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Abstract. Measurements of the large dimensional chemical state of the atmosphere provide only

sparse snapshots of the state of the system due to their typically insufficient temporal and spatial den-

sity. In order to optimize the measurement configurations despite those limitations, the present work

describes the identification of sensitive states of the chemical system as optimal target areas for adap-

tive observations. For this purpose, the technique of singular vector analysis (SVA), which has been5

proved effective for targeted observations in numerical weather predication, is implemented into the

chemical transport model EURAD-IM (EURopean Air pollution and Dispersion - Inverse Model)

yielding the EURAD-IM-SVA v1.0. Besides initial values, emissions are investigated as critical sim-

ulation controlling targeting variables. For both variants, singular vectors are applied to determine

the optimal placement for observations and moreover to quantify which chemical compounds have10

to be observed with preference. Based on measurements of the airship based ZEPTER-2 campaign,

the EURAD-IM-SVA v1.0 has been evaluated by conducting a comprehensive set of model runs

involving different initial states and simulation lengths. For the sake of brevity, we concentrate our

attention on the following chemical compounds: O3, NO, NO2, HCHO, CO, HONO, OH and focus

on their influence on selected O3 profiles. Our analysis shows that the optimal placement for ob-15

servations of chemical species is not entirely determined by mere transport and mixing processes.

Rather, a combination of initial chemical concentrations, chemical conversions, and meteorological

processes determine the influence of chemical compounds and regions. We furthermore demonstrate

that the optimal placement of observations of emission strengths is highly dependent on the location

of emission sources and that the benefit of including emissions as target variables outperforms the20

value of initial value optimisation with growing simulation length. The obtained results confirm the

benefit of considering both initial values and emission strengths as target variables and of applying

the EURAD-IM-SVA v1.0 for measurement decision guidance with respect to chemical compounds.
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1 Introduction

In meteorology and atmospheric chemistry, both data assimilation and inverse modelling seek to25

combine observations from a given observation network set-up with a model to reduce forecast

errors. In contrast, the objective of targeted observations is to optimize the observation network for

data assimilation and ensuing simulations applying a given model

(e.g. Berliner et al., 1998; Daescu and Navon, 2004; Toth and Kalnay, 1993).

In numerical weather prediction, the optimal adaption of observations is a commonly investigated30

problem (e.g. Baker and Daley, 2000; Bishop and Toth, 1998; Palmer, 1995; Buizza and Palmer,

1993). It is typically studied to obtain a better estimate of initial values (Palmer, 1995). Events of

explosive cyclogenesis at the North American east coast are often of highest relevance for Euro-

pean weather development and its forecast, and are therefore frequently taken as study objects to

obtain better configured observation sites and times. In order to find sensitive initial states, Lorenz35

(1965) introduced the application of singular vectors to numerical weather prediction by estimating

the atmospheric predictability of an idealized model. Singular vectors determine the directions of

fastest linear perturbation growth over a finite time interval and identify thereby sensitive system

states, where small variations of considered input parameters lead to a significant forecast change.

The identified sensitive system states are optimal target areas for adaptive observations, which help40

to optimize the information content of our monitoring capabilities and grant a better control of the

dynamic system evolution by data assimilation. Likewise, this method can be effectively used for

campaign planing (e.g. Gelaro et al., 1999; Langland et al., 1999; Kim et al., 2011). Buizza et al.

(2007) investigated the results of field campaigns applying singular vector based targeted observa-

tions, including FASTEX (Fronts and Atlantic Storm-Track Experiment), NORPEX (North-Pacific45

Experiment), CALJET (California Land-falling JETs Experiment), the Winter Storm Reconnais-

sance Programs (WSR99 /WSR00) and NATReC (North Atlantic THORPEX Regional Campaign),

and stated that targeted observations are more valuable than observations taken in random areas.

Yet, the extent of the impact is strongly dependent on regions, seasons, static observing systems, and

prevailing weather regimes.50

The successful application of singular vector analysis within numerical weather prediction moti-

vated to transfer this analysis method to chemical modelling, where studies attending targeted ob-

servations are rare. Khattatov et al. (1999) gave the earliest stimulus for adaptive observations of

chemical compounds. By investigation of the linearised model, Khattatov et al. inferred that a linear

combination of 9 initial species’ concentrations is sufficient to adequately forecast the concentrations55

of the complete set of 19 simulated species 4 days later. Hence, the problem of targeted observations

of chemical compounds deals not only with the optimal placement of adaptive measurements, but

also with the optimal set of chemical compounds to be measured. Daescu and Carmichael (2003)

and Liao et al. (2006) introduced the application of an adjoint sensitivity method and of singular vec-

tor analysis, respectively, to chemical transport models (Lawrence et al., 2005). While Daescu and60
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Carmichael (2003) and Liao et al. (2006) especially focused on the optimal placement of observa-

tions, a later study (Goris and Elbern, 2013) adapted singular vector analysis following the objective

of Khattatov et al. (1999) and applied the theory to identify the optimal set of chemical compounds

to be measured.

Initial values are not the only uncertainty when considering atmospheric chemical modelling.65

Errors in boundary conditions, emission rates, and meteorological fields add to the uncertainty of the

chemical forecast (Liao et al., 2006). With progressing simulation time, the forecast solution is driven

more by emission and less by initial values. While trace gas emissions are a forcing mechanism

of prime importance for reactive chemistry simulations, they are not known exactly enough (e.g.

Granier et al., 2011). This feature enforces the inclusion of emission rates in the data assimilation70

procedure (Elbern et al., 2007) and the need of targeting adaptive measurements for emission rates.

In a first step, Goris and Elbern (2013) applied both emissions and initial values as target variables for

singular vector analysis in a box-model context, yielding a relevance ranking of chemical compounds

to be measured, while the optimal placement of those compounds is beyond the scope of zero-

dimensional simulations.75

In this work, the approach of Goris and Elbern (2013) was generalized for a 3-dimensional chem-

istry transport model. The newly developed model set-up offers a comprehensive application of

singular vector analysis by combining the idea of Goris and Elbern (2013) with the approach of

Liao et al. (2006). Its objective is the detection of sensitive locations and species for atmospheric

chemistry transport models. Specifically, the following questions are addressed: (i) which chemical80

species have to be measured with priority, and (ii) where is the optimal placement for observations

of these components? Both questions are addressed with respect to emission strengths and initial

species concentrations.

The present paper is organized as follows: The theory of singular vector analysis is presented in

Sect. 2, where the application on initial concentration uncertainties and emission factors is described85

as well as the application of special operators. Singular vector analysis (SVA) is implemented into

the 3-dimensional chemical transport model EURAD-IM (EURopean Air pollution and Dispersion

- Inverse Model, e.g., Elbern, 1997; Elbern and Schmidt, 1999; Elbern et al., 2007) yielding the

EURAD-IM-SVA v1.0, which is described in Sect. 3. In order to test and validate the EURAD-IM-

SVA v1.0, we focus on the model set-up of the ZEPTER-2 campaign (Zeppelin based tropospheric90

chemistry experiment, Part 2, Oebel et al., 2010; Wintel et al., 2013). The ZEPTER-2 campaign study

configurations are described in Sect. 4. Results of singular vector analyses with respect to initial

values and emission rates are presented in Sect. 5. Finally, the results of this work are summarized

in Sect. 6.
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2 Singular vector analysis for chemical models: Theoretical background95

The application of singular vector analysis to atmospheric chemical modelling allows for studying

the influence of different kinds of uncertainties on the chemical forecast evolution. Within this work,

we target the largest uncertainties in initial values and emissions, which both strongly determine

the chemical system’s evolution. A brief outline of the theoretical background of this application is

presented in the following (see also Goris and Elbern, 2013, for a comprehensive discussion).100

2.1 Initial values as target variables

A deterministic chemical forecast is processed by a typically nonlinear model operator, MtI ,tF ,

propagating concentrations of a multitude of chemical species, c ∈ Rn, (denoted in mass mixing

ratios) forward in time:

c(tF ) =MtI ,tF [c(tI)], with tI : initial time, tF : final time. (1)105

For a three-dimensional transport-model, the initial state of this equation is not entirely known, but

has to be estimated relying on both former model results and assimilated observations. It is therefore

subject to possible error growths. The evolution of an initial uncertainty or an initial error, δc(tI),

which is sufficiently small to evolve linearly within a given limited time interval, can be modelled

by the tangent linear model, LtI ,tF (Kalnay, 2002):110

δc(tF ) = LtI ,tF δc(tI). (2)

Our search for the most unstable initial uncertainty, δc(tI), can be described as the search of the

phase space direction, which results in maximum error growth, g(δc(tI)), at the end of the simula-

tion:

max
δc(tI)6=0

(
g2(δc(tI)) =

‖δc(tF )‖22
‖δc(tI)‖22

)
= max
δc(tI)6=0

δc(tI)
T LTtI ,tF LtI ,tF δc(tI)

δc(tI)T δc(tI)
, (3)115

where, for convenience, the squared error growth is maximised (Goris and Elbern, 2013). Here,

LTtI ,tF denotes the adjoint model and LTtI ,tF LtI ,tF the Oseledec operator. Since the Oseledec opera-

tor is symmetric, Rayleigh’s principle can be applied (see, for example, Parlett, 1998). Accordingly,

the problem (3) can be solved by calculating the eigenvector v1(tI) assigned to the largest eigenvalue

λ1 of the following eigenvalue problem:120

LTtI ,tF LtI ,tF v(tI) = λv(tI). (4)

The eigenvector, v1(tI), of the Oseledec operator equals the right singular vector, v1(tI), of the

tangent-linear operator, LtI ,tF . The singular value σ1 equals the square root of the associated eigen-

value, λ1, and is the maximum value of the error growth, g(δc(tI)). It defines the amount of error

growth at the end of integration time.125
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2.1.1 Weight matrix and projection operator

To allow for the calculation of relative error growths and for placing foci on limited sets of chemi-

cal compounds and limited areas, we extend the analysis above by applying two special operators,

namely weight matrix, Wt ∈Rn×n, and projection operator, Pt ∈Rn×n:

Wt := diag
(
c i,j,k,s(t)

)
i,j,k,s

and Pt := diag(pi)i=1,...,n , pi =

 1 ∀ i ∈ P(t)
0 otherwise.

(5)130

Since the weight matrix contains concentration of chemical species (here, s denotes the considered

species, while (i, j,k) denotes the considered numerical grid point), application of the inverse weight

matrix yields relative perturbations and prevents the uncertainties of species with larger concentra-

tions to dominate the error growth.

The projection operator allows for analysis of a limited set, P(t), of chemical species and grid135

points by setting the entries of the perturbations to zero when they are not within the chosen set of

species and regions (Barkmeijer et al., 1998).

With the help of projection operator and weight matrix, we can consider the relative impact of a

limited set of perturbations at initial time, tI , on a limited set of perturbation at time t:

δcpr(t) :=W−1 Pt LtI ,t PtI δc(tI) (6)140

(where δcpr ∈Rn is denoted as the projected relative error). The associated squared projected rela-

tive error growth gpr2(δcpr(tI)) is given by:

gpr2(δcpr(tI)) :=
‖δcpr(tF )‖2
‖δcpr(tI)‖2

=
‖W−1

tF PtF LtI ,tFWtI δcpr(tI)‖22
‖δcpr(tI)‖22

(7)

subject to

[δcpr(tI)](j) =

 [ δc(tI)c(tI)
](j) ∀ j ∈ PtI

0 otherwise.
(8)145

Here, [x](j) denotes the j-th component of a vector x. The phase space direction that maximizes

the Rayleigh quotient (7) and ensures condition (8) is the solution vpr1(tI) ∈Rn of the symmetric

eigenvalue problem:

Bpr
T Bpr vpr(tI) = λpr vpr(tI), where Bpr :=W−1

tF PtF LtI ,tF WtI PtI , (9)

assigned to the largest eigenvalue λpr1 (see Goris and Elbern, 2013, for a derivation of the eigenvalue150

problem). We refer to the solution as projected relative singular vector, since it is the right singular

vector of the operator Bpr. The square root of the eigenvalue λpr1 is the associated projected relative

singular value σpr1.
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2.2 Emissions as target variables

Emissions, e(t), impact the final state, c(tF ), according to the differential equations, which describe155

the chemical evolution:

dc

dt
= f(c(t))+ e(t). (10)

Here, the function f(c(t)) compromises all processes that influence the chemical evolution apart

from emission sources (as those are added separately). For a chemical transport model, the function

f(c(t)) describes advection and diffusion of chemical species as well as their chemical formation160

and destruction. Equation (10) differs from Eq. (1) as it describes the rate of change for each chemical

species, while Eq. (1) combines the inital conditions with the rate of change to calculate the chemical

concentration for another point in time.

Like initial values, emissions are subject to uncertainties or errors, since their estimate is depen-

dent on imperfect models and observation. Yet, emissions vary in time, leading to uncertainties or165

errors, δe(t), at each time step t ∈ [tI , tF ]. Consequently, the associated directions of largest error

growth differ for each time step and their identification results in one application of singular vector

analysis per time step, t ∈ [tI , tF ]. In order to reduce the degrees of freedom to keep ill-posedness of

the optimization problem and computational expenditure under control, we define a time invariant

vector of emission factors, ef , instead, representing the amplitude of a prescribed diurnal emission170

profile (Elbern et al., 2007). This is a reasonable constraint as the daily evolution of emissions is

far better known than the total emitted amount in a grid cell. Further, the application of ef has the

advantage of resulting in only one singular vector analysis per time interval, [tI , tF ]. The associated

results quantify for which grid cell and which chemical species further emission strength assessment

is most beneficial.175

Introducing the vector of emission factors, ef , Eq. (10) reformulates to

dc

dt
= f(c(t))+E(t)ef , (11)

where E(t) is a diagonal matrix with the vector of emissions e(t) on its diagonal. Accordingly, we

implement the vector of emission factors also into the forward modelMtI ,tF , leading to a forward

modelMef

tI ,tF (which is exactly the same model as in Eq. (1), only with a different expression for the180

emissions). In order to determine the evolution of emission factor uncertainties, we utiliseMef

tI ,tF to

calculate the tangent linear model with respect to emission factors, Lef

tI ,tF . The tangent linear model

integration of Eq. (10) reads

δcef (tF ) = L
ef

tI ,tF δef . (12)

Here, the superscript ef denotes that the uncertainty at final time is solely caused by emission uncer-185

tainties. In contrast, the uncertainty δc(tF ) as described in Eq. (2), is solely caused by initial values

uncertainties.
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Analogue to Sect. 2.1, we further want to identify the most unstable emission factor, δef . The

latter is achieved by calculating the phase space direction, which results in maximum error growth,

g r
ef (δef ), at the end of the simulation. Since emission factors already denote a relative measure,190

we consider henceforth only the relative impact of their uncertainty:

δcr
ef (tF ) :=W−1

tF δcef (tF ), (13)

where WtF is the weight matrix as defined in Eq. (5). With these restrictions, the squared relative

error growth with respect to emission factors, g r
ef

2

(δef ), reads:

g r
ef

2

(δef ) :=
‖δcr

ef (tF )‖22
‖δef‖22

=
δeTf L

ef
T

tI ,tF W−T
tF W−1

tF L
ef

tI ,tF δef

δeTf δef
. (14)195

According to Rayleigh’s principle, the phase space direction that maximizes the ratio (14) is the

eigenvector v r
ef

1 of the eigenvalue problem

L
ef

T

tI ,tF W−T
tF W−1

tF L
ef

tI ,tF v r
ef = λref v r

ef , (15)

assigned to largest eigenvalue λref

1 . As the solution equals the right singular vector of the operator

W−1
tF L

ef

tI ,tF , it is denoted as relative singular vector with respect to emission uncertainties. Its200

associated singular value σr
ef

1 is the square root of λref

1 .

A focal set of initial and final perturbations can be examined with help of the projection operator,

Pt (defined in Eq. (5)). The associated projected relative singular vector for the error growth of

emission factor uncertainties can be calculated following Sect. 2.1.1.

3 Model design205

3.1 The inverse European air pollution and dispersion model (EURAD-IM)

For the design of a model enabling 3-dimensional singular vector analysis of chemical species and

their temporal evolution, we implement the theory as described in Sect. 2 in a chemistry transport

model. Our chemistry model of choice is the EURopean Air pollution and Dispersion - Inverse

Model (EURAD-IM, e.g., Elbern, 1997; Elbern and Schmidt, 1999; Elbern et al., 2007). EURAD-210

IM is an advanced Eulerian model operating from European down to local scale by applying a nesting

technique with the smallest horizontal solution available being 1 km. The horizontal grid design is

based on Lambert conformal conic projections and employs the Arakawa C grid stencil (Arakawa

and Lamb, 1977). The vertical grid structure of the EURAD-IM is defined by a terrain following

σ-coordinate system. Due to the general focus on tropospheric applications in this work, the upper215

boundary is 100 hPa. Between surface and 100 hPa, 23 vertical model layers are defined.
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The EURAD-IM simulates the chemical development in time and space based on the following

system of differential equations:

∂ci
∂t

=−∇(vci)+∇(ρK∇ci
ρ
)− ∂

∂z
(vdi ci)+Ai︸ ︷︷ ︸

f(ci(t))

+ei, (16)

where ci, i= 1, ...,n denotes the mean mass mixing ratio of the chemical species i, v is the mean220

wind velocity, K is the eddy diffusivity tensor, ρ the air density, Ai the chemical source term for

species ci, ei its emission rates, and vdi its deposition velocity. The first part of the right hand

side of Eq. (16) corresponds to the function f(c(t)) as given in Eq. (10), but is presented here

for individual species. The selected numerical solution of Eq. (16) employs a symmetrical opera-

tor splitting technique (Yanenko, 1971), which splits the differential equations into sub-problems225

and treats them successively, centred around the chemistry solver module. For each sub-problem,

the EURAD-IM provides multiple solution-schemes. Here, the upstream algorithm devised by Bott

(1989) is chosen as advection scheme featuring fourth order polynomials for the horizontal advec-

tion and second order polynomials for the vertical advection. The vertical diffusion is discretised

using the semi-implicit Crank-Nicholson scheme and solved with the Thomas algorithm (Lapidus230

and Finder, 1982). The chemical development is implemented with the software package Kinetic

PreProcessor (KPP, Sandu and Sander, 2006) using an 2nd-order Rosenbrock solver.

3.2 EURAD-IM-SVA v1.0: Expansion of the EURAD-IM to allow for singular vector

analysis

We augment the EURAD-IM to allow for the option of singular vector analysis (SVA), yielding the235

EURAD-IM-SVA v1.0. In order to calculate targeted singular vectors as described in Sect. 2, tangent

linear as well as adjoint model with respect to initial values and emissions need to be provided. Since

the EURAD-IM offers the possibility of variational data assimilation with initial value and emission

rate optimization, it comprises adjoint modules for all considered processes already. Furthermore,

KPP provides the tangent linear model with respect to initial conditions for the chemical evolution.240

The tangent linear models of the remaining routines have been coded by hand.

Newly coded tangent linear routines have been checked for consistency with corresponding forward

and adjoint modules. For consistency with the forward model, the gradient check ratio (Navon et al.,

1992) is applied, defined as

d=
FWD(x+αδx)−FWD(x)

TLM(αδx)
. (17)245

The abbreviations FWD and TLM denote parts of the forward model and their associated tangent lin-

ear routines (allowing for piecewise code-checking), α is a scalar parameter. While α approaches

zero, the ratio (17) should converge towards one until the limits of numerical precision are reached

and convergence falters. Within these limits, the new tangent linear routines demonstrate the re-

quired characteristics of Eq. (17) for considered test cases. The gradient ratio check indicates the250
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accuracy of the tangent linear assumption. Application of the tangent linear model is only justified,

if the considered perturbation is small enough to ensure d≈ 1.

Consistency of tangent linear and adjoint model can be tested by inspecting the validity of the fol-

lowing equation:

(TLM(δx))T (TLM(δx)) = δxTADJ(TLM(δx)), (18)255

(Navon et al., 1992), where ADJ denotes associated parts of the adjoint model. When testing Eq. (18)

for the newly implemented tangent linear routines, single routines as well as the complete model

demonstrate correctness.

The central task of the EURAD-IM-SVA v1.0 is the detection of singular vectors and their associ-

ated singular values. Two methods have been implemented for solving the eigenvalue problems: the260

power method (Mises and Pollaczek-Geiringer, 1929) and a distributed memory version of the im-

plicitly restarted Arnoldi method (PARPACK, Maschho and Sorensen, 1996; Lehoucq et al., 1998;

Sorensen, 1996). The EURAD-IM-SVA v1.0 offers both methods for singular vectors with respect

to initial values. For singular vectors with respect to emission factors, however, only the power

method is implemented in the current model version. While the power method converges iteratively265

to the dominant eigenpair (λ1,v1), PARPACK has the ability to calculate the k largest eigenvalues

and their associated eigenvectors by one iteration cycle. PARPACK relies on the Lanczos and the

Arnoldi process, dependent on the properties of the considered matrix A. If A is symmetric, an algo-

rithmic variant of the Implicitly Restarted Lanczos Method (IRLM) is used, otherwise a variant of

the Implicitly Restarted Arnoldi Method (IRAM) is employed. Specifically, we apply the PARPACk270

routines ’PSNAUPD’ (features the computation of the matrix-vector product) and ’PSNEUPD’ (fea-

tures the computation of the requested eigenvalues and eigenvectors). PARPACK has the important

advantage that it only needs a matrix-vector product instead of an explicit representation of the ma-

trix A. Since the eigenvalue problems in this work include operators, PARPACK is perfectly tailored

to our needs. For future versions of the EURAD-IM-SVA, we plan on providing PARPACK not275

only for the singular vector analysis with respect to initial values but furthermore for emission factor

uncertainties.

4 Case study: Measurement campaign ZEPTER-2

We apply the set-up of the measurement campaign ZEPTER-2 (Zeppelin based tropospheric chem-

istry experiment, Part 2, Oebel et al., 2010; Wintel et al., 2013) to test and validate the EURAD-IM-280

SVA v1.0.

ZEPTER-2 deployed the airship ZEPPELIN NT as a platform to measure the distribution of dif-

ferent trace gases, aerosols, and short-lived radicals in the planetary boundary layer. During the

campaign, 25 flights were carried out within a 100 km radius of the home base at Friedrichshafen
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airport (FDH), southern Germany. Vertical profiles of trace gases were measured above different285

surface types, including Lake Constance and surrounding forests.

ZEPTER-2 was supported by daily 3D-var analyses and chemical forecasts modelled with the

EURAD-IM. The ZEPTER-2 setup of the EURAD-IM allows for a practical application of the the-

ory of targeted observations. Here, we apply singular vector analysis to identify the most sensitive

locations and chemical compounds with respect to their impact on the final concentration of ozone.290

This study is designed to give insight into example applications of singular vectors in future cam-

paigns by answering the following questions:

QC : Which of the chemical compounds O3, NO, NO2, HCHO, CO, HONO, and OH has to be

measured with priority to provide an improved forecast for given ozone profiles?

QL: Where is the optimal location for observations of these components?295

(where QC denotes ’question with regard to compounds’, and QL ’question with regard to location’).

We choose all spatial projections to contain grid-points with ZEPTER-2 measurements and all

compound-wise projections to focus only on chemical compounds measured during the ZEPTER-2

campaign. In this manner, it is revealed how singular vector analyses can support the set up of an

optimal campaign design when the chemical compounds to be measured and an approximate mea-300

surement route are already set. At final time, we focus specifically on vertical measurement profiles,

since measurement profiles grant a larger magnitude of the optimal initial perturbation than single

ZEPTER-2 measurement points (the location of the vertical measurement profile at final time is de-

noted as ’final profile VP(tF )’ henceforth). For local projection at initial time, it is not reasonable

to focus on locations of measurements solely, since thereby a) spatial optimization is omitted and b)305

the dynamics of the system are very limited, resulting in nearly negligible eigenvalues. Hence, no

local projection was chosen. Yet, the approximate measurement route is kept by considering only

those final profiles VP(tF ) that contain ZEPTER-2 measurements at initial time, in the centre of

their backward wind plume. Since only hourly initial times can be considered (due to the current

EURAD-IM configuration), 17 simulation intervals meet the conditions described above. More de-310

tails about the considered cases can be found in Table 1. Cases that share the same final profile

VP(tF ) are indicated with the same case number and subsequent distinctive letters.

4.1 EURAD-IM-SVA v1.0 Configuration

The configuration of the EURAD-IM-SVA v1.0 applied in this study is based on the ZEPTER-2

setup of the EURAD-IM. Here, RACM-MIM (Geiger et al., 2003) has been chosen as chemistry315

mechanism, while meteorological fields are provided by MM5 simulations (NCAR Mesoscale Me-

teorological Model, Grell et al., 1994). The ZEPTER-2 grid configuration of the EURAD-IM con-

sists of a coarse European grid with a horizontal resolution of 45 km and a time step length of

600 sec, and three nested grids with horizontal resolutions of 10 km, 5 km, and 1 km and time
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step lengths of 240 sec, 120 sec, and 60 sec, respectively. The finest grid (ZP3) covers the region320

of Lake Constance. Since all flight trajectories are located within the ZP3-grid, the ZP3-domain is

sufficient for the considered case study. Due to its high horizontal resolution, the ZP3-grid provides

a good representativeness of the measurements. In order to reduce the CPU time needed by singular

vector calculations, the horizontal size of the ZP3-domain was reduced resulting in a ZPS-domain

with Nx = 111, Ny = 96. Figure 1 illustrates the horizontal position of the ZPS-domain. It was as-325

sured, that all flight trajectories remain within the ZPS-grid. For a reference state in the centre of the

ZPS-domain, Table 2 lists the vertical grid structure in terms of height above ground.

Emission estimates of the ZEPTER-2 setup are provided by the cooperative program EMEP (Eu-

ropean Monitoring and Evaluation Programme) with a horizontal resolution of 50 km. The data

consists of annual emissions of CO, SO2, NOx, NH3, VOC, and particulates (PM2.5, PM10) pro-330

vided for 11 anthropogenic source-sectors. Since the horizontal resolution of the EMEP emission

data is not adequate for the considered ZPS-grid, the horizontal resolution of the emission data sets

was refined. For the refinement, land cover data sets of COoRdination of INformation on the En-

vironment (CORINE) and of United States Geological Survey Global Land Cover Characterization

(USGS-GLCC) were combined with data from GIS (Geographic Information Systems). In this man-335

ner of downscaling, emission data sets with a horizontal resolution of 1 km were generated, where

consistency with the overlying EMEP emission data set is ensured. Emissions of small towns and

busy roads are well resolved. An example for CO-emissions on the ZPS-grid can be found in Fig. 1.

Initial concentrations of all simulations are taken from 3D-var assimilation runs, conducted for the

ZEPTER-2 campaign. Here, assimilation was accomplished every four hours, starting at 02 UTC,340

and observational data of NO2, NO, SO2, O3, CO, C6H6, PM2.5, and PM10 were assimilated.

5 Results and discussion

In this section, elementary examples are demonstrated, illustrating performance and interpretation of

singular vectors for observation targeting. The section is divided between initial value based singular

vectors and those determined by emission rates. For both measures, we identify both optimal loca-345

tions and optimal chemical compounds for additional measurements. Please note, that the analysis

of initial value uncertainties includes results of several leading singular vectors, while the analysis

of emission factor uncertainties is only concerned with the leading singular vector. The latter is due

to different implementations of eigenvalue problem solvers (see Sect. 3.2).

5.1 Singular vectors with respect to initial uncertainties350

Singular vector calculations are based on the tangent linear model assuming that small perturbations

evolve linearly within the simulation time. In order to grant meaningful results, this assumption has

to be validated first. We apply Eq. (17) for validation and insert the chemical initial conditions of
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each simulation as x and the resulting singular vectors as perturbation, δx. Results demonstrate that

|1.0− d| ≤ 0.001 is achieved by reducing α to 0.1 (which equals a relative initial disturbance of355

10%) for each of the simulations. Hence, ratios are close enough to one, to ensure that the tangent

linear approximation is sufficiently accurate.

For initial uncertainties, we have calculated the five largest singular values for each of the consid-

ered cases using PARPACK (see Table 3). We find that the values of the singular vectors decrease

relatively slowly. For 9 out of 17 cases, the fifth singular vector is still about half the value of the360

first singular value (see Table 3). The latter emphasizes the importance of the all five leading singu-

lar vectors in our case study. For the sake of brevity, we restrict our identification of measurement

priorities to the results of the first and second singular vector.

5.1.1 Optimal Placement of Observations

An evident point of interest for chemistry is the relation between singular vectors resulting from365

passive tracer advection-diffusion, as merely controlled by meteorological parameters, and those

which are also affected by reactive chemistry. Their differences can be visualised via horizontal

and vertical placement (for a definition of horizontal and vertical placement see Appendix A1). In

case of the latter, the left panel of Fig. 2 displays the vertical profile of the horizontal placement

for the leading singular vector, broken down for the lower 15 model levels for a passive tracer370

’ozone’ and reactive ozone for case 2a. It can be seen that up to a height limit of approximately

450 m (level 8), initial values of both passive and reactive chemistry demonstrate a similar influence

per height level. The faster levelling of the reactive chemistry profile above level 8 indicates that

initial values of higher levels are first transported into lower air masses before chemical production

processes take place. The same pattern is seen for all considered cases and all considered chemical375

compounds (right panel, Fig. 2) with varying lower height limits for the faster levelling of reactive

chemistry. These results can be expected as ozone production is initiated by chemical production

processes at lower elevation or, in the case of ozone itself, ozone decomposition at lower elevation.

Concerning differences in the levelling of different chemical compounds, we find that the relevance

of measurements of O3 and CO decreases slower than the relevance of measurements of NO and380

HCHO, independent of initial time tI or simulation length (see Fig. 2). It can be assumed that this

feature is linked to differing vertical profiles.

We find the same properties to be true for the vertical profile of the second singular vector. The

left panel of Fig. 3 illustrates the vertical placement for the first and second singular vector for

reactive ozone for case 2a. It can be seen that the vertical profiles of first and second singular vector385

are relatively similar with the second singular vector exhibiting slightly smaller values in lower air

masses and higher values in higher air masses. Yet, compared to the passive tracer ’ozone’ (left

panel, Fig. 2), the reactive chemistry profile of the second singular vector exhibits as well a faster

decrease with height for all considered cases and all considered chemical compounds (right panel,
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Fig. 3). Again, the relevance of measurements of O3 and CO decreases slower than the relevance of390

measurements of NO and HCHO.

Examination of the horizontal placement (for a definition of horizontal placement see Appendix

A1) of the first and second singular vector for all cases confirms, that the placement of passive tracer

and ozone generally diverge more in higher model levels (as seen in the left panel of Fig. 4 for case

8a). Since the horizontal placement disregards effects of the vertical placement distribution and of395

different species magnitudes, a broader 0.01 isopleth in higher model levels (as seen in the left panel

of Fig. 4) means that neighbouring grid cells show only small differences in placement importance.

In comparison to passive tracer ozone, the reactive ozone of both first and second singular vector

reveals smaller isopleths at lower elevation and broader isopleths in higher model levels. The latter

indicates varying chemical concentrations in lower air masses driven by locations of production400

sources and photochemical lifetimes. Even though ozone itself is not emitted into the atmosphere,

its precursors are strongly influenced by emissions, leading to a highly variable distribution of ozone

in lower levels of the troposphere, while it is relatively uniform in higher model levels. Due to this

feature, placement differences between first and second singular vector are less pronounced in lower

air masses and most pronounced in higher model levels.405

Results reveal furthermore that the horizontal placement of all considered chemical compounds

usually coincides. Remarkable differences within the chemical placement are only discovered for

cases 6, 7a, 8b, and 10 and can be explained by varying initial concentrations within the otherwise

advection controlled placement area. The horizontal distribution of the first and second singular

vector at the lowest level for case 6 is displayed in Fig. 5 for NO (left panel) and ozone (right panel).410

The westward orientation of the influence area displays the upwind domain of the Friedrichshafen

target location, and shows a fairly evenly distributed domain for possible ozone measurements. It can

be assumed that this area is mostly controlled by transport and diffusion processes. In contrast, the

areas of sensitivity for NO, cover 3 or 4 (depending on the singular vector considered) disconnected

sub-domains enclosed by the ozone sensitivity area. These patches are associated with NO emission415

areas, and indicate the sensitivity of the ozone evolution to direct interaction with NO in the nearby

area of Friedrichshafen, and also to indirect interaction (via NO2) for the longer distance area at the

westerly map border. Figure 5 furthermore confirms that the 0.01 isopleth of the horizontal placement

of first and second singular vector are fairly similar.

The analysed ZEPTER-2 cases share a relative short simulation interval (the longest simulation420

interval lasts 3h15) and a local projection on the final profile VP(tF ). Both features restrict the

dynamics of the system. It can be expected that the chemical placements are likely to differ more

when choosing longer simulation intervals (as it is the case in simulations done by Liao et al., 2006).
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5.1.2 Measurement priority of Chemical Compounds

Optimal compounds for additional measurements can be determined via the relative ranking defined425

in Appendix A2. Here, we consider the influence of compounds O3, NO, NO2, HCHO, CO, HONO,

and OH on the ozone evolution.

Figure 6 provides an example of the relative ranking of the first and second singular vector for

O3 and CO at model level 1 (ground level). Note that if a case is not depicted for a particular level,

then the number of grid points (i, j,k) that hold
√∑

s v(i, j,k,s)2 > 10−4 equals zero. Results430

of all cases reveal that O3 is ranked first for more than 95% of the considered grid points for all

cases. None of the other species reveals such a distinct behaviour. Yet, it is possible to come to the

following conclusions: 1) O3 has most relevance among the considered chemical compounds, 2)

NO, NO2, HCHO, and CO show medium relevance, and 3) OH and HONO have least relevance.

In most cases, the relevance of OH is ranked 7th, while HONO is ranked 6th. In lower air masses,435

NO and NO2 tend to be ranked 2nd or 3rd, while HCHO tends to be ranked 3rd or 4th and CO

4th or 5th. This general ranking applies for both the first and second singular vector. The revealed

measurement priority meets our expectations as NOx, CO, and Volatile Organic Compounds are

important precursors of ozone (Seinfeld and Pandis, 1998). Here, the considered cases are in general

NOx sensitive (see also Goris and Elbern, 2013).440

We also find that the measurement priority of NO is higher for simulations starting during noon

hours, while it is lower for simulations starting in the morning or in afternoon/evening time frames.

This feature is related to the initial mixing ratio of NO which is close to zero during night-time

(Seinfeld and Pandis, 1998).

5.2 Singular vectors with respect to emission uncertainties445

Prior to analysing the singular vectors with respect to emission factors, the linearity assumption is

tested by inserting the calculated perturbations of largest error growth in Eq. (17). Reducing α to

0.1 (which equals an emission factor disturbance of 10%) ensures |1.0− d| ≤ 0.01 for each consid-

ered case. Note, that in most cases even |1.0− d| ≤ 0.001 is achieved. Therefore, the tangent linear

approximation is considered to be sufficiently accurate.450

The optimisation of observational networks with respect to measurements of emissions itself is

somewhat artificial, as only for very special cases flux tower observations of CO2 and, even more

sparsely, other greenhouse gases, are available. Nevertheless, formally it can be applied in very

much the same way as for initial values and, for reactive emission sources under conditions with

sufficiently large Damköhler numbers and small background concentrations, traditional observations455

in emitting areas can serve as supplement.

The subsequent analysis in Sect. 5.2.1 and Sect. 5.2.2 discusses only results for the first singular

vector as further singular vectors are not available (see Sect. 3.2). Further, we concentrate only on
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results for surface level and for chemical compounds NO, NO2, HCHO, and CO. This is due to the

fact that O3, HONO, and OH are not emitted and, in case of the ZEPTER-2 configuration, emissions460

are only included for surface level.

5.2.1 Optimal Placement of Observations

Figure 7 exhibits an example for formaldehyde (HCHO), which is both emitted into and produced in

the atmosphere. Correspondingly, a spatial comparison between singular vectors of initial values and

emission rate optimisation will reveal spatial differences. It can be seen from the map that, influenced465

by the spatial distribution of the emission fields, the area for optimal observations of emissions is

close to the final profile, while the area of optimal observations of initial values is in a larger distance.

This outcome is valid for all cases and can be explained by the fact that the target area for emissions

is the result of an optimisation over the entire simulation interval. The target area of initial values

can only be located within the area of the backward plume at its initial time, yet the target area of470

emissions can be any point within the entire advection trace area of the backward plume. Hence,

the optimal placement of observations of emissions is strongly influenced by locations of emission

sources within this plume (Fig. 7). The importance of emission sources is confirmed by the smaller

extent of the target area of emissions, in comparison to initial values. Since the horizontal singular

vector sections have unit length for a fixed compound and a fixed model level, a small extent of the475

target area shows that the additional value of observations is relatively high at few grid points and

decreases sharply for the surrounding grid points.

Comparing the target area of emissions for different compounds, we find that the target areas differ

quite substantially in some cases. This feature occurs due to different emission source strengths for

different compounds and will be explained in more detail at the end of the next section.480

5.2.2 Relevance Ranking of Chemical Compounds

In response to question QC), a relevance ranking for the emission influences of NO, NO2, HCHO,

and CO is assessed in this section (see Appendix A2). Note, that species O3, OH, and HONO are

not emitted and therefore not to be taken into account.

Results for all considered levels and species are depicted in Fig. 8. It is found that 1) the influence485

of NO emissions is most important, and 2) emissions of NO2 tend to have the second most influence,

while 3) in the majority of cases, the importance of emissions of CO and HCHO alternates between

third and fourth rank. This result is to be expected, as NOx, CO, and Volatile Organic Compounds

are the most important precursors of the ozone production. Dependent on the existing mixing ratio,

the ozone production is NOx or VOC sensitive (Seinfeld and Pandis, 1998; Goris and Elbern, 2013).490

Here, the considered cases are all NOx sensitive.

Figure 9 serves to give an idea about the location dependence of the ranking of emission influences

of HCHO and CO for case 2a. Based on the analyses of all 17 cases, the following conclusions can be
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drawn: 1) The importance of emissions of HCHO tends to increase in urban plumes at the expense of

the influence of emissions of CO and NO, and 2) the influence of emissions of CO tends to increase495

at busy roads. As compensation, the influence of emissions of HCHO and NO decreases. These

findings are consistent with the modelled strength of different emission sources per compound.

5.3 Magnitudes of the leading singular values

The singular values of our calculations determine the relative error growths of uncertainties in initial

values and emissions, respectively. Table 4 captures the leading singular values for the ZEPTER-2500

calculations for both target variables (initial values and emissions) for simulations with a shared final

profile VP(tF ).

We find that the influence of singular values with respect to initial values decreases with grow-

ing simulation length, whereas the influence of singular values with respect to emissions increases

(Table 4). This behaviour is expected since continuous emissions and their uncertainties affect the505

chemical evolution at every time step. Therefore, the emission sensitivity increases with each added

time-step. Uncertainties in initial values, on the other hand, influence the forecast mostly at initial

time, with declining importance with time.

Furthermore, Table 4 reveals that, for most of the calculated cases, the magnitude of the singular

values is smaller than 1, meaning that the final perturbation is smaller in magnitude than the pertur-510

bation of initial values or emission rates. Considering that we apply singular vector analyses to find

the initial and emission uncertainties that cause the largest error growth, a small error-growth seem-

ingly suggests that the benefit of singular vector analysis is small. However, it should be considered,

that we analyse only very restricted cases. Due to the focus on vertical profiles, the final projections

cover only 5 to 10 grid points and it can be expected that the magnitude of the final ozone perturba-515

tion is smaller in amount than the magnitude of the locally not focused initial value perturbation. For

emission rates, the dynamics of the system is mainly limited by two features. Firstly, the final species

projection is on ozone, but ozone itself is not emitted. Secondly, the final local projection is on a ver-

tical profile, whose vertical extensions range between model level 1 and model level 10. Since the

emissions influence neither the entire vertical profile nor the concentration of ozone directly, some520

integration time is needed before the effect of emissions on the final perturbation becomes apparent.

Despite those restrictions, case 8a and case 8b (and case 5b for initial value optimisation) show sin-

gular values greater than 1, proving the value of singular vector analysis even in the case of strongly

restricted dynamics.

6 Summary and Conclusions525

EURAD-IM has been augmented to allow for singular vector decomposition (SVA), resulting in the

new EURAD-IM-SVA v1.0 model. Purpose of the EURAD-IM-SVA v1.0 is the calculation of the
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most sensitive chemical configuration with respect to initial values and emissions. The calculated

sensitive configurations can be utilized to stabilize the chemical forecast by targeting sensitive sys-

tem states for additional measurements. In this manner, the new tool can be especially applied for530

effective campaign-planning.

In the framework of the model augmentation, newly coded or embedded routines are tested for

accuracy. Within the limits of numerical precision, single routines as well as the complete model

demonstrate correctness. Subsequently, the EURAD-IM-SVA v1.0 is evaluated by conducting a set

of case studies based on the accomplished ZEPTER-2 campaign. Here, we evaluate the importance of535

measurements with regards to their ability of improving the forecast for locally predetermined ozone

profiles. We investigate the influence of additional measurements of O3, NO, NO2, HCHO, CO,

HONO, and OH. Since the considered simulation cases focus on the chemistry of ozone production

and advection-diffusion dynamics in selected areas, they allow for a retracing of the results and a

confirmation of their correctness. Elementary examples are presented, illustrating performance and540

interpretation of singular vectors for observation targeting.

Results of the singular vector decomposition with respect to initial values reveal that the optimal

placement for additional observations is linked to height, with observations being more important

at lower elevation where most of the chemical production of ozone takes place. Here, optimal tar-

get areas are controlled by mixing ratios of ozone precursors and their photochemical lifetimes, as545

well as transport and diffusion processes. In terms of a relevance ranking of chemical species, the

measurement priority of species is differing location-wise, dependent on initial concentrations and

the importance of the precursor in the chemical formation of ozone. Overall, O3 has most relevance

among the considered species, while NO, NO2, CO, and HCHO show medium relevance, and OH

and HONO have least relevance. The revealed measurement priority meets our expectations as NOx,550

CO, and Volatile Organic Compounds are important precursors of ozone (Seinfeld and Pandis, 1998).

The singular vector decomposition with respect to emissions shows that the optimal placement of

measurements of emission factors is strongly dependent on the location of emission sources. When

considering the relevance ranking of considered emitted species, we find that, for most cases, the

influence of emissions of NO is most important, followed by emissions of NO2, which of course,555

are chemically closely linked. In these cases, a choice between both compounds for measurement

network design may follow practical considerations. The importance of emissions of CO and HCHO,

in the majority of cases, alternates between third and fourth rank.

Considering the error growth of uncertainties in initial values and emission strength, we find that

the influence of singular values with respect to initial values decreases with growing simulation560

length, whereas the influence of singular values with respect to emissions increases. Due to short

simulation intervals and focus on selected ozone profiles at the end of the simulation, the error growth

is smaller than 1 in most of the cases, meaning that the final uncertainty is smaller in percentage than
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the initial uncertainty. Yet, there are also cases that show singular values greater than 1 proving the

value of singular vector analysis even in the case of strongly restricted dynamics.565

Altogether, our case study shows that the newly designed EURAD-IM-SVA v1.0 is a powerful

tool, which identifies critical chemical species and chemical locations with respect to initial values

and emissions. Both optimal placement of measurements and relevance ranking of chemical com-

pounds confirm the benefit of singular vectors for measurement selection guidance. This can be

applied for effective campaign-planning. Further, the detected directions of largest error growth can570

be employed to initialize ensemble forecasts and to model covariances.

7 Code availability

The code controlling the Singular Value Decomposition is stored locally at the Rhenish Institute for

Environmental Research as well as at the Jülich Supercomputer Centre (JSC) of Research Centre

Jülich. It is available by request via email (nadine.goris@uni.no, he@riu.uni-koeln.de).575

Appendix A: Usage of singular vectors for determining targeted observations

For 3-dimensional chemical transport models, a singular vector v comprises vector entries v(i, j,k,s)

for each chemical species s and each grid point (i, j,k) (i and j indicate horizontal grid coordinates,

while k denotes the considered vertical model level), referring to each species’ local sensitivity to

perturbations of initial values or emissions. This set of vector entries can be analysed in terms of a)580

optimal placement of observations and b) measurement priority of considered species.

A1 Horizontal and vertical placement

The optimal observation location for a given species s is determined by the magnitudes of the singu-

lar vector entries v(i, j,k,s) with i, j,k variable and s fixed. Accordingly, the grid point with largest

magnitude defines the optimal placement for a considered species s.585

We analyse the optimal placement in terms of vertical and horizontal optimal placement. The hor-

izontal placement disregards effects of the vertical distribution and of different species’ magnitudes,

answering the question of optimal placement in a given horizontal plane:

vh(i, j,k,s) =
v(i, j,k,s)
|v(k,s)|

, with |v(k,s)| :=

√√√√imax∑
i=1

jmax∑
j=1

v(i, j,k,s)2. (A1)

Here, each horizontal section of the singular vector v with fixed level k and fixed species s is scaled590

by its length |v(k,s)|. In this manner, the combined singular vector entries of each horizontal plane of

a given species have unit-length and allow for a horizontal placement comparison between species.

The modified singular vector vh with entries vh(i, j,k,s) is referred to as horizontal singular vector.
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Likewise, for the vertical placement, we want to yield placement priorities with respect to vertical

levels. Since |v(k,s)| determines the length of the optimal perturbation of model level k and species595

s, it reveals the height dependent relevance of each species. In order to disregard effects of species’

magnitudes, the length |v(k,s)| is scaled by the length of all perturbations associated with species s:

vv(k,s) =
|v(k,s)|
|v(s)|

, with |v(s)| :=

√√√√imax∑
i=1

jmax∑
j=1

kmax∑
k=1

v(i, j,k,s)2. (A2)

The vector vv with entries vv(k,s) is defined as vertical singular vector. In terms of optimal place-600

ment, both vertical and horizontal singular vectors allow for direct comparison of local sensitivities

of different species.

A2 Relative rankings of chemical compounds

A measurement priority of the associated chemical compounds can be established for each grid point

(i, j,k) by arranging the associated singular vector entries v(i, j,k,s) according to magnitude.605

Since the measurement priority of species s may differ for each considered grid point (i, j,k), we

are interested in gaining a picture representative for a specific height level. Accordingly, we select an

area that is large enough to contain different air masses (here: all grid points with
√∑

s v(i, j,k,s)2 >

10−4). Within the considered area, we establish a relative ranking rk(k,s) for each species s and

each model level k. Each relative ranking rk(k,s) comprises the relative ranks rkm(k,s), m=1,...,n610

(where n is the number of considered species). The relative rank rkm(k,s) simply counts how often

the measurement priority of species s is ranked mth within the considered area of level k and then

divides this number by the number of considered grid points:

rkm(k,s) : =

∑
i

∑
j p(i, j,k,s) · r(i, j,k,s)∑
i

∑
j p(i, j,k,s)

,

p(i, j,k,s) : =

 1, if
√∑

s v(i, j,k,s)2 > 10−4

0, elsewhere,
(A3)615

r(i, j,k,s) : =

 1, if s is ranked mth in (i, j,k)

0, elsewhere.

In this manner, a general measurement priority is provided for the selected area.
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Figure 1. CO emission source strength (mg/m2/s) at surface level of the ZPS-grid for the 18th October 2008,

12 UTC. Black arrows indicate direction and strength of surface winds.

Figure 2. Vertical placement of the first singular vector with respect to initial value uncertainties for case 2a.

Illustrated is the length of the vertical singular vector per model level for passive tracer and ozone (left panel)

as well as for CO, OH, HONO, O3, NO2, and NO (right panel). Colour coding of each compound is denoted to

the right of each panel. The black box indicates the height of the final profile VP(tF ).
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Figure 3. Vertical placement of the first and second singular vector with respect to initial value uncertainties

for case 2a. Illustrated is the length of the first and second vertical singular vector per model level for ozone

(left panel) as well as the length of the second vertical singular vector for CO, OH, HONO, O3, NO2, and NO

(right panel). Colour coding of each compound is denoted to the right of each panel. The black box indicates

the height of the final profile VP(tF ).

Figure 4. Horizontal placement of the first and second singular vector with respect to initial values uncertainties

for case 8a. Left panel: 0.01-isopleths of the first horizontal singular vector for passive tracer (red framed

shading) and ozone (green filled shading). Right panel: 0.01-isopleths of the first (green filled shading) and

second (blue framed shading) horizontal singular vector for ozone. In both figures, the final profile VP(tF ) is

marked with a black line and the black cross indicates its horizontal position. Case numbers and simulation

intervals are given on top of each panel.
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Figure 5. Initial concentrations and horizontal placement of the first and second singular vector with respect to

initial values uncertainties for case 6. Illustrated are results for NO (left panel) and O3 (right panel) at surface

level. The 0.01-isopleths of the first and second horizontal singular vector are indicated with red and black lines,

respectively, and the horizontal position of the final profile VP(tF ) is marked with a black cross. Date and time

are denoted above each panel.

Figure 6. Relative ranking of the first (upper panel) and second (lower panel) singular vector with respect to

initial values uncertainties. Illustrated are results for O3 (left panel column) and CO (right panel column) at

surface level for all 17 case studies. Relative ranks are denoted below each bar plot. A rank m is only depicted,

if the associated chemical compound is ranked mth for at least one considered grid point. The colour coding of

each case is denoted below each panel.
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Figure 7. Optimal horizontal placement of emissions and initial values for HCHO at surface level for case 5a.

0.01-isopleths of the optimal horizontal placement are indicated with a black line (initial values) and a red line

(emissions). The horizontal position of the final profile VP(tF ) is indicated with a red cross.

Figure 8. Relative ranking of the first singular vector with respect to emission uncertainties. Illustrated are

results for NO (top left), NO2 (top right), HCHO (bottom left), and CO (bottom right) at surface level for all 17

case studies. Plotting conventions as in Fig. 6.
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Figure 9. Spatially dependent measurement priorities of the first singular vector with respect to emission un-

certainties. Illustrated are results for HCHO (left) and CO (right) at surface level for case 2a. Please note that

the ranking is only depicted within the area of the relevance ranking. For each panel, the horizontal position

of the final profile VP(tF ) is indicated with a black cross and the colour coding of each rank is denoted below

each panel.
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Table 1. List of all singular vector simulations included in the ZEPTER-2 case study. Initial time (tI ) and final

time (tF ) of simulation are given in UTC, the length of the simulation (time) is given in hours and minutes.

VP(tF ) denotes the location of the vertical measurement profile at final time, FDH designates Friedrichshafen

airport, LC Lake Constance, FoA Forest of Altdorf, and Mengen denotes the city of Mengen.

Case Flight Date tI tF time VP(tF )

1a 02 Oct 18 12:00 13:30 1:30 LC

1b 02 Oct 18 13:00 13:30 0:30 LC

2a 02 Oct 18 11:00 14:00 3:00 FDH

2b 02 Oct 18 12:00 14:00 2:00 FDH

3 03 Oct 18 15:00 17:35 2:35 FDH

4a 04 Oct 19 09:00 12:15 3:15 FoA

4b 04 Oct 19 10:00 12:15 2:15 FoA

5a 05 Oct 19 14:00 15:20 1:20 FoA

5b 05 Oct 19 15:00 15:20 0:20 FoA

6 06 Oct 20 08:00 10:45 2:45 FDH

7a 07 Oct 20 13:00 14:45 1:45 LC

7b 07 Oct 20 14:00 14:45 0:45 LC

8a 08 Oct 24 16:00 18:00 2:00 FDH

8b 08 Oct 24 17:00 18:00 1:00 FDH

9a 21 Nov 07 10:00 11:25 1:25 Mengen

9b 21 Nov 07 11:00 11:25 0:25 Mengen

10 23 Nov 07 18:00 20:50 2:50 FDH
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Table 2. Vertical grid structure of the EURAD-IM-SVA v1.0 for the reference state 47.85◦N, 9.50◦E. Given

are model level (ML) and height above ground (HT) in meter (m). The superscripts + and − indicate upper and

lower boundary of the associated layer.

ML HT−(m) HT+(m)

23 10937.50 14009.19

22 8766.10 10937.50

21 7060.07 8766.10

20 5643.57 7060.07

19 4426.45 5643.57

18 3355.84 4426.45

17 2397.90 3355.84

16 2040.85 2397.90

15 1696.93 2040.85

14 1446.98 1696.93

13 1203.46 1446.98

12 1005.18 1203.46

11 810.94 1005.18

10 658.33 810.94

9 508.11 658.33

8 396.96 508.11

7 287.08 396.96

6 214.51 287.08

5 142.48 214.51

4 106.66 142.48

3 70.98 106.66

2 35.43 70.98

1 0.00 35.43
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Table 3. Largest five singular values (SV) with respect to initial values uncertainties for all 17 case studies.

Case numbers are denoted according to Table 1.

Case SV1 SV2 SV3 SV4 SV5

1a 0.33756 0.21116 0.15000 0.12025 0.09680

1b 0.62180 0.43528 0.39816 0.36516 0.32796

2a 0.23881 0.08695 0.05089 0.01897 0.01732

2b 0.32939 0.15073 0.09439 0.04336 0.03302

3 0.20785 0.12149 0.08432 0.06091 0.05030

4a 0.27697 0.13624 0.06797 0.04604 0.02720

4b 0.35056 0.22871 0.10714 0.09889 0.05292

5a 0.52395 0.34937 0.31069 0.23216 0.22084

5b 1.00638 0.86925 0.82216 0.73719 0.70424

6 0.05874 0.01023 0.00872 0.00183 0.00132

7a 0.42151 0.24298 0.17263 0.13601 0.12783

7b 0.62200 0.43488 0.37958 0.35852 0.32628

8a 1.51770 1.18979 1.04014 0.92703 0.79162

8b 1.61465 1.24563 1.23831 1.07596 1.02942

9a 0.68862 0.60123 0.44726 0.35885 0.34969

9b 0.80649 0.77847 0.64214 0.58633 0.55604

10 0.28409 0.25807 0.23173 0.17787 0.15934

Table 4. Singular values (SV) with respect to initial values (iv) and emissions (em). VP(tF ) denotes the con-

sidered final profile (numbers according to Table 1) and ML the associated model levels. Only simulations with

a shared final profile VP(tF ) are listed, ’a’ marks the simulation with the longer simulation interval and ’b’ the

simulation with the shorter simulation interval. t(a) and t(b) are the associated simulation lengths.

VP(tF ) ML t(b) t(a) SViv(b) SViv(a) SVem(b) SVem(a)

1 3-10 0h30 1h30 0.622 0.338 0.010 0.027

2 1- 5 2h00 3h00 0.329 0.239 0.093 0.096

4 3- 9 2h15 3h15 0.351 0.277 0.055 0.072

5 2- 9 0h20 1h20 1.006 0.524 0.059 0.112

7 3-10 0h45 1h45 0.613 0.422 0.034 0.046

8 1- 7 1h00 2h00 1.614 1.517 1.325 2.760

9 1- 9 0h25 1h25 0.807 0.689 0.035 0.038
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