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Abstract

Here we present a three-dimensional fluid dynamic solver that simulates debris flows as a
mixture of two fluids (a Coulomb-Viscoplastic model of the gravel mixed with a Herschel-
Bulkley representation of the fine material suspension) in combination with an additional un-
mixed phase representing the air and the free surface. We link all rheological parameters to5

the material composition, i. e., to water content, clay content and mineral composition, con-
tent of sand and gravel, and the gravel’s friction angle; the user must specify only a single
free model parameter

✿✿✿
two

✿✿✿✿
free

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿✿
parameters. The Volume-of-Fluid (VOF

✿✿✿
VoF) approach

is used to combine the mixed phase and the air phase into a single cell-averaged Navier-
Stokes equation for incompressible flow, based on code adapted from standard solvers of10

the Open-Source CFD software OpenFOAM. The VOF
✿✿✿✿
This

✿✿✿✿✿✿✿✿✿✿
effectively

✿✿✿✿✿✿
single

✿✿✿✿✿✿
phase

✿✿✿✿✿✿✿
mixture

✿✿✿✿
VoF method saves computational costs compared to drag-force

✿✿✿
the

✿✿✿✿✿
more

✿✿✿✿✿✿✿✿✿✿✿✿
sophisticated

✿✿✿✿✿
drag

✿✿✿✿✿
force based multiphase models. Thus depth-averaging is not necessary

✿✿
in

✿✿✿✿✿✿
many

✿✿✿✿✿✿
cases

and complex three-dimensional flow structures can be simulated while accounting for the
pressure- and shear-rate-dependent rheology.15

1 Introduction

Debris flows typically occur in steep mountain channels. They are characterized by un-
steady flows of water together with different contents of clay, silt, sand, gravel, and larger
particles, resulting in a dense and often rapidly moving fluid mass. They are often triggered
by heavy rainfall and can cause massive damage (Petley et al., 2007; Hilker et al., 2009).20

Their importance has increased due to intense
✿✿✿✿✿✿✿✿
extensive

✿
settlement in mountainous regions

and also due to their sensitivity to climate change (Guthrie et al., 2010). Their damage po-
tential is not limited to direct impact; severe damage can also be caused by debris flows
blocking channels and thus inducing over-topping of the banks by subsequent flows.

Modeling debris flows is a central part of debris-flow research, because measuring the25

detailed processes in debris-flow experiments or in the field is challenging. It is still uncertain
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how laboratory tests can be scaled to represent real flow events, and the inhomogeneous
mixture of gravel and fine material brings about interactions of granular flow and viscous
forces like

✿✿✿✿
such

✿✿✿
as

✿
drag and pore-pressure that are difficult to track with the present mea-

surement techniques at reasonable cost. As a consequence, the rheological behavior of
debris flow material is

✿✿✿✿✿✿✿
remains

✿
incompletely understood.5

Typically, current numerical modeling approaches cannot predict run-out distances or im-
pact pressures of debris flows in known terrain without prior parameter calibration, based
on simulating previous well-documented events that happened at the same site. This clearly
represents a challenge in practical applications, because reliable calibration data are rarely
available. In addition, the interactions between the granular and fluid phases, and the10

dynamic change in granular and fluid concentrations during the flow process, limit simple
models to the narrow range of simulations that they have been calibrated for, where the
fitted parameters account for these interactions . Complex models such as

✿✿✿✿
Due

✿✿
to

✿✿✿✿
the

✿✿✿✿✿✿✿✿
complex

✿✿✿✿✿✿✿
physics

✿✿✿
of

✿✿✿✿✿✿
debris

✿✿✿✿✿✿
flows,

✿✿✿✿
real

✿✿✿✿✿
flows

✿✿✿✿
can

✿✿✿✿✿
only

✿✿✿
be

✿✿✿✿✿✿✿✿✿✿
accurately

✿✿✿✿✿✿✿✿✿
described

✿✿✿
by

✿✿✿✿✿✿✿✿✿✿
dynamical

✿✿✿✿✿✿✿
models

✿✿✿✿
that

✿✿✿✿✿✿✿
include

✿✿✿✿✿✿✿
strong

✿✿✿✿✿✿
phase

✿✿✿✿✿✿✿✿✿✿✿
interactions

✿✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿✿
granular

✿✿✿✿
and

✿✿✿✿✿✿✿✿
viscous

✿✿✿✿✿
fluid

✿✿✿✿✿✿✿
phases15

✿✿✿✿
with

✿✿✿✿✿✿✿
several

✿✿✿✿✿✿✿✿
physical

✿✿✿✿✿✿✿✿✿✿✿✿
parameters.

✿✿✿✿✿✿
From

✿✿
a
✿✿✿✿✿✿✿✿✿
practical

✿✿✿✿✿✿✿✿✿✿✿
application

✿✿✿✿✿
point

✿✿✿
of

✿✿✿✿✿
view

✿✿✿✿
and

✿✿✿✿✿✿✿
guided

✿✿
by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
considerations

✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
computational

✿✿✿✿✿✿✿✿✿✿
efficiency,

✿✿✿✿✿
here

✿✿✿✿
we

✿✿✿✿✿✿✿✿
neglect

✿✿✿✿✿
such

✿✿✿✿✿✿✿
phase

✿✿✿✿✿✿✿✿✿✿✿
interactions

✿✿✿
and

✿✿✿✿✿✿✿✿
restrict

✿✿✿✿✿✿✿✿✿
ourselves

✿✿✿
to

✿✿✿
an

✿✿✿✿✿✿✿✿✿✿
effectively

✿✿✿✿✿✿✿✿✿✿✿✿
single-phase

✿✿✿✿✿✿✿✿
mixture

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿✿✿
simulation.

✿✿✿
All

✿✿✿✿✿✿✿✿✿
currently

✿✿✿✿✿✿✿
applied

✿✿✿✿✿✿
debris

✿✿✿✿✿
flow

✿✿✿✿✿✿✿
models

✿✿✿✿✿
that

✿✿✿✿
use

✿✿
a
✿✿✿✿✿✿✿✿✿✿
two-phase

✿✿✿✿✿✿✿✿✿✿✿
description

✿✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
debris-flow

✿✿✿✿✿✿✿✿
material

✿✿✿
are

✿
depth-averaged fluid simulations coupled to three dimensional particle methods are20

associated not only with high computational costs but also with a large number of model
parameters, making model calibration the key issue for application to specific cases

✿
or

✿✿✿✿
2D.

✿✿✿✿✿
Three

✿✿✿✿✿✿✿✿✿✿✿✿
dimensional

✿✿✿✿✿✿✿✿✿✿✿
debris-flow

✿✿✿✿✿✿✿✿
models

✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿
momentum

✿✿✿✿✿✿✿✿✿✿
exchange

✿✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿
phases

✿✿✿✿✿✿
have,

✿✿
up

✿✿✿
to

✿✿✿✿
now,

✿✿✿✿✿✿
been

✿✿✿✿✿✿
limited

✿✿✿
to

✿✿✿✿✿✿✿✿✿
academic

✿✿✿✿✿✿
cases

✿✿✿✿
due

✿✿✿
to

✿✿✿✿
their

✿✿✿✿✿
high

✿✿✿✿✿✿✿✿✿
numerical

✿✿✿✿✿✿
costs.

✿✿✿✿✿
The

✿✿✿✿✿✿✿✿
currently

✿✿✿✿✿✿✿✿
available

✿✿✿✿✿✿✿
models

✿✿✿✿✿
also

✿✿✿✿✿✿✿
contain

✿✿✿✿✿
many

✿✿✿✿✿✿✿✿✿✿✿
parameters

✿✿✿✿
that

✿✿✿✿✿
must

✿✿✿
be

✿✿✿✿✿
fitted

✿✿
to

✿✿✿✿✿✿✿✿✿✿✿✿
site-specific

✿✿✿✿
field

✿✿✿✿✿
data,25

✿✿✿✿✿✿✿✿
severely

✿✿✿✿✿✿✿
limiting

✿✿✿✿
their

✿✿✿✿✿✿✿✿✿✿✿✿
applicability

✿✿
to

✿✿✿✿✿✿✿✿✿✿
real-world

✿✿✿✿✿✿✿✿✿
problems

✿✿✿✿
and

✿✿✿✿✿
their

✿✿✿✿✿✿✿✿✿✿
usefulness

✿✿✿
for

✿✿✿✿✿✿✿✿✿
scientific

✿✿✿✿✿✿✿✿✿✿
hypothesis

✿✿✿✿✿✿✿
testing.
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This limits the possibilities of using debris flow models as a valid standard application
in practice, because the user’s ability to estimate values of poorly constrained parameters
influences the results.

Here, we present an improved multiphase modeling approach as an alternative. We pro-
vide a coarse but effective solution linking the rheological model of the debris-flow material5

to field values such as grain size distribution and water content. The approach aims to link
the knowledge of field experts for estimating the release volume and material composition
with recent advances that account for complex flow phenomena using three-dimensional
computational fluid dynamics

✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿
reasonable

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
computational

✿✿✿✿✿
costs. The parameters of the

two resulting rheology models for the two mixing fluids are linked to material properties10

such that the model setup can be based on material samples collected from the field,
yielding a model that has only one free parameter

✿✿✿
two

✿✿✿✿
free

✿✿✿✿✿✿✿✿✿✿✿✿
parameters

✿
for calibration.

One mixing phase
✿✿✿✿✿✿✿
mixture

✿✿✿✿✿✿✿✿✿✿✿
component

✿
represents the suspension of finer particles with

water (also simply called slurry in this paper) and a second mixing phase
✿✿✿✿✿✿✿✿✿✿
component

✿
ac-

counts for the pressure-dependent flow behavior of gravel.
✿✿✿✿
The

✿✿✿✿
two

✿✿✿✿✿✿✿✿✿✿✿
components

✿✿✿✿✿✿
result

✿✿
in

✿✿
a15

✿✿✿✿✿✿
debris

✿✿✿✿
bulk

✿✿✿✿✿✿✿
mixture

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿✿✿✿✿
contributions

✿✿
of

✿✿✿✿
the

✿✿✿✿
two

✿✿✿✿✿✿✿✿
different

✿✿✿✿✿✿✿✿
rheology

✿✿✿✿✿✿✿✿
models,

✿✿✿✿✿✿✿✿✿
weighted

✿✿✿
by

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
corresponding

✿✿✿✿✿✿✿✿✿✿✿
component

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations. A third gas phase

✿✿✿✿✿✿✿✿✿✿
component

✿
is kept unmixed to

model the free surface. The focus is on the flow and deposition process and the release
body needs to be user-defined. Although , some aspects of material mobilization can be
addressed by locally altering the concentration of the slurry phase and the water content of20

the slurry defined in the material properties, this is not within the scope of this paper.
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Table 1. Nomenclature

α phase fraction
αm fraction of the debris mixture (slurry + gravel)
U velocity
Uc inter-facial compression velocity
t = time
T, Ts deviatoric viscous stress tensor,

✿✿✿✿✿✿✿✿
Cauchy

✿✿✿✿✿✿
stress

✿✿✿✿✿✿
tensor

✿
(s for granular phase)

D strain rate tensor
ρ phase-averaged density, ρi(i= 1,2,3) density of phase i, ρexp is a bulk density in experiment
p, pd pressureresp. ,

✿
modified pressure

Ddiff diffusion constant
φ volumetric flux (φρ denotes mass flux, φr a surface-normal flux)
I identity matrix
µ phase-averaged dynamic viscosity, µi(i= 1,2,3) viscosity of phase i

µ0 maximal dynamic viscosity
µmin minimal dynamic viscosity
µs Coulomb-viscoplastic dynamic viscosity
∇ gradient
σ free surface tension coefficient
κ free surface curvature
g gravitational acceleration
τ shear stress
τy yield stress of slurry phase (τy−exp is a measured yield stress)
k Herschel-Bulkley consistency factor
n Herschel-Bulkley exponent
γ̇ shear rate
C volumetric solid concentration
P0 volumetric clay concentration
P1 reduced P0 in case of high clay content
τ00 free model parameter (affects slurry phase rheology)
τ0 modified τ00 in case of high C

τ0s yield stress of granular phase modeled with Coulomb friction
β slope angle
δ internal friction angle approximated as angle of repose
my constant model parameter (would affect gravel phase rheology)
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2 Modeling approach

The debris flow material can be subdivided into
✿✿✿✿✿✿✿✿✿✿
considered

✿✿✿
as

✿
a combination of a gran-

ular phase mixed with
✿✿✿✿✿✿✿✿✿✿✿
component

✿✿✿✿
and

✿
an interstitial fluid composed of the fine mate-

rial suspension. The latter was successfully modeled in the past as a shear-rate de-
pendent Herschel-Bulkley fluid

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Coussot et al., 1998). Because pressure and shear drive5

the energy dissipation of particle-to-particle contacts, the shear rate substantially in-
fluences the energy dissipation within the granular phase. While the two-phase mod-
els of and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Iverson and Denlinger (2001)

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Pitman and Le (2005)

✿
treated the granular

phase as a shear-rate independent Mohr-Coulomb plastic material, dry granular ma-
terial has been successfully modeled as a viscoplastic fluid by , , and

✿✿✿✿✿✿✿✿✿✿✿✿✿
Ancey (2007),10

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Forterre and Pouliquen (2008),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Balmforth and Frigaard (2007)

✿✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Jop et al. (2006). We

follow the suggestions given by Pudasaini (2012) to account for the non-Newtonian be-
havior of the fluid and the shear- and pressure-dependent Coulomb-viscoplastic behavior
of the granular phase, as applied by Domnik et al. (2013). Several modeling approaches
to account for the two-phase nature of debris flows used depth-averaged Navier-Stokes15

equations for each phase coupled by drag models (eg. Bozhinskiy and Nazarov (2000), ,
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Pitman and Le (2005),

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Pudasaini (2012)

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Bouchut et al. (2015)). We apply the nu-

merically more efficient method of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Iverson and Denlinger (2001)

✿
and treat the debris flow

material as one mixture with phase-averaged properties described by a single set of Navier-
Stokes equations. The resulting reduction in numerical costs allows us to model the three-20

dimensional momentum transfer in the fluid as well as the free-surface flow over complex
terrain and obstacles.

Multiphase flows of gas, fluid and sediment can be addressed with the so-called mixture-
or drift-flux model in cases where the local difference in phase velocities is small . The
properties of all phases are cell-averaged to derive a single mass continuity and momentum25

balance equation describing the entire mixture. The model presented here has to be seen
as a first step, assuming that the local

✿✿✿
We

✿✿✿✿✿✿✿✿
assume

✿✿✿✿
that

✿✿✿
the velocity of the gravel is about the

same as the velocity of the surrounding fluid, thus allowing us to neglect the drift-flux
✿✿✿✿
fluid.
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This assumption
✿
is
✿✿✿✿✿✿✿✿✿✿
motivated

✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿✿
application

✿✿✿✿✿
and would not be valid for debris flows with

little interstitial fluid, or
✿✿✿✿✿
some

✿✿✿✿
real

✿✿✿✿✿✿✿
debris

✿✿✿✿✿✿
flows,

✿✿✿✿
e.g,

✿
with interstitial fluid of small viscosity

(i.e., a slurry with low concentrations
✿✿✿✿✿✿✿✿✿✿✿✿
concentration

✿
of fine material). The assumption of

equal velocities of both phases
✿✿✿✿✿✿✿
velocity

✿✿✿
of

✿✿✿✿✿✿
gravel

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿
interstitial

✿✿✿✿
fluid

✿
in one cell leads to a

constant composition of the mixture by means of phase concentrations over the entire flow5

process. This basic model can be seen as a counterpart to the mixture model of Iverson
and Denlinger (2001), extended by resolving the three dimensional

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
three-dimensional flow

structure in combination with a pressure- and shear-rate-dependent rheology linked to the
material composition. In future work, we aim to relax the constraint of equal phase velocities
and allow dispersion of constituents by introducing relative velocities of the gravel phase10

with respect to the fine sediment suspension according to and together with a coupled
Lagrangian particle simulation that can account for larger grains. The basic model pre-
sented here focuses on the role of pressure-dependent flow behavior of the gravel, in com-
bination with the shear-dependent

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
shear-rate-dependent rheology of the slurry.

We base our model concept on the well-established finite volume solver interFoam,15

which is designed for incompressible two-phase flow simulations of immiscible fluids

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Deshpande et al., 2012). A standard extension named interMixingFoam introduces two
mixing phases without momentum exchange

✿
,
✿
coupled to a third unmixed phase by sur-

face tension. Numerical
✿✿✿✿✿✿✿✿
Although

✿✿✿
the

✿✿✿✿✿✿✿✿
present

✿✿✿✿✿✿✿✿
method

✿✿✿✿✿
limits

✿✿✿✿
the

✿✿✿✿✿✿✿
physics

✿✿✿
of

✿✿✿✿
flow,

✿✿✿✿✿✿✿✿✿✿
numerical

costs are kept reasonable due to the Volume-of-Fluid (VOF) method
✿✿✿✿✿
VoF)

✿✿✿✿✿✿✿✿
method20

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Hirt and Nichols, 1981), which solves only one Navier-Stokes equation system for all
phases. The viscosity and density of each grid cell is calculated as a concentration-weighted
average between the viscosities

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
viscosities

✿✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
densities

✿
of the phases that are

present in the cell. Between the two mixing phases of gravel and slurry, the interaction
reduces to this averaging of density and viscosity. In this way, the coupling between driv-25

ing forces, topography and three dimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
three-dimensional

✿
flow-dependent internal

friction can be addressed for each phase separately, accounting for the fundamental dif-
ferences in flow mechanisms of granular and visco-plastic

✿✿✿✿✿✿✿✿✿✿✿
viscoplastic

✿
fluid flow that arise

from the presence or absence of Coulomb friction (Fig. 1). We apply linear concentration-
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weighted averaging of viscosities for estimating the bulk viscosity of a mixture for simplicity.
Non-linear averaging of viscosity between phases as suggested by may be introduced in
the future

✿✿✿✿✿✿✿✿✿✿✿✿
Nevertheless,

✿✿✿✿✿✿✿✿✿✿✿
interacting

✿✿✿✿✿✿
forces

✿✿✿✿✿
such

✿✿✿
as

✿✿✿✿
drag

✿✿✿✿✿✿✿✿✿
between

✿✿✿
the

✿✿✿✿✿✿
grains

✿✿✿✿
and

✿✿✿✿
the

✿✿✿✿
fluid

✿✿✿
do

✿✿✿
not

✿✿✿✿✿✿✿
appear

✿✿
in

✿✿✿✿
our

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿
because

✿✿✿✿
we

✿✿✿
set

✿✿✿✿✿
solid

✿✿✿✿✿✿✿
velocity

✿✿✿✿✿✿
equal

✿✿
to

✿✿✿✿✿
fluid

✿✿✿✿✿✿✿✿
velocity,

✿✿✿✿
and

✿✿✿✿
thus

✿✿✿✿✿
from

✿✿✿
the

✿✿✿✿✿✿✿✿
physical

✿✿✿✿✿
point

✿✿
of

✿✿✿✿✿
view

✿✿✿✿
this

✿✿
is

✿✿
a

✿✿✿✿✿✿
debris

✿✿✿✿
bulk

✿✿✿✿✿✿✿
model.5

2.1 Governing Equations

Assuming isothermal incompressible phases without mass transfer, we separate the mod-
eled space into a gas region denoting the air and a region of two mixed liquid phases.
The VOF

✿✿✿✿✿✿✿✿✿✿✿✿
components.

✿✿✿✿
The

✿✿✿✿✿
VoF method used here determines the volume fractions of all

phases
✿✿✿✿✿✿✿✿✿✿✿
components

✿
in an arbitrary control volume by using an indicator function which10

yields a phase fraction field for each phase. The phase
✿✿✿✿✿✿✿✿✿✿✿
component.

✿✿✿✿
The fraction field rep-

resents the probability that a phase
✿✿✿✿✿✿✿✿✿✿
component

✿
is present at a certain point in space and

time (Hill, 1998). The air fraction may be defined in relation to the fraction of the mixed fluid
αm as

α1 = 1−αm (1)15

and the mixed fluid αm may be defined as the sum of the constant fractions of the mixing
phases α2 and α3:

αm = α2+α3. (2)

The flow
✿✿✿✿✿
debris

✿✿✿✿✿
bulk

✿✿✿✿✿✿✿
motion is defined by the continuity equation together with the trans-

port and momentum equations:20

∇ ·U = 0, (3)
8



∂αm

∂t
+∇ · (Uαm) = 0, (4)

and
∂(ρU)

∂t
+∇ · (ρU ×U) =−∇p+∇ ·T+ ρf , (5)

where U represents the velocity field shared by all phases
✿✿✿✿✿✿
debris

✿✿✿✿
bulk

✿✿✿✿✿✿✿✿
velocity

✿✿✿✿
field, T is

the deviatoric viscous stress tensor
✿✿
for

✿✿✿✿
the

✿✿✿✿✿✿✿
mixture, ρ is the phase-averaged

✿✿✿✿
bulk density, p5

denotes pressure and f stands for body forces per unit mass like gravity.

✿✿✿
We

✿✿✿✿✿✿✿✿
assume

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
incompressible

✿✿✿✿✿✿✿✿
material

✿✿✿✿
and

✿✿✿
all

✿✿✿✿✿✿✿✿
fractions

✿✿✿✿
are

✿✿✿✿✿✿✿✿✿✿
convected

✿✿✿✿
with

✿✿✿✿
the

✿✿✿✿✿✿
same

✿✿✿✿
bulk

✿✿✿✿✿✿✿
velocity.

✿✿✿✿
So,

✿✿✿✿✿✿✿✿✿✿✿
differences

✿✿
in

✿✿✿✿✿✿✿
phase

✿✿✿✿✿✿✿✿✿✿
velocities,

✿✿✿✿
and

✿✿✿✿✿
thus

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
interaction

✿✿✿✿✿✿
forces

✿✿✿✿✿
such

✿✿✿
as

✿✿✿✿✿
drag

✿✿✿✿✿✿✿✿
between

✿✿✿
the

✿✿✿✿✿✿✿
grains

✿✿✿✿
and

✿✿✿
the

✿✿✿✿✿
fluid

✿✿✿✿
are

✿✿✿✿✿✿✿✿✿✿
neglected.

✿
An efficient technique of the VOF method

is to convect the phase
✿✿✿✿
VoF

✿✿✿✿✿✿✿
method

✿✿✿✿✿✿✿✿✿
convects

✿✿✿✿
the fraction field αm as an invariant with the10

divergence-free flow field U that is known from previous time steps:

∂αm

∂t
+∇ · (Uαm)+∇ · (α1Uc) = 0, (6)

where t denotes time and Uc is an artificial inter-facial compression velocity acting perpen-
dicular to the interface between the gas region and the mixed liquid phases. The method al-
lows a reconstruction of the free surface with high accuracy if the grid resolution is sufficient15

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Berberović et al., 2009; Hoang et al., 2012; Deshpande et al., 2012; Hänsch et al., 2013).
The details about the interface compression technique, the related discretization and
numerical schemes to solve eq

✿✿
Eq. 6 are given in Deshpande et al. (2012). However, to

allow evolving phase concentrations
✿✿✿✿✿✿✿
diffusion

✿
between the mixing phases

✿✿✿✿✿✿✿✿✿✿✿
constituents

of the slurry α2 and the gravel α3 in future releases
✿✿✿✿
case

✿✿✿
of

✿✿✿✿✿✿✿
initially

✿✿✿✿✿✿✿✿✿✿
unequally

✿✿✿✿✿✿✿✿✿✿
distributed20

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations, our modified version of the interMixingFoam solver applies eq

✿✿
Eq. 6

separately to each mixing phase
✿✿✿✿✿✿✿✿✿✿✿
component including diffusion:

∂αi

∂t
+∇ · (Uαi)−Ddiff∇2

αi+∇ · (α1Uc) = 0, (7)
9



where i= 2,3 denote the slurry and gravel phases
✿✿✿✿✿✿✿✿✿✿✿
constituents and Ddiff is the diffusion

constant that is set to a negligible small value within the scope of this paper.
The discrete form of eq

✿✿✿
Eq. 7 is derived by integrating over the volume V of a finite cell

of a grid-discretization of the simulated space, which is done in the finite volume method by
applying the Gauss Theorem over the cell faces. The advective phase fluxes φ1..3 are ob-5

tained by interpolating the cell values of α1, α2 and α3 to the cell surfaces and by multiplying
them with the flux φ through the surface, which is known from the current velocity field. To
keep the air phase unmixed, it is necessary to determine the flux φr through the interface
between air and the debris flow mixture, and to subtract it from the calculated phase fluxes
φ1..3. Inherited from the original interMixingFoam solver (OpenFOAM-Foundation, 2016a),10

limiters are applied during this step to bound the fluxes to keep phase concentrations be-
tween 0 and 1. With known fluxes φ1..3, the scalar transport equation without diffusion for
each phase takes the form

∂

∂t
αi+∇(φi)−Ddiff∇2

αi
✿✿✿✿✿✿✿✿✿✿✿

= 0. (8)

Equation 8 is solved
✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
implemented

✿✿✿✿✿✿✿
scalar

✿✿✿✿✿✿✿✿
transport

✿✿✿✿✿✿✿✿✿
equation

✿✿✿✿✿✿
solved

✿✿✿
for

✿✿✿✿✿
each

✿✿✿✿✿✿✿✿✿✿✿
constituent15

using first-order Euler schemes for the time derivative terms, as has been recommended
for liquid column breakout simulations (Hänsch et al., 2013).

After solving the scalar transport equations, the complete mass flux φρ ✿
is
✿✿✿✿✿✿✿✿✿✿✿✿

constructed
from the updated volumetric phase concentrationsis constructed

✿✿✿✿✿✿✿
fraction

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations:

φρ = φ1 · ρ1+φ2 · ρ2+φ3 · ρ3, (9)20

where ρ1..3 denote the constant densities of the corresponding phases and φ1..3 are the
corresponding fluxes.

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿
complete

✿✿✿✿✿✿
mass

✿✿✿✿
flux

✿✿✿
φρ ✿✿

is
✿✿✿✿✿
used

✿✿
in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
implementation

✿✿
to

✿✿✿✿✿✿✿✿✿
describe

✿✿✿✿
the

✿✿✿✿✿✿✿
second

✿✿✿✿✿
term

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
momentum

✿✿✿✿✿✿✿✿✿
equation

✿✿✿✿
(Eq.

✿✿✿✿
14)

✿✿✿
as

✿✿✿✿✿✿✿✿✿✿
described

✿✿
in

✿✿✿✿✿✿✿✿✿
appendix

✿✿✿
A. Fig. 2 illustrates how the

10



phase volume distributions α1 (air), α2 (slurry) and α3 (gravel) are used to derive cell-
averaged properties of the continuum.

The conservation of mass and momentum is averaged with respect to the phase fraction
α of each phase. The density field is defined as

ρ=
�

i

ρiαi (10)5

where ρi denotes density of phase i and the density is assumed to be constant.
The deviatoric viscous stress tensor T is defined based on the mean strain rate tensor

D that denotes the symmetric part of the velocity gradient tensor derived from the phase-
averaged flow field:

D=
1

2
[∇U +(∇U)T ], (11)10

and

T= 2µD− 2

3
µ(∇ ·U)I. (12)

I is the identity matrix and µ is the phase-averaged dynamic viscosity, which is simplified
in analogy to eq

✿✿
Eq. 10 as the concentration-weighted average of the corresponding phase

viscosities:15

µ=
�

i

µiαi (13)

The term ∇ ·T in the momentum equation
✿✿✿
Eq. 5 is decomposed as ∇ ·(µ∇U)+∇U ·∇µ

to ease discretization. The body forces f in the momentum equation account for gravity and
11



for the effects of surface tension. The surface tension at the interface between the debris
flow mixture and air is modeled as a force per unit volume by applying a surface tension
coefficient σ.

✿✿✿✿✿✿✿✿✿
Although

✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿✿
tension

✿✿✿✿
can

✿✿✿
be

✿✿✿✿✿✿✿✿✿✿
considered

✿✿✿
to

✿✿✿✿✿
have

✿
a
✿✿✿✿✿✿
minor

✿✿✿✿✿✿✿✿✿
influence

✿✿✿
on

✿✿✿✿✿✿
debris

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿
behavior,

✿✿
it

✿✿✿✿✿✿
allows

✿✿✿
an

✿✿✿✿✿✿✿✿✿
adequate

✿✿✿✿✿✿✿✿✿✿✿✿✿
reproduction

✿✿
of

✿✿✿✿✿✿✿
surface

✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿
patterns

✿✿✿✿✿✿✿✿✿
observed

✿✿
in

✿✿✿✿✿✿✿✿✿
laboratory

✿✿✿✿✿✿
scale

✿✿✿✿✿✿✿✿✿✿✿✿
experiments

✿✿✿✿✿
used

✿✿✿
for

✿✿✿✿✿✿✿✿✿✿
validation. The momentum conservation including5

gravitational acceleration g and surface tension is defined in our model as:

∂(ρU)

∂t
+∇ · (ρU ×U) =−∇pd+∇ · (µ∇U)+ (∇U) ·∇µ− g ·x∇ρ+σκ∇α1, (14)

where κ denotes the local inter-facial
✿✿✿✿✿✿✿✿✿
interfacial curvature and x stands for position. The

modified pressure pd is employed in the solver to overcome some difficulties with boundary
conditions in multiphase flow simulations

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿✿✿
simulations

✿✿✿✿
with

✿✿✿✿✿✿✿✿
density

✿✿✿✿✿✿✿✿✿
gradients. In case10

the free surface lies within an inclined wall forming a no-slip boundary condition, the normal
component of the pressure gradient must be different for the gas phase and the mixture due
to the hydrostatic component ρg. It is common to introduce a modified pressure pd related
to the pressure p by

pd = p− ρg ·x. (15)15

The gradient of the modified pressure includes the static pressure gradient and con-
tributions that arise from the density gradient as well as a body force due to gravity

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Berberović et al., 2009).

Together with the continuity equation 3for the multi-phase flow, eq,
✿✿✿✿
Eq. 14 allows us to

calculate the pressure and gravity driven velocities. The corresponding discretization and20

solution procedure with the PISO (Pressure-Implicit with Splitting of Operators (Issa, 1986))
algorithm is provided in appendix A.

✿✿✿✿
The

✿✿✿
set

✿✿
of

✿✿✿✿✿✿✿✿✿✿
equations

✿✿✿✿✿✿✿✿✿✿
governing

✿✿✿
the

✿✿✿✿✿
flow

✿✿
in

✿✿✿✿
our

✿✿✿✿✿✿
model

✿✿✿
are

✿✿✿✿
Eq.

✿✿
8
✿✿✿
to

✿✿✿✿
Eq.

✿✿✿
15

✿✿✿✿✿✿✿✿
together

✿✿✿✿✿
with

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
continuity

✿✿✿✿✿✿✿✿✿
equation

✿✿✿
3.

✿
In the following section we

present the rheology models that define the viscosity components for eq
✿✿✿
Eq. 13.
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2.2 Rheology model for the fine sediment suspension

The viscosity of the gas phase, µ1 is chosen constant. The introduction of two mixing
phases is necessary to distinguish between the pressure-dependent flow behavior of gravel
and the shear-thinning viscosity of the suspension of finer particles with water. The rheology
of mixtures of water with clay and sand can be described by the Herschel-Bulkley rheology5

law (Coussot et al., 1998), which defines the shear stress in the fluid as:

τ = τy + kγ̇
n (16)

where τy is a yield stress below which the fluid acts like a solid, k is a consistency factor for
the viscosity of the sheared material, γ̇ is the shear rate and n defines the shear-thinning
(n < 1) or shear-thickening (n > 1) behavior. In OpenFOAM, the shear rate is derived in 3D10

from the strain rate tensor D:

γ̇ =
√
2 ·D :D (17)

The shear rate is based on the strain rate tensor to exclude the rotation velocity tensor that
does not contribute to the deformation of the fluid body. The model can be rewritten as a
generalized Newtonian fluid model to define the shear-rate-dependent effective kinematic15

viscosity of the slurry phase as:

µ2 = k|γ̇|n−1+ τy|γ̇|−1 (18)

if the viscosity is below an upper limit µ0 and

µ2 = µ0 (19)
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if the viscosity is higher, to ensure numerical stability.
With n= 1 the model simplifies to the Bingham rheology model that has been widely

used to describe debris-flow behavior in the past. It may be reasonable to imagine the rhe-
ology parameters to be dependent on the state of the flow. However, even with the implicit
assumption that the coefficients are a property of the material and not of the state of the5

flow, the Herschel-Bulkley rheology law was
✿✿✿✿
has

✿✿✿✿✿
been rarely applied in debris-flow modeling

due to the large number of rheology parameters. We avoid this problem by assuming the
rheology parameters to be defined by measurable material properties as described below.

2.2.1 Determination of rheology model parameters based on material properties

Results from recent publications allow the reduction of the number of free Herschel-Bulkley10

parameters to one
✿✿✿
two. If the coarser grain fraction is confined to the gravel phase, the

Herschel-Bulkley parameters for the finer material can be linked to material properties as

✿✿✿
that

✿✿✿✿
can

✿✿✿
be

✿
measured using simple standard geotechnical tests. According to Coussot et al.

(1998), the exponent n can be assumed constant as
✿✿
at 1/3, and k can be roughly estimated

as b · τy, where the constant b= 0.3s−n for mixtures with maximum grain-sizes
✿✿✿✿✿✿✿✿✿
grainsizes15

< 0.4 mm (Coussot et al., 1998). An approach for estimating the yield stress τy based on
water content, clay fraction and composition, and the solid concentration of the entire debris
flow material was proposed by Yu et al. (2013) as:

τy = τ0C
2
e
22(C·P1) (20)

where C is the volumetric solid concentration of the mixture
✿✿✿✿
(the

✿✿✿✿✿✿✿
volume

✿✿
of

✿✿✿
all

✿✿✿✿✿
solid

✿✿✿✿✿✿✿✿
particles20

✿✿✿✿✿✿✿✿
including

✿✿✿✿
fine

✿✿✿✿✿✿✿✿✿
material

✿✿✿✿✿✿✿
relative

✿✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿✿
volume

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿
debris

✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿
material

✿✿✿✿✿✿✿✿✿
including

✿✿✿✿✿✿✿
water),

P1 = 0.7P0 when P0 > 0.27 and P1 = P0 if P0 <= 0.27, and

P0 = Ckaolinite+chlorite+1.3Cillite+1.7Cmontmorillonite (21)
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where the subscript of C refers to the volumetric concentration (relative to the total volume
of all solid particles and water) of the corresponding mineral. The discontinuity of P1 at a
modified clay concentration of P0 = 0.27 is a coarse adjustment to a more-or-less sudden
change observed in the experimental behavior.
For C < 0.47, τ0 is equal to τ00 and otherwise τ0 can be calculated by5

τ0 = τ00e
5(C−0.47) (22)

where τ00 is the remaining free parameter which we use to account for the grid size depen-
dency of the shear rate (Yu et al., 2013). We recommend a value of τ00 = 30 as a starting
point for calibration.

✿✿✿
The

✿✿✿✿✿✿✿✿
change

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
definition

✿✿✿
of

✿✿✿
τ0 ✿✿

at
✿✿✿✿✿
solid

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
concentrations

✿✿✿✿✿✿✿✿✿✿
exceeding

✿✿✿✿
0.47

✿✿✿✿✿✿✿✿✿
accounts

✿✿✿
for

✿✿
a
✿✿✿✿✿✿✿✿✿✿
threshold

✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿
weak

✿✿✿✿✿✿✿✿✿
coherent

✿✿✿✿
and

✿✿✿✿✿✿✿✿
medium

✿✿✿✿✿✿✿✿✿
coherent

✿✿✿✿✿✿✿
debris

✿✿✿✿
flow10

✿✿✿✿✿✿✿✿
material.

Yu et al. (2013) compared this method of estimating the yield stress τy to experimental
results they obtained from a set of 514 flume experiments with mixtures of water and clay
with fine and coarse sand and less than 5 % gravel. They determined the yield stress by
releasing the material mixture from a reservoir into an inclined channel of 0.2 m width and15

by increasing the inclination slightly until remobilization occurred after the material came to
rest. The experimental yield stress τy−exp was then determined

✿✿✿✿✿✿✿✿
simplified

✿
as:

τy−exp = ρexpghsin(β), (23)

where ρexp is the density of the applied mixture, g
✿
is
✿
the acceleration due to gravity, h

✿✿
is the

maximum accumulation thickness of the deposit, and β
✿✿
is the slope inclination. In addition,20

they compared the calculated yield stress of eq
✿✿
Eq. 20 with experimental yield stresses

reported by a number of authors including Coussot et al. (1998) and Ancey and Jorrot
(2001).

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Ancey and Jorrot (2001)

✿
used 2 mm and 3 mm glass beads in a kaolinite dispersion

as well as fine sand-kaolinite-water mixtures. Up to yield stresses of about 200 Pa the yield
stresses estimated by eq

✿✿✿
Eq. 20 fit the observed ones well. Thus, the yield stresses of25
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sand-clay mixtures with water can be estimated using eq
✿✿
Eq. 20 based on the volumetric

concentration of the debris in the water-solids mixture and based on the percentages of
different clays in the fraction of fine material. Adjustments to the numbers for calculating P0

may be necessary to account for the activity of other clays.
The remaining uncertainties concern our assumptions that

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
assumptions

✿✿✿✿✿✿
about

✿✿✿✿
the5

✿✿✿✿✿
value

✿✿
of

✿
nis constant at a value of 1/3, and that k can be defined in such simple dependency

to τy in the presence of coarser sand. Experiments seem to confirm that n increases in pres-
ence of coarser material

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Imran et al., 2001), but further research is needed to quantify this

effect.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Remaitre et al. (2005)

✿
found n to vary from 0.27 to 0.36.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Schatzmann et al. (2003)

used n= 0.33 to reproduce measured curves obtained with a mixture of 27.5 volumet-10

ric percent slurry with 30 % gravel where gravel grain-sizes
✿✿✿✿✿✿✿✿✿
grainsizes

✿
ranged from 3 to

10 mm, and used n= 0.5 to fit the Herschel-Bulkley model to the experiment with 22.5 %
slurry and 30 % gravel. Based on the laboratory scale

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
laboratory-scale experiments that are

presented in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
v. Boetticher et al. (2015) we have chosen n= 0.34 to obtain the best fit for the

simulation presented by
✿
of

✿
large-scale debris-flow experiments.

✿✿✿✿✿✿✿✿
However,

✿✿✿✿✿✿
other

✿✿✿✿✿✿
debris

✿✿✿✿
flow15

✿✿✿✿✿✿✿✿
mixtures

✿✿✿✿✿
may

✿✿✿✿✿✿✿✿
demand

✿✿
a

✿✿✿✿✿✿✿✿✿✿✿✿
recalibration

✿✿✿
of

✿✿
n

✿✿✿✿✿✿✿✿
because

✿✿✿✿✿✿✿✿
natural

✿✿✿✿✿✿
debris

✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿
mixtures

✿✿✿✿✿✿
cover

✿✿
a

✿✿✿✿
wide

✿✿✿✿✿✿✿✿✿
spectrum

✿✿✿✿✿
from

✿✿✿✿✿✿
shear

✿✿✿✿✿✿✿✿
thinning

✿✿
to

✿✿✿✿✿✿
shear

✿✿✿✿✿✿✿✿✿
thickening

✿✿✿✿✿✿✿✿✿
behavior.

✿✿✿✿✿✿
Thus

✿✿✿
we

✿✿✿✿✿✿✿✿
consider

✿✿
n

✿✿✿
as

✿✿✿
the

✿✿✿✿✿✿✿
second

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿
calibration

✿✿✿✿✿✿✿✿✿✿✿
parameter.

2.3 Representation of gravel by a Coulomb-viscoplastic rheology

During acceleration and high-speed flow, the shear-thinning behavior of both the fluid and20

the granular phase dominate the viscosity in our model. However, pressure-dependent
friction

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
representation

✿✿✿
of

✿✿✿✿✿✿
gravel

✿✿
by

✿✿
a

✿✿✿✿✿✿✿✿
pressure

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
rate-dependent

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Coulomb-viscoplastic

✿✿✿✿✿✿✿✿
rheology

✿✿
becomes important as soon as the material experiences high pres-

sures, accompanied by reduction in shear due to decelerations caused by channel
slope reduction. Flows of granular material could be modeled as viscoplastic fluids25

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Ancey, 2007; Forterre and Pouliquen, 2008; Balmforth and Frigaard, 2007; Jop et al., 2006)

16



as cited by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Domnik and Pudasaini (2012). Based on Ishii (1975), the granular stress

deviator
✿✿✿✿✿✿✿
Cauchy

✿✿✿✿✿✿
stress

✿
tensor Ts can be written as:

Ts =−p

ρ
I+2µsD, (24)

where pI is the pressure times the identity matrix and µs is the corresponding dynamic
viscosity, which was modeled by Domnik and Pudasaini (2012) as:5

µs = µmin+
τ0s

||D|| [1− e
−my ||D||], (25)

where µmin is a minimal dynamic viscosity, τ0s is a yield stress, and ||D|| is the norm of the
strain-rate tensor defined by the authors as:

||D||=
�
2tr(D2). (26)

In eq
✿✿
Eq. 25, my is a model parameter with units of s which we will keep constant, for reasons10

outlined in the following section. Domnik et al. (2013) suggested replacing
✿✿✿✿✿✿✿
derived the yield

stress by
✿✿
as

✿
a pressure-dependent Coulomb friction, psin(δ) where δ is the internal friction

angle:

µ3 = µmin+
psin(δ)

ρ3||D|| [1− e
−my ||D||] (27)

Here, this Coulomb-viscoplastic rheology model is used to describe the gravel phase. The15

pressure- and shear-dependent viscosity is calculated in every cell with the corresponding
local pressure p and strain-rate tensor D derived from the phase-averaged flow field.
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2.3.1 Gravel phase properties

The Coulomb-viscoplastic rheology law developed by Domnik et al. (2013) includes two
parameters: the friction angle δ, and the parameter my influencing the transition between
yielded and unyielded regions. For smaller values of my, the transition is smoother. In the
absence of shear, to achieve a viscosity representing a Coulomb friction equal to p · sin(δ)5

where p is the local pressure, my needs to be equal to 1 s. However, the development of
µs under large pressure or strong shear is the same for both my = 1 s and my = 0.2 s, but
parts of the nearly immobile material that face little pressure (in general, immobile mate-
rial close to the surface) show a significant reduction in viscosity when my = 0.2 s (Fig. 3).
As a consequence, my minimally affects debris flow release and flow at large scales, but10

material with a shallow flow depth in a run-out plane close to deposition may develop front
fingering (which is dependent on, and sensitive to, the value of my) by allowing sudden
local solidification. We choose my to be constant and equal to 0.2 s for all simulations.
For small friction angles, the modeled viscosity of the gravel phase decreases rapidly with
increasing shear. Larger friction angles increase the viscosity and extend the pressure de-15

pendency to larger shear rates (Fig. 4). We estimated the friction angle δ based on the
maximum angle of repose in tilt-table tests of the gravel. In our laboratory experiments, we
determined the friction angle in a simple adaptation of the method of Deganutti et al. (2011)
by tilting a large box with loose material until a second failure of the material body occurred.

In analogy to the Herschel-Bulkley implementation, an upper limit for the viscosity is im-20

plemented to maintain numerical stability. Pressure-dependent viscosity in the incompress-
ible Navier-Stokes equations causes numerical instability as soon as the eigenvalues of the
symmetric part of the local velocity gradient become larger than 1/(2(δµ/δp)). Following
Renardy (1986), we locally limit the viscosity to keep it below a corresponding local stability
limit.25
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3 Quality characteristics of the model

3.1
✿✿✿✿✿✿✿✿
Modeled

✿✿✿✿✿✿✿✿✿✿✿✿
interaction

✿✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿✿
granular

✿✿✿✿✿
and

✿✿✿✿✿
fluid

✿✿✿✿✿✿✿✿✿✿✿✿✿
constituents

✿✿
As

✿✿✿✿✿✿✿
stated

✿✿✿✿✿✿✿
before,

✿✿✿✿✿✿✿
debris

✿✿✿✿✿
flows

✿✿✿✿
are

✿✿✿✿✿✿✿✿✿✿✿
multiphase

✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿✿
processes

✿✿✿✿✿✿✿
where

✿✿✿✿✿
solid

✿✿✿✿✿✿✿✿✿
particles

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
interstitial

✿✿✿✿
fluid

✿✿✿✿
and

✿✿✿✿
gas

✿✿✿✿✿✿✿
phases

✿✿✿✿✿✿✿✿
interact.

✿✿✿✿
The

✿✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿
presented

✿✿✿✿✿✿✿✿
applies

✿✿✿✿✿✿✿✿✿✿✿✿✿
cell-averaged

✿✿✿✿✿✿
values

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿
mixtures

✿✿✿✿
and

✿✿✿✿✿
does

✿✿✿
not

✿✿✿✿✿
allow

✿✿✿
for

✿✿✿✿✿✿✿✿✿✿✿✿✿
consideration

✿✿✿
of

✿✿✿✿✿✿✿✿✿✿✿
interactions

✿✿✿✿✿✿✿✿
between

✿✿
a

✿✿✿✿✿✿✿✿
granular

✿✿✿✿
and5

✿
a
✿✿✿✿✿
fluid

✿✿✿✿✿✿
phase.

✿✿✿✿✿
The

✿✿✿✿
only

✿✿✿✿
way

✿✿✿
to

✿✿✿✿✿✿✿✿
account

✿✿✿
for

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
inhomogeneous

✿✿✿✿✿✿
nature

✿✿
of

✿✿✿✿✿✿✿
debris

✿✿✿✿✿
flows

✿✿
is

✿✿✿
by

✿✿✿✿✿✿✿✿✿
initializing

✿✿✿✿
the

✿✿✿✿
bulk

✿✿✿✿✿✿✿✿
mixture

✿✿✿✿
with

✿✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿
corresponding

✿✿✿✿✿✿✿✿✿✿✿
distribution

✿✿
of

✿✿✿
its

✿✿✿✿✿✿✿✿✿✿✿✿✿
composition.

✿✿✿✿
This

✿✿✿✿✿
may

✿✿
be

✿✿✿✿✿✿✿✿
applied

✿✿
in

✿✿✿✿✿✿✿✿
specific

✿✿✿✿✿✿
cases,

✿✿✿✿✿✿
such

✿✿
as

✿✿✿✿✿✿✿
impact

✿✿✿✿✿✿✿✿✿✿✿✿
simulations,

✿✿✿✿✿✿
where

✿✿✿✿
the

✿✿✿✿
flow

✿✿✿✿✿✿✿✿
process

✿✿✿✿✿
that

✿✿✿
led

✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
inhomogeneous

✿✿✿✿✿✿✿✿✿✿✿
distribution

✿✿
of

✿✿✿✿✿✿✿✿✿✿✿✿
components

✿✿
is
✿✿✿✿

not
✿✿
in
✿✿✿✿

the
✿✿✿✿✿✿
scope

✿✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿✿
problem.

✿✿✿✿
For

✿✿✿✿✿✿✿✿
example,

✿✿
a
✿✿✿✿✿✿✿✿✿✿✿
debris-flow

✿✿✿✿✿✿
impact

✿✿✿
on

✿✿
a
✿✿✿✿✿
rigid

✿✿✿✿✿✿✿✿
structure

✿✿✿✿
can

✿✿✿
be

✿✿✿✿✿✿✿✿✿
modeled

✿✿✿✿
with

✿✿✿✿✿✿
higher

✿✿✿✿✿✿✿✿✿
accuracy

✿✿✿
by10

✿✿✿✿✿✿✿✿✿✿
predefining

✿✿
a

✿✿✿✿✿✿✿✿
granular

✿✿✿✿✿
front

✿✿✿✿
and

✿
a
✿✿✿✿✿✿✿✿
viscous

✿✿✿
tail,

✿✿✿✿
and

✿✿✿
an

✿✿✿✿✿✿✿
impact

✿✿
of

✿✿
a

✿✿✿✿✿✿✿✿✿✿✿
gravel-water

✿✿✿✿✿✿✿✿
mixture

✿✿✿
into

✿✿
a

✿✿✿✿
lake

✿✿✿✿✿
could

✿✿✿
be

✿✿✿✿✿✿✿✿✿
modeled

✿✿✿✿✿✿✿✿✿✿✿
accordingly

✿✿
by

✿✿✿✿✿✿✿✿✿
modeling

✿✿✿✿
the

✿✿✿✿
lake

✿✿✿
as

✿✿
a

✿✿✿✿✿✿
debris

✿✿✿✿✿✿✿
mixture

✿✿✿✿✿✿✿
without

✿✿✿✿✿✿✿
gravel.

✿✿✿✿
The

✿✿✿✿✿
latter

✿✿✿✿✿✿✿✿✿
accounts

✿✿
for

✿✿✿✿
the

✿✿✿✿✿
effect

✿✿✿
of

✿✿✿✿✿✿✿✿✿
buoyancy

✿✿✿
as

✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿
consequence

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
difference

✿✿✿
in

✿✿✿✿✿✿✿
density.

✿✿✿✿✿✿✿✿✿
However,

✿
a
✿✿✿✿✿✿✿✿✿
dynamic

✿✿✿✿✿✿✿✿✿
evolution

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿
gravel

✿✿✿✿
and

✿✿✿✿✿✿
slurry

✿✿✿✿✿✿✿✿✿✿✿✿✿
concentration

✿✿
is

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
necessary

✿✿✿✿
next

✿✿✿✿
step.

✿✿✿
A

✿✿✿✿✿✿✿✿
two-way

✿✿✿✿✿✿✿✿
coupling

✿✿✿
to

✿✿
a

✿✿✿✿✿✿✿✿✿✿✿
Lagrangian

✿✿✿✿✿✿✿
particle

✿✿✿✿✿✿✿✿✿✿✿
simulation

✿✿✿✿✿
could

✿✿✿✿✿✿✿
deliver

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
necessary15

✿✿✿✿✿✿✿✿
coupling

✿✿✿✿✿✿✿✿
physics.

3.2
✿✿✿✿✿✿✿✿✿✿✿✿
Advantages

✿✿
of

✿✿✿✿
full

✿✿✿✿✿✿✿✿✿✿✿✿✿
dimensional

✿✿✿✿✿✿
mass

✿✿✿✿
flow

✿✿✿
Our

✿✿✿✿✿✿✿✿✿
attempts

✿✿
to

✿✿✿✿✿✿✿✿
consider

✿✿✿✿
the

✿✿✿✿✿
three

✿✿✿✿✿✿✿✿✿✿✿✿
dimensional

✿✿✿✿
flow

✿✿✿✿✿✿✿✿
structure

✿✿
of

✿✿✿✿✿✿✿
debris

✿✿✿✿✿
flows

✿✿✿✿✿
were

✿✿✿✿✿✿✿✿✿
motivated

✿✿
by

✿✿✿✿
the

✿✿✿✿✿
need

✿✿
to

✿✿✿✿✿✿✿
predict

✿✿✿
the

✿✿✿✿✿✿✿✿
dynamic

✿✿✿✿✿✿✿
loading

✿✿✿
of

✿✿✿✿✿✿✿
shallow

✿✿✿✿✿✿✿✿✿
landslide

✿✿✿✿✿✿✿
impacts

✿✿✿
to

✿✿✿✿✿✿
flexible

✿✿✿✿✿✿✿✿✿✿
protection

✿✿✿✿✿✿✿
barriers

✿
(v. Boetticher, 2013)

✿
.
✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
corresponding

✿✿✿✿✿✿✿✿✿
research

✿✿✿
in

✿✿✿✿
full

✿✿✿✿✿✿✿✿✿✿✿✿
dimensional

✿✿✿✿✿✿✿
model20

✿✿✿✿✿✿✿✿✿✿✿✿
development

✿✿
is

✿✿
a
✿✿✿✿✿
topic

✿✿✿
of

✿✿✿✿✿✿✿✿
ongoing

✿✿✿✿✿✿✿✿
interest

✿
(Leonardi et al., 2016).

✿✿✿✿✿✿✿✿✿
Besides

✿✿✿
the

✿✿✿✿✿✿
need

✿✿✿
for

✿✿✿✿✿
three

✿✿✿✿✿✿✿✿✿✿✿✿
dimensional

✿✿✿✿✿✿
debris

✿✿✿✿✿
flow

✿✿✿✿✿✿✿
models

✿✿✿
for

✿✿✿✿✿✿✿✿✿
dynamic

✿✿✿✿✿✿✿✿
coupled

✿✿✿✿✿✿✿✿✿✿
problems,

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
interaction

✿✿✿✿
with

✿✿✿✿
rigid

✿✿✿✿✿✿✿✿✿✿✿
boundaries

✿✿✿✿✿✿✿
cannot

✿✿
be

✿✿✿✿✿✿✿✿✿✿✿
addressed

✿✿✿✿✿✿✿
without

✿✿✿✿✿✿✿✿✿
resolving

✿✿✿
the

✿✿✿
full

✿✿✿✿✿✿✿✿✿✿✿✿
dimensional

✿✿✿✿✿
mass

✿✿✿✿✿
flow.

✿✿✿✿
The

✿✿✿✿✿✿
scaling

✿✿✿
of

✿✿✿✿✿✿
impact

✿✿✿✿✿✿✿✿✿✿
pressures

✿✿✿
on

✿✿✿✿
rigid

✿✿✿✿✿✿✿✿✿✿
obstacles

✿✿✿✿
with

✿✿✿✿✿✿✿✿
obstacle

✿✿✿✿
size

✿✿
is
✿✿✿✿✿✿✿✿✿
complex (Bugnion et al.,

2012)
✿
;
✿✿✿✿
the

✿✿✿✿✿✿✿
spatial

✿✿✿✿✿✿✿✿✿✿✿
distribution

✿✿✿✿✿✿✿✿
depends

✿✿✿✿
on

✿✿✿
the

✿✿✿✿✿✿
local

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿
structure

✿
(Scheidl et al., 2013)25

✿✿✿
and

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿
distribution

✿✿
of

✿✿✿✿✿✿
forces

✿✿✿✿✿
over

✿✿✿✿
the

✿✿✿✿
flow

✿✿✿✿✿✿
depth

✿✿
is

✿✿✿✿✿✿✿✿✿✿
non-trivial

✿✿✿✿
and

✿✿✿✿✿✿
highly

✿✿✿✿✿✿✿✿
dynamic

✿
(Berger
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et al., 2011)
✿
.
✿✿
In

✿✿✿✿✿✿✿✿✿
situations

✿✿✿✿✿
with

✿✿✿✿✿✿✿✿
complex

✿✿✿✿✿✿✿✿✿✿✿
geometries

✿✿✿✿✿
such

✿✿✿
as

✿✿✿✿✿✿
sharp

✿✿✿✿✿✿✿✿
channel

✿✿✿✿✿✿
bends,

✿✿✿✿✿✿✿✿
barriers

✿✿
or

✿✿✿✿✿✿✿
bridge

✿✿✿✿✿✿
posts,

✿✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
three-dimensional

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
consideration

✿✿
of

✿✿✿✿
the

✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿
structure

✿✿
is

✿✿✿✿✿✿✿✿✿✿
necessary

✿✿✿
to

✿✿✿✿✿✿
predict

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
impacting

✿✿✿✿✿✿
loads

✿✿✿✿
and

✿✿✿
the

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿
behavior.

✿✿✿✿✿
Due

✿✿
to

✿✿✿
the

✿✿✿✿✿✿
sharp

✿✿✿✿✿✿✿✿✿
pressure

✿✿✿✿✿✿✿✿✿
gradients

✿✿✿✿
that

✿✿✿✿✿✿✿
develop

✿✿
in

✿✿✿✿✿
such

✿✿✿✿✿✿✿✿✿✿
situations

✿✿✿✿
and

✿✿✿✿✿✿
evolve

✿✿
in

✿✿✿✿✿✿
three

✿✿✿✿✿✿✿✿✿✿✿
dimensions,

✿✿✿✿
the

✿✿✿✿✿✿✿✿
pressure

✿✿✿✿✿✿✿✿✿✿✿✿
dependency

✿✿✿
of

✿✿✿
the

✿✿✿✿✿✿
debris

✿✿✿✿
flow

✿✿✿✿✿✿✿✿
material

✿✿✿✿✿✿✿✿✿
becomes

✿✿
a
✿✿✿✿
key

✿✿✿✿✿
issue

✿✿✿
to

✿✿✿✿✿✿
model

✿✿✿✿
the

✿✿✿✿
flow

✿✿✿✿✿✿✿✿
process.

✿✿✿
In

✿✿✿
our

✿✿✿✿✿✿✿
model

✿✿✿
we

✿✿✿✿
aim5

✿✿
to

✿✿✿✿✿✿✿✿
account

✿✿✿
for

✿✿✿✿
both

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
three-dimensional

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿
structure

✿✿✿✿
and

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
corresponding

✿✿✿✿✿✿✿✿✿
influence

✿✿
of

✿✿✿✿✿✿✿✿✿
pressure.

3.3 Effects of time step size on rheology

Because most debris-flow models are depth-averaged and use shallow-water approxima-
tions, one could ask why a three-dimensional approach is necessary. Brodani-Minussi and10

deFreitas Maciel (2012) compared
✿✿✿✿✿✿✿✿✿
simulated dam-break experiments of a Herschel-Bulkley

fluid and its numerical simulations using the VOF approach
✿✿✿✿✿
using

✿✿✿
the

✿✿✿✿✿
VoF

✿✿✿✿✿✿✿✿✿✿
approach,

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
compared

✿✿✿✿
the

✿✿✿✿✿✿✿
results with published shallow-water-equation-based models. Especially for

the first instant after the material release, the application of shallow-water equations seems
to introduce errors that are propagated throughout the process, leading to erroneous run-15

out estimates. A similar problem arises when modeling debris-flow impacts on
✿✿✿✿✿✿
against

✿
ob-

stacles. Simulating the impact of material with velocity-dependent rheology that is kept con-
stant over the time step although it actually changes with the changing flow leads to an
accumulating over- or underestimation of energy dissipation. In our model

✿✿✿
For

✿✿✿✿✿✿✿✿
example

✿✿✿
for

✿✿✿✿✿✿✿
models

✿✿✿✿
that

✿✿✿✿✿
apply

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
shear-thinning, during release of immobile material that accelerates, the20

viscosity is overestimated over each time step. As a consequence, the velocity at the end
of the time step is underestimated, which again amplifies the overestimation of viscosity
in the next time step. Conversely, at an impact, the sudden deceleration causes an un-
derestimation of viscosity over the time step length, leading to an overestimated velocity
that again amplifies the underestimation of the viscosity in the next time step. As a result,25

flow velocities change with changing time step size. Avalanche codes such as RAMMS
(Christen et al., 2007) deal with this problem by calibrating the model to data from previous
events at the same location and similar conditions. But changes in release volume or po-
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sition can lead to different accelerations and corresponding changes in the automatic time
step control can alter the development of rheology over time. As long as a flow stage is
reached where the flow stops accelerating, the influence on the final front velocity should
be negligible. Other debris flow models, which do not iteratively adjust viscosity, cannot ac-
curately simulate impacts. Here, our model constitutes a significant improvement, since in5

the three-dimensional solver we presented, the viscosity bias was reduced by implement-
ing a corrector step: taking the average between the viscosity at the beginning of the time
step and the viscosity that corresponds to the velocity field at the end of the time step, the
time step is solved again, leading to a better calculation of the velocity. This step can be
repeated, according to user specifications, to correct the viscosity several times. Although10

this procedure increases numerical calculation time, it clearly reduces the time-step depen-
dency of the simulation. Some dependency on the time step is still present when modeling
the collapse of material columns, but the origin of this problem is different because it occurs
also for Newtonian fluids.

3.4 Effect of grid resolution on rheology15

Since the shear rate influences both viscosity models, a strong influence of grid resolutionon
viscosity results

✿✿✿✿✿✿✿
viscosity

✿✿✿
is

✿✿✿✿✿✿✿✿
sensitive

✿✿✿
to

✿✿✿✿
grid

✿✿✿✿✿✿✿✿✿
resolution, because the shear rate is averaged

over the cell size. For flows over rough topography this may be less critical, but for labo-
ratory flume experiments with thin shear bands the results may depend on grid resolution.
When simulating laboratory flume experiments where debris-flow material accelerated in a20

relatively narrow and short channel (Scheidl et al., 2013), a cell height of 1.5 mm, which is
of the order of the laboratory rheometer gap, was still not fine enough to reach the limit of
grid sensitivity. The free model parameter τ00 influences the shear-rate-dependent term of
the visco-plastic

✿✿✿✿✿✿✿✿✿✿✿
viscoplastic rheology model and can be used to adjust the simulation to the

grid resolution. As long as the gravel phase and grid resolution do not change, it should be25

possible to model different water and clay contents based on one calibration test. However,
as the composition changes, both τy and τ00 must change commensurately, since a change
in yield stress affects the shear rate. Our procedure for adjusting to different mixtures based
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on one calibrated test is to perform one iteration step for the yield stress of the new mixture;
by calculating τy based on the original τ00 value from the calibration test but with the new
material composition, an updated yield stress of the new mixture is determined. Raising or
lowering τ00 by the same ratio as the change from the original yield stress of the calibration
test to the updated yield stress generates the final τy as it is applied to the simulation of the5

new mixture.
The viscosity of the granular phase is averaged over the cell faces to avoid discontinuous
viscosity jumps between cells, which may cause instability due to the sensitivity of incom-
pressible solvers to pressure-dependent viscosity. However, thin cells that allow a precise
calculation of the shear gradient lead to a preferred direction of the smoothing of the granu-10

lar phase’s viscosity which may introduce physically unrealistic behavior. Cell length (in the
flow direction), cell width and cell height should at least be of the same order. Especially
when front fingering is of interest, a grid resolution test should be carried out, ensuring that
front instability is not caused by a large aspect ratio of the cell dimensions.

4 Discussion
✿✿✿✿✿✿✿✿✿✿✿
Illustrative

✿✿✿✿✿✿✿✿✿✿✿✿
simulations15

Because the purpose of this paper is to illustrate the solver structure and model basis, we
defer a detailed discussion of model performance to the accompanying

✿✿✿
our

✿✿✿✿
next

✿
paper, in

which the model is validated against laboratory tests, large scale experiments and natural
hill-slope debris flow events. Here, we discuss only the efficiency of the solver itself, together
with a general test about

✿✿✿✿✿
tests

✿✿
of the model accuracy in a gravity-driven open channel flow.20

The lack of standard benchmark test cases for

4.1
✿✿✿✿
Test

✿✿✿✿✿
case

✿✿✿
of

✿✿
a

✿✿✿✿✿✿✿✿✿✿✿
dam-break

✿✿✿✿✿✿✿✿✿
released

✿✿✿✿✿✿✿
debris

✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿
mixture

✿✿✿✿✿✿✿✿✿
stopping

✿✿✿✿
on

✿✿✿
an

✿✿✿✿✿✿✿✿
inclined

✿✿✿✿✿
plane

✿✿✿
We

✿✿✿✿✿✿✿
chose

✿✿✿✿
an

✿✿✿✿✿✿✿✿✿✿✿
experiment

✿✿✿✿✿✿
from

✿
Hürlimann et al. (2015)

✿✿
as

✿✿✿
an

✿✿✿✿✿✿✿✿✿✿✿
illustration

✿✿✿
of

✿✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿✿✿
performance

✿✿
in

✿✿✿✿
the

✿✿✿✿✿
case

✿✿
of

✿✿
a
✿✿✿✿✿
flow

✿✿✿✿✿✿✿✿
stopping

✿✿✿
on

✿✿✿✿
an

✿✿✿✿✿✿✿
inclined

✿✿✿✿✿✿
plane

✿✿✿✿✿✿✿✿
without

✿✿✿✿✿✿✿✿
sidewall

✿✿✿✿✿✿✿
effects.25

✿✿✿✿
The

✿
debris-flow solvers was the motivation to select a numerical test case to compare
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model speedup between our approach and a closely related drag-force-based Eulerian
multiphase model , and to select a well-defined gravity-driven turbulent open channel flow
experiment with clear water to inspect the solver validity.

✿✿✿✿✿✿✿✿✿✿✿
experiment

✿✿✿✿
was

✿✿✿✿✿✿✿
carried

✿✿✿✿
out

✿✿✿
by

✿✿✿✿✿✿✿✿
releasing

✿✿✿✿✿
0.01

✿
m

✿

3
✿✿
of

✿✿✿✿✿✿✿
debris

✿✿✿✿
flow

✿✿✿✿✿✿✿✿✿
material

✿✿✿✿✿
from

✿✿
a

✿✿✿
0.4

✿
m

✿✿✿✿
wide

✿✿✿✿✿✿✿✿✿
reservoir

✿✿✿✿
into

✿✿
a
✿✿✿✿
4.4

✿
m

✿✿✿✿
long

✿✿✿
and

✿✿
2
✿
m

✿✿✿✿✿
wide,

✿✿✿✿
30◦

✿✿✿✿✿✿✿✿
inclined

✿✿✿✿✿✿
plane

✿✿✿✿✿✿✿✿
followed

✿✿✿
by

✿✿
a
✿✿✿✿
2.5

✿
m

✿✿✿✿✿
long,

✿✿
2
✿
m

✿✿✿✿✿
wide

✿✿✿✿
and

✿✿✿✿
10◦

✿✿✿✿✿✿✿✿
inclined5

✿✿✿✿✿✿✿
run-out

✿✿✿✿✿✿✿
section

✿✿✿✿✿
(Fig.

✿✿✿
5).

✿✿✿✿
The

✿✿✿✿✿✿
flume

✿✿✿✿
was

✿✿✿✿✿✿✿✿
covered

✿✿✿
by

✿✿
a

✿✿✿✿✿✿
rubber

✿✿✿✿✿
layer

✿✿✿✿✿
with

✿
a
✿✿✿✿✿✿✿
burling

✿✿✿✿✿✿✿✿✿✿
consisting

✿✿
of

✿✿✿
flat

✿✿✿✿✿✿✿✿
circular

✿✿✿✿✿
discs

✿✿✿
of

✿✿
4 mm

✿✿✿✿✿✿✿✿
diameter

✿✿✿✿
and

✿✿✿✿✿✿
about

✿✿✿
0.3

✿
mm

✿✿✿✿✿✿
height

✿✿✿✿✿✿
every

✿✿
5

✿
mm

✿
to

✿✿✿✿✿✿✿✿✿
increase

✿✿✿✿✿✿✿✿✿✿
roughness.

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿✿✿
experimental

✿✿✿✿✿✿✿✿✿
sediment

✿✿✿✿✿✿✿
mixture

✿✿✿✿✿
used

✿✿✿
for

✿✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿
validation

✿✿✿✿
had

✿✿✿✿✿
28.5%

✿✿✿✿✿
water

✿✿✿✿✿✿✿
content

✿✿✿
by

✿✿✿✿✿✿✿
weight

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿
contained

✿✿✿✿✿✿
about

✿✿✿✿
1.6%

✿✿✿✿✿✿✿✿✿
smectite,

✿✿✿
8.8%

✿✿✿✿✿
other

✿✿✿✿
clay

✿✿✿✿✿✿✿✿✿
minerals,

✿✿✿✿✿
27.8%

✿✿✿
silt,

✿✿✿✿✿
47.7%

✿✿✿✿
sand

✿✿✿✿
and

✿✿✿✿
14%

✿✿✿✿✿✿
gravel.

✿✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿✿✿✿✿
corresponding

✿✿✿✿
bulk

✿✿✿✿✿✿✿✿
density

✿✿✿✿
was

✿✿✿✿✿✿
1802

✿
kg/m

✿

3.
✿✿✿✿
We10

✿✿✿✿✿✿✿✿✿✿
determined

✿✿✿✿
the

✿✿✿✿✿✿
gravel

✿✿✿✿✿✿✿
friction

✿✿✿✿✿✿
angle

✿✿✿✿✿✿✿✿
δ = 36◦

✿✿✿
as

✿✿✿
the

✿✿✿✿✿✿
angle

✿✿✿
of

✿✿✿✿✿✿✿
repose

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿
gravel

✿✿✿✿✿✿✿✿
mixture.

✿✿
To

✿✿✿✿✿✿✿✿✿✿
determine

✿✿✿✿
the

✿✿✿✿✿
angle

✿✿✿
of

✿✿✿✿✿✿✿
repose,

✿✿✿
we

✿✿✿✿✿
used

✿✿
a
✿✿✿✿✿✿✿
simple

✿✿✿✿✿✿✿✿✿✿
adaptation

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿
method

✿✿✿
of Deganutti

et al. (2011)
✿
,
✿✿✿✿✿
tilting

✿✿
a

✿✿✿✿✿
large

✿✿✿✿
box

✿✿✿✿
with

✿✿✿✿✿
loose

✿✿✿✿✿✿✿✿
material

✿✿✿✿
until

✿✿
a
✿✿✿✿✿✿✿
second

✿✿✿✿✿✿
failure

✿✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿✿
material

✿✿✿✿✿
body

✿✿✿✿✿✿✿✿✿
occurred.

✿✿✿✿
The

✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿✿
parameter

✿✿✿✿✿✿✿✿✿✿✿
τ00 = 41.33 Pa

✿✿✿
was

✿✿✿✿✿✿✿✿✿✿
calibrated

✿✿
to

✿✿✿
fit

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
observed

✿✿✿✿✿✿✿
run-out

✿✿✿✿✿✿
length.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Laser-measured

✿✿✿✿✿
flow

✿✿✿✿✿✿✿
depths

✿✿✿✿✿
were

✿✿✿✿✿✿✿✿✿
available

✿✿
in

✿✿✿✿
the

✿✿✿✿✿✿
center

✿✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿
flume,

✿✿✿✿
one

✿✿✿✿✿✿
meter15

✿✿✿✿✿✿✿✿✿✿
downslope

✿✿
of

✿✿✿✿
the

✿✿✿✿✿
gate.

✿✿✿✿✿✿✿✿✿✿✿✿
Comparisons

✿✿✿✿✿✿✿✿✿
between

✿✿✿✿✿✿✿✿✿✿
measured

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿
simulated

✿✿✿✿
flow

✿✿✿✿✿✿✿
depths

✿✿
at

✿✿✿✿✿
such

✿✿✿✿✿
small

✿✿✿✿✿✿✿
scales

✿✿✿
are

✿✿✿✿✿
only

✿✿✿✿✿✿✿✿✿✿✿✿
approximate

✿✿✿✿
due

✿✿✿
to

✿✿✿✿
the

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿✿✿✿✿✿
disturbance

✿✿✿
by

✿✿✿✿✿✿✿
coarser

✿✿✿✿✿✿✿
grains

✿✿✿✿
that

✿✿✿✿✿✿
cause

✿✿✿✿✿✿✿✿✿✿
significant

✿✿✿✿✿✿✿✿✿✿✿
fluctuations

✿✿
in

✿✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿✿✿
elevation.

✿✿✿✿✿✿✿✿✿✿
However,

✿✿✿
the

✿✿✿✿✿✿✿
arrival

✿✿✿✿✿
time,

✿✿✿✿
the

✿✿✿✿✿✿✿✿
maximal

✿✿✿✿
flow

✿✿✿✿✿✿
depth

✿✿✿✿
and

✿✿✿✿
the

✿✿✿✿✿✿
decay

✿✿✿
of

✿✿✿✿✿✿✿
surface

✿✿✿✿✿✿✿✿✿
elevation

✿✿✿✿✿
over

✿✿✿✿✿
time

✿✿✿✿✿
were

✿✿✿✿✿✿✿✿✿✿✿
considered

✿✿✿
to

✿✿✿
be

✿✿✿✿✿✿✿✿
suitable

✿✿
for

✿✿✿✿✿✿✿✿✿✿✿✿
comparison

✿✿✿
to

✿✿✿
the

✿✿✿✿✿✿✿✿
model.

✿✿✿✿
The

✿✿✿✿✿✿✿
model

✿✿✿✿✿✿✿✿✿✿✿✿
performance

✿✿✿✿✿
was

✿✿✿✿✿✿✿✿✿✿
evaluated

✿✿✿
by

✿✿✿✿✿✿✿✿✿✿
comparing

✿✿✿✿
the20

✿✿✿✿✿✿✿✿✿
deposition

✿✿✿✿✿✿✿✿✿✿
patterns,

✿✿✿✿✿
travel

✿✿✿✿✿✿✿
times,

✿✿✿✿
and

✿✿✿✿✿
time

✿✿✿✿✿✿✿
series

✿✿
of

✿✿✿✿✿
flow

✿✿✿✿✿✿✿
depths

✿✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿
simulations

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿✿
experiments.

✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿
simulated

✿✿✿✿
flow

✿✿✿✿✿✿✿
depths

✿✿✿✿✿✿✿✿✿✿✿✿
reproduced

✿✿✿
the

✿✿✿✿✿✿
laser

✿✿✿✿✿✿
signal

✿✿✿✿
with

✿✿✿✿✿✿✿✿
respect

✿✿
to

✿✿✿✿✿
both

✿✿✿✿
time

✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿
amplitude

✿✿✿✿✿✿✿✿
(Figure

✿✿✿
6)

✿✿✿✿
and

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿
predicted

✿✿✿✿✿✿✿✿
run-out

✿✿✿✿✿✿✿✿
deposit

✿✿✿✿
was

✿✿✿
in

✿✿✿✿✿✿✿
almost

✿✿✿✿✿✿✿
perfect

✿✿✿✿✿✿✿✿✿✿
agreement

✿✿✿✿✿
with

✿✿✿
the

✿✿✿✿✿✿✿
shape

✿✿
of

✿✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿
experimental

✿✿✿✿✿✿✿✿
deposit

✿✿✿✿✿✿✿
(Figure

✿✿✿
7).

✿✿✿✿✿
The

✿✿✿✿✿✿✿✿✿✿
simulation

✿✿✿✿✿✿
setup

✿✿
of

✿✿✿
the

✿✿✿✿
test

✿✿✿✿✿
case

✿✿
is

✿✿✿✿✿✿✿✿✿
included

✿✿
in

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
supplementary.25

4.2
✿✿✿✿✿✿✿✿✿✿✿✿
Comparison

✿✿✿
to

✿
a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
drag-force-based

✿✿✿✿✿✿✿✿✿
Eulerian

✿✿✿✿✿✿✿✿✿✿✿
multiphase

✿✿✿✿✿✿✿
model

In comparison to drag-force-based Eulerian multiphase models, the Volume of Fluid ap-
proach applied here provides significant reduction

✿✿✿✿✿✿✿✿✿✿
significantly

✿✿✿✿✿✿✿✿
reduces

✿
in calculation time.
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For an estimate we compared our model with the OpenFOAM standard solver multi-
phaseEulerFoam. We selected the official tutorial case damBreak4phaseFine , but turned
the water phase into mercury to gain a three-phase test case, and applied the standard
solver settings from the case to our model. On a CentOS 6.3 Linux machine with 31 GiB
memory and sixteen Intel Xeon CPU E5-2665 @ 2.40 GHz processors, our model resulted5

in a 5.5 times faster calculation with a comparable collapse of the modeled mercury and
oil

✿✿✿✿✿✿✿
material

✿
columns (Fig. 8). For the sake of completeness our calculation included one

iterative viscosity correction step, thus the model efficiency can be estimated to be about
ten times higher than a drag-force-based phase coupling approach.

The model was also applied to an open clear water channel experiment with about 50.6 l/s10

discharge in a 40 m long and 1.1 m wide rectangular smooth channel with 0.026inclination
. The slurry phase was initialized as water together with a zero gravel phase concentration.
A Hybrid URANS-LES model was applied to account for the turbulent flow. Instead of an
inlet discharge the model applied periodic inlet and outlet boundary conditions and the flow
was driven by gravity. The debrisInterMixingFoam solver predicted the discharge of the15

turbulent channel flow with an underestimation of 15and underestimated the corresponding
surface elevation by 2.5. However, the deviations in predicted and measured average flow
velocities are probably related to shortcomings of the URANS turbulence model at the
bottom boundary, as a comparison between a measured and simulated vertical velocity
profile suggests (Fig. ??). Due to the lack of a clearly defined benchmark test case for20

debris flow models, we have chosen this setup as a well-defined larger-scale laboratory
test case where the solver faces varying modeled fluid viscosity due to turbulence.

5 Conclusions

The new debris-flow solver has two main strengths. First, it can model three-dimensional
flows and their impact against complexly shaped objects, representing the processes at a25

high level of detail
✿✿✿✿
and

✿✿✿✿✿✿✿✿✿✿✿
reasonable

✿✿✿✿✿✿✿✿✿✿✿✿✿
computational

✿✿✿✿✿✿
costs. Second, its design allows simulat-

ing different debris flow material compositions without recalibrating the one free parameter,
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✿✿✿✿
with

✿
a
✿✿✿✿✿✿✿✿
reduced

✿✿✿✿✿✿✿✿✿✿
calibration

✿✿✿✿✿✿✿✿
process

✿
as long as the simulation grid does not change

✿
,
✿✿✿✿✿✿✿✿
because

✿✿✿
the

✿✿✿✿✿✿✿✿✿✿
calibration

✿✿✿✿✿✿✿✿✿✿✿
parameters

✿✿✿✿
τ00✿✿✿✿

and
✿✿
n
✿✿✿✿
are

✿✿✿✿✿✿✿
largely

✿✿✿✿✿✿✿✿✿✿
insensitive

✿✿✿
to

✿✿✿✿✿✿✿✿✿
changes

✿✿
in

✿✿✿✿✿✿
water

✿✿✿✿✿✿✿✿
content,

✿✿✿✿✿✿✿
channel

✿✿✿✿✿✿✿✿✿✿✿
roughness

✿✿
or

✿✿✿✿✿✿✿✿
release

✿✿✿✿✿✿✿
volume. Due to the solver’s pressure- and shear-dependent

rheology, realistic deposit geometries and release dynamics can be achieved, as presented
and discussed on the basis of test cases in the accompanying

✿✿✿
next

✿
paper. By systematically5

excluding unknown parameters from the model architecture and by accounting for known
flow phenomena in a simplified way, we have developed a debris flow model whose param-
eters can be roughly estimated based on

✿✿✿✿
from

✿
material composition, leaving only a single

calibration parameter
✿✿✿✿
two

✿✿✿✿✿✿✿✿✿✿
calibration

✿✿✿✿✿✿✿✿✿✿✿
parameters. The concept is promising, however impor-

tant parts of phase interactions are neglected in favor of lower numerical costsand shorter10

calculation times. The model is still limited to small simulationsof several hundred square
meters in surface area unless a powerful computer cluster can be used.

Appendix A: A

The following section describes the detailed implemetation of the PISO iteration procedure
as described in Deshpande et al. (2012). By applying the continuum surface force model of15

Brackbill et al. (1992), the volume integral of eq
✿✿✿
Eq. 14 is given as

�

Ωi

∂ρU

∂t
dV +

�

∂Ωi

(ρUU) ·ndS =

−
�

Ωi

∇pddV −
�

Ωi

g ·x∇ρdV +

�

Ωi

σκ∇α1dV +

�

∂Ωi

(µ∇U) ·ndS+

�

Ωi

∇U ·∇µdV. (A1)

The computational domain is discretized into finite-volume cells. Each cell is considered20

as the owner of exactly one face that it shares with an adjacent neighbor cell, thus each face
has a defined owner cell. A surface normal vector Sf with magnitude equal to the surface
area of the face is defined on the face pointing outward from the owner cell (Fig. 9). The

25



value at face f of any variable χ calculated in the cell centers as χP and χN (Fig. 9) can be
derived by interpolation using a mixture of central and upwind schemes:

χf = γ(χP −χN )+χN , (A2)

with a weighting factor γ that can account for the flow direction based on the chosen inter-
polation scheme and flux limiter. In case of a linear interpolation scheme and a flux limiter5

ψ, γ can be defined as

γ = ψ
fN

d
+(1−ψ)

φf

|φf |
, (A3)

where d is the distance between the cell centers P and N and fN is the dis-
tance from the face center to the cell center N . The face flux denoted as φf

serves as a switch to account for the flow direction since it turns negative when10

the flow is from N to P
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Berberović et al., 2009). Several limiters are implemented

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(OpenFOAM-Foundation, 2016b); we chose the vanLeer scheme and assumed uniform
grid spacing to simplify the following explanations with fN/d= 0.5.

Variables that are evaluated at the cell faces are subscripted by f . Due to sta-
bility problems that arise from the pressure-velocity coupling in collocated meshes15

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Ferziger and Peric, 2002), the pressure is solved for the cell centers whereas the veloc-
ity is interpolated to the cell faces within the PISO loop.

With the switch function

ζ(φf ) =
φf

|φf |
(4)

the velocity U f at face f can be written based on eq
✿✿✿
Eq. A2 and A3 as20

U f =
UP

2
(1+ ζ(φf )(1−ψ))+

UN

2
(1− ζ(φf )(1−ψ)), (5)

26



and the corresponding face-perpendicular velocity gradient is given by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Deshpande et al. (2012)

✿
as

∇⊥
fU =

UN −UP

|d| . (6)

At the present time step t
n the phase averaged density of the next time step ρ

n+1 is
known from solving the transport equations. In a first approximation, the corresponding5

viscosity field µ
n+1 can be derived accordingly. A simplified formulation of the momentum

equation A1 without pressure, surface tension and gravity terms discretized for cell P could
then be formulated as

(ρn+1Ũ)− (ρnUn)

∆t
|ΩP |+

�

f∈∂Ωi

ρ
n
fφ

n
f Ũ f =

�

f∈∂Ωi

µ
n+1

f∇⊥
f Ũ |Sf |+∇Un ·∇µ

n+1|ΩP |.

(7)

The tilde stands for the velocity at cell P predicted in the current iterative step, for which10

eq
✿✿✿
Eq. 7 yields an explicit expression.

✿✿✿
The

✿✿✿✿✿
sum

✿✿✿✿
over

✿✿✿✿
the

✿✿✿✿
face

✿✿✿✿✿✿✿
density

✿✿✿✿✿✿
fluxes

✿✿✿
on

✿✿✿✿
the

✿✿✿
left

✿✿✿✿✿
hand

✿✿✿✿
side

✿✿
of

✿✿✿✿✿✿✿✿✿
equation

✿
7
✿✿✿✿
are

✿✿✿✿✿✿✿
known

✿✿✿✿
from

✿✿✿✿
the

✿✿✿✿✿
mass

✿✿✿✿
flux

✿✿✿
φρ✿✿✿✿✿✿✿

derived
✿✿✿✿✿
from

✿✿✿✿✿✿✿✿✿
equation

✿✿✿
9.

For that purpose, eq
✿✿✿
Eq. 5 and 6 are inserted into eq

✿✿
Eq. 7 using the velocity of the prior

iteration step, Um, in all neighbor cells
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
(Deshpande et al., 2012). The explicit expression

for the estimated velocity is15

AP Ũ =H(Um), (8)

and by including surface tension and gravity this leads to

Ũ =
H(Um)

AP
+

σκ∇α
n+1
1

AP
− g ·x∇ρ

AP
. (9)
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The detailed composition of H(Um) and AP formulated with respect to the splitting be-
tween neighbor and owner cells can be found in

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
Deshpande et al. (2012); here it is sufficient

to keep in mind that H(Um) contains all off-diagonal contributions of the linear system.
The next step is to assemble the approximated face flux

φ̃f =
�
H(Um)

AP

�

f
·Sf +

�(σκ)n+1(∇⊥
fα1)n+1

AP

�

f
|Sf |−

�(g ·x)n+1(∇⊥
fρ)n+1

AP

�

f
|Sf |

(10)5

where the subscript f indicates that the variable values at the faces are used. The final flux
is found by adding the pressure contribution

φ
m+1

f = φ̃f −
�∇⊥

fp
m+1
d

AP

�

f
|Sf |. (11)

The sum of the flux over the cell faces needs to be zero due to mass conservation for the
incompressible flow10

�

f∈∂Ωi

φ
m+1

f = 0, (12)

Thus the pressure is defined by the linear equation system for the updated pressure pd
m+1

�

f∈∂Ωi

�∇⊥
fp

m+1
d

AP

�

f
|Sf |=

�

f∈∂Ωi

φ̃f , (13)

and can be solved with the preconditioned conjugate gradient (PCG) algorithm, to men-15

tion one of several options implemented in OpenFOAM. With the updated pressure pd
m+1,
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the face fluxes φ
m+1

f are derived from eq
✿✿
Eq. 11 and the updated velocity filed

✿✿✿✿
field Um+1

is obtained from the explicit velocity correction

Um+1 = Ũ +
� 1

AP

�� �

f∈∂Ωi

(Sf ⊗Sf )

|Sf |

�−1

•
� �

f∈∂Ωi

�
φ
m+1

f − Ũ f ·Sf

( 1
AP

)f

�
Sf

|Sf |

�
(14)

which is the end of the PISO loop. After updating the index m to m+1, the iteration restarts
with

✿✿
by

✿
recalculating H with the updated velocity from equation 8, repeating the loop until a5

divergence-free velocity field is found.

1.1 Code availability

✿✿✿✿✿
Code

✿✿✿✿✿✿✿✿✿✿✿
availability

The source-code
✿✿✿✿✿✿
source

✿✿✿✿✿
code

✿
can be downloaded from the supplement application.zip.

Please follow the instructions given in the README.pdf file for installation.10

The Supplement related to this article is available online at
doi:10.5194/gmdd-0-1-2016-supplement.
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H

Figure 1. Viscosity distribution (indicated by color scale) along a 28 cm long section through the
modeled 0.01 m3 release block 0.2 s after release, corresponding to the experimental setup of
Hürlimann et al. (2015). The starting motion (black velocity arrows) with corresponding viscosity
distribution of the mixture (left) is a consequence of blending pure shear-rate dependent slurry-
phase rheology (center) with the pressure- and shear-rate-dependent gravel phase rheology that
accounts for Coulomb friction (right). Because the gravel concentration in this example is low, its
effect on the overall viscosity is small.
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H

Figure 2. Longitudinal section through a debris flow front discretized with finite volume-cells, show-
ing the constitutive equations for one cell with density ρ and viscosity µ given the densities ρ1..3,
viscosities µ1..3 and proportions α1..3 of phases present. 1denotes ,

✿✿
2

✿✿✿
and

✿✿
3
✿✿✿✿✿✿
denote

✿✿✿
the

✿
air

✿✿✿
air (white

colored cell content), 2 the mud
✿
, and 3 the gravel phase

✿✿✿✿✿✿
phases, respectively.
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H

Figure 3. Dependency of the kinematic gravel phase viscosity νs (normalized by density) on the
norm of the strain rate tensor ||D|| at different levels of pressure normalized by density, for my = 1
sand

✿
,
✿
my = 0.2 s,

✿
and a friction angle δ = 36◦.

36



H

Figure 4. Dependency of the kinematic gravel phase viscosity (for friction angle δ = 25◦ and 50◦)
on the norm of the strain rate tensor ||D|| at different levels of pressure normalized by density, for
my = 0.2 s

✿
.
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Figure 5.
✿✿✿✿✿✿✿
Iso-view

✿✿✿✿✿✿
sketch

✿✿
of

✿✿✿
the

✿✿✿✿✿✿✿
hillslope

✿✿✿✿✿✿✿✿✿✿
debris-flow

✿✿✿✿✿✿
flume.

✿✿✿✿✿✿✿
Material

✿✿
(b)

✿✿
is
✿✿✿✿✿✿✿✿
released

✿✿✿✿
from

✿✿✿
the

✿✿✿✿✿✿✿✿
reservoir

✿✿
at

✿✿✿
the

✿✿✿
top

✿✿
by

✿✿
a
✿✿✿✿✿✿✿
sudden

✿✿✿✿✿✿
vertical

✿✿✿✿✿✿✿✿
removal

✿✿
of

✿
a
✿✿✿✿✿
gate

✿✿
(a)

✿✿✿✿
and

✿✿✿✿✿
flows

✿✿✿✿✿
down

✿✿
a

✿✿✿✿✿
steep

✿✿✿✿✿
slope

✿✿✿
(c)

✿✿✿✿✿✿✿
followed

✿✿
by

✿✿
a

✿✿✿✿✿
gently

✿✿✿✿✿✿✿
inclined

✿✿✿✿✿✿✿
run-out

✿✿✿✿✿
plane

✿✿✿
(d).
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Figure 6. Phase positions in a dam break standard test-case simulation using a drag-based
three phase multiphaseEulerFoam simulation (air is transparent, blue indicates mercury

✿✿✿✿✿
Laser

✿✿✿✿✿✿✿✿✿✿✿✿
measurement and orange represents oil) as background shapes with the corresponding phase
positions

✿✿✿✿✿✿✿✿
simulated

✿✿✿✿✿✿
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Figure 7. Comparison of simulated and measured average vertical velocity profiles 27 cm away
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Figure 8.
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Figure 9. Sketch of two adjacent cells P and N and the shared face f owned by cell P . Sf is the
face surface normal vector while d denotes the distance vector from cell center P to cell center N.

42


