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General comments The paper introduces and discusses a method that utilizes kriging to spatially interpolate 
source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method 
results. The method is then applied to January 2004 over the continental United States. The paper addresses a 
relevant issue concerning the growing need to produce detailed and sound estimations of the contribution of the 
different emission sources to the PM concentration. To this aim the paper introduces a novel approach, partially 
based on a previous work, combining features of both source and receptor oriented modelling techniques. For this 
reason this work certainly fits the scope of GMD. The paper is well written, with concise and clear statements, 
however there a few general and specific questions that should be addressed before publications. General and 
specific questions are detailed in the following. 
 

We would first like to thank the referee for the constructive review of our manuscript.  As noted, the aim 

of this paper is to develop a modeling method that addresses the need for creating spatially and 

temporally complete source impact fields, particularly to serve as exposure surrogates for health studies.   

We believe this work will positively benefit those conducting health studies as well as policy assessments 

regarding ambient PM2.5 concentrations. 

 
First of all there are some inconsistencies in figures and table citations; particularly the order of figures and tables 
does not exactly reflect the corresponding order of citation in the text. Moreover there are some figures and tables 
included in the paper but never cited or commented.  
 

We thank the reviewer for catching those and they have been fixed. We renumbered the figures and tables 

according to their appearance in the text. We also eliminated figures (previously Figs. S8-10) in the 

supplementary information that were not mentioned in the text. 

 
The abstract is concise and complete, but I suggest to introduce also a few quantitative evaluation of the 
improvement in model performance (e.g some measure of error and its corresponding reduction). 
 

We added the following performance metrics in the abstract: % error relative to the observed quantity for 

trace metals (e.g., V, Mg, P) and correlation coefficients for ions (e.g., NO3
-2

, SO4
-2

, NH4
+
). 

 

“Correlations improved for concentrations of major ions, including nitrate (CMAQ-DDM:  0.404, SH: 

0.449), ammonium (CMAQ-DDM: 0.454, SH: 0.492), and sulfate (CMAQ-DDM: 0.706, SH: 0.730).   

Errors in simulated concentrations of trace metals were reduced considerably: 295% (CMAQ-DDM) to 

139% (SH) for vanadium; and 1340% (CMAQ-DDM) to 326% (SH) for manganese.  Errors in simulated 

concentrations of very trace components are expected to remain given the uncertainties in source profiles.”  

 
I would also suggest to introduce one or two figures describing the average spatial field of R’s (likewise figure 5 
does for concentrations). 
 

Average Rj values were presented for withheld CSN observation locations in the supplementary 

information (Table S1).  We added an additional figure to display the 9-day averaged Rj spatial fields for 

four sources (dust, on-road diesel, on-road gasoline, woodstoves) similar to Figure 2 (Fig. S1). 

 
There are also a few general questions that should be addressed in the discussion, namely: 1. The objective function 
described in (1) introduces a set of “adjustment” factors that allows filling the gap between observed and CMAQ 
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concentrations modulating the influence of each source to the total concentration. But we know that the 
discrepancy between modelled and measured concentrations can rely not only on the emission strengths but also 
on other inputs (e.g. meteorology) as well as model formulation. Supposing for example that the overestimation of 
dust is related to an overestimation of wind, either that the overestimation of biomass burning is yielded by a too 
efficient SOA formation, how can the CTM-RM hybrid method improve the model performance for the right reason?  
 

The referee brings up an important point that we clarify in the revised manuscript (conclusion).  The 

purpose of the CTM-RM hybrid method is not to create a new chemical transport or atmospheric physics 

model, but to use statistical methods and measurements of PM species concentrations to improve source 

impact estimates.  This improvement is two fold, 1) using the observed species concentrations to improve 

the predicted species concentrations and 2) incorporating emissions and atmospheric transformation 

processes from the model improves the secondary PM impact estimates beyond what is achievable using 

only a receptor model.  We are not adjusting the source strengths, but adjusting the source impacts, and 

this distinction is important.  We agree with the reviewer that other processes (e.g., wind, rain, or model 

parameter errors) can also impact the simulated impact of a source at a specific receptor, though errors in 

emissions (particularly highly variable ones such as dust) on a specific day can be large.  Thus, the 

adjustment, as implemented here, is not on the emissions, but on the source-specific impacts.   That is 

why we interpolate the receptor-specific adjustment spatially as opposed to using the adjustment to 

estimate how much the source strength should be adjusted and re-running the model.   

 

The CTM-RM adjustment takes into account several sources of uncertainty: measurement uncertainty, 

modeled concentration uncertainty, as well as uncertainties in source impact estimates.  These are 

represented as 𝜎𝑖,𝑜𝑏𝑠
2 , 𝜎𝑖,𝑆𝑃

2  (now named 𝜎𝑖,𝐶𝑇𝑀
2 , see question 3 below), and 𝜎ln⁡(𝑅𝑗)2 , respectively.  

Additionally, using measured concentrations as the main point of reference for adjusting source impacts 

directly addresses the uncertainty of modeled processes (e.g.. wind-blown dust, SOA yield) by increasing 

or decreasing source impacts in light of an under- or overestimation in modeled concentrations.  The 2nd 

term in the objective function prevents a non-real adjustment by further weighting the term with 𝑅𝑗
⁡  

uncertainty.  

Since biomass burning and SOA formation have different compositions and source impact profiles, 

distinguishing between the two discrepancies can be determined by examining source impact adjustments.  

Further, collinearity is not an issue with this method because each source impact profile is different.   

 
 
2. The paper introduces the concept of CTM-RM hybrid approach, also specifying that the RM model is CMB. But 
where does the RM actually contribute to the hybrid modelling approach? It seems that the objective function takes 
into account the source profiles, but not the results of a concentration apportionment. Probably more details are 
needed.  
 

The RM portion of the hybrid approach is based on minimizing the weighted difference between observed 

concentrations and simulated concentrations, while also accounting for uncertainties in source strengths, 

source profiles and observations, in essence an extended chemical mass balance (CMB) approach.  In 

section 2.2 (pg. 650, line 17), we note that the CTM-RM “uses an effective variance approach to balance 

model outputs.”  The effective variance approach is also utilized by versions of the CMB approach 

(Watson et al., 1984).  As suggested by the referee, we extended this section to add additional details and 

make this clearer in the description of the CTM-RM hybrid method in section 2.2. 

 

“The effective variance approach is also utilized by versions of CMB (Watson et al., 1984), and the 

optimization method used here is, in essence, an extended CMB approach.  Uncertainties in the first term 

of the objective function serve as effective variances of the numerator and are specified for each species i.”   
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3. Related to the previous point, there is also another issue concerning the proper definition of “source profiles”. Do 
they represent an “emission speciation profile”, thus describing the source fingerprint at the emission point? Either 
do they represent the source fingerprint at the receptor? In case they correspond to the first definition, have they 
been somehow compared to the emission speciation profiles adopted by SMOKE/CMAQ to define the 33 emission 
categories? In the second case (source profile at the receptor) I suppose they cannot be considered totally invariant, 
because the fingerprint of a source can change according to the travel time (e.g. different deposition rates for 
primary compounds; chemical transformation for secondary compounds). Please, briefly discuss this issue, if the 
authors consider that is relevant for the optimization process.  
 

This is an important point covered in Hu et al. (2014) and is related to the prior response (point 1).  

In this manuscript, “source profiles” describe the source fingerprint at the receptor, i.e., that the source 

profile can be altered, e.g., by the formation of secondary species.  However, for many of the species, 

there is no secondary formation.  We assume that within the accumulation mode (which contains most of 

the fine PM mass in CMAQ) that the composition of the primary portion of the PM2.5 from any source is 

the same, but secondary species can be formed, and primary components lost to deposition, altering the 

source profile at the receptor.  The specific steps taken in applying source profiles to CMAQ-generated 

data, and those steps are described as follows.  In a publication by Adam Reff et al. (2009), source 

profiles for 84 source categories were presented, which were aggregated from roughly 300 PM2.5 

SPECIATE v4.0 profiles and contain estimates of trace metal contributions.  The 84 PM2.5 profiles were 

further aggregated into 33 categories, consistent with the sources of interest in this study.  Then the trace 

metals contributions in the 33 profiles were used to speciate the “unidentified” portion of PM2.5 (species 

name: A25) as output by CMAQ (v4.7.1).  The contributions of 35 trace metal species were normalized to 

one and then used to split the unidentified PM2.5, and results for these species are used. At the receptor, 

both the primary and secondary PM2.5 contribution at the receptor is used to determine the new, receptor-

oriented, source profile.  This same approach was used to generate trace metal species concentrations in 

the preceding publication by Hu et al., and more details about this method may be found there (Hu et al., 

2014, ACP).   

 

We do agree that source fingerprints may change from source to receptor due to physical and chemical 

changes. But CMAQ, in principle, captures those changes for emissions from each source from their 

emitting point to the receptor point and represents those changes in the calculated source impact values.    

We included a more detailed discussion of the source profiles in section 2.2 in the revision. 

 

“Source impact profiles are derived from the information provided by Reff et al (2009). In this 

manuscript, “source impact profiles” are different than “source profiles” in that they describe the source 

fingerprint at the receptor. In other words, the source profile can be altered, for example by the formation 

of secondary species.  However, for many of the species, there is no secondary formation.  It is assumed 

that within the accumulation mode, which contains most of the fine PM mass in CMAQ, the composition 

of the primary portion of the PM2.5 from any source is the same, but secondary species can be formed, 

altering the source profile at the receptor.  The specific steps taken in applying source profiles to CMAQ-

generated data, and those steps are described as follows.  Source profiles for 84 source categories were 

presented in Reff et al. (2009), which were aggregated from roughly 300 PM2.5 SPECIATE v4.0 profiles 

and contain estimates of trace metal contributions.  The 84 PM2.5 profiles were further aggregated into 33 

categories, consistent with the sources of interest in this study.  Then the contributions in the 33 profiles 

were used to speciate the “other” (sometimes called unidentified) portion of PM2.5 (species name: A25) 

as output by CMAQ.  The contributions of the 35 trace species were then used to split the “other” PM2.5 

in to individual species, and results for these species, along with the other primary and secondary species 

are used. At the receptor, both the primary and secondary PM2.5 contribution at the receptor are used to 
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determine the new, receptor-oriented, source profiles. This same approach was used to generate receptor-

oriented profiles in the preceding publication by Hu et al. (2014).”  

 
4. The authors correctly point out that the “SAs” terms cannot strictly be considered as Source Contribution 
Estimates (SCEs), while they should be seen as sensitivity terms. This discrepancy can be relevant for sources like 
livestock that strongly contributes to ammonia emissions but not to NOX. As a consequence, in terms of SCEs they 
contribute just to ammonia, but in terms of sensitivity they influence both ammonia and nitrate. Therefore, in case 
of livestock, considering the sensitivity analysis as a source apportionment may imply an overestimation of the 
contribution of this source category. Do the authors consider that this aspect would help to explain the increased 
ranking of livestock after the adjustment? Do they consider this increase reliable?  
 

We would first like to clarify the meaning of SAs in this manuscript.  SAs denote the sensitivity of 

ambient particulate matter concentrations to emissions. In agreement with the referee, SAs are not total 

source contribution estimates (SCEs).  However, we do not agree that our methods lead necessarily to an 

overestimation of the contribution.  We do a mass balance on each individual speies as part of the method, 

and given that we have the inventoried sources (we use a comprehensive emissions inventory), so the 

result should not be biased high for any specific source.  Our methods are novel in that, although some 

sources may not emit a certain pollutant, there still be some interactions with emissions from other 

sources, and they capture those interactions.  For example, in the case of agricultural emissions, although 

little NOx is directly emitted, the influence on nitrate concentrations is precisely what we hope to estimate, 

as quantifying inter-source interactions (traditionally not quantified in source apportionment methods) are 

important in determining the primary and secondary impacts of sources on air quality.  Our hybrid source- 

and receptor-oriented approach takes this into account, and can help elucidate impacts from source 

interactions.  In this case, source impacts are the concentrations of pollutants that arise as a result of direct 

emissions and secondary interactions (both formation and destruction processes), and there is no truly 

unique impact of a source on secondary species when source interactions are involved.  We added this 

explanation in the discussion section in the revised manuscript.  

 

“The spatial hybrid method is also novel in that, although some sources may not emit a certain pollutant, 

there still may be some interactions with emissions from other sources leading to those species being part 

of the source impact.  For example, in the case of agricultural fertilizer emissions, although NOx is not 

directly emitted, the influence on nitrate concentrations is calculated, taking account of inter-source 

interactions (traditionally not quantified in receptor-oriented source apportionment methods) that are 

important in determining the primary and secondary impacts of sources on air quality.  This hybrid 

source- and receptor-oriented approach takes this into account and can determine impacts from complex 

source interactions.  However, this also shows that the formation of secondary species is often dependent 

upon multiple sources, and the impact of one source is dependent upon other sources, leading to 

ambiguity in source attribution.  The approach here uses the sensitivities at current conditions.” 

 
 
5. The key aspect of novelty of the paper concerns the development of gridded CTM-RM source apportionment 
results, based on findings at the receptor sites. Did the authors investigate the issues related to the spatial 
representativeness of the measurement sites? 

 

First, we thank reviewer for noting spatial novel aspects of the manuscript.  The spatial representativeness 

of our hybrid results were tested/evaluated by performing cross-validation through data withholding and 

by comparing to an independent dataset. Data withholding was used to evaluate the initial model 

development for spatial interpolation, where 10% of the monitors were randomly removed from the 

spatial dataset and the remaining 90% of points were kriged.  The Rj value at the monitor and the 

corresponding kriged value from the spatial grid were compared.  Evaluation metrics are presented in the 
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supplementary information (Table S2 and Figure S3) and indicate that the observation data available for 

this study can adequately serve as inputs for spatial interpolation.   

 

Following the model evaluation using data withholding an independent dataset was used to evaluate the 

model. Gridded hybrid concentrations were evaluated using observation data from the IMPROVE 

monitoring network.  Data from IMPROVE was not used for model development.  Results of this 

evaluation are found in the supplementary information (Tables S7 and S8).  Correlation coefficients 

comparing observed and gridded concentrations are highest for more abundantly available species 

concentrations (higher frequency of measurement being above detection limit).   

 

We addressed this comment in section 2.4 in the revised manuscript: 

 

“This study uses available speciated CSN data over the entire U.S., thereby providing a very spatially 

heterogeneous dataset that is representative of key emissions and meteorology in each region.  The lack of 

rural data available may present uncertainties in the spatial representativeness of Rj values outside of 

urban regions.” 

Specific comments P650 – (1). Though the objective function is properly referred (Hu et al., 2014), I suggest to add 
a few details to make it more readable. - Are all daily quantities ? - Add a few details about: Uncertainties in 
observation measurement, source profiles and source strength - Are Rj expressed as function of receptor and time? 
 

In revision, we added more details about the objective function, its inputs, and the spatiotemporal 

characteristics of the R outputs (Section 2.2).  R values are specific to one site and one day, as the method 

is applied at monitors when speciated PM2.5 data is available on observation days. 

 

 

“The initial Rj⁡ values are specific to one site and one day, as the method is applied at monitors when 

speciated PM2.5 data is available on observation days, and are then kriged and interpolated. The terms 

ci
obsand ci

sim⁡represent the observed and CMAQ-simulated concentrations, respectively; Γ weights the 

amount of change in source impact.  Uncertainties in observation measurement ( σi,obs ), modeled 

concentrations (σi,CTM), and source strength (σln⁡(Rj)) are also included in the model. Specifically, σi,obs is 

reported with measurements for each day from the CSN network; σi,CTM is modeled error, which is 

proportional to observed concentrations and remains constant for all sites and days; and σln⁡(Rj)  is 

uncertainty in source contribution expressed as the log of the factor of uncertainty, which also remains 

constant for each site and day.” 

 
 
P650 R19 – As already mentioned authors should briefly discuss the definition of “source profiles” (general 
question #3) 
 

Please see our response to general question #3.  We elaborated further on the source profiles in section 2.2 

of the revised manuscript. 
 
P652 R12 – if there are 189 CSN stations with 9 days, why N= 75 instead of about 170? 
 

On page 652, line 12, N = 75 refers to the number of withheld CSN observations, which were used for 

model cross-validation.  These 75 observations (space-time pairs) were randomly selected by removing 

10% of the available observations with speciated PM2.5 data on each observation day.  Speciation is 

conducted every three or six days.  We clarified this in Section 2.4 of the revision: 
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“Performance of the spatial extension was evaluated using a data withholding approach. To evaluate the 

method, we removed 10% of the available observation (75 sets of observations at the monitors with 

speciated PM2.5 data) and re-ran the spatial hybrid model.  This led to a total of 75 observation sets being 

used in the model evaluation.    All references to “withheld CSN data” refer to these 75 sets of withheld 

data. ”  

  
 
P652 R24 – Authors say that 41 species were used for CTM-RM/SH optimization, though some of them were 
seldom above the detection limit. Can these species introduce too much uncertainty in the optimization phase? 
 

The referee raises an important note regarding the introduction of added uncertainty due to some species 

concentrations measured at CSN sites being below detection limit.  We also considered the possibility of 

added uncertainty due to detection limit issues.  We tested the optimization with the absence of species 

with limited availability, and we found no significant differences in model performance.  Further, 

knowing that the observations are below the detection limit is useful information.  The uncertainty value 

used in weighting the observations reduces the impact of those observations, but the information is still 

captured.  We also added a summary of this explanation in Section 2.4 of the revised manuscript: 

 

“Also note that 41 species, including total PM, were used for spatial field construction, but only results 

for 20 species are presented for comparison of CSN results and 15 species for SEARCH and IMPROVE 

results, as measurements for some trace metals are seldom above measurement detection limit.  The 

possibility of added uncertainty in the optimization step due to detection limit issues was considered.  The 

optimization was tested with the absence of species with limited availability, and no significant 

differences in model performance were found.  The use of the measurement uncertainty in the objective 

function minimizes the role of those measurements on days when they are below the detection limit, but 

still accounts for the levels being low.  Using all available measurements in the optimization model is the 

preferred approach.” 

 
 
P653 R5-8 – The maps show several “hot spots” with strong spatial gradients. Could this effect be related to the 
spatial representativeness of measurement sites? (see also General question #5). In some cases the observed value 
does not correspond to the surrounding gridded value. Are they withheld data?  
 

The referee points out that in Figure 2 (cited as Figure 3 in text) the Rjs at the measurement sites do not 

correspond to the surrounding kriged results.  We found that the spatial grid is shifted slightly to the east, 

hence this issue is not related to spatial representativeness.  The observations align well with the kriged 

fields when re-plotted.  Figure 2, now Figure 3 in the revision, was replotted.  
 
P653 R9 – How many data are considered in table S2? 
 

In Table S2, 75 data points, corresponding to 10% of monitors with available speciated PM2.5 data from 

each observation day.  All references to metrics at “withheld CSN data” refer to these 75 monitoring 

locations throughout the manuscript.  We made designation clearer in the method evaluation section (2.4), 

as well as in the table headers.  Please see the response above. 
 
P653 R10 – Figure S3 shows that almost all Rs are < 1.0 suggesting that CMAQ-DDM estimations are always 
overestimated at all sites, for all sources. Any comment? 
 

We observed that most R values are less than 1.0, which indeed indicates that the hybrid-adjustment is 

reducing the initial CMAQ-DDM estimated source impact.  However, for some sites and days, R values 

are greater than one (see Figure S2).  We replotted Figure S2 with the y-axis on a log scale in order to 
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better see the values greater than 1.0.  Further, in Figure S3, the cumulative distribution plots exceed 1.0 

(x-axis) for dust, lawn waste burning, prescribed burning, and woodstoves.  These sources are highly 

variable day-to-day, and underestimations are possible in cases where the original emissions missed an 

actual burn or dust event.  We addressed this comment in section 3.1 of the revision.   

 

“The cumulative distribution plots exceed 1.0 (x-axis) for dust, lawn waste burning, prescribed burning, 

and woodstoves.  These sources are highly variable day-to-day, and underestimations are possible in cases 

where the original emissions missed an actual burn or dust event.” 
 
 
P654 R9-13 – Are the overestimations concerning Fig S6 and S7 expressed in terms of “factors”, likewise fig. S5? 
They seem too high. 
 

The referee addresses that the factors presented in reference to the differences between the gridded spatial 

fields of CMAQ-DDM and spatial hybrid concentrations.  The factors indeed do not appear to be 

reflected in the spatial field plots (Figs. S5-S7). However, the factors were calculated based on the 

average ratio of CMAQ-DDM to spatial hybrid grids over the entire domain.  For instance, on Jan. 4, on 

average, the CMAQ-DDM grid values were a factor of 3 times higher than spatial hybrid grid values for 

biomass burning (Fig. S5).  Over a large portion of the domain (boundaries, central US), impacts are near 

zero, and ratios may be influenced by numerical noise.  We should note that there was a small error in the 

plots (Rjs spatial hybrid impacts fields were oriented in reverse), which produced plots that would lead 

the referee to believe that our estimates were too high.  We have replotted Figures S5-7, and the new plots 

reflect the factors explained above. 
 
P654 R22-25 – See General question #4 
 

We addressed this comment in general question #4. 

 
 
P655 (4) – What do “i” and “N” account for? 
 

In Equation 4, i represents monitors and N represents the total number of monitors withheld for evaluation.  

We will clarify this in the next revision.  Error of the modeled concentration of each species is calculated 

as the average of the errors over all withheld observations.  The notation of Equation 4 will also be 

modified for clarity (see below).  

 

𝐸𝑟𝑟𝑜𝑟 = ⁡
1

𝑁
∑

|𝑜𝑏𝑠𝑖−𝑠𝑖𝑚𝑖|

𝑜𝑏𝑠𝑖

𝑁
𝑖=1    (4) 

 
 
P656 R5-10 – Authors discuss categories showing high absolute values of RMSE. Maybe some comments could be 
added also for categories showing a relevant RMSE with respect to the corresponding average and median (e.g. 
dust)  
 

We included the discussion of sources with similar mean and median values and correspondingly low 

RMSEs, such as livestock, Mexican combustion, and nonroad natural gas combustion (Table S1 in the 

revision). 

 

“Sources such as diesel, liquid petroleum gas, non-road natural gas, and Mexican combustion all had very 

low RMSEs, mean R values near 1, and median R values near 1.  This indicates that there is little to no 

adjustment to these source impacts and that kriging captures the R values calculated by the CTM-RM 

application.” 
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P657 R1 and R4 – What does N represent?  
 

In these references, N represents the number of monitors used for evaluation.  We changed the notation to 

“N = ## monitors.”   
 
 
P657 R24 – Could it be useful adding also some information about emissions of the main precursors (NOX, NH3, 
SO2 and VOC)? 
 

We added domain totals of the emissions of precursors and discussed their role in the formation of 

secondary PM2.5 in Section 3.1. 
 

“Coal combustion, which includes the secondary formation of sulfate, remains in the top three sources for 

average hybrid PM2.5 source contributions at withheld observation locations, as its emissions 

uncertainties are low due to the availability of continuous emission monitoring data.  SO2 emissions are 

large (Jan. 2004 domain totals: 72924.7 metric tons per day), as are NOx (74619.7 metric tons per day) 

(Table S9).  During the study period, coal combustion had the highest contribution to SO2 emissions 

(35080.3 metric tons/day) and the second highest contribution to NOx emissions (14250.1 metric tons per 

day) behind mobile sources.  The source impacts found here account for the transformation of these 

gaseous emissions from coal combustion.” 

 
 
P658 R25-P659 R14 – The concept of source profile and its role should be better clarified (see also general 
question #3) 
 

Please see response to general question #3.  We clarified the role of source profiles in the revision. 
 
 
P659 R14-16 – Authors state that just through changes in emissions they can improve the model results and 
performance. But, how can they deal with discrepancies not directly related to emissions? See also general question 
#1 
 

Please see the response to general question #1.   
 
P670-671 figure 5 – Authors may also include a pair of total PM2.5 gridded fields, also overlapping observed data. 
This would give an idea of the actual improvement before and after the implementation of the correction factors.  
 

We added plots of CMAQ-DDM and spatial hybrid total PM2.5 fields to Fig. 5, as well as a discussion of 

the performance in estimating PM2.5. We plotted overlapped observations for one observation day in 

January, which gives a better idea of improvement after implementing the adjustment factors (Fig 5).   
 
Tables S3-S5 – Some error metrics (e.g. RMSE) could be added for each species to quantify the changes in model 
performance between CMAQ-DDM and the hybrid approaches  
 

We added columns for RMSE in Tables S3, S5, and S6. 
 
Tables S6-S8 – They should be commented because some results are not very clear. For example Beta coefficient for 
PM2.5 in table S6 decreases from 0.43 to 0.27 and 0.24. I would expect an increase of beta coefficient toward 1.0, in 
case of improved model performance. 
 

The referee raises an interesting point.  Indeed some performance indicators for some species indicate 

poorer correlation, such as the beta values for calcium for CMAQ-DDM (beta = 1.22) and spatial hybrid 

(beta = 0.16) comparison (Table S6).  However, all metrics presented must be taken into account and 
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evaluated holistically.  The alpha values for calcium indicate an improvement in performance, as the 

spatial hybrid value (alpha = 0.044) is closer to 0.0 than the CMAQ-DDM value (alpha = 0.13).  Further, 

mean concentrations at withheld observation locations also indicate better performance of the spatial 

hybrid model, where mean calcium concentrations were 0.0407 (observed), 0.182 (CMAQ-DDM), and 

0.0501 (spatial hybrid) (Table S3).  According to the mean concentrations, the spatial hybrid method 

performs best. Throughout the analysis, CMAQ-DDM estimates of trace metal concentrations were orders 

of magnitude too high, while spatial hybrid results were closer to observations. While some individual 

metrics indicate better performance of the base CMAQ-DDM, overall performance of the spatial hybrid 

method is most favorable.  An important point is that the species where performance is less good are 

typically those species that have a smaller role in determining source impacts, e.g., they are very trace 

species and/or have high uncertainties (relative to their observed concentrations) in the measurements or 

source profiles.  We added this discussion to Section 3.1. 
 
 
Technical corrections P654 R8 – Figure 2? 
 

This part of the manuscript is in reference to Figs. S5-7. 
 
 
P657 R24 – Why Tables S1 is placed before Table S2? 
 

As addressed earlier, tables and figures will be renumbered according to their appearance in the text. 
 
 
P668 Figure 3 – Is it cited in the text? 
 

Tables and figures will be renumbered according to their appearance in the text. 
 
 
Tables S4 and S5 – HYB should be SH (spatial Hybrid)? 
 

Yes, HYB should be SH, as this was an oversight.  Throughout the course of the production of this 

manuscript, we changed the notation of the results to spatial hybrid. 
 
 
Tables S6-S8 – they are cited but not commented 
 

We added relevant comments about these tables in the next revision. 
 
Figures S4 and S8 – they seem not cited 
 

These figures were removed in the revision. 
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Interactive comment on “Development of PM2.5 source impact spatial 
fields using a hybrid source apportionment air quality model” by C. E. 
Ivey et al. 
 
Anonymous Referee #2 
Received and published: 15 May 2015 

This manuscript seems to be prepared with care. However, it is not clear the substantial 
contribution to modelling science compared with the previous paper of Hu et al. (2014). Hu et al. 
(2014) developed a hybrid CTM-RM method to calculate adjustment factors to refine the CTM-
estimated source impacts at monitoring sites. This paper simply spatially interpolates the impact 
adjustment factors using the commercial MATLAB software. If this is the “new method” developed 
in this paper, it has no enough novelty for publication in GMD, a premier international journal.  If 
the authors can revise the manuscript to highlight what new scientific findings they made by 
spatially interpolating the adjustment factors (rather than emphasizing on the method itself), it is 
still possible for this manuscript to be published. 
 

We would first like to thank the referee for the constructive review of our manuscript and his/her note 

about the care with which the manuscript is prepared.  The integration of the Hu et al. (2014), Chemical 

Transport Model-Chemical Mass Balance Method with kriging and interpolation in time allows both 

increasing our understanding of the spatiotemporal characteristics of source impacts in the United States, 

as well as developing accurate source impact fields for health studies.  What we have done is linked 

together multiple modeling approaches, e.g., CMAQ-DDM3D responses are integrated into a chemical 

mass balance method, which is then linked with spatial kriging and temporal interpolation, thus 

developing a larger modeling system approach.  We use commercially available packages to do the 

integration because they are very efficient and this also allows other modelers who are interested in using 

the modeling approach descried here to more readily develop variants (e.g., alternative chemical transport 

models, optimization techniques, etc.).   

In regards to the new scientific findings, in the initially submitted version of the current paper we 

downplayed the scientific findings that the spatial extension brings, as we emphasized the method, which 

is the typical focus of GMD.  In the revised paper we expand the discussion of its application and develop 

increased scientific findings (e.g., biomass burning impacts, dust impacts, mobile source impacts).  We 

will also extend the discussion of the use of the method as an approach to provide spatiotemporal fields of 

source impacts on air quality for use in acute health studies, the main purpose for the development of this 

modeling approach.  We are currently using this approach to develop 8 years of source impact fields for 

use in epidemiologic health studies. When using the initial CTM-RM method, source impact estimates are 

available for 1-2 locations in a metro region.  After applying the current method to get spatially resolved 

source impact estimates, we are able to see the spatial variability in 33 source categories at more than 20 

grid locations in a metropolitan statistical area (MSA).  This allows the spatial variability in sources to be 

detected through the modeling domain.  The spatial extension is necessary for this application, and it is 

very unique.  In the revision, we emphasize the scientific findings that were elucidated in our results, 

along with the application in health studies. 

In addition, there are also some other major comments that should be addressed before publication, 
as described below.  Specific comments:  
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(1) Section 1. Introduction: The authors only used 2-3 sentences to describe the previous studies 
and their shortcomings. I think this part should be significantly expanded.  
 
We extended this section. In particular, we make additional references to previous receptor- and source-

oriented apportionment studies and discuss their strengths, limitations and uncertainties.  In the initial 

version, we attempted to make the manuscript as concise as we thought reasonable. 
 
(2) Section 2. Data and method: The configurations of the CMAQDDM modeling system should be 
described, e.g., the modeling domain, geographical projection, physical and chemical mechanisms, 
initial and boundary conditions, and emission inventory, etc.  
 
We now provide the additional modeling configuration in the revised version. 
 
 
(3) Section 2.4 Model evaluation: The authors should explain the objectives of each evaluation 
method.  
 
We included an explanation of the objectives of each evaluation method Section 2.4: 

 

“The hybrid optimization is directly applied to withheld observations to assess the performance of the 

kriging model.  Concentrations are reconstructed using Eq. 3 and the spatially interpolated adjustment 

factors.  Then the original CMAQ-DDM, directly applied hybrid (CTM-RM), and spatial hybrid (SH) 

concentrations are compared to observed concentrations at withheld observation locations to evaluate the 

performance of each method in simulating concentrations.  Linear regression was used to assess 

correlations between observations and modeled concentrations for each method.   

In order to evaluate prediction performance in remote locations and in locations independent of CSN, 

CMAQ-DDM and hybrid concentrations were compared to observations at SEARCH and IMPROVE 

locations.” 

 
(4) Section 3. Results; Section. 4 Discussion: These two sections should be reorganized. Firstly, the 
spatial extension method should be evaluated before any discussion of the modeling results, so 
Section 3.5 and 3.6 should be moved ahead of Section 3.1-3.4. Secondly, the discussion section is 
long and complex, with model performance, modeling results, advantage/shortcomings mixed up; 
the majority of this section is actually “results” rather than “discussions”. I would suggest the 
author to merge the “results” and “discussion” sections and move most of the “discussions” to the 
corresponding sub-sections of “results”.  
 
We reorganized the results and discussion section so that scientific findings information is located in the 

in a separate section of the paper.  We moved the spatial evaluation before the results section.   
 
(5) Section 3.1, P653 L10-14: The authors should explain why the adjustment factors for specific 
sources are less than one, near one, or more than one.  
 
The value of the adjustment factor Rj is specified depending on the initial CMAQ-DDM simulation of the 

source impact. If, after optimization, the Rj value is less than one, then the initial CMAQ-DDM estimate 

will be reduced to be more consistent with observations.  In turn, if the Rj value is greater than one, then 

the initial CMAQ-DDM estimate will be increased to be more consistent with observations.  An Rj value 

of 1 indicates that no adjustment to the CMAQ-DDM is necessary to improve consistency with 
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observations.  We included this explanation in the revision: 

 

“In general, for an R value less than one, the initial CMAQ-DDM estimate was reduced to be more 

consistent with observations.  In turn, for an R value greater than one, the initial CMAQ-DDM estimate 

was increased to be more consistent with observations.  An R value of 1 indicates that no adjustment to 

the CMAQ-DDM is necessary to improve consistency with observations.” 

 
(6) Section 3.1, P653 L14-17: How much is the difference between these two methods?  
 
The difference in the two approaches is the log-transformation of the Rj values before kriging.  In one 

approach, we log-transform the Rj values at the monitors before kriging, and then the kriged values are 

unlogged before use in reconstruction.  In the second approach, we do not log-transform before kriging.  

In this manuscript we have chosen the second approach, as the additional log-transformation step 

produces similar results as the second approach.   

 
(7) Section 3.2: This section has the same problem with Section 3.1. Lots of modeling results are 
shown, but their reasons/implications are seldom illustrated.  
 
We initially placed the reasons/implications in the discussion section.  We address the referee’s concerns 

by rearranging the information presented in the results and discussion, as stated in our response to specific 

comment (4).  
 
(8) Section 3.3: This manuscript focus on the development of source impact spatial fields. However, 
only the source impacts at the withheld CSN monitors are illustrated in this section.  
 
Section 3.3 is meant to compare kriged results to direct application of the hybrid method.  Other sections 

address performance of the spatial extension, and we feel that section 3.3 brings added perspective of the 

benefits of the hybrid method.  We have reorganized the results section and have expanded the discussion 

of refined spatial fields in Section 3.2. 
 
 
(9) A conclusion section should be added. The limitations of this method, except for that described 
in the last paragraph of the manuscript, should also be summarized. For example, the accuracy of 
this method still needs to be further improved by optimizing source profiles etc., and this method 
cannot capture the nonlinearity in the source-receptor relationships.  
 
We included a discussion of CTM and RM limitations in the introduction: 

 
“Several receptor-oriented SA models have been developed to quantify emission source impacts 

on pollutant concentrations.  Each model has its own unique characteristics and associated uncertainties 

(Balachandran et al. 2012; Seigneur et al. 2000).  Schauer and Cass (2000) used organic tracers for source 

apportionment using the Chemical Mass Balance (CMB) method at two urban sites and one background 

site in central California (Watson et al., 1984).  Their implementation addressed the improper accounting 

of VOCs from motor vehicle exhaust and wood combustion.  Watson, Chow, and Fujita (2001) reviewed 

several studies that used CMB for source apportionment, and reported that uncertainties in source 

contributions of VOCs led to uncertainties in impacts from important sources such as off-road vehicles, 

solvent use, diesel and gasoline exhaust, meat cooking, and biomass burning.  The authors also describe 

several limitations of CMB, including reliance on existing observations and overlooking profiles that 

change between source and receptor due to factors such as dilution, aerosol aging, and deposition.  

Maykut et al. (2003) used Positive Matrix Factorization (PMF) for source apportionment at an urban 
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Seattle, Washington (USA) site with selected trace elements to distinguish combustion sources (Pattero 

and Tapper, 1994).  Temperature-resolved organic and elemental carbon fractions were also used in 

Unmix to distinguish diesel and other mobile sources but did not lead to significantly different results 

(Henry 2005).  There was also difficulty in distinguishing small sodium-rich industrial sources due to the 

similarity to the aged marine aerosol source profile.  

 

In an effort to improve the spatial and temporal resolution of SA data and improve source 

distinction, chemical transport models (CTM) have been adapted to estimate emission impacts on 

pollutant concentrations.  Marmur et al. (2006) conducted a comparison of source-oriented and receptor-

oriented modeling results for a winter and summer month in the Southeastern U.S.   The brute force 

method was used in the Community Multiscale Air Quality (CMAQ) model to calculate impacts from 

mobile sources, biomass burning, coal-fired power plants, and dust.  The authors determined that 

meteorological effects had a strong impact on the temporal variation of CMAQ source impacts, where 

receptor model results exhibited more day-to-day variability. Koo et al. (2009) used the decoupled direct 

method (DDM) in the Comprehensive Air Quality Model with extensions (CAMx) to determine the 

sensitivity of particle sulfate concentration to changes in emissions of SO2 and NOX from point sources; 

NOX, VOC, and NH3, from area sources, and all emissions from on-road mobile sources (Byun and 

Schere, 2006; Dunker, 1981, 1984; Napelenok et al., 2006).  DDM first order-sensitivities under-

estimated the impacts on sulfate concentration when all emissions are removed due to nonlinearities, as 

compared to brute force method results.  Zhang et al. (2012) addressed this issue by calculating second 

order sensitivities of inorganic aerosols using DDM, which better captured nonlinear responses to changes 

in emissions up to 50%.”  

 

We also included a summary of limitations of the spatial hybrid method in the discussion: 

 
“Spatial hybrid inputs, methods, and results have inherent uncertainties and challenges that are 

associated with implementation.  Input uncertainties include measurement error and challenges are posed 

with temporal availability and spatial representativeness of concentrations.  Emissions inputs for each 

source are available at different temporal and spatial scales.  For instance point source emissions are 

available at hourly intervals in some cases, while dust emissions are highly variable, both spatially and 

temporally. Area source emissions are estimated at weekly or monthly intervals and averaged source 

fingerprints for the primary components of the PM2.5 emissions are used, which removes the 

consideration of locally-varying source composition. Physical processes in CMAQ-DDM are uncertain as 

modeling atmospheric behavior is a complex undertaking. Also, first-order sensitivity approaches may not 

capture all nonlinearities in source-receptor relationships. SH results are also subject to potential 

systematic bias from the optimization and kriging steps, though our evaluation suggests those biases are 

minimal”  

 
(10) The figures and tables are not consistent with the citations in the main text.  For example, in 
P653 L8, “Fig. 3” should be “Fig. 2”. In addition, some figures and tables included in this manuscript 
are never cited or described in the main text, and some are cited but not described.  
 
Thanks for catching this. We corrected the table and figure labels and removed those that are not 

referenced in the manuscript.  This comment was also addressed in the review from referee #1. 
 
Technical corrections:  
 
P649, L3-4: “Chemical Speciation Network (CSN)” should be “CSN”  
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Yes, CSN was already defined in the introduction.  We corrected this in the revision.  
 
P655, L22: How do you determine outlying data pairs?  
 
Outlying data pairs are determined by examining the distribution of the directly calculated R values 

(mean = 0.837, stdev = 0.478) and the kriged R values (mean = 0.828, stdev = 0.294) at the withheld 

observation locations.  Data pairs were removed if either value was more than six standard deviations 

from the mean R value.  The removed data points (5 points out of 2475) were well outside of this range; 

hence we concluding that removing them would not alter the correlation.  We added this explanation in 

Section 3.1.  

 

“Outlying data pairs are determined by examining the distribution of the directly calculated Rj values 

(mean = 0.84, stdev = 0.48) and the kriged Rj  values (mean = 0.83, stdev = 0.30) at the withheld 

observation locations.  Data pairs were removed if either value was more than six standard deviations 

from the mean Rj value.  The removed data points (5 points out of 2475) were well outside of this range.” 

 
P657, L1 and L4: What is the meaning of N? I deduce that it represents the number of observation 
sites but it should be explained.  
 
Yes, N represents the number of monitoring locations from each network that were used for evaluation.  

We changed this to (N = 8 monitoring sites) and (N = 38 monitoring sites) to enumerate the number of 

monitors from each network that were used for evaluation. 
 
 
Table S4 and S5: I guess “HYB” should be “SH” because only the latter is described in the main text. 
 

Yes, HYB should be SH. We changed this in the revision.  
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 10 

Abstract 11 

An integral part of air quality management is knowledge of the impact of pollutant sources on 12 

ambient concentrations of particulate matter (PM).  There is also a growing desire to directly 13 

use source impact estimates in health studies; however, source impacts cannot be directly 14 

measured. Several limitations are inherent in most source apportionment methods, which has 15 

led to motivating the development of a novel hybrid approach that is used to estimate source 16 

impacts by combining the capabilities of receptor modeling (RM) and chemical transport 17 

modeling (CTM).  The hybrid CTM-RM method calculates adjustment factors to refine the 18 

CTM-estimated impact of sources at monitoring sites using pollutant species observations and 19 

the results of CTM sensitivity analyses, though it does not directly generate spatial source 20 

impact fields.  The CTM used here is the Community Multi-Scale Air Quality (CMAQ) 21 

model, and the RM approach is based on the Chemical Mass Balance model.  This work 22 

presents a method that utilizes kriging to spatially interpolate source-specific impact 23 

adjustment factors to generate revised CTM source impact fields from the CTM-RM method 24 

results, and is applied tofor January 2004 over the continental United States.  The kriging step 25 

is evaluated using data withholding and by comparing results to data from alternative 26 

networks.  Data withholding also provides an estimate of method uncertainty.  Directly 27 

applied (HYB) and spatially interpolated (spatial hybrid, SH) hybrid adjustment factors at 28 

withheld monitorsobservation sites had a correlation coefficient of 0.88589, a linear 29 
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regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02.  Refined source contributions 1 

reflect current knowledge of PM emissions (e.g., significant differences in biomass burning 2 

impact fields).  Concentrations of 19 species and total PM2.5 mass were reconstructed for 3 

withheld monitorsobservation sites using directly appliedHYB and spatially interpolated 4 

hybrid SH adjustment factors. The mean concentrations of total PM2.5 forat withheld 5 

monitorsobservation sites were 11.7 (± 8.3), 16.3 (± 11), 8.59 ±(± 4.7,), and 9.2 (± 5.7) µg m
-3

 6 

for the observations, CTM, directly applied hybridHYB, and spatially interpolated hybridSH 7 

predictions, respectively.  Correlations improved for concentrations of major ions, including 8 

nitrate (CMAQ-DDM:  0.404, SH: 0.449), ammonium (CMAQ-DDM: 0.454, SH: 0.492), and 9 

sulfate (CMAQ-DDM: 0.706, SH: 0.730).   Errors in simulated concentrations of trace metals 10 

were reduced considerably: 295% (CMAQ-DDM) to 139% (SH) for vanadium; and 1340% 11 

(CMAQ-DDM) to 326% (SH) for manganese.  Errors in simulated concentrations of very 12 

trace components are expected to remain given the uncertainties in source profiles. Species 13 

concentrations were reconstructed using spatial hybrid results, and the error relative to 14 

observed concentrations was greatly reduced as compared to CTM-simulated concentrations. 15 

Results demonstrate that the hybrid method along with a spatial extension can be used for 16 

large-scale, spatially resolved source apportionment studies where observational data are 17 

spatially and temporally limited.  Data withholding also provides an estimate of method 18 

uncertainty.  Species concentrations were reconstructed using spatial hybrid results, and the 19 

error relative to observed concentrations was greatly reduced as compared to CTM-simulated 20 

concentrations. 21 

 22 

1 Introduction 23 

Variations in ambient pollutant species concentrations, including particulate matter (PM) 24 

and gases, are correlated with health outcomes such as lower birth weight (Darrow et al.., 25 

2011; Wang et al.., 1997), higher occurrences of bradycardia and central apnea (Campen et 26 

al.., 2001; Peel et al.., 2011); decreased peak expiratory flows and increased respiratory 27 

symptoms in non-smoking asthmatics (Peters et al.., 1997); and all-cause, lung cancer, and 28 

cardiopulmonary mortality (Pope et al.., 2002).  Additionally, nanotoxicological studies report 29 

that particle uptake by cells and entry into blood and lymph leads to oxidative stress in 30 

sensitive areas of the body such as lymph nodes, bone marrow, and the spleen (Oberdorster et 31 

al.., 2005).  Recently, in a study on the global burden of disease, of the 67 risk factors studied, 32 
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exposure to ambient particulate matter pollution was the ninth highest risk factor leading to 1 

disability-adjusted life years. (Lim et al.., 2012).  Many past epidemiological studies focused 2 

on associating PM mass (e.g., PM2.5/10: PM with aerodynamic diameters less than 2.5 µm or 3 

10 µm)  with the health outcomes, as opposed to individual species or the sources of the PM 4 

due to limited data availability or difficulties in quantifying source impacts.  Epidemiological 5 

studies are examining the associations between individual species and health outcomes using 6 

data from ground observation networks, such as the Chemical Speciation Network (CSN) and 7 

the Southeastern Aerosol Research and Characterization Network (SEARCH) (Dominici et 8 

al., 2010; Samet et al., 2000; Sarnat et al.., 2008; Tolbert et al.., 2007; Samet et al. 2000; 9 

Dominici et al. 2010).  It is of further interest to determine the degree to which individual 10 

sources are influencing health events and to link human exposure and subsequent adverse 11 

impacts to sources and multi-pollutant mixtures (Laden et al. 2000; Thurston et al. 2005).  12 

Attributing individual component concentrations and the overall mixture of observed air 13 

pollution to specific sources, and then linking those sources with adverse health impacts is 14 

challenging.  Typically, receptor modeling (RM) is used to generate source apportionment 15 

(SA) results for epidemiological studies because longer time series are required (e.g.., greater 16 

than two years) (Sarnat et al. 2008). 17 

Several receptor-oriented SA models have been developed to quantify emission source 18 

impacts on pollutant concentrations.  Each model has its own unique characteristics and 19 

associated uncertainties (Balachandran et al. 2012; Seigneur et al. 2000).  Schauer and Cass 20 

(2000) used organic tracers for source apportionment using the Chemical Mass Balance 21 

(CMB) method at two urban sites and one background site in central California (Watson et 22 

al., 1984).  Their implementation addressed the improper accounting of VOCs from motor 23 

vehicle exhaust and wood combustion.  Watson, Chow, and Fujita (2001) reviewed several 24 

studies that used CMB for source apportionment, and reported that uncertainties in source 25 

contributions of VOCs led to uncertainties in impacts from important sources such as off-road 26 

vehicles, solvent use, diesel and gasoline exhaust, meat cooking, and biomass burning.  The 27 

authors also describe several limitations of CMB, including reliance on existing observations 28 

and overlooking profiles that change between source and receptor due to factors such as 29 

dilution, aerosol aging, and deposition.  Maykut et al. (2003) used Positive Matrix 30 

Factorization (PMF) for source apportionment at an urban Seattle, Washington (USA) site 31 

with selected trace elements to distinguish combustion sources (Pattero and Tapper, 1994).  32 

Temperature-resolved organic and elemental carbon fractions were also used in Unmix to 33 
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distinguish diesel and other mobile sources but did not lead to significantly different results 1 

(Henry 2005).  There was also difficulty in distinguishing small sodium-rich industrial 2 

sources due to the similarity to the aged marine aerosol source profile.  3 

In an effort to improve the spatial and temporal resolution of SA data and improve source 4 

distinction, chemical transport models (CTM) have been adapted to estimate emission impacts 5 

on pollutant concentrations.  Marmur et al. (2006) conducted a comparison of source-oriented 6 

and receptor-oriented modeling results for a winter and summer month in the Southeastern 7 

U.S.   The brute force method was used in the Community Multiscale Air Quality (CMAQ) 8 

model to calculate impacts from mobile sources, biomass burning, coal-fired power plants, 9 

and dust.  The authors determined that meteorological effects had a strong impact on the 10 

temporal variation of CMAQ source impacts, where receptor model results exhibited more 11 

day-to-day variability. Koo et al. (2009) used the decoupled direct method (DDM) in the 12 

Comprehensive Air Quality Model with extensions (CAMx) to determine the sensitivity of 13 

particle sulfate concentration to changes in emissions of SO2 and NOX from point sources; 14 

NOX, VOC, and NH3, from area sources, and all emissions from on-road mobile sources 15 

(Byun and Schere, 2006; Dunker, 1981, 1984; Napelenok et al., 2006).  DDM first order-16 

sensitivities under-estimated the impacts on sulfate concentration when all emissions are 17 

removed due to nonlinearities, as compared to brute force method results.  Zhang et al. (2012) 18 

addressed this issue by calculating second order sensitivities of inorganic aerosols using 19 

DDM, which better captured nonlinear responses to changes in emissions up to 50%.  20 

  This work utilizes a hybrid CTM-RM method to provide spatial fields of source 21 

impacts for use in detailed health-related, spatiotemporal analyses (e.g., Sarnat et al. 2008).  22 

2008).  Spatially-resolved source impacts and concentrations are key inputs for residential or 23 

county level exposure studies that investigate the impact of air pollution on regional health 24 

outcomes (Bell, 2006).   The CTM-RM method combines the strengths of both source 25 

apportionment techniques in an effort to reduce uncertainty in source impact estimates.  The 26 

goal of this study is to create spatial fields of source impacts by spatially interpolating source 27 

impact adjustment factors (ratios, or RsR’s) and then applying those adjustments to CTM 28 

source impact fields.  RsR’s are generated by a hybrid CTM-RM SA approach that integrates 29 

observational data and results from a CTM to calculate an emission-based adjustment of 30 

source impacts at receptor locations (Hu et al. 2014).  Kriging is employed to generate spatial 31 

fields of RsR’s for 33 emissions sources.  The spatial fields of adjustment factors are applied 32 
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to original source impact fields to produce hybrid-adjusted source impact and species 1 

concentration fields for the continental U.S.  The adjustments can also be interpolated in time 2 

to adjust source impact fields on days when speciated observations are not available.  The 3 

performance of the spatial extension is evaluated by performing data withholding and by 4 

comparing results to observations from other monitoring networks...  The hybrid CTM-RM 5 

method, along with the spatial extension, provides air quality data fields for health studies that 6 

require spatially-resolved exposure metrics.  This approach can also be used to assist air 7 

quality planners in developing state implementation plans (SIPs) and assessing exceptional 8 

events, such as wildland fires. 9 

 10 

2 Data and Methods 11 

2.1 Data 12 

Observational data during January 2004 from 189 CSN monitors in the Chemical Speciation 13 

Network (CSN) were used for model development and evaluation (Fig. 1).  Data were 14 

obtained on one in every three or six days in January 2004 for a total of 9 days (e.g., Jan. 4th, 15 

7th, 10
th

……. 28th), which led to varying sample sizes for each observation day.   The 16 

number of available monitors with speciated PM2.5 data on observation days ranged from 17 

approximately 40 to 150 and each site had 5 to 9 observations over the period examined. CSN 18 

monitor measurements include total PM2.5, organic and elemental carbon, ions, and 35 metals.  19 

CSN monitors tend to be located in more densely populated areas such as urban and suburban 20 

areas, and data are more associated with high-population emissions sources such as mobile 21 

and cooking sources.  Speciated PM2.5 data are also available from the SEARCH (Hansen et 22 

al.., 2003; Hansen et al.., 2006) and IMPROVE (Chow et al. 1993) networks, and those data 23 

were used for further model evaluation.  The SEARCH network includes eight monitors in the 24 

southeastern U.S., configured as urban/rural pairs.  IMPROVE monitors are mainly located in 25 

pristine locations such as national parks and wilderness areas.  Thirty-eight IMPROVE 26 

monitors in the eastern U.S. were used for model evaluation.  MonitorsIMPROVE monitors in 27 

the eastern U.S. were used due to their closer proximity with urban monitoring sites (e.g.., 28 

less than 50 km), as opposed to western IMPROVE sites which are much more spatially 29 

sparse.  Additionally, modeled processes have higher uncertainty for the western U.S. due to 30 
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complex terrain and meteorology, leading to added bias in the observation and model 1 

comparison (Baker et al 2011). 2 

2.2 CTM-RM Hybrid Method 3 

This study utilizes a hybrid SA method that combines techniques of both CTMs and RMs to 4 

generate adjustment factors (symbolized by R) that improve source impact estimates.  Hu et 5 

al. (2014) describe the hybrid approach in detail, but it is briefly summarized here.  First, 6 

gridded concentrations and emissions sensitivities of PM2.5 species are generated using 7 

CMAQ-DDM (v. 4.5).  CMAQ-DDM model sensitivities to emissions are designated as the 8 

original (base case) source impacts (𝑆𝐴𝑖,𝑗
𝑏𝑎𝑠𝑒) for species i and source j.  CMAQ v. 4.7 or 9 

5.0.2) (Dunker, 1981, 1984;Byun and Schere, 2006;Napelenok et al., 2006)  with traditional 10 

inputs for emissions (Sparse Matrix Operator Kernel Emissions, SMOKE (CEP, 2003)),  11 

meteorology (Fifth-Generation PSU/NCAR Mesoscale Model, MM5 (Grell et al., 1994)), and 12 

terrain CMAQ-DDM was run with strict mass conservation (Hu et al., 2006), the SAPRC-99 13 

chemical mechanism (Carter, 2000) and the aerosol module described in Binkowski and 14 

Roselle (2003). The modeling domain contains the continental U.S., southern Canada, and 15 

northern Mexico, with 36-km grid resolution, Lambert Conformal Conic geographic 16 

projection, and  13 vertical layers of variable thickness extending from the surface to 70 hPa.   17 

Meteorological inputs were generated using the Fifth-Generation PSU/NCAR Mesoscale 18 

Model (MM5) with 35 vertical layers, implemented with the Pleim-Xiu land surface model 19 

(Pleim and Xiu, 1995;Xiu and Pleim, 2001)(Grell et al., 1994, Pleim and Xiu, 1995; Xiu and 20 

Pleim, 2001)..   Emissions inputs were processed using the Sparse Matrix Operator Kernel 21 

Emissions (SMOKE) model. Emisisons data originated from a 2004 inventory that was 22 

projected from the 2002 National Emissions Inventory (NEI2002).  Please refer to the 23 

preceding publication by Hu et. al (2014) for additional details about the emissions inventory 24 

CMAQ-DDM model sensitivities to emissions are designated as the original (base case) 25 

source impacts (𝑆𝐴𝑖,𝑗
𝑏𝑎𝑠𝑒) for species i and source j.  Next, the original source impacts, receptor 26 

observations, and uncertainties are used as inputs to the objective function (Eq. 1) of the 27 

hybrid SA model.   28 
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Next, the original source impacts, receptor observations, and uncertainties are used as 1 

inputs to the objective function (Eq. 𝛸2 = ∑ [
[(𝑐𝑖

𝑜𝑏𝑠−𝑐𝑖
𝑠𝑖𝑚)−∑ 𝑆𝐴𝑖,𝑗

𝑏𝑎𝑠𝑒(𝑅𝑗−1)
𝐽 

𝑗=1 )]2

𝜎𝑖,𝑜𝑏𝑠
2+𝜎𝑖,𝑆𝑃

2 ] +𝑁
𝑖=12 

𝛤 ∑
𝑙𝑛(𝑅𝑗)2

𝜎ln (𝑅𝑗)
 2

𝐽 

𝑗=1 1) of the hybrid SA model,   3 

𝛸2 = ∑ [
[(𝑐𝑖

𝑜𝑏𝑠−𝑐𝑖
𝑠𝑖𝑚)−∑ 𝑆𝐴𝑖,𝑗

𝑏𝑎𝑠𝑒(𝑅𝑗−1)
𝐽 

𝑗=1 )]2

𝜎𝑖,𝑜𝑏𝑠
2+𝜎𝑖,𝐶𝑇𝑀

2 ] + 𝛤 ∑
𝑙𝑛(𝑅𝑗)2

𝜎ln (𝑅𝑗)
 2

𝐽 

𝑗=1
𝑁
𝑖=1     (1) 4 

where the adjustment factors 𝑅𝑗  are optimized by minimizing the objective function,
2 . 

2 . 5 

The initial 𝑅𝑗  values are specific to one site and one day, as the method is applied at monitors 6 

when speciated PM2.5 data is available on observation days, and are then kriged and 7 

interpolated. The terms 𝑐𝑖
𝑜𝑏𝑠 and 𝑐𝑖

𝑠𝑖𝑚 represent the observed and CMAQ-simulated 8 

concentrations, respectively; 𝛤Γ  weights the amount of change in source impact.  9 

Uncertainties in observation measurement (𝜎𝑖,𝑜𝑏𝑠), source profiles (𝜎𝑖,𝑆𝑃), and source strength 10 

(𝜎ln (𝑅𝑗)) are also included in the model.modeled concentrations (𝜎𝑖,𝐶𝑇𝑀), and source strength 11 

(𝜎ln (𝑅𝑗)) are also included in the model. Specifically, 𝜎𝑖,𝑜𝑏𝑠 is reported with measurements for 12 

each day from the CSN network; 𝜎𝑖,𝐶𝑇𝑀 is error in modeled concentrationserror, which is 13 

proportional to observed concentrations and remains constant for all sites and days; and 14 

𝜎ln (𝑅𝑗) is uncertainty in source contribution expressed as the log of the factor of uncertainty, 15 

which also remains constant for each site and day. 16 

 The uncertainties weight the adjustment of modeled source impacts, in that components with 17 

larger uncertainties are weighted less. The objective function is minimized by using a 18 

nonlinear optimization approach known as sequential quadratic programming (Fletcher, 19 

1987).  The function is modeled using a ridge regression structure, as demonstrated by the 20 

second term, and uses an effective variance approach (Watson et al., 1984) to balance model 21 

outputs. 22 

  Source profiles are derived from the information provided by Reff et al (2009).to balance 23 

model outputs.  The effective variance approach is also utilized by versions of CMB, and the 24 

optimization method used here is, in essence, an extended CMB approach  (Watson et al., 25 

1984).  Uncertainties in the first term of the objective function serve as effective variances of 26 

the numerator and are specified for each species i.  Finally, 𝑅𝑗 are applied to 𝑆𝐴𝑖,𝑗
𝑏𝑎𝑠𝑒 to adjust 27 



 

 8 

original source impact estimates (Eq. 2) and reconstruct simulated concentrations (𝑐𝑖
𝑎𝑑𝑗

) at 1 

receptors to more closely reflect observations (Eq. 3).   2 

𝑆𝐴𝑖,𝑗
𝑎𝑑𝑗

= 𝑅𝑗𝑆𝐴𝑖,𝑗
𝑏𝑎𝑠𝑒          (2) 3 

𝑐𝑖
𝑎𝑑𝑗

= 𝑐𝑖
𝑠𝑖𝑚 + ∑ 𝑆𝐴𝑖,𝑗

𝑏𝑎𝑠𝑒(𝑅𝑗 − 1)𝐽
𝑗=1        (3) 4 

Given that many of the source impact profiles are similar between categories such that 5 

colinearities are present, the variation of the 𝑅𝑗′𝑠 values  are constrained to 0.1 ≤ 𝑅𝑗  ≤ 10.   6 

Source impact profiles are derived from the information provided by Reff et al (2009). 7 

In this manuscript, “source impact profiles” are different than “source profiles” in that they 8 

describe the source fingerprint at the receptor. In other words, the source profile can be 9 

altered, for example by the formation of secondary species.  However, for many of the 10 

species, there is no secondary formation.  It is assumed that within the accumulation mode, 11 

which contains most of the fine PM mass in CMAQ, the composition of the primary portion 12 

of the PM2.5 from any source is the same, but secondary species can be formed, altering the 13 

source profile at the receptor.  The specific steps taken in applying source profiles to CMAQ-14 

generated data, and those steps are described as follows.  Source profiles for 84 source 15 

categories were presented in Reff et al. (2009), which were aggregated from roughly 300 16 

PM2.5 SPECIATE v4.0 profiles and contain estimates of trace metal contributions.  The 84 17 

PM2.5 profiles were further aggregated into 33 categories, consistent with the sources of 18 

interest in this study.  Then the contributions in the 33 profiles were used to speciate the 19 

“other” (sometimes called unidentified) portion of PM2.5 (species name: A25) as output by 20 

CMAQ.  The contributions of the 35 trace species were then used to split the “other” PM2.5 in 21 

to individual species, and results for these species, along with the other primary and 22 

secondary species are used. At the receptor, both the primary and secondary PM2.5 23 

contribution at the receptor are used to determine the new, receptor-oriented, source impact 24 

profiles. This same approach was used to generate receptor-oriented profiles in the preceding 25 

publication by Hu et al. (2014). 26 

The hybrid method produces results that more closely reflect observations than the 27 

original CTM results, which are often biased (Hu et al., 2014b2014). It accounts for more 28 

known source categories than traditional RM approaches (e.g.., 33 versus 6), and it links 29 

sources and observations both temporally and spatially.  Additionally, the hybrid method 30 

generates estimates of the uncertainty in source impact predictions and identifies potential 31 
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errors in source strength and composition.  One limitation of the hybrid method is that results 1 

are only available at receptor locations when observations are available, limiting its spatial 2 

and temporal scope.  In this paper, thea spatial hybrid method is presented and evaluated, and 3 

it extends the benefits of the hybrid CTM-RM method through spatial interpolation. 4 

2.3 Development of Spatiotemporal Fields 5 

Spatial and temporal source impact fields can be developed by combining the hybrid CTM-6 

RM method and geostatistical techniques (see supplementary information for a flow diagram 7 

of the methods)..  Hybrid-generated 𝑅𝑗   values were spatially interpolated for each 8 

observation day using kriging to generate spatial fields of source impact adjustment factors.  9 

Matlab © (v. 7.14.0.739) was used to perform all geostatistical and optimization calculations.  10 

 Daily-averaged spatial fields of CMAQ-DDM source impacts are adjusted by grid-by-11 

grid multiplication of the original fields by the corresponding adjustment factor field, 12 

resulting in spatial fields of hybrid-adjusted source impacts that are available every third day, 13 

as are observations.  In later work, sourceSource impact fields for intervening periods are 14 

developed by interpolation of the 𝑅𝑗′𝑠.𝑅𝑗
  spatial fields.  Temporally interpolating 𝑅𝑗  values 15 

and then applying those adjustments to simulated source impact fields is preferred over 16 

simply interpolating the 1-in-3 day hybrid-adjusted source impact fields because temporally 17 

interpolating adjusted source impacts would smooth the fields, and the day-specific spatial 18 

and temporal variability in the emissions and meteorology captured by the CTM would be 19 

lost.  20 

2.4 Method Evaluation 21 

Performance of the spatial extension was evaluated using a data withholding approach for 22 

which , as well as by comparison with data from the SEARCH and IMPROVE networks. For 23 

data withholding, we removed 10% of CSN the available observations (75 sets of 24 

observations at the monitors with associated speciated PM2.5 data) and re-ran the spatial 25 

hybrid data were randomly removed from the data set for eachmodel.  This led to a total of 75 26 

observation day (N = 75 total removed points).sets being used in the model evaluation.    All 27 

references to “withheld CSN data” refer to these 75 sets of withheld data.  The remaining 28 

90% of the available observations were used to fit the variogram models, which were used 29 

forin kriging to produce spatial fields of 𝑅𝑗 .  𝑅𝑗  values.  Concentrations are reconstructed 30 
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using Eq.  were extracted for grids containing the withheld monitors. The3 with the spatially 1 

interpolated adjustment factors.  Additionally, hybrid CTM-RM optimization is directly 2 

applied to withheld receptorsobservation sites to assess the performance of the kriging model.  3 

ThenConcentrations are reconstructed using Eq. 3 and the spatially interpolated adjustment 4 

factors.  Finally, the original CMAQ-DDM, directly applied hybrid (CTM-RM), and spatial 5 

hybrid (SH) concentrations are compared to observed concentrations at withheld 6 

receptors.measurements at withheld observation locations to evaluate the performance of each 7 

method in simulating concentrations.  Linear regression was used to assess correlations 8 

between observations and modeled concentrations.  Results were also evaluated at SEARCH 9 

and IMPROVE locations, where for each method.   10 

In order to evaluate prediction performance in remote locations and in locations 11 

independent of CSN, CMAQ-DDM and hybridSH concentrations were compared to 12 

observations. at SEARCH and IMPROVE locations.  Note that the application of the CTM-13 

RM hybrid method, as conducted here, did not include SEARCH and IMPROVE data, and 14 

CTM-RM/SH results are independent of those observation data.  The SEARCH and 15 

IMPROVE comparisons also address the issue of spatial representativeness of using only 16 

CSN data to produce spatial fields. This study uses available speciated CSN data over the 17 

entire U.S., thereby providing a very spatially heterogeneous dataset that is representative of 18 

key emissions and meteorology in each U.S. region.  The lack of rural data available may 19 

present uncertainties in the spatial representativeness of 𝑅𝑗 values outside of urban regions. 20 

Also note that 41 species, including total PM, were used for spatial field construction, but 21 

only results for 20 species are presented for comparison of CSN results and 15 species for 22 

SEARCH and IMPROVE results, as measurements for some trace metals are seldom above 23 

measurement detection limit.  The possibility of added uncertainty in the optimization step 24 

due to detection limit issues was considered.  Optimization was tested with the absence of 25 

species with limited availability, and no significant differences in model performance were 26 

found.  The use of the measurement uncertainty in the objective function minimizes the role 27 

of those measurements on days when they are below the detection limit, but still accounts for 28 

the concentration levels being low.  Using all available measurements in the optimization 29 

model is the preferred approach. 30 

 31 
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3 Results 1 

3.1 Hybrid Adjustment Factors 2 

After application of the hybrid CTM-RM method at each of the monitors and spatial 3 

extension over the continental US, it was found that while many of the source impacts were 4 

adjusted relatively little (i.e. 𝑅 ≈ 1.0), dust- and biomass burning-related impacts were often 5 

biased high in the original CMAQ-DDM simulation and therefore considerably reduced (See 6 

supplemental information).   Spatial fields of hybrid adjustment factors are presented for dust, 7 

on-road diesel and gasoline combustion, and woodstove sources (Fig. 3); mean and median 8 

values for 𝑅𝑗
′𝑠 for all sources are presented in the supplemental information (SI Table S2) as 9 

well as source-specific probability distribution functions (SI Fig. S3).  Typically, 𝑅𝑗
′𝑠 were 10 

less than one for dust and woodstove impacts, indicating a high bias in those source impacts 11 

in the base CMAQ-DDM simulations.  Spatial field values for on-road diesel and gasoline 12 

combustion 𝑅𝑗
′𝑠 are generally near one over most of the US, though 𝑅𝑗

′𝑠 for those sources tend 13 

be below one in the southeastern region of the U.S.  The distribution of all 𝑅𝑗 values was 14 

approximately lognormal, and an analysis was performed to determine whether log-15 

transformation of 𝑅𝑗 prior to the kriging step was necessary to reduce bias in source impact 16 

and concentration estimates.  From the analysis it was determined that lognormal 17 

transformation of 𝑅𝑗  values was not necessary, as little difference was observed in 18 

reconstructed concentrations and source impact fields as a result of the transformation. 19 

3.21.1 Refined Spatial Fields 20 

Base CMAQ-DDM spatial fields were refined by applying kriged fields of hybrid adjustment 21 

factors (Fig. 2).  Sources with high occurrences (~ >50%) of adjustment factors less than 1 22 

include biomass burning, metals processing, and natural gas combustion; refined spatial fields 23 

are presented in the supplemental information (SI Figs. S5-7).  Biomass burning includes 24 

impacts from agricultural burning, lawn waste burning, open fires, prescribed burning, 25 

wildfires, woodfuel burning, and woodstoves.  The SH method significantly decreases 26 

impacts from biomass burning on Jan. 4
th

 and 22
nd

 for the eastern U.S. and for portions of the 27 

west coast (See supplemental information), largely driven by the observed potassium and OC 28 

levels being lower than simulated levels.  On average, CMAQ-DDM simulated levels were a 29 

factor of 3.1 ± 1.1 times higher than SH values on Jan. 4
th

, and a factor of 5.2 ± 1.0 times 30 
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higher on Jan. 22
nd

.   Metal processing impacts were reduced for areas highly impacted by 1 

smelting and metal works industries including the Ohio River Valley and Mid-Atlantic 2 

regions.  On average, the base simulated values were 21 ± 21% higher than SH values on Jan. 3 

4
th

, and 25 ± 21% higher on Jan. 22
nd 

for metal processing impacts.  Natural gas combustion 4 

source impacts (area and point sources only) were reduced for the southeastern U.S., the Ohio 5 

River Valley Region, the Gulf States, and parts of California and Texas.  On average, 6 

simulated levels were 35 ± 14% higher than SH values on Jan. 4
th

, and 72 ± 28% higher on 7 

Jan. 22
nd 

for natural gas combustion impacts.      8 

   9 

3.31.1 Refined Source Impacts 10 

Average source contributions to PM2.5 at withheld CSN monitors were ranked from largest to 11 

smallest for the base CMAQ-DDM (without any adjustment), directly applied hybrid (CTM-12 

RM, available at the monitors), and interpolated spatial hybrid (SH) results (Table 1).  The top 13 

three sources were woodstoves, dust, and livestock emissions for base CMAQ-DDM 14 

simulations, the latter capturing the influence of ammonia emissions on the formation of 15 

nitrate.  The livestock category includes impacts from other agricultural/farming activities.  16 

For CTM-RM and SH results, woodstove (10th for both) and dust (13th for CTM-RM, 14th 17 

for SH) were ranked much lower.  Livestock emissions were ranked 1
st
 for both the CTM-RM 18 

and SH hybrid applications.  Source ranking for open fires was reduced from 10
th

 (CMAQ-19 

DDM) to 20
th

 for both the CTM-RM and SH applications.  The fuel oil source impact ranking 20 

increased from 12
th

 for the base CMAQ-DDM simulation to 6
th

 and 5
th

 for CTM-RM and SH 21 

results, respectively.  22 

3.4 Refined Concentration Estimates 23 

In the method evaluation, 10% of the CSN monitors were withheld, and source impacts were 24 

calculated at the monitor location using the SH method for comparison to the species 25 

concentrations found from the observed data (see Supplemental Information).  The mean 26 

concentrations of total PM2.5 for withheld monitors were 11.7 (± 8.3), 16.3 (± 11), 8.59 ± 4.7, 27 

and 9.2 (± 5.7) µg m
-3

 for the observations, CMAQ-DDM, CTM-RM, and SH estimations, 28 

respectively.  Levels of crustal metals (Al, Si, Ca, and Fe), K, and Cl were biased very high in 29 

the base CMAQ-DDM simulation, oftentimes an order of magnitude greater than observations.  30 
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SH concentrations of metals were closer to the CSN observations. Error in simulated (sim) 1 

concentrations is calculated using Eq. 8: 2 

𝐸𝑟𝑟𝑜𝑟(%) = ∑
|𝑜𝑏𝑠𝑖−𝑠𝑖𝑚𝑖|

𝑜𝑏𝑠𝑖
  𝐼

𝑖=1                                                                     (8) 3 

 For example, the error was 295% and 139% for CMAQ-DDM vs. observations and SH vs. 4 

observations, respectively for vanadium; and 1340% and 326% for CMAQ-DDM vs. 5 

observations and SH vs. observations, respectively for manganese.  Mean observed and 6 

modeled concentrations for total PM mass, five major species, and other metals can be found 7 

in the supplemental information.  8 

3.53.1 Spatial Extension Evaluation 9 

CTM-RM and SH species concentrations and adjustment factors at withheld 10 

monitorsobservation locations were compared using regression to evaluate the spatial 11 

interpolation that was performed using kriging. For each observation day (9 days), 10% of 12 

available monitorsobservations were randomly withheld, resulting in a total of 2,475 𝑅𝑗 data 13 

pairspoints (75 withheld sitesobservations locations x 33 source categories).  Five outlying 14 

data pairs (< 0.5%) were removed from this regression (𝑅𝐻𝑦𝑏 > 2). .  Outlying data pairs are 15 

determined by examining the distribution of the directly calculated 𝑅𝑗 values (mean = 0.84, 16 

stdev = 0.48) and the kriged 𝑅𝑗 values (mean = 0.83, stdev = 0.30) at the withheld observation 17 

locations.  Data pairs were removed if either value was more than six standard deviations 18 

from the mean 𝑅𝑗 value.  The removed data points (5 points out of 2475) were well outside of 19 

this range. The remaining CTM-RM and SH factors had a Pearson correlation coefficient of 20 

0.88589, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02 (Fig. 4).  2).   21 

Root mean square errors (RMSE) were calculated for the adjustment factors by source 22 

(Eq. 75): 23 

𝑅𝑀𝑆𝐸𝑗 = √∑ (𝑅𝑗
𝐶𝑇𝑀−𝑅𝑀−𝑅𝑗

𝑆𝐻)
2

𝑁
𝑖=1

𝑛
√∑ (𝑅𝑗

𝐶𝑇𝑀−𝑅𝑀−𝑅𝑗
𝑆𝐻)

2
𝑁
𝑖=1

𝑁
,    j =  1. . J sources, 𝑁 = 75 𝑠𝑖𝑡𝑒𝑠                   24 

(75) 25 

RMSEs for all sources were less than 0.4, with the exception of RMSEs for lawn waste 26 

burning, prescribed burning, and woodstoves (Table S2S1).  This is expected given the 27 
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uncertainty in the burn emissions.  (Table S2).  Sources such as diesel, liquid petroleum gas, 1 

non-road natural gas, and Mexican combustion all had very low RMSEs, mean 𝑅𝑗 values near 2 

1, and median 𝑅𝑗 values near 1.  This indicates that there is little to no adjustment to these 3 

source impacts and that kriging captures the 𝑅𝑗  values calculated by the CTM-RM 4 

application. Mean and median 𝑅𝑗
′𝑠  for each source are also calculated, and 𝑅𝑗  values are 5 

within 20% for most sourcesources (Table S2S1).  The overall mean 𝑅𝑗  value at withheld 6 

monitorsobservation locations for all sources for CTM-RM and SH adjustment factors was 7 

0.84 and 0.83 respectively, indicating a high bias in CMAQ-DDM overall, as expected from 8 

the base model performance evaluation (PM2.5 was biased approximately 40% high). 9 

ProbabilityCumulative distributions were examined for CTM-RM and SH adjustment 10 

factors for each source (SI Fig. S3).  Cumulative distributions of, and adjustment factors were 11 

highly correlated for each source. The spatial (Fig. S1).  Spatial interpolation captured CTM-12 

RM trends for sources dominated by adjustment factors near 0.1, such as dust, lawn waste 13 

burning, prescribed burning, and woodstoves, though did not capture all of the extremely low 14 

adjustments (e.g., meat cooking in some locations).  Sources that found little adjustment 15 

(𝑅𝑗 = 1) include aircraft, diesel combustion (stationary sources), fuel oil burning, Mexican 16 

combustion, non-road liquid petroleum gasoline combustion, and seasalt, and were well 17 

captured by the spatial extension, as demostrated by nearly identical PDFs.  The cumulative 18 

distribution plots exceed 1.0 (x-axis) for dust, lawn waste burning, prescribed burning, and 19 

woodstoves.  These sources are highly variable day-to-day, and CMAQ-DDM 20 

underestimations are possible in cases where the original emissions missed an actual burn or 21 

dust event.  22 

3.6 SEARCH and  IMPROVE Comparison 23 

The spatial extension of the hybridSpatial fields of hybrid adjustment factors are 24 

presented for dust, on-road diesel and gasoline combustion, and woodstove sources (Fig. 3). 25 

Average 𝑅𝑗  values over all observation days are also presented for reference (Figure S1). 26 

Typically, 𝑅𝑗 values were less than one for dust and woodstove impacts, indicating a high bias 27 

in those source impacts in the base CMAQ-DDM simulations.  Spatial field values for on-28 

road diesel and gasoline combustion 𝑅𝑗 are generally near one over most of the US, though 𝑅𝑗 29 

values for those sources tend be below one in the southeastern region of the U.S.   30 
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In general, for an 𝑅𝑗 value less than one, the initial CMAQ-DDM estimate is reduced to 1 

be more consistent with observations.  In turn, for an 𝑅𝑗 value greater than one, the initial 2 

CMAQ-DDM estimate is increased to be more consistent with observations.  An 𝑅𝑗 value of 3 

one indicates that no adjustment to the CMAQ-DDM is necessary to improve consistency 4 

with observations. As such, after application of the SH method, it was found that while many 5 

of the source impacts were adjusted relatively little (i.e., 𝑅𝑗 ≈ 1.0 ), dust- and biomass 6 

burning-related impacts were often biased high in the original CMAQ-DDM simulation and 7 

therefore considerably reduced.   8 

The distribution of all 𝑅𝑗 values was approximately lognormal, and an analysis was 9 

performed to determine whether log-transformation of 𝑅𝑗 values prior to the kriging step was 10 

necessary to reduce bias in source impact and concentration estimates (Fig. S2).  In one 11 

approach, we log-transform the 𝑅𝑗 values at the monitors before kriging, and then the kriged 12 

values are unlogged before use in reconstruction.  In the second approach, we do not log-13 

transform before kriging.  From the analysis it was determined that lognormal transformation 14 

of 𝑅𝑗  values was not necessary, as no significant difference was observed in reconstructed 15 

concentrations and source impact fields as a result of the transformation. 16 

Additionally for method evaluation, withheld CSN observations were compared with 17 

SH concentrations, which were calculated using kriged  𝑅𝑗 values and Eq. 3 (Table S3).  The 18 

mean concentrations of total PM2.5 for withheld observation locations were 11.7 (± 8.3), 16.3 19 

(± 11), 8.59 (± 4.7), and 9.2 (± 5.7) µg m
-3

 for the observations, CMAQ-DDM, CTM-RM, 20 

and SH estimations, respectively.  Levels of crustal metals (Al, Si, Ca, and Fe), K, and Cl 21 

were biased very high in the base CMAQ-DDM simulation, oftentimes an order of magnitude 22 

greater than observations.  SH concentrations of metals were closer to the CSN observations.  23 

Error in simulated (sim) concentrations is calculated using Eq. 4: 24 

𝐸𝑟𝑟𝑜𝑟 =  
1

𝑁
∑

|𝑜𝑏𝑠𝑖−𝑠𝑖𝑚𝑖|

𝑜𝑏𝑠𝑖

𝑁
𝑖=1                                                                     (4) 25 

 In Eq. 4, i represents observations and N represents the total number of observations withheld 26 

for evaluation.  The error was 295% and 139% for CMAQ-DDM vs. observations and SH vs. 27 

observations, respectively for vanadium; and 1340% and 326% for CMAQ-DDM vs. 28 

observations and SH vs. observations, respectively for manganese.  The large remaining 29 

errors stem from the source profiles leading some elements to being biased consistently high 30 

and others low.  Further work to optimize source profiles can reduce residual errors.   31 
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Performance indicators for some species indicate poorer correlation, such as the beta 1 

values for calcium for CMAQ-DDM (beta = 1.22) and SH (beta = 0.16) comparison (Table 2 

S4).  However, all metrics presented must be taken into account and evaluated holistically.  3 

The alpha values for calcium indicate an improvement in performance, as the spatial hybrid 4 

value (alpha = 0.044) is closer to 0.0 than the CMAQ-DDM value (alpha = 0.13).  Further, 5 

mean concentrations at withheld observation locations also indicate better performance of the 6 

SH model, where mean calcium concentrations were 0.041 (observed), 0.18 (CMAQ-DDM), 7 

and 0.050 (SH) (Table S3).  According to the mean concentrations, the SH method performs 8 

best. Throughout the analysis, CMAQ-DDM estimates of trace metal concentrations were 9 

orders of magnitude too high, while SH results were closer to observations. While some 10 

individual metrics indicate better performance of CMAQ-DDM, overall performance of the 11 

SH method is most favorable.  An important point is that the species where performance is 12 

less good are typically those species that have a smaller role in determining source impacts. 13 

For example, those species are very trace and/or have high uncertainties in the measurements 14 

or source profiles relative to their observed concentrations.   15 

The SH method was further evaluated by comparing simulated concentrations to 16 

independent data from the SEARCH and IMPROVE networks (See supplemental 17 

information).Tables S5-6).  The mean concentrations over observation days were compared, 18 

as well as regression statistics for observations versus modeled results.  For the SEARCH 19 

network (N=8), =  8 monitors), average concentrations of 15 species were compared to 20 

observations.  Error in mean concentrations for crustal elements was significantly decreased 21 

(CMAQ-DDM and SH): Al, 2203 to 540%; Si, 1228 to 271%; K, 365 to 61%; Ca, 402 to 61%; 22 

Fe, 260 to 3%; Cu, 231 to 38%; and Se, 63 to 25%.  For the IMPROVE network (N= = 38 23 

monitors), errors in mean concentrations for crustal elements were also significantly 24 

decreased: Al, 704 to 24%; Si, 371 to 24%; K, 599 to 48%; Ca, 361 to 36%; Fe, 334 to 18%; 25 

Cu, 186 to 57%; and Se, 22 to 11%.  The large remaining errors stem from the source profiles 26 

leading to some elements being biased consistently high, others low.  Further work to 27 

optimize source profiles can reduce residual errorsLinear regression metrics are also presented 28 

for SEARCH and IMPROVE monitors (Tables S7-8).  Correlations for all SEARCH and 29 

IMPROVE species did not improve, however esimation performance for most trace metals 30 

and ions improved.   31 

 32 
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3.2 Refined Source Impacts 1 

41 Refined dust and biomass burningDiscussion 2 

CTM-RM and SH adjustment factors are well-correlated for each source category for 3 

withheld monitors.  Kriging captures the original distributions of adjustment factors for each 4 

source as simulated by the CTM-RM analysis.  Spatial interpolation of hybrid adjustment 5 

factors is well-suited for providing spatial fields of refined source impacts for multiple 6 

distinct source categories.  Kriged adjustment factors also provide refined source contribution 7 

estimates that are more consistent with observations than CMAQ-DDM.   8 

The order of source contributions at withheld monitors for the CTM-RM and SH applications 9 

compared well when ranked by magnitude in descending order, though often differed greatly 10 

from the base CMAQ-DDM application.  The difference in rankings between CTM-RM and 11 

SH contributions was, at most, 2 positions.  The top three sources of primary PM2.5 for 12 

January 2004, based on source emissions, were dust, woodstoves, and coal combustion, 13 

estimated at 1275, 5301, and 3407 metric tons per day, respectively (See supplemental 14 

information).  However, uncertainties associated with dust and woodstove emissions are 15 

much higher than most of the other sources, a factor of 10 and 5 respectively (Hu et al. 2014; 16 

Hanna et al. 1998; Hanna et al. 2001). This uncertainty is driven, in part, by source variability.  17 

This large uncertainty and potential bias is reflected in the large shift in rankings for dust and 18 

woodstove source contributions to PM2.5.  Other biomass burning sources such as lawn waste 19 

burning and wildfires have similarly large emissions uncertainties, and likely large temporal 20 

variabilities, and their rankings were also significantly decreased.  Coal combustion, which 21 

includes secondary formation of sulfate, remains in the top three sources for average hybrid 22 

PM2.5 source contributions at withheld monitors, as its emissions uncertainties are fairly low 23 

due to the availability of continuous emission monitoring data. 24 

Secondary formation processes increase the impact of coal combustion, biogenic and 25 

livestock emissions relative to their initial primary PM contribution.  Coal combustion was 26 

ranked 9th, 4th, and 3rd for CMAQ-DDM, CTM-RM, and SH hybrid contributions, 27 

respectively. January 2004 primary PM emissions estimates for biogenic and livestock were 28 

ranked 33rd and 31st, respectively.  However, CMAQ-DDM, CTM-RM, and SH hybrid 29 

contributions ranked both sources significantly higher (biogenic rankings: 14th, 11th, and 9th, 30 

respectively; livestock rankings: 3rd, 1st, and 1st, respectively).  Although primary PM2.5 31 

emissions from these sources are not large, secondary processes lead to high source 32 
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contributions.  Biogenic sources emit large quantities of volatile organic compounds which go 1 

on to form secondary organic aerosols.  Livestock emissions, (i.e., gaseous ammonia), react 2 

with sulfate, nitrate, and other acids to form ammonium salts.  The hybrid CTM-RM method 3 

captures and refines impacts from sources that contribute precursors of PM2.5.  4 

Refined biomass burning and dust source impacts led to better agreement between 5 

simulated and observed concentrations of crustal (Al, Ca, Fe, Si) and biomass burning-6 

derived elements (Cl, K).  Original CMAQ-DDM simulationsestimates were biased very high 7 

for these species compared to observed concentrations.observations.  This is due to the 8 

apparently high bias in source impact  profile estimates for biomass burning sources, which 9 

don’t take into account long-range transport and deposition of biomass burning-related PM.  10 

Results suggest that due to atmospheric transformation processes, the source impact profiles 11 

are in error for some species, similar to the findings in Balachandran et al. (2013).  12 

Observational dataObservations for some elemental species (Mg, P, V, Se) were highly 13 

influenced by measurement limitations (i.e.., at or below MDL) and showed the poorest 14 

correlation with simulated observations.modeled concentrations.  Additionally, conversion of 15 

observed carbon species between analytical methods, from total optical transmittance to total 16 

optical reflectance equivalents, introduced potential bias into concentration comparisons.  17 

However, otherOther studies have shown that conversions may overcorrect observations of 18 

carbon species (Balachandran et al. 2013).   19 

In summary, theAverage source contributions to PM2.5 at withheld CSN observation 20 

locations were ranked from largest to smallest for base CMAQ-DDM, CTM-RM, and SH 21 

(Table 1).  The top three sources were woodstoves, dust, and livestock emissions for base 22 

CMAQ-DDM simulations, the latter source capturing the influence of ammonia emissions on 23 

the formation of nitrate.  The livestock category includes impacts from agricultural and 24 

farming activities.  For CTM-RM and SH results, woodstove (10
th

 for both) and dust (13
th

 for 25 

CTM-RM, 14
th

 for SH) were ranked much lower than for CMAQ-DDM.  Livestock emissions 26 

were ranked 1
st
 for both the CTM-RM and SH hybrid applications.  Source ranking for open 27 

fires was reduced from 10
th

 (CMAQ-DDM) to 20
th

 for both the CTM-RM and SH 28 

applications.  The fuel oil source impact ranking increased from 12
th

 for the base CMAQ-29 

DDM simulation to 6
th

 and 5
th

 for CTM-RM and SH results, respectively.  The order of 30 

source contributions at withheld observation locations for the CTM-RM and SH applications 31 
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compared well, though often differed greatly from the base CMAQ-DDM rankings.  The 1 

difference in rankings between CTM-RM and SH contributions was, at most, 2 positions.   2 

The top three sources of primary PM2.5 for January 2004, based on source emissions, 3 

were dust, woodstoves, and coal combustion, estimated at 1275, 5301, and 3407 metric tons 4 

per day, respectively (Table S2).  However, uncertainties associated with dust and woodstove 5 

emissions are much higher than most of the other sources, a factor of 10 and 5, respectively 6 

(Hanna et al., 1998; Hanna et al., 2001; Hu et al., 2014). This uncertainty is driven in part by 7 

source variability.  The large uncertainty and potential bias is reflected in the large shift in 8 

rankings for dust and woodstove source contributions to PM2.5.  Other biomass burning 9 

sources such as lawn waste burning and wildfires have similarly large emissions uncertainties 10 

and likely large temporal variabilities, and their rankings were also significantly decreased.   11 

Coal combustion includes the secondary formation of sulfate and remains in the top 12 

three sources for average SH PM2.5 contributions, as its emissions uncertainties are low due to 13 

the availability of continuous emission monitoring data.  SO2 emissions are large (Jan. 2004 14 

domain totals: 72924.7 metric tons per day), as are NOX emissions (74619.7 metric tons per 15 

day) (Table S9).  During the study period, coal combustion had the highest contribution to 16 

SO2 emissions (35080.3 metric tons/day) and the second highest contribution to NOX 17 

emissions (14250.1 metric tons per day) behind mobile sources.  The source impacts found 18 

here account for the transformation of these gaseous emissions from coal combustion. 19 

Secondary formation processes increase the impact of coal combustion, biogenic and 20 

livestock emissions relative to their initial primary PM contribution.  January 2004 primary 21 

PM emissions estimates for biogenic and livestock were ranked 33rd and 31st, respectively.  22 

However, CMAQ-DDM, CTM-RM, and SH hybrid contributions ranked both sources 23 

significantly higher (biogenic rankings: 14th, 11th, and 9th, respectively; livestock rankings: 24 

3rd, 1st, and 1st, respectively).  Although primary PM2.5 emissions from these sources are not 25 

large, secondary processes and emissions from gaseous precursors led to high source 26 

contributions (Table S9).  Biogenic sources emit large quantities of volatile organic 27 

compounds which go on to form secondary organic aerosols.  Livestock emissions of gaseous 28 

ammonia react with sulfate, nitrate, and other acids to form ammonium salts.  Therefore, the 29 

SH method captures and refines impacts from sources that contribute precursors of PM2.5.  30 
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3.3 Refined Spatial Fields 1 

Base CMAQ-DDM spatial fields were refined by applying 𝑅𝑗 fields for each source and 2 

on each observation day.  An example of the adjustment can be found in Figure 4, where the 3 

CMAQ-DDM spatial field of dust impacts is adjusted on January 4, 2004.   Sources with high 4 

occurrences (~ >50%) of adjustment factors less than 1 include biomass burning, metals 5 

processing, and natural gas combustion, and refined spatial fields for these sources are 6 

presented in the supplemental information (SI Figs. S5-7).  Biomass burning includes impacts 7 

from agricultural burning, lawn waste burning, open fires, prescribed burning, wildfires, 8 

woodfuel burning, and woodstoves.  The SH method significantly decreases impacts from 9 

biomass burning on Jan. 4
th

 and 22
nd

 in the eastern U.S. and for portions of the west coast (Fig. 10 

S5), largely driven by the observed potassium and OC levels being lower than simulated 11 

levels.  On average, CMAQ-DDM simulated levels were a factor of 3.1 (± 1.1) times higher 12 

than SH values on Jan. 4
th

, and a factor of 5.2 (± 1.0) times higher on Jan. 22
nd

.   Metal 13 

processing impacts were reduced for areas highly impacted by smelting and metal works 14 

industries including the Ohio River Valley and Mid-Atlantic regions (Fig. S6).  On average, 15 

the CMAQ-DDM values were 21 (± 21) % higher than SH values on Jan. 4
th
, and 25 (± 21) % 16 

higher on Jan. 22
nd 

for metal processing impacts.  Natural gas combustion impacts (area and 17 

point sources only) were reduced for the southeastern U.S., the Ohio River Valley Region, the 18 

Gulf States, and parts of California and Texas (Fig. S7).  On average, CMAQ-DDM levels 19 

were 35 (± 14) % higher than SH values on Jan. 4
th

, and 72 (± 28) % higher on Jan. 22
nd 

for 20 

natural gas combustion impacts.  21 

 Refined spatial fields  of Jan. 2004 averaged source impacts are presented for eight 22 

sources: (c,d) dust, (e,f) on-road mobile sources, (g,h) coal combustion, (i,j) sea salt, (k,l) 23 

metals-related sources, (m,n) fuel oil combustion, (o,p) biomass burning, and (q,r) agricultural 24 

activities (Fig. 5).  Total PM2.5 concentration fields are also included with overalapped 25 

observed concentrations from January 28
th

 (a,b).  The CMAQ-DDM spatial field 26 

overestimates concentrations in the Eastern U.S.,  while overlapped concentrations agree 27 

more with spatial hybrid results.  Modeled concentrations at monitors in mountainous areas, 28 

such as Salt Lake City, Utah, are underestimated due to local meterological conditions 29 

(Gillies et al., 2010, Kelly et al., 2013).  Wintertime temperature inversions, which cause 30 

stagnation in air ciruclation and consequently high air pollution episodes in industrial vallies, 31 

are challenging to capture in models.   32 



 

 21 

Improved spatial field correlation is reflected in monthly averaged spatial fields (Fig 5).  1 

SH dust impacts are greatly reduced domain-wide as compared to CMAQ-DDM. Monthly-2 

averaged refinement of biomass burning, where impacts were also greatly reduced,  and 3 

metals-related source impact fields are consistent with results previously mentioned for Jan. 4 

4
th

 and Jan. 22
nd

.  Sea salt impacts are localized to coastal areas as expected, and agricultural 5 

activity most greatly impact the midwestern U.S., an area dominated by farm lands.  Coal and 6 

fuel oil combustion impacts are highest in the eastern U.S. and western Mexico (fuel oil only) 7 

and were adjusted very little as compared to the original CMAQ-DDM field.    8 

4 Discussion 9 

The SH method uses observations and modeled concentrations of species to adjust 10 

impacts on a source by source basis to provide spatially and temporally detailed source impact 11 

fields.  Figure 5 shows  spatial fields of source impacts for soil/crustal material, coal 12 

combustion, and other sources, which demonstrates the spatial and temporal completeness of 13 

the data that is provided by the SH method. The SH method also captures the impacts of 14 

secondary aerosol formation from precursor emission sources. Hybrid adjustment factors can 15 

be used to estimate the amount of change in emissions necessary for modeled results to better 16 

reflect observations, as emissions are roughly proportional to source impacts for primary 17 

sources. (Hu et al. 2015).  Kriging is an effective spatial interpolation method for spatially 18 

extending the CTM-RM model and generating spatial fields of adjustment factors.  Adjusted 19 

CMAQ-DDMKriging does not introduce significant error, as the adjusted fields maintain the 20 

spatial and temporal variability of the original fields, and this application led to simulated 21 

PM2.5 mass concentrations being closer to observations.  Adjusted spatial fields of source 22 

impacts capture prior knowledge of emissions impacts, meteorology, and chemistry. Kriging 23 

does not introduce significant error, as the adjusted spatial fields maintain the spatial and 24 

temporal variability of the original source impact fields, and this application led to simulated 25 

PM2.5 mass concentrations being closer to observations.  Applying the hybrid model and 26 

spatial extension to original CMAQ-DDM source impact estimates also improves simulated 27 

estimates of crustal and trace metalsThe SH method also improves simulated estimates of 28 

crustal and trace metal concentrations.   29 

TheThe SH method is being developed both to develop spatio-temporally accurate 30 

source impact fields that are consistent with observations, and also provides an approach to 31 

increase our understanding of the spatiotemporal characteristics of source impacts in the 32 
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United States.  We find widespread adjustment to biomass burning and dust impacts (Rj less 1 

than one).   These source impacts are consistent with observations, emissions estimates, and 2 

atmospheric transport and transformation. The SH method is also novel in that, although some 3 

sources may not emit a certain pollutant, there still may be some interactions with emissions 4 

from other sources leading to those species being part of the source impact.  For example, in 5 

the case of agricultural fertilizer emissions, although NOx is not directly emitted, the 6 

influence on nitrate concentrations is calculated. Although traditionally not quantified in 7 

receptor-oriented source apportionment methods, taking into account inter-source interactions 8 

is important for determining the primary and secondary impacts of sources on air quality.  9 

This hybrid source- and receptor-oriented approach takes this into account and can determine 10 

impacts from elusive source interactions.  However, this also shows that the formation of 11 

secondary species is often dependent upon multiple sources, and the impact of one source is 12 

dependent upon other sources, leading to ambiguity in source attribution.  The approach here 13 

uses the sensitivities at current conditions, though also conducts a mass balance on a species-14 

by-species basis minimizing any overall bias in the source impact attributions. 15 

Spatial hybrid inputs, methods, and results have inherent uncertainties and challenges 16 

that are associated with implementation.  Input uncertainties include measurement error and 17 

challenges are posed with temporal availability and spatial representativeness of 18 

concentrations.  Emissions inputs for each source are available at different temporal and 19 

spatial scales.  For instance point source emissions are available at hourly intervals in some 20 

cases, while dust emissions are highly variable, both spatially and temporally. Area source 21 

emissions are estimated at weekly or monthly intervals and averaged source fingerprints for 22 

the primary components of the PM2.5 emissions are used, which removes the consideration of 23 

locally-varying source composition. Physical processes in CMAQ-DDM are uncertain as 24 

modeling atmospheric behavior is a complex undertaking. Also, first-order sensitivity 25 

approaches may not capture all nonlinearities in source-receptor relationships. SH results are 26 

also subject to potential systematic bias from the optimization and kriging steps, though our 27 

evaluation suggests those biases are minimal.   28 

5 Conclusion 29 

The spatial hybrid model is an effective approach for reducing the error in simulated 30 

source impacts spatial fields through statistical optimization, instead of rerunning CMAQ-31 

DDM which is more computationally expensive.  Moreover, the methods presented generate 32 
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daily, spatially complete fields that can be utilized by atmospheric scientists, air quality 1 

managers, and epidemiologists in health-related analyses.Despite the several points of 2 

uncertainty, SH source apportionment can provide daily, spatially complete source impacts 3 

across a large domain over a long time period.  The SH technique does not necessarily isolate 4 

specific atmospheric processes, as it is not a chemistry or physics model.  It is a model based 5 

on statistics with the assumption that by incorporating observations (truth) and modeled 6 

atmospheric processes (prediction), two results can be statistically combined together to yield 7 

a better approximation of source impacts.  Efforts are continual for reducing uncertainties, 8 

increasing the time span of available results, and evaluating estimations with other data 9 

sources, such as satellite imagery and independent field measurements.  In future studies, the 10 

model will be extended temporally to generate daily, adjusted spatial fields for the continental 11 

U.S. for multiple years and to develop improved source profiles for emissions 12 

characterization.  Results from SH implementation are beneficial to policy makers, public 13 

health analysts, and other air quality scientists that use spatially and temporally complete 14 

source impact data in studies where outcomes influence human welfare. 15 

 16 

 17 
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Tables 1 

Table 1.  Source category abbreviations with average CMAQ-DDM, CTM-RM, and SH (spatial hybrid) source contributions to PM2.5 2 

concentrations for withheld CSN monitorsobservation locations (N= = 75 monitorsobservations) for January 2004.  Note: All averages and 3 

standard deviations are expressed in µg m
-3

.  Average total mass overof withheld monitors for observations, and corresponsing CMAQ-DDM, 4 

CTM-RM, and SH wasestimates were 11.7 (± 8.3), 16.3 (± 11), 8.59 ± 4.7, and 9.2 (± 5.7) µg m
-3

.  NR = Nonroad, CM = Combustion.  5 

Source Categories Abbreviation CMAQ-DDM CTM-RM SH Hybrid 

  Avg. St. Dev. Rank Avg. St. Dev. Rank Avg. St. Dev. Rank 

Agricultural Burning AGRIBURN 0.0040 0.003 25 0.0016 0.011 26 0.0012 0.0052 28 

Aircraft Emissions AIRCRAFT 0.0038 0.013 26 0.0037 0.013 25 0.0038 0.013 25 

Biogenic Emissions BIOGENIC 0.074 0.22 14 0.069 0.22 11 0.074 0.22 9 

Coal CM COALCMB 0.16 0.39 9 0.15 0.38 4 0.15 0.38 3 

Diesel CM. DIESELCM 0.00060 0.0017 30 0.0006 0.0017 30 0.0006 0.0017 30 

Dust DUST 0.36 0.095 2 0.061 0.22 13 0.048 0.12 14 

Fuel Oil CM FUELOILC 0.14 0.54 12 0.14 0.62 6 0.14 0.63 5 

Livestock Emissions LIVEST2 0.31 0.89 3 0.31 0.85 1 0.31 0.88 1 

Liquid Petroleum Gas CM LPGCMB 0.0043 0.013 24 0.0043 0.013 24 0.0043 0.013 24 

Lawn Waste Burning LWASTEBU 0.10 0.032 13 0.018 0.067 21 0.010 0.026 22 
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Metal Processing MEATALPR 0.18 0.16 7 0.12 0.70 7 0.064 0.22 12 

Meat Cooking MEATCOOK 0.034 0.089 19 0.034 0.10 16 0.032 0.10 17 

Mexican CM MEXCMB_M 0.00070 0.0028 29 0.0007 0.0028 29 0.0007 0.0028 29 

Mineral Processing MINERALP 0.030 0.062 21 0.026 0.075 19 0.024 0.076 19 

Natural Gas CM NAGASCMB 0.17 0.21 8 0.11 0.36 8 0.078 0.20 8 

NR Diesel CM NRDIESEL 0.14 0.48 11 0.14 0.73 5 0.14 0.73 4 

NR Fuel Oil CM NRFUELOI 0.010 0.036 23 0.010 0.041 23 0.010 0.039 23 

NR Gasoline CM NRGASOL 0.063 0.22 16 0.061 0.23 14 0.064 0.23 13 

NR Liquid Petroleum Gas CM NRLPG 0.0014 0.0056 28 0.0014 0.0056 27 0.0014 0.0056 26 

NR Natural Gas CM NRNAGAS 0.0005 0.0014 31 0.0005 0.0014 31 0.0005 0.0014 31 

Other NR Sources NROTHERS 0.0005 0.0012 32 0.0005 0.0012 32 0.0005 0.0012 32 

Open Fires OPENFIRE 0.15 0.099 10 0.021 0.11 20 0.017 0.10 20 

Onroad Diesel CM ORDIESEL 0.070 0.17 15 0.066 0.19 12 0.068 0.19 11 

Onroad Gasoline CM ORGASOL 0.27 0.60 4 0.20 0.54 2 0.24 0.62 2 

Other CM Sources OTHERCMB 0.040 0.072 18 0.029 0.14 18 0.026 0.11 18 

Other PM Sources OTHERS2 0.18 0.22 6 0.10 0.28 9 0.10 0.28 7 

Prescribed Burning PRESCRBU 0.032 0.054 20 0.031 0.24 17 0.032 0.24 16 
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Railroad Emissions RAILROAD 0.013 0.046 22 0.013 0.046 22 0.013 0.045 21 

Seasalt SEASALT 0.0001 0.0005 33 0.0001 0.0005 33 0.00 0.0 33 

Solvent Emissions SOLVENT 0.051 0.094 17 0.044 0.14 15 0.040 0.13 15 

Wildfires WILDFIRE 0.0018 0.0034 27 0.0012 0.0033 28 0.0013 0.00 27 

Woodfuel Burning WOODFUEL 0.22 0.28 5 0.20 1.3 3 0.12 0.90 6 

Woodstoves WOODSTOV 0.62 0.44 1 0.083 0.29 10 0.069 0.28 10 



 

 35 

Figure Captions 1 

Figure 1. Modeling domain (dotted, red line) and CSN, SEARCH, and IMPROVE monitors 2 

used for model development, application, and evaluation.   3 

 4 

Figure 2. CTM-RM vs. Spatial Hybrid adjustment factors for withheld CSN observations.  5 

Regression statistics: intercept, α = 0.14 ± 0.02; slope, β = 0.84 ± 0.02; and correlation 6 

coefficient, r = 0.89. 7 

 8 

Figure 3. Spatial fields of kriged adjustment factors (Rj
SH

) for dust, on-road diesel 9 

combustion, on-road gasoline combustion, and woodstove sources for January 4, 2004. 10 

Adjustment factors at CSN monitors (denoted by circles) were generated using hybrid (CTM-11 

RM) source apportionment. Note that each figure has a different scale. 12 

 13 

Figure 34. Hybrid-kriging adjustment of the dust impacts on PM2.5 on January 22, 2004. (a) 14 

Original CMAQ-DDM simulation of dust source impacts. (b) Spatial field of hybrid 15 

adjustment factors for dust (Rj
SH

). (c) Adjusted spatial field of dust source impacts.   16 

 17 

Figure 4. 5. Average CMAQ-DDM and spatial hybrid source impacts on PM2.5 for 18 

observation days in Jan. 2004 for eight source categories.  Total PM2.5 with overlapped PM2.5 19 

observations for Jan. 28
th

 (a,b). Impact of (c,d) soil/crustal material, (e,f) traffic-related 20 

sources, (g,h) coal combustion, (i,j) sea salt aerosol, (k,l) metals-related sources, (m,n) fuel oil 21 

combustion, (o,p) biomass burning, and agricultural activities (q,r). CTM-RM vs. Spatial 22 

Hybrid adjustment factors for withheld CSN monitors.  Regression statistics: intercept, α = 23 

0.14 ± 0.02; slope, β = 0.84 ± 0.02; and correlation coefficient, r = 0.885. 24 
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