	

and	GLEAM,	or	even	higher	 for	a	majority	of	 towers	 that	have	an	aridity	 index	 less	 than	0.7.	492	

Inspection	of	individual	tower-based	scatterplots	for	each	of	the	models	(not	shown)	illustrated	493	

that	 while	 the	 SEBS	 evaporation	 has	 a	 strong	 linear	 relationship	 with	 observed	 values	 for	 a	494	

majority	of	towers,	the	linear	regression	line	exhibits	a	large	slope,	indicating	an	overestimation	495	

in	SEBS	predictions.	Those	towers	that	exhibit	drops	in	NSE	(and	rise	in	RE)	for	the	SEBS	model	496	

(e.g.	DE-Tha,	NL-Loo,	US-Wrc,	FR-Pue;	see	Table	A1)	are	located	mainly	in	shrubland	and	forest	497	

biomes,	 suggesting	 a	 dependency	 of	 SEBS	 model	 performance	 that	 is	 tied	 to	 land	 surface	498	

vegetation	characteristics.	Although	statistical	variations	are	evident	in	all	models,	the	greater	499	



response	 variability	 in	 SEBS	 is	 likely	 due	 to	 problems	 in	 simulating	 heat	 transfer	 within	 the	500	

roughness	 sub-layer	 (RSL),	 which	 often	 forms	 over	 tall	 and	 heterogonous	 land	 surfaces	501	

(Harman,	2012).	We	explore	the	issue	of	skill	dependency	of	certain	models	to	biome	type	and	502	

climate	zone	in	Sections	3.2	and	3.3.	503	

As	noted,	Figure	4	shows	a	general	decrease	in	the	predictive	skill	 in	all	models	where	towers	504	

have	an	aridity	 index	 less	than	0.7,	but	particularly	so	for	PM-Mu	and	SEBS.	These	reductions	505	

may	 in	 part	 be	 due	 to	 data	 uncertainties	 in	 tower	 observations	 that	 originate	 from	 the	506	

advection	 of	 dry	 air	 into	 the	 tower	 footprint,	 or	 to	 a	 reduced	 capacity	 of	 the	 models	 to	507	

reproduce	the	evaporative	response	when	evaporation	represents	a	small	fraction	of	the	total	508	

available	energy.	Two	towers	at	which	all	models	display	poor	performance	are	IT-Noe	and	IL-509	

Yat	(see	Figure	1).	It	seems	likely	that	IT-Noe	is	influenced	by	strong	advection	of	moist	air	from	510	

the	 Mediterranean	 Sea,	 while	 IL-Yat	 is	 influenced	 by	 advection	 of	 hot	 and	 dry	 air	 from	511	

surrounding	desert	regions.	None	of	the	models	in	this	study	are	able	to	specifically	account	for	512	

advection	and	are	thus	prone	to	misrepresenting	the	observed	evaporative	response.		513	

3.2 Performance	of	the	models	across	biomes	514	

The	variability	in	model	performance	across	the	tower	sites	observed	in	Figure	4	and	Figure	A2,	515	

indicates	 that	 a	 biome-specific	 assessment	 could	 be	 useful	 to	 determine	 whether	 the	516	

performance	of	 the	models	 is	also	correlated	to	the	underlying	 land	cover,	 in	addition	to	any	517	

aridity	 influence.	 Figure	 5	 presents	 the	R2,	RE	 and	NSE	 for	 each	of	 the	models	 for	 the	 seven	518	

different	 biome	 classes.	 The	 analysis	 was	 conducted	 using	 the	 higher	 quality	 tower-based	519	

simulations	 for	 all	 available	 3-hourly	 data.	 One	 immediate	 highlight	 from	 Figure	 5	 is	 the	520	

relatively	poor	performance	of	all	models	over	 shrubland	sites,	where	 low	values	of	NSE	 (i.e.	521	

NSE	 ≤	 0.05)	 and	 reduced	R2	 can	be	observed.	 Ershadi	 et	 al.	 (2014)	 observed	 a	 similarly	 poor	522	

response	over	shrublands	in	a	separate	tower-based	analysis	that	employed	some	of	the	same	523	

models	examined	here.	They	attributed	the	result	to	difficulties	in	the	parameterization	of	the	524	

models	over	such	landscapes	due	to	the	strong	heterogeneities	present	in	these	environments,	525	

as	well	as	inherent	water	limitations.	For	instance,	the	capacity	of	the	GIMMS	NDVI	data	with	8	526	



km	spatial	resolution	is	clearly	insufficient	in	effectively	parameterizing	the	roughness	for	SEBS,	527	

resistances	for	PM-Mu	and	constraint	functions	for	the	PT-JPL.		528	

Excluding	shrublands	from	the	analysis,	the	PT-JPL	is	one	of	the	best	performing	models	across	529	

the	 remaining	 biomes,	 having	 the	 highest	 values	 of	 NSE	 and	 R2	 and	 lowest	 relative	 errors.	530	

Consistency	 in	 the	 performance	 of	 PT-JPL	 across	 biome	 types	 has	 been	 reported	 in	 earlier	531	

studies	 (Vinukollu	 et	 al.,	 2011a;	 Ershadi	 et	 al.,	 2014)	 and	 was	 variously	 ascribed	 to	 the	532	

formulation	 of	 its	 constraint	 functions	 (see	 Section	 2.2.2)	 and	 the	 minimal	 forcing	 data	533	

requirements,	which	reduce	its	sensitivity	to	uncertainties	in	input	data.	GLEAM	closely	follows	534	

PT-JPL	for	evergreen	needleleaf	forest	and	grassland	biomes,	but	shows	marginally	 lower	NSE	535	

values	for	other	biomes.	Figure	5	also	indicates	that	while	SEBS	has	relatively	high	values	of	R2	536	

over	the	majority	of	biome	types,	it	fails	to	provide	sufficient	predictive	skill	for	the	estimation	537	

of	evaporation	over	shrublands	and	forest	biomes.	These	biome	types	are	characterized	by	tall	538	

and	 heterogeneous	 canopies,	 within	 which	 the	 roughness	 sub-layer	 forms.	 The	 reduced	539	

capacity	 of	 the	 SEBS	 flux	 gradient	 functions	 in	 simulating	 heat	 transfer	within	 the	 roughness	540	

sub-layer	 has	 been	 highlighted	 previously	 (Weligepolage	 et	 al.,	 2012;	 Ershadi	 et	 al.,	 2014).	541	

Although	 performing	 poorly	 in	 shrubland	 and	 forest	 biomes,	 the	 SEBS	 model	 exhibits	 a	542	

comparatively	 good	 performance	 across	 wetlands,	 grasslands	 and	 croplands,	 where	 shorter	543	

canopies	 dominate.	 PM-Mu	presents	 the	 lowest	 values	 of	R2	 across	 all	 biomes,	 although	 the	544	

model	 presents	 reasonable	 NSE	 values	 over	 cropland	 (0.64)	 and	 broadleaf	 forest	 (>0.54)	545	

biomes.	 Improved	performance	of	 the	PM-Mu	model	over	 croplands	has	been	observed	 in	 a	546	

recent	study	(Ershadi	et	al.,	2015),	but	the	key	reasons	 for	 low	R2	values	of	 the	model	across	547	

other	biomes	is	not	immediately	apparent	and	requires	further	investigation.		548	

Percentile	 plots	 of	 the	 3-hourly	 tower-based	 results	 were	 used	 to	 identify	 whether	 a	model	549	

under-	or	over-estimates	evaporation	across	 its	distribution	 function.	From	Figure	6	 it	 can	be	550	

seen	 that	 SEBS	 clearly	 overestimates	 while	 PM-Mu	 underestimates	 evaporation	 across	 all	551	

biome	 types,	 reflecting	 those	 results	presented	 in	 Figure	2.	 The	percentile	plots	 for	 SEBS	are	552	

close	 to	 the	 1:1	 line	 for	 grassland	 and	 cropland	 biomes	 that	 have	 short	 canopy	 height,	553	

confirming	 the	 observations	 made	 for	 Figure	 4	 and	 Figure	 5.	 PT-JPL	 shows	 good	 model	554	

reproduction	of	observed	values	over	 grassland	and	deciduous	broadleaf	 forest	biomes,	with	555	



the	 percentile	 plots	 close	 to	 the	 1:1	 line.	 However,	 the	 model	 slightly	 underestimated	556	

evaporation	 for	 croplands	 and	 overestimated	 evaporation	 for	 wetlands,	 with	 the	 tails	557	

(percentiles	 greater	 than	Q75)	 reflecting	 greater	 divergence	 than	 the	bulk	 of	 the	distribution.	558	

The	 rate	 of	 overestimation	 was	 higher	 for	 evergreen	 needleleaf	 forest,	 evergreen	 broadleaf	559	

forest	and	for	shrubland	biomes.	Figure	6	also	shows	that	GLEAM	presents	strong	performance	560	

over	grasslands,	croplands	and	evergreen	needleleaf	forest	sites,	underestimated	evaporation	561	

across	 deciduous	 broadleaf	 forest	 sites	 and	 tended	 to	 overestimate	 evaporation	 across	 the	562	

remaining	biomes	(wetlands,	shrublands	and	evergreen	broadleaf	forests).		563	

Overall,	 all	models	 show	a	 tendency	 towards	 reduced	performance	when	applied	over	 forest	564	

biomes,	but	improved	performance	over	shorter	canopies.	These	results	may	be	reflecting	the	565	

fundamental	 physical	 basis	 behind	 approaches	 such	 as	 the	 base	 Penman-Monteith	 (Penman,	566	

1948),	Priestley-Taylor	(Priestley		and	Taylor,	1972)	and	Monin-Obukhov	flux	gradient	functions,	567	

which	 were	 developed	 for	 such	 surface	 types	 (Brutsaert,	 1982),	 highlighting	 the	 challenges	568	

inherent	in	global	scale	application	of	such	models,	especially	over	diverse	land	cover	types.		569	

To	further	evaluate	the	influence	of	biome	type	on	evaporation	estimation	and	to	discriminate	570	

the	 role	of	 individual	 forcing	variables	 in	 impacting	model	efficiencies,	 the	NSE	 and	R2	 values	571	

between	tower-	and	grid-based	data	were	calculated	for	 the	flux	response,	as	well	as	 for	key	572	

forcing	variables	such	as	net	radiation,	land	surface	temperature,	air	temperature,	wind	speed,	573	

specific	humidity,	 fractional	vegetation	cover	and	 leaf	area	 index.	As	can	be	seen	 in	Figure	7,	574	

agreement	between	tower-based	and	grid-based	net	radiation	data	is	relatively	high	across	all	575	

biomes,	but	especially	so	over	forest	biomes	(NSE	≥	0.67).	Grid-based	wind	speed	data	have	the	576	

most	variable	agreement	with	tower	data,	with	R2	and	NSE	values	generally	 lower	than	other	577	

selected	variables	across	all	of	the	examined	biomes.	Air	temperature	shows	good	agreement,	578	

with	both	high	NSE	values	(NSE	≥	0.7)	and	high	R2	values	(R2	≥	0.84).	Specific	humidity	data	are	579	

also	well	 reproduced	 (NSE	 ≥	 0.72),	 as	 is	 land	 surface	 temperature	with	 an	NSE	 ≥	 0.80	 for	 all	580	

biomes.	 In	 sharing	 a	 common	 GIMMS-NDVI	 based	 derivation,	 the	 agreement	 for	 fractional	581	

vegetation	 cover	 and	 leaf	 area	 index	 data	 is	 reasonable	 over	 the	majority	 of	 biomes,	 except	582	

over	evergreen	broadleaf	forest,	where	both	the	R2	and	NSE	are	low.	583	



The	 lower	 panel	 of	 Figure	 7	 show	 R2	 and	 NSE	 values	 for	 both	 the	 tower-	 and	 grid-based	584	

simulations	 against	 eddy-covariance	 observations	 for	 each	 of	 the	 models,	 discriminated	 by	585	

biome	type.	As	can	be	seen,	the	performance	of	all	models	is	reduced	across	all	biomes	when	586	

grid-based	 forcing	 data	 is	 used,	 a	 result	 reflected	 in	 all	 cases	 by	 relatively	 lower	NSE	 and	R2	587	

values.	 PM-Mu	 had	 the	 smallest	 and	 SEBS	 had	 the	 largest	 decrease	 in	 performance	 over	 a	588	

majority	of	the	biomes,	in	accordance	with	the	findings	of	Section	3.1.	PT-JPL	and	PM-Mu	had	a	589	

relatively	constant	decrease	in	NSE	and	R2	for	the	grid-based	simulations.	Decreased	modelling	590	

performance	was	also	maintained	for	GLEAM,	except	over	the	single	evergreen	broadleaf	forest	591	

tower,	where	a	more	significant	departure	(relative	to	the	other	biome	types),	was	observed.	592	

SEBS	showed	a	much	larger	variability	in	performance	reduction,	with	smaller	variations	due	to	593	

forcing	 over	 forest	 biomes	 and	 larger	 reductions	 over	 biomes	 with	 shorter	 canopies.	 The	594	

significant	decrease	in	NSE	 for	SEBS	over	grassland,	cropland	and	to	some	extent	the	wetland	595	

biome,	cannot	be	immediately	associated	with	NSE	or	R2	changes	in	any	of	the	forcing	variables.	596	

It	 is	 interesting	 that	 the	agreement	over	grassland	and	cropland	biomes	between	 tower-	and	597	

grid-based	 variables	 is	 amongst	 the	 highest	 (especially	 for	 wind	 speed,	 fractional	 vegetation	598	

cover	and	for	leaf	area	index	data),	yet	the	subsequent	model	performance	is	among	the	worst.	599	

The	use	of	global	statistics	to	evaluate	model	response	makes	discriminating	the	cause	of	this	600	

variability	difficult.	It	is	possible	that	the	statistics	are	biased	low	due	to	the	influence	of	one	or	601	

a	 few	 individual	 towers,	 by	 errors	 in	 the	 forcing	 fields	 driving	model	 parameterizations	 (i.e.	602	

vegetation	 height)	 or	 in	 response	 to	model	 sensitivities	 to	 particular	 forcing	 variables.	 Either	603	

way,	 these	 results	 highlight	 the	 difficulties	 in	 diagnosing	 the	 cause	 of	 performance	 response	604	

and	related	sensitivity	to	forcing	data	variables	in	complex	process-based	models,	which	often	605	

display	 a	 high	 degree	 of	 interactions	 between	 the	 variables.	 Indeed,	 diagnosing	 the	 forcing	606	

variables	 responsible	 for	 reducing	 the	 efficiency	 of	 particular	 models	 is	 not	 feasible	 with	 a	607	

simple	 correlation	 analysis	 of	 the	 input	 data	 fields,	 but	 requires	 a	 separate	 and	 focused	608	

sensitivity	analysis.	609	



3.3 Performance	of	the	Models	over	Climate	Zones	610	

Similar	 to	 the	 biome-wise	 analyses,	 an	 evaluation	 of	 the	 models	 was	 conducted	 across	 a	611	

number	 of	 distinct	 climate	 zones,	 with	 R2,	 RE	 and	 NSE	 values	 for	 tower-based	 3-hourly	612	

evaporation	estimations	 shown	 in	Figure	8.	Yet	again,	 the	 results	highlight	 the	 importance	of	613	

considering	a	range	of	evaluation	metrics,	as	the	models	display	some	variability	relative	to	the	614	

statistical	measure	 being	 employed.	Overall,	 both	 PT-JPL	 and	GLEAM	maintain	 a	 consistently	615	

good	 performance	 over	 the	 majority	 of	 climate	 zones,	 with	 PT-JPL	 expressing	 a	 slightly	616	

improved	 response	 over	 all	 zones	 except	 temperate,	 where	 GLEAM	 shows	 an	 improved	617	

simulation.	In	terms	of	R2,	PM-Mu	presents	the	lowest	values	overall,	while	SEBS	exhibits	high	618	

values	over	the	majority	of	climate	zones,	similar	to	the	biome	based	analysis.	However,	SEBS	619	

generally	fails	to	reproduce	the	observed	evaporation	response,	with	high	RE	and	low	NSE.	All	620	

models	 have	 their	 best	 performance	over	 the	 temperate-continental	 climate	 zone,	with	 high	621	

NSE	and	R2	and	low	RE,	which	was	followed	closely	by	the	temperate	climate	zone.	The	lowest	622	

overall	performance	for	all	models	corresponded	to	the	dry	climate	zone,	again	reflecting	the	623	

aridity	based	results	in	Figure	4.	As	discussed	in	Section	3.1,	data	uncertainties	due	to	the	role	624	

of	advection	in	dry	regions	and	difficulties	in	the	accurate	estimation	when	confronted	with	low	625	

evaporative	fractions	are	likely	reasons	behind	such	performance	reductions	in	dry	regions.	626	

Figure	 9	 displays	 the	 corresponding	 percentile	 plots	 of	 model	 performance	 over	 the	 five	627	

different	climate	zones.	As	can	be	seen,	PT-JPL	and	GLEAM	provide	generally	good	performance	628	

over	 all	 climate	 zones,	 although	 GLEAM	 slightly	 underestimates	 evaporation	 for	 temperate-629	

continental	and	boreal	climate	zones.	SEBS	overestimates	relative	to	tower-based	evaporation	630	

across	 all	 biomes,	 while	 PM-Mu	 generally	 underestimates,	 except	 over	 temperate	 and	631	

temperate-continental	 climate	 zones,	 for	 which	 the	 percentile	 plot	 of	 PM-Mu	 are	 relatively	632	

close	to	the	1:1	line.	633	

Similar	 to	 Figure	 7,	 Figure	 10	 outlines	 the	 model	 response	 differentiated	 for	 the	 different	634	

climate	 zones	when	using	 grid-based	 forcing	data.	As	 can	be	 seen	 from	 the	 lower	panel,	 the	635	

simulation	 performance	 is	 reduced	 across	 all	 climate	 zones,	 relative	 to	 the	 tower	 data.	 In	636	

particular,	 SEBS	 is	 significantly	 impacted	 across	 the	 majority	 of	 climate	 zones,	 with	 both	 a	637	

reduction	 in	 NSE	 and	 R2,	 except	 over	 boreal	 forests.	 One	 possible	 reason	 for	 this	 smaller	638	



variation	over	boreal	 forests	could	be	due	to	 lower	surface-to-air	 temperature	gradients	over	639	

forests,	which	contributes	to	smaller	sensible	heat	fluxes	and	consequently	larger	evaporative	640	

fraction	 values	 (in	 contrast	 to	model	performance	over	dry	 climates,	where	 the	 temperature	641	

gradient	is	large).	Nevertheless,	the	relationship	between	uncertainty	in	individual	variables	and	642	

the	 reduction	of	modelling	performances	 is	not	able	 to	be	determined	here.	 Further	analysis	643	

examining	the	sensitivity	of	individual	models	to	their	forcing	is	required.	644	

	645	

4 Discussion	646	

Understanding	the	role	of	model	forcing	in	influencing	simulation	results,	as	well	as	examining	647	

the	 impacts	of	biome	type	and	climate	zone	on	 flux	 response,	are	 important	elements	 in	 the	648	

development	of	 robust	globally-distributed	evaporation	products.	The	 focus	of	 this	study	was	649	

on	 evaluating	 a	 set	 of	 process-based	 models,	 to	 support	 the	 development	 of	 globally	650	

distributed	and	long	term	observations	of	surface	fluxes	as	part	of	the	GEWEX	LandFlux	project.	651	

Overall,	 the	PT-JPL	and	GLEAM	models	provided	the	most	consistent	performance,	while	PM-652	

Mu	tended	to	underestimate	and	SEBS	overestimate	evaporation	relative	to	the	forty-five	eddy-653	

covariance	 tower	 observations	 examined	 here.	 However,	 while	 statistical	 analysis	 allows	 a	654	

pseudo-ranking	of	model	performance,	more	detailed	evaluation	across	towers,	and	biome	and	655	

climate	types	highlighted	the	considerable	within-model	variability	in	performance.	Results	also	656	

demonstrated	that	changing	the	scale	of	input	forcing	data	from	tower-	to	grid-based	reduced	657	

the	 quality	 of	 model	 estimates	 in	 all	 cases,	 but	 especially	 for	 SEBS,	 where	 a	 sensitivity	 to	658	

surface-air	 temperature	 gradients	 plays	 a	 strong	 role.	 In	 the	 following,	 we	 examine	 these	659	

results	and	interpret	any	implications	for	large-scale	global	applications.	660	

With	its	relatively	simple	modelling	structure,	PT-JPL	performed	consistently	well	relative	to	the	661	

other	 models	 that	 have	 more	 complex	 structures	 and	 parameterization	 configurations.	 One	662	

possible	reason	for	this	response	may	relate	to	the	constraint	functions	of	PT-JPL	serving	a	wide	663	

range	of	hydro-meteorological	conditions,	encompassing	energy-limited	(e.g.	boreal	climate)	to	664	

water-limited	(e.g.	dry	climate)	conditions.	The	good	performance	of	PT-JPL	was	also	observed	665	

in	a	 recent	multi-model	evaluation	study,	with	a	summary	of	 the	strengths	and	 limitations	of	666	



the	model	presented	 in	Ershadi	et	al.	 (2014).	GLEAM	also	performed	well,	both	at	 the	 tower	667	

and	at	the	grid-scale	(see	Figure	4	and	Figure	A2).	Previous	studies	have	shown	that	the	model	668	

is	sensitive	to	the	accuracy	of	precipitation	data	(Miralles	et	al.,	2011b),	as	this	determines	the	669	

partitioning	 of	 intercepted	 evaporation	 in	 the	 model	 and	 the	 root-zone	 soil	 moisture.	670	

Unfortunately,	 testing	 for	 such	 sensitivities	 was	 not	 possible	 here,	 as	 both	 tower-	 and	 grid-671	

based	 records	 were	 filtered	 for	 rainfall	 events	 in	 post-processing	 steps,	 in	 response	 to	 the	672	

limitation	of	eddy-covariance	observations	during	such	events.		673	

In	terms	of	the	NSE,	R2	and	RE,	PM-Mu	followed	PT-JPL	and	GLEAM,	with	the	model	tending	to	674	

underestimate	evaporation	when	applied	to	most	of	the	tower-	and	grid-based	records.	While	675	

reasons	 for	 this	 underestimation	 are	 not	 immediately	 clear,	 a	 recent	 study	 examining	 the	676	

structure	and	parameterization	of	Penman-Monteith	type	models	(Ershadi	et	al.,	2015)	showed	677	

that	 the	 PM-Mu,	 which	 has	 a	 three-source	 structure,	 underperformed	 relative	 to	 a	 single-678	

source	(Monteith,	1965)	and	a	two-layer	approach	(Shuttleworth	and	Wallace,	1985)	across	all	679	

studied	biome	types	except	croplands.	An	 interesting	aspect	of	Ershadi	et	al.	 (2015)	was	 that	680	

application	 of	 the	 canopy	 transpiration	 resistance	 scheme	 of	 the	 PM-Mu	 in	 those	 simpler	681	

models	 improved	 their	 prediction	 skills.	 As	 such,	 the	 reduced	 performance	 of	 the	 PM-Mu	682	

predictions	might	relate	to	underlying	structural	and	parameterization	issues	in	the	model.	As	683	

the	operational	model	behind	the	generation	of	the	current	MOD16	global	evaporation	product	684	

(Mu	et	al.,	2013),	further	studies	to	diagnose	the	cause	of	these	responses	are	required.	685	

Regarding	assessment	against	the	tower-based	eddy-covariance	observations,	SEBS	performed	686	

relatively	poorly	in	most	statistical	metrics	when	compared	to	the	other	models,	as	it	687	

overestimated	evaporation	across	a	majority	of	studied	biomes	and	climate	zones,	except	over	688	

grasslands	and	cropland	sites	with	short	canopies	(e.g.	less	than	3	m).	Interestingly,	even	689	

though	generally	over-predicting	results,	it	had	one	of	the	highest	R2	values,	indicating	good	690	

correlation	with	the	eddy-covariance	observations.	Findings	from	Ershadi	et	al.	(2014)	confirm	691	

the	good	performance	of	the	model	over	short	canopies	and	its	lack	of	performance	over	692	

shrublands	and	forests.	In	terms	of	performance	against	underlying	biome	type,	it	was	693	

observed	that	any	performance	reduction	was	observed	mainly	across	shrublands	and	forest	694	

biomes,	where	the	roughness	sub-layer	forms	above	the	canopy	(Harman,	2012).	Importantly,	695	



the	flux-gradient	functions	of	the	SEBS	model	are	not	parameterized	to	effectively	simulate	the	696	

heat	transfer	process	in	the	roughness	sub-layer,	and	hence	the	model	fails	to	perform	well	697	

(Weligepolage	et	al.,	2012).	The	reliance	of	SEBS	on	an	accurate	representation	of	the	surface-698	

air	temperature	gradient	also	limits	the	effectiveness	of	the	model	for	global	application,	699	

demanding	improvements	in	characterizing	the	spatial	and	temporal	representativeness	of	such	700	

variables.		701	

It	 is	 apparent	 from	 Sections	 3.2	 and	 3.3	 that	 the	 application	 of	 gridded	 data	 for	 modelling	702	

evaporation	 inevitably	 reduces	 the	 predictive	 performance	 of	 all	 models,	 regardless	 of	 their	703	

complexity	 in	the	evaporation	process	or	their	economy	in	forcing	data	requirements.	 In	fact,	704	

the	 footprint	 mismatch	 between	 the	 tower-	 and	 grid-based	 simulations	 is	 likely	 to	 increase	705	

uncertainties	 in	 the	 forcing	 data	 and	 cause	 discrepancies	 between	 the	 simulated	 and	 tower-706	

based	 evaporation	 values.	 Importantly,	 comparing	 the	models	 for	 their	 relative	 performance	707	

(see	Figure	7	and	Figure	10)	reveals	that	the	performance	decrease	for	grid-based	analysis	was	708	

not	equal	amongst	all	of	the	models.	For	instance,	SEBS	was	observed	to	be	more	sensitive	to	709	

the	 use	 of	 gridded	 forcing	 data,	 most	 likely	 as	 a	 result	 of	 inconsistencies	 in	 temperature	710	

gradient	fields:	an	aspect	that	has	been	noted	previously	(van	der	Kwast	et	al.,	2009;	Ershadi	et	711	

al.,	 2013).	 Although	 input	 uncertainty	 also	 impacts	 the	 performance	 of	 PT-JPL,	 PM-Mu	 and	712	

GLEAM,	the	NSE	and	R2	of	gridded	simulations	for	those	models	are	closer	to	their	tower-based	713	

counterparts.	Apart	from	indicating	a	robust	model	structure,	the	reduced	impact	seen	in	these	714	

schemes	may	also	be	a	consequence	of	avoiding	 the	use	of	 forcing	data	such	as	 land	surface	715	

temperature	 and	 wind	 speed	 data,	 which	 are	 known	 to	 be	 uncertain	 at	 both	 the	 grid	 and	716	

tower-scale.	Regardless	of	the	culprit	behind	the	observed	performance	discrepancy	between	717	

tower	 and	 grid-based	 simulations,	 it	 is	 clear	 that	 some	 models	 are	 better	 suited	 to	 global	718	

application	than	others	–	at	least	given	the	quality	of	currently	available	global	forcing	datasets.		719	

Importantly,	the	results	presented	in	Sections	3.2	and	3.3	showed	that	evaluating	tower	or	grid-720	

based	 statistical	 responses	 alone	 is	 not	 enough	 to	 identify	 those	 forcing	 variables	 most	721	

impacting	model	performance.	Diagnosing	forcing	sensitivity	 is	not	trivial	given	non-linearities	722	

in	the	models	and	the	high	level	of	interaction	within	model	variables	and	parameters.	Indeed,	723	

caution	is	warranted	in	any	approaches	seeking	to	evaluate	evaporation	models	using	gridded	724	



data	 in	 isolation,	 as	 this	 is	 likely	 to	 yield	 unreliable	 performance	metrics	 of	 the	models.	 It	 is	725	

important	 to	 perform	 a	 parallel	 tower-based	 data	 assessment	 to	 increase	 confidence	 in	 any	726	

single	 models	 performance	 (Su	 et	 al.,	 2005)	 in	 any	 evaluation	 approach,	 particularly	 those	727	

occurring	at	global	scales.	728	

Although	the	largest	possible	set	of	eddy-covariance	towers	and	a	common	set	of	forcing	data	729	

was	used	to	evaluate	the	different	model	simulations,	there	are	still	inevitable	limitations	in	the	730	

evaluations.	 Identifying	such	 limitations	 is	 important	not	only	 for	the	current	evaluations,	but	731	

also	in	guiding	future	contributions.	One	such	example	relates	to	the	period	of	tower	data	used	732	

for	evaluation	in	this	study	(see	Figure	A1),	as	the	data	record	length	varies	amongst	the	towers	733	

and	the	data	are	not	uniformly	distributed	across	seasons.	Moreover,	the	towers	are	not	evenly	734	

distributed	across	the	studied	biomes	and	climate	zones	(see	Figure	1,	Table	A1),	with	only	one	735	

tower	 covering	 the	 entire	 evergreen	 broadleaf	 forest	 biome	 and	 two	 towers	 covering	 the	736	

wetland	biome.	Further,	no	towers	were	available	for	use	in	arctic	and	tropical	climate	zones.	737	

Although	 the	 tropical	 climate	 zone,	 especially	 Amazonian	 forests,	 is	 accounted	 as	 a	 critical	738	

component	in	studies	of	the	global	water	and	energy	cycles	(Chahine,	1992;	Wohl	et	al.,	2012),	739	

relatively	 few	 towers	 in	 this	 zone	 provide	 land	 surface	 temperature	 and	 longwave	 upward	740	

radiation	data	needed	for	the	SEBS	model.	An	additional	limitation	is	the	coarse	(8	km)	spatial	741	

resolution	of	 the	GIMMS	NDVI	data	used	 in	 the	models	 for	 the	 tower-based	analysis,	 as	 this	742	

resolution	certainly	does	not	correspond	with	the	footprint	of	eddy-covariance	sensors	at	any	743	

of	the	towers.	Developments	towards	improving	the	availability	and	access	to	long-term	high-744	

resolution	Landsat	images	(e.g.	via	Google	Earth	Engine;	https://earthengine.google.org)	might	745	

be	 one	 way	 to	 improve	 model	 forcing	 and	 evaluation	 exercises,	 especially	 with	 the	746	

development	of	high-resolution	vegetation	products	(Houborg	et	al.	2016).	747	

While	 the	 accuracy	 of	 individual	 variables	 in	 the	 LandFlux	 dataset	 were	 enhanced	 by	 bias	748	

correction	 against	 independent	 data	 sources	 (see	 Section	 2.1),	 diagnosing	 the	 internal	749	

consistency	of	the	data	fields	(McCabe	et	al.,	2008),	especially	for	air	temperature,	land	surface	750	

temperature,	wind	speed	and	humidity,	 is	a	concept	that	has	not	received	much	attention	to	751	

date	 and	 demands	 more	 considered	 investigations	 and	 analysis.	 Internal	 consistency	 is	 an	752	

extremely	challenging	objective,	but	 is	critically	 important	for	flux	estimation,	where	so	many	753	



different	 forcing	 data	 are	 required.	 Essentially	 it	 demands	 that	 all	 required	 model	 data	 are	754	

derived	 from	 a	 common	 set	 of	 forcing	 variables,	 rather	 than	 by	 the	 standard	 approach	 of	755	

compilation	based	on	availability	 and	accessibility.	 The	most	 illustrative	example	would	be	 in	756	

the	development	of	radiation	data,	derived	here	from	NASA-GEWEX	SRB	sources	(Stackhouse	et	757	

al.,	2011).	Calculation	of	radiation	components	requires	air	temperature,	surface	temperature,	758	

land	 surface	 and	 vegetation	 features,	 as	 well	 as	 numerous	 other	 elements.	 However,	 these	759	

underlying	variables	are	rarely	 if	ever	retained	to	provide	a	consistent	overall	forcing	data	set	760	

(i.e.	the	meteorological	variables	used	in	producing	the	SRB	data	are	not	subsequently	used	to	761	

drive	 the	 models).	 Interdependencies	 in	 forcing	 affect	 many	 variables	 in	 the	 estimation	 of	762	

evaporation,	 yet	 products	 are	 not	 developed	with	 this	 simple	 consistency	 principle	 in	mind.	763	

Apart	 from	 introducing	 further	 biases	 and	 uncertainties	 into	 model	 simulations,	 until	 such	764	

consistency	 is	 attained,	 discriminating	 between	 the	 impact	 of	 forcing	 versus	 the	 model	765	

sensitivity	to	that	forcing	will	remain	extremely	challenging.		766	

From	 one	 perspective,	 the	 performance	 of	 the	 evaporation	 models	 examined	 here	 seems	767	

relatively	poor,	even	when	they	are	 forced	with	high-quality	 tower-based	data.	PT-JPL,	which	768	

was	 identified	 as	 one	 of	 the	most	 consistent	 and	 best	 performing	models,	 still	 presented	 a	769	

relative	 error	 of	 41%,	 with	 errors	 for	 GLEAM,	 PM-Mu	 and	 SEBS	 of	 43%,	 52%	 and	 72%,	770	

respectively.	However,	it	is	important	to	recognise	that	tower-based	evaluation	represents	one	771	

of	the	strictest	measure	of	model	performance	and	comes	with	its	own	caveats.	One	question	772	

that	 remains	unanswered	 is	whether	 it	 is	 even	appropriate	 to	 expect	models	 run	with	 large-773	

scale	gridded	forcing	to	replicate	the	small-scale	response	observed	by	eddy-covariance	towers.	774	

The	 alternative	 perspective,	 given	 inherent	 uncertainties	 in	 forcing,	 observations	 and	775	

specification	of	model	parameters,	is	that	these	results	are	encouraging.	Broader	scale	metrics	776	

such	as	hydrological	consistency	(McCabe	et	al.,	2008),	catchment	based	assessments	or	water	777	

budget	 closure	 approaches	would	 provide	 a	 better	 guide	 (Sheffield	 et	 al.,	 2009)	 and	 indeed,	778	

such	evaluations	will	need	to	be	performed.	These	questions	highlight	the	difficulties	in	not	just	779	

producing	global	estimates,	but	perhaps	more	importantly,	in	evaluating	their	quality.		780	

The	observed	variability	of	modelling	performance	across	the	studied	biomes	and	climate	zones	781	

implies	 that	 caution	 is	 required	 in	 advocating	 any	 single	 model	 for	 large-scale	 or	 global	782	



application.	 These	 results	 are	 consistent	 with	 previous	 findings	 undertaken	 across	 a	 smaller	783	

number	of	towers	and	biome	and	climate	types,	that	any	one	modelling	approach	is	incapable	784	

of	accurately	reflecting	the	range	of	flux	responses	occurring	across	diverse	landscapes	(Ershadi	785	

et	 al.,	 2014;	 Ershadi	 et	 al.,	 2015).	 One	 possible	 solution	 to	 address	 this	 inherent	 model	786	

limitation	is	to	assemble	a	mosaicked	product	based	on	the	predictive	skill	of	the	model(s)	over	787	

particular	 biomes	 or	 climate	 zones.	 Another	 approach	 might	 be	 to	 develop	 an	 ensemble	788	

product	using	a	suitable	multi-model	blending	technique,	such	as	a	Bayesian	Model	Averaging	789	

approach	(Hoeting	et	al.,	1999;	Yao	et	al.,	2014).	Either	way,	it	is	clear	that	further	multi-model	790	

assessments	 are	 required	 for	 progressing	 global	 scale	 flux	 characterisation	 and	 to	 ensure	 a	791	

robust	and	representative	product	is	developed.		792	

	793	

5 Conclusions	794	

It	 is	 something	 of	 a	 contradiction	 that	 the	 global-scale	 estimation	 of	 surface	 fluxes	 is	 both	795	

straightforward	 and	 extremely	 challenging	 at	 the	 same	 time.	 It	 is	more	 straightforward	 than	796	

ever	 due	 to	 the	 availability	 of	 needed	 forcing	 data	 from	 various	 sources,	 such	 as	 numerical	797	

weather	 prediction	 or	 other	 operational	 products,	 as	 well	 as	 the	 increased	 development	 of	798	

global	 satellite	 based	 datasets.	 However,	 the	 comparative	 ease	 with	 which	 products	 can	 be	799	

developed	 belies	 the	 difficulties	 in	 actually	 developing	 robust	 and	 coherent	 simulations.	800	

Uncertainties	in	the	use	of	internally	inconsistent	forcing	data,	the	influence	of	untested	model	801	

parameterizations	 over	 different	 land	 surface	 and	 climate	 types,	 violation	 of	 model	802	

assumptions	in	their	graduation	from	the	local	scale	to	global	scale	and	the	perennial	question	803	

on	how	to	best	evaluate	model	output	all	seek	to	confound	global	flux	efforts.	804	

The	 evaluation	 of	 four	 process-based	 evaporation	 models	 as	 part	 of	 the	 GEWEX	 LandFlux	805	

project	 undertaken	 here	 over	 a	 range	 of	 biome	 types	 and	 climate	 zones,	 highlighted	 the	806	

variable	 performance	 and	 verified	 the	 sentiment	 that	 no	 single	model	 is	 able	 to	 consistently	807	

outperform	any	other.	While	individual	model	results	at	the	tower	scale	allowed	for	a	relative	808	

performance	 ranking,	 the	overall	model	errors	when	considered	globally	were	high.	Of	 those	809	

models	 assessed	 here	 and	 being	 considered	 as	 potential	 candidates	 for	 a	 GEWEX	 LandFlux	810	



product,	 PT-JPL	 and	 GLEAM	 represent	 the	 most	 likely	 schemes	 for	 providing	 consistent	811	

simulation	 response	 over	 a	 range	 of	 biome	 and	 climate	 types.	 In	 a	 challenge	 for	 the	812	

development	 of	more	 accurate	 global	 flux	 products,	 application	 of	 gridded	 data	 reduces	 the	813	

performance	of	all	models,	even	if	the	overall	performance	ranking	does	not	change	between	814	

simulation	 runs.	 Such	 a	 response	 has	 obvious	 implications	 when	 model	 simulations	 at	 the	815	

continental	and	global	scales	are	increasingly	required	in	many	applications	and	where	not	only	816	

the	 forcing	data	have	 large	uncertainties,	but	also	 the	underlying	assumptions	of	 the	models	817	

themselves	are	likely	to	be	questioned.	Further	investigations	on	the	reasons	for	such	variable	818	

performance	 and	 ways	 to	 offset	 the	 inherent	 uncertainties	 in	 global	 forcing	 are	 required.	819	

Additional	 research	 is	also	needed	to	 improve	the	structure	and	parameterization	of	some	of	820	

these	candidate	models,	to	understand	model	sensitivities	to	forcing	(by	conducting	a	thorough	821	

sensitivity	 analysis)	 and	 to	 develop	 and	 implement	 an	 appropriate	 ensemble	 modelling	 and	822	

merging	technique	that	takes	advantage	of	individual	model	performance	over	defined	regions.	823	

Further	detailed	comparisons	against	estimates	from	more	complex	modelling	systems,	such	as	824	

reanalysis	 and	 numerical	 weather	 prediction	models,	 are	 needed	 to	 provide	 greater	 context	825	

and	additional	benchmarking	metrics	to	guide	future	investigations.		826	

827	



Appendix	A:	Description	of	Tower	Locations	828	

Table	 A1:	 Selected	 eddy-covariance	 and	 their	 attributes.	 Further	 details	 and	 information	 on	829	

individual	tower	sites	can	be	found	via	the	Fluxnet	data	portal	(http://fluxnet.fluxdata.org/)	830	

Site-ID	 Country	 Lat.	 Lon.	
Ground	
Elev.	
(masl)	

Tower	
height	
(m)	

IGBP	 Climate	
Class	

Climate	
Zone	 Reference	

BW-Ma1	 Botswana	 -19.9	 23.6	 947	 12.6	 WSA	 BSh	 Dry	 (Veenendaal	et	al.,	2004)	

CA-Ca1	 Canada	 49.9	 -125.3	 324	 43	 ENF	 Cfb	 Temperate	 (Humphreys	et	al.,	2006)	

CA-Mer	 Canada	 45.4	 -75.5	 68	 3	 WET	 Dfb	 Temperate-Continental	 (Kross	et	al.,	2013)	

CA-Oas	 Canada	 53.6	 -106.2	 594	 39	 DBF	 Dfc	 Boreal	 (Fu	et	al.,	2014)	

CA-Obs	 Canada	 54.0	 -105.1	 593	 25	 ENF	 Dfc	 Boreal	 (Fu	et	al.,	2014)	

CA-Ojp	 Canada	 53.9	 -104.7	 517	 28	 ENF	 Dfc	 Boreal	 (Hilton	et	al.,	2014)	

CA-Qfo	 Canada	 49.7	 -74.3	 389	 25	 ENF	 Dfc	 Boreal	 (Flanagan	et	al.,	2012)	

CN-Do2	 China	 31.6	 121.9	 4	 5	 WET	 Cfa	 Sub-Tropical	 (Yan	et	al.,	2008)	

DE-Geb	 Germany	 51.1	 10.9	 159	 6	 CRO	 Cfb	 Temperate	 (Smith	et	al.,	2010)	

DE-Hai	 Germany	 51.1	 10.5	 458	 43.5	 DBF	 Cfb	 Temperate	 (Rebmann	et	al.,	2005)	

DE-Kli	 Germany	 50.9	 13.5	 480	 3.5	 CRO	 Cfb	 Temperate	 (Smith	et	al.,	2010)	

DE-Meh	 Germany	 51.3	 10.7	 289	 3	 GRA	 Cfb	 Temperate	 (Don	et	al.,	2009)	

DE-Tha	 Germany	 51.0	 13.6	 387	 42	 ENF	 Cfb	 Temperate	 (Delpierre	et	al.,	2009)	

DE-Wet	 Germany	 50.5	 11.5	 789	 27	 ENF	 Cfb	 Temperate	 (Richardson	et	al.,	2010)	

FR-LBr	 France	 44.7	 -0.8	 71	 41	 ENF	 Cfb	 Temperate	 (Göckede	et	al.,	2008)	

FR-Lam	 France	 43.5	 1.2	 182	 3.65	 CRO	 Cfb	 Temperate	 (Merlin	et	al.,	2011)	

FR-Pue	 France	 43.7	 3.6	 271	 13	 EBF	 Csa	 Sub-Tropical	 (Soudani	et	al.,	2014)	

IL-Yat	 Israel	 31.3	 35.1	 654	 18	 ENF	 BSh	 Dry	 (Sprintsin	et	al.,	2011)	

IT-BCi	 Italy	 40.5	 15.0	 9	 2	 CRO	 Csa	 Sub-Tropical	 (Reichstein	et	al.,	2003)	

IT-Col	 Italy	 41.8	 13.6	 1534	 25	 DBF	 Cfa	 Sub-Tropical	 (Chiti	et	al.,	2010)	

IT-Lav	 Italy	 46.0	 11.3	 1367	 33	 ENF	 Cfb	 Temperate	 (Stoy	et	al.,	2013)	

IT-MBo	 Italy	 46.0	 11.0	 1563	 2.5	 GRA	 Cfb	 Temperate	 (Gamon	et	al.,	2010)	

IT-Noe	 Italy	 40.6	 8.2	 27	 3.6	 CSH	 Csa	 Sub-Tropical	 (Carvalhais	et	al.,	2010)	

IT-Ro1	 Italy	 42.4	 11.9	 174	 20	 DBF	 Csa	 Sub-Tropical	 (Chiti	et	al.,	2010)	

JP-Tom	 Japan	 42.7	 141.5	 133	 42	 MF	 Dfb	 Temperate-Continental	 (Saigusa	et	al.,	2010)	

NL-Ca1	 Netherlands	 52.0	 4.9	 -1	 5	 GRA	 Cfb	 Temperate	 (Gioli	et	al.,	2004)	

NL-Loo	 Netherlands	 52.2	 5.7	 34	 27	 ENF	 Cfb	 Temperate	 (Sulkava	et	al.,	2011)	

PT-Mi2	 Portugal	 38.5	 -8.0	 191	 2.5	 GRA	 Csa	 Sub-Tropical	 (Gilmanov	et	al.,	2007)	

RU-Fyo	 Russia	 56.5	 32.9	 274	 29	 ENF	 Dfb	 Temperate-Continental	 (Smith	et	al.,	2010)	

SE-Nor	 Sweden	 60.1	 17.5	 35	 103	 ENF	 Dfb	 Temperate-Continental	 (Zierl	et	al.,	2007)	



Site-ID	 Country	 Lat.	 Lon.	
Ground	
Elev.	
(masl)	

Tower	
height	
(m)	

IGBP	 Climate	
Class	

Climate	
Zone	 Reference	

US-ARM	 USA	 36.6	 -97.5	 318	 60	 CRO	 Cfa	 Sub-Tropical	 (Lokupitiya	et	al.,	2009)	

US-Aud	 USA	 31.6	 -110.5	 1474	 4	 GRA	 BSk	 Dry	 (Horn	and	Schulz,	2011)	

US-Bkg	 USA	 44.3	 -96.8	 496	 4	 GRA	 Dfa	 Temperate-Continental	 (Hollinger	et	al.,	2010)	

US-Bo1	 USA	 40.0	 -88.3	 218	 10	 CRO	 Dfa	 Temperate-Continental	 (Hollinger	et	al.,	2010)	

US-Bo2	 USA	 40.0	 -88.3	 220	 10	 CRO	 Dfa	 Temperate-Continental	 (Hollinger	et	al.,	2010)	

US-CaV	 USA	 39.1	 -79.4	 993	 4	 GRA	 Cfb	 Temperate	 (Hollinger	et	al.,	2010)	

US-FPe	 USA	 48.3	 -105.1	 632	 3.5	 GRA	 BSk	 Dry	 (Horn	and	Schulz,	2011)	

US-Goo	 USA	 34.3	 -89.9	 94	 4	 GRA	 Cfa	 Sub-Tropical	 (Hollinger	et	al.,	2010)	

US-MMS	 USA	 39.3	 -86.4	 290	 48	 DBF	 Cfa	 Sub-Tropical	 (Dragoni	et	al.,	2011)	

US-MOz	 USA	 38.7	 -92.2	 238	 30	 DBF	 Cfa	 Sub-Tropical	 (Hollinger	et	al.,	2010)	

US-NR1	 USA	 40.0	 -105.5	 3053	 26	 ENF	 Dfc	 Boreal	 (Hilton	et	al.,	2014)	

US-SRM	 USA	 31.8	 -110.9	 1120	 6.4	 WSA	 BSk	 Dry	 (Cavanaugh	et	al.,	2011)	

US-WCr	 USA	 45.8	 -90.1	 524	 30	 DBF	 Dfb	 Temperate-Continental	 (Curtis	et	al.,	2002)	

US-Wkg	 USA	 31.7	 -109.9	 1522	 6.4	 GRA	 BSk	 Dry	 (Scott,	2010)	

US-Wrc	 USA	 45.8	 -122.0	 391	 85	 ENF	 Csb	 Temperate	 (Wharton	et	al.,	2009)	
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Figure	 A1:	 Temporal	 duration	 of	 the	 eddy-covariance	 based	 flux	 and	 tower	 meteorological	833	

observations	for	each	of	the	45	sites	used	in	this	study	834	

835	
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Figure	A2:	Comparison	of	the	performance	skill	of	the	models	in	reproducing	evaporation	for	840	

the	grid-based	analyses.	R2	is	the	coefficient	of	determination,	RE	is	relative	error	(lower	is	841	

better)	and	NSE	is	the	Nash-Sutcliffe	Efficiency	(higher	is	better).	Towers	are	arranged	from	left	842	

to	right	based	on	an	aridity	index	(secondary	y-axis).	843	

844	



	845	
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Code	Availability	847	

The	PM-Mu,	SEBS	and	PT-JPL	models	were	coded	in	MATLAB	as	part	of	the	GEWEX	LandFlux	and	848	

WACMOS-ET	projects,	in	discussion	with	(but	independent	of)	the	principal	model	authors,	as	849	

referenced	in	the	relevant	publications.	The	GLEAM	model	was	developed	in	MATLAB	by	Diego	Miralles	850	

and	Brecht	Martens.	All	model	code	can	be	made	available	upon	an	emailed	request	to	851	

hydrology@kaust.edu.sa,	including	a	brief	description	of	the	intended	purpose	and	application.		852	

Data	Availability	853	

Evaporation	model	output	presented	here	for	both	the	gridded	and	tower	based	analyses	can	be	854	

provided	upon	an	emailed	request	to	hydrology@kaust.edu.sa.	The	request	should	include	a	brief	855	

description	of	the	intended	purpose	and	application	of	the	model	data.	Further	details	can	be	found	at	856	

http://hydrology.kaust.edu.sa/landflux				857	
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Table	1:	Summary	of	data	sources	for	tower-based	and	grid-based	analysis	and	their	spatial	and	1227	

temporal	resolutions.	1228	

Variable	 Tower-based	 Grid-based	 Model	

Air	temperature	 Tower	data	aggregated	to	3-hourly	 LandFlux	data	at	0.5°	and	3-hourly	 All	models	

Humidity	 Tower-based	relative	humidity	
converted	to	specific	humidity	and	

aggregated	to	3-hourly	

Specific	humidity	from	LandFlux	
data	at	0.5°	and	3-hourly	

All	except	
GLEAM	

Pressure	 Calculated	as	a	function	of	ground	
elevation	

LandFlux	data	at	0.5°	and	3-hourly	 All	models	

Net	radiation	 Tower	data	aggregated	to	3-hourly	 LandFlux	data	from	SRB	v3	at	1°	
and		

3-hourly	

All	models	

Ground	heat	flux	 Tower	data	aggregated	to	3-hourly	 Calculated	from	net	radiation	and	
fractional	vegetation	cover	data,	

0.5°	and	3-hourly	

All	models	

Land	surface	
temperature	

Calculated	from	tower-based	
longwave	upward	radiation	and	

aggregated	to	3-hourly	

LandFlux	data	at	0.5°	and	3-hourly	 SEBS	only	

Wind	speed	 Tower	data	aggregated	to	3-hourly	 LandFlux	data	at	0.5°	and	3-hourly	 SEBS	only	

Canopy	height	 Tower	meta	data	 JPL	product	and	Equation	1	 SEBS	only	

NDVI	 GIMMS	NDVI	at	8km	and	bi-
monthly	

GIMMS	NDVI	at	0.5°	and	bi-
monthly	

All	except	
GLEAM	

Leaf	area	index	 Calculated	from	NDVI	 LandFlux	data	at	0.5°	and	monthly	 SEBS	and	PM-
Mu	

Fractional	vegetation	
cover	

Not	used	as	ground	heat	flux		
is	available.	

Calculated	from	NDVI	 All	except	
GLEAM	

Precipitation	 Tower	data	aggregated	to	3-hourly	 LandFlux	data	at	0.5°	and	3-hourly	 GLEAM	only	

Soil	properties		 IGBP-DIS	at	5	arc-minutes	 IGBP-DIS	data	aggregated	to	0.5°	 GLEAM	only	

Soil	moisture	 CCI-WACMOS	data	at	0.25°	and	
daily	

Same	as	tower-based	 GLEAM	only	

Soil	depth	 GlobSnow	(daily	and	25	km)	 Same	as	tower-based	 GLEAM	only	

Vegetation	optical	
depth	

From		Liu	et	al.	(2011b)	at	0.25°	
and	daily	

Same	as	tower-based	 GLEAM	only	

Snow	water	
equivalent	

GlobSnow	and	NSIDC	at	0.25°	and	
daily	

Same	as	tower-based	 GLEAM	only	

Lightning	frequency	 Monthly	climatology	at	0.5°	 Same	as	tower-based	 GLEAM	only	

Cover	fractions	 MOD44B	data	at	250	m	 MOD44B	data	at	0.5°	 GLEAM	only	
	1229	



Figure	1:	Location	of	the	selected	towers	and	their	distributions	for	various	biomes	1230	

Figure	2:	Scatterplots	of	observed	versus	simulated	latent	heat	flux	for	tower-based	data.	1231	

Colors	show	the	frequency	of	values	from	high	(red)	to	low	(yellow).	The	thick	black	line	1232	

represents	the	linear	regression,	while	the	thin	line	is	the	1:1	line.	The	series	of	small	circles	1233	

show	the	percentile	increments	of	data	from	the	1st	to	99th,	with	large	circles	denoting	the	25th,	1234	

50th	and	75th	percentiles.	The	statistics	shown	on	each	figure	provide	coefficient	of	1235	

determination	(R2),	slope	(m),	y-intercept	(b),	number	of	data	records	(n),	the	root-mean-1236	

squared	difference	(RMSD),	relative	error	(RE)	and	the	Nash-Sutcliffe	Efficiency	(NSE).	1237	

Figure	3:	Scatterplots	of	observed	versus	simulated	evaporation	for	grid-based	data.	Colors	1238	

show	the	frequency	of	values	from	high	(red)	to	low	(yellow).	The	thick	black	line	is	the	linear	1239	

regression	and	the	thin	line	is	the	1:1	line.	The	series	of	small	circles	show	the	percentile	1240	

increments	of	data	from	the	1st	to	99th,	with	large	circles	denoting	the	25th,	50th	and	75th	1241	

percentiles.	The	statistics	shown	on	the	graphs	are	coefficient	of	determination	(R2),	slope	(m),	1242	

y-intercept	(b),	number	of	data	records	(n),	the	root-mean-squared	difference	(RMSD),	relative	1243	

error	(RE)	and	the	Nash-Sutcliffe	Efficiency	(NSE).	1244	

Figure	4:	Comparison	of	the	performance	skill	of	the	models	in	reproducing	evaporation	for	the	1245	

tower-based	analyses.	R2	is	the	coefficient	of	determination,	RE	is	relative	error	(lower	is	better)	1246	

and	NSE	is	the	Nash-Sutcliffe	Efficiency	(higher	is	better).	Towers	are	arranged	from	left	to	right	1247	

based	on	an	aridity	index	(secondary	y-axis).	1248	

Figure	5:	Coefficient	of	determination	(R2),	relative	error	(RE)	and	Nash-Sutcliffe	Efficiency	(NSE)	1249	

for	models	across	different	biome	types.	Each	point	represents	the	collection	of	all	available	3-1250	

hourly	records	of	towers	located	within	the	selected	biome,	with	the	number	of	towers	shown	1251	

on	the	secondary	y-axis	of	the	R2	plot	in	red.	NSE	for	the	shrubland	response	of	SEBS	is	printed.	1252	

	1253	



Figure	6:	Percentile	plots	of	observed	(x-axis)	versus	estimated	latent	heat	flux	(y-axis)	at	3-1254	

hourly	resolution	for	the	tower-based	analysis	across	the	seven	studied	biomes.	Percentiles	1255	

encompass	the	1st	to	99th	range	in	1	percent	increments,	with	Q25,	Q50	and	Q75	denoted	by	large	1256	

coloured	circles.	1257	

Figure	7:	The	upper	panel	presents	Nash-Sutcliffe	Efficiency	(NSE;	x-axis)	and	R2	(color	tone)	1258	

between	tower-	and	grid-based	values	for	net	radiation,	land	surface	temperature,	air	1259	

temperature,	wind	speed,	specific	humidity,	fractional	vegetation	cover	and	leaf	area	index,	1260	

across	the	seven	studied	biome	types.	The	lower	panel	presents	the	NSE	(x-axis)	and	R2	of	1261	

model	simulated	evaporation	against	closure-corrected	observed	values.	The	number	of	towers	1262	

for	each	biome	type	used	in	the	analysis	are	shown	in	red	font	on	the	secondary	(right)	axis	in	1263	

each	of	the	plots.	Statistics	for	those	results	beyond	the	range	of	the	x-axis	are	printed	1264	

separately	on	the	plot.	1265	

Figure	8:	Coefficient	of	determination	(R2),	relative	error	(RE)	and	Nash-Sutcliffe	Efficiency	(NSE)	1266	

for	model	simulated	results	across	the	five	different	climate	zones	(y-axis).	The	zones	are	1267	

represented	by	dryland	(DRY),	temperate	continental	(TempCONT),	temperate	(TEMP),	sub-1268	

tropical	(subTRO)	and	boreal	(BOR).	Each	point	represents	the	collection	of	all	towers	located	1269	

within	the	selected	climate	zone,	with	the	number	of	towers	shown	on	the	secondary	y-axis	of	1270	

the	R2	panel	in	red.	1271	

Figure	9:	Percentile	plots	of	observed	(x-axis)	versus	estimated	latent	heat	flux	(y-axis)	at	3-1272	

hourly	resolution	for	tower-based	analysis	and	across	the	different	climate	zones.	Percentiles	1273	

encompass	the	1st	to	99th	range	in	1	percent	increments.	Q25,	Q50	and	Q75	are	denoted	by	large	1274	

circles.	1275	

	1276	

	1277	



Figure	10:	The	upper	panel	shows	Nash-Sutcliffe	Efficiency	(NSE;	x-axis)	and	R2	(color	tone)	1278	

between	tower-based	and	grid-based	values	for	net	radiation,	land	surface	temperature,	air	1279	

temperature,	wind	speed,	specific	humidity,	fractional	vegetation	cover	and	leaf	area	index	1280	

across	the	five	different	climate	zones.	The	lower	panel	shows	NSE	(x-axis)	and	R2	of	model	1281	

simulated	evaporation	against	closure-corrected	observed	values	across	climate	zones.	The	1282	

number	of	towers	for	each	biome	are	shown	in	red	font	on	the	secondary	(right)	axis	of	the	1283	

plots.	Statistics	for	the	grid-based	SEBS	result	over	dry	climate	zone	are	printed.	1284	

	1285	
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Tower-based:	NSE=-1.10,	R2	=	0.28	
Grid-based:				NSE=	-1.11,	R2	=	0.17	

Grid-based:	
NSE=	-0.57	
R2	=	0.19	

Grid-based:	
NSE=	-0.55	
R2	=	0.03	
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Grid-based:	
NSE=	-0.66	
R2	=	0.18	
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