
D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2014/09/16 7.15 Copernicus papers of the LATEX class copernicus.cls.
Date: 13 April 2015

A generic approach to explicit simulation of
uncertainty in the NEMO ocean model
J.-M. Brankart1, G. Candille1, F. Garnier1, C. Calone1, A. Melet2, P.-A. Bouttier1,
P. Brasseur1, and J. Verron1

1CNRS/Univ. Grenoble Alpes, Laboratoire de Glaciologie et Géophysique de l’Environnement
(LGGE) UMR 5183, Grenoble, 38041, France
2Princeton University/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA

Correspondence to: J.-M. Brankart (jean-michel.brankart@legi.grenoble-inp.fr)

1



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Abstract

In this paper, a generic implementation approach is presented, with the aim of transforming
a deterministic ocean model (like NEMO) into a probabilistic model. With this approach,
several kinds of stochastic parameterizations are implemented to simulate the non-deter-
ministic effect of unresolved processes, unresolved scales and unresolved diversity. The5

method is illustrated with three applications, showing that uncertainties can produce a major
effect in the circulation model, in the ecosystem model, and in the sea ice model. These ex-
amples show that uncertainties can produce an important effect in the simulations, strongly
modifying the dynamical behaviour of these three components of ocean systems.

1 Introduction10

The first requirement of an ocean model is the definition of the system that the model is
going to represent. As illustrated in Fig. 1, this usually amounts to defining an appropriate
separation between the system (A) and the environment (B). For instance, in this study, we
always use a stand-alone ocean model, which means that the atmosphere is not included
in the system (A), but in the environment (B). A key property of any ocean model is also15

the separation between resolved scales (in A) and unresolved scales (in B), defining the
spectral window that the model is going to represent. In a similar way, marine ecosystems
are too complex to be entirely included in A. They can only be represented by a limited
number of variables Ci, i= 1, . . . ,n, providing a synthetic picture of the ecosystem, while
the remaining biogeochemical diversity is included in B.20

Even if the union of the two systems A and B could be assumed deterministic, this is
in general not true for system A alone. The future evolution of A does not only depend
on its own dynamics and initial condition, but also on the interactions between A and B.
This means that the only two ways of obtaining a deterministic model for A are either to
assume that the evolution of B is known (as usually done for the atmosphere in stand-alone25

ocean models) or to assume that the effect of B can be parameterized as a function of
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what happens in A (as usually done for unresolved scales and unresolved diversity). It is
however important to recognize that this is always an approximation and that B is often an
important source of uncertainty in the predictions made for A.

To obtain a reliable predictive model for A (in the sense given in Brier, 1950; Toth et al.,
2003), a consistent description of this uncertainty should be embedded in the model itself.5

This transforms the deterministic model into a probabilistic model, which fully characterizes
the quantity of information that the model contains about A. Two important advantages of
this probabilistic approach are (i) to allow objective statistical comparison between model
and observations (by providing sufficient conditions to invalidate the model, see for instance
Candille et al., 2005), and (ii) to provide a coherent description of model uncertainty to data10

assimilation systems. The objective of the modeller also changes: instead of designing
a deterministic model as close as possible to observations, a probabilistic model that is
both reliable (not yet invalidated by observations) and as informative as possible about A
must be designed.

In practice, for a complex system, it is usually impossible to compute explicitly the prob-15

ability distribution describing the forecast. In general, only a limited size sample of the dis-
tribution can be obtained through an ensemble of model simulations, as routinely done in
any ensemble data assimilation system (see Evensen, 1994). Ensemble simulations are
produced by randomly sampling the various kinds of uncertainty (in the dynamical laws,
in the forcing, in the parameters, in the initial conditions, . . . ) in their respective probability20

distribution (Monte Carlo simulations). To allow objective comparison with observations or
to correctly deal with model uncertainties in data assimilation problems, non-deterministic
models are thus needed in many ocean applications. The most direct approach to intro-
duce an appropriate level of randomness in ocean models is to use stochastic processes
to mimick the effect of uncertainties. In the discussion above (summarized in Fig. 1), a spe-25

cific focus was given to uncertainties resulting from the effect that unresolved processes
(in B) produce on the system (A). However, there is a variety of other sources of uncer-
tainty in ocean models (e.g. numerical schemes, machine accuracy,. . . ) that do not enter
this particular sketch, and that may also require a stochastic approach (Palmer et al., 2014).
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Stochastic parameterizations, explicitly simulating model uncertainty were first applied
to ensemble weather forecasting by Buizza et al. (1999) about 15 years ago. Since then,
stochastic parameterizations have emerged as a quickly developing area of research in
meteorology (Palmer , 2001; Palmer et al., 2005). In oceanography, however, most state of
the art dynamical models are still deterministic. Up to now, the development of stochastic5

dynamical equations has been mainly focusing on stochastic parameterization of Reynolds
stresses in idealized ocean modelling systems (see Frederiksen et al., 2012a; Kitsios et al.,
2013 for a review). Only a few exploratory studies have attempted to explicitly simulate
uncertainties in realistic dynamical ocean models: this has been done for the ocean circula-
tion (Brankart, 2013), for the ocean ecosystem (Arhonditsis et al., 2008), and for the sea ice10

dynamics (Juricke et al., 2013). These preliminary studies nonetheless already show that
uncertainties can play a major role in dominant dynamical behaviours of marine systems.

In line with these studies, the objective of this paper is to propose a generic implementa-
tion of these stochastic parameterizations, and to investigate several applications in which
the randomness of the ocean system may be an important issue. This is synthetically im-15

plemented in the ocean model (see Sect. 2) by adding one additional module providing ap-
propriate random processes to any non-deterministic component of the system (circulation,
ecosystem, sea ice). The method is designed to be simple enough to allow a quick check of
the effect of uncertainties in the system, and flexible enough to apply to various sources of
uncertainty (atmosphere, unresolved scales, unresolved diversity, . . . ). Three applications20

are then illustrated in Sect. 3 showing that the explicit simulation of uncertainty can be
important in a wide variety of ocean systems, by stimulating important non-deterministic
dynamical behaviours. The first application (circulation model) is the same application as
in Brankart (2013), but this previous paper only presented the average effect of the stochas-
tic parameterization, whereas the focus is here on the randomness that is produced in the25

large scale ocean circulation. The second application (ecosystem model) is a first attempt to
apply stochastic parameterizations and to explicitly simulate randomness in a basin-scale
ocean ecosystem model. The third application (sea ice model) is an attempt to reproduce
the parameterization developed in Juricke et al. (2013) in our ocean model using the generic
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implementation presented in Sect. 2, and to illustrate the randomness that is generated in
the interannual variability of sea ice thickness.

2 Stochastic formulation of NEMO

The ocean model used in this study is NEMO (Nucleus for a European Model of the Ocean),
as described in Madec et al. (2008). NEMO is the European modelling framework for5

oceanographic research, operational oceanography, seasonal forecast and climate studies.
This model system embeds various model components (see http://www.nemo-ocean.eu/),
including a circulation model (OPA, Océan PArallélisé), ecosystem models, with various lev-
els of complexity (e.g. LOBSTER, LOCEAN Simulation Tool for Ecosystem and Resources),
and a sea-ice model (LIM, Louvain-la-Neuve Ice model). The purpose of this section is10

to shortly describe the three kinds of stochastic parameterizations that have been imple-
mented in NEMO, and to show that, from a technical point of view, they can be unified in
one single new module in NEMO, feeding the various sources of randomness in the model.
(More technical details about this module can be found in the Appendix.)

2.1 Order n autoregressive processes15

The starting point of our implementation of stochastic parameterizations in NEMO is to ob-
serve that many existing parameterizations are based on autoregressive processes, which
are used as a basic source of randomness to transform a deterministic model into a prob-
abilistic model. A generic approach is thus to add one single new module in NEMO, gener-
ating processes with appropriate statistics to simulate each kind of uncertainty in the model20

(see examples in Sect. 3).
In practice, at every model grid point, independent Gaussian autoregressive pro-

cesses ξ(i), i= 1, . . . ,m are first generated using the same basic equation:

ξ
(i)
k+1 = a(i)ξ

(i)
k + b(i)w(i)+ c(i) (1)

5
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where k is the index of the model timestep; and a(i), b(i), c(i) are parameters defining the
mean (µ(i)), SD (σ(i)) and correlation timescale (τ (i)) of each process:

– for order 1 processes [AR(1)], w(i) is a Gaussian white noise, with zero mean and SD
equal to 1, and the parameters a(i), b(i), c(i) are given by:

a(i) = ϕ

b(i) = σ(i)
√

1−ϕ2 with ϕ= exp
(
−1/τ (i)

)
c(i) = µ(i) (1−ϕ)

(2)5

– for order n > 1 processes [AR(n)], w(i) is an order n− 1 autoregressive process, with
zero mean, SD equal to σ(i); correlation timescale equal to τ (i); and the parameters
a(i), b(i), c(i) are given by:

a(i) = ϕ

b(i) = n−1
2(4n−3)

√
1−ϕ2 with ϕ= exp

(
−1/τ (i)

)
c(i) = µ(i) (1−ϕ)

(3)

In this way, higher order processes can be easily generated recursively using the same10

piece of code implementing Eq. (1), and using succesively processes from order 0 to n− 1
as w(i). The parameters in Eq. (3) are computed so that this recursive application of Eq. (1)
leads to processes with the required SD and correlation timescale, with the additional con-
dition that the n−1 first derivatives of the autocorrelation function are equal to zero at t= 0,
so that the resulting processes become smoother and smoother as n is increased. AR(2)15

processes (with other specifications) have already been applied in several studies (Berloff,
2005; Wilks, 2005), and will be used in this paper in the sea ice model application (see
Sect. 3.3).

Second, a spatial dependence between the processes can easily be introduced by apply-
ing a spatial filter to the ξ(i). This can be done either by applying a simple filter window on20

the ξ(i) 2-D or 3-D matrices: ξ̃(i) = F [ξ(i)], or by solving an elliptic equation: L[ξ̃(i)] = ξ(i).
6
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In both cases, the filtering operator could be made flow dependent, or more generally, the
filter characteristics could be modified according to anything that is resolved by the ocean
model (in system A in Fig. 1). Technically, this only requires that the description of the
ocean model is made available to the filtering routines. This filtering option (using a simple
Laplacian filter) is used in the sea ice application (see Sect. 3.3).5

Third, the marginal distribution of the stochastic processes can also be easily modified
by applying a nonlinear change of variable (anamorphosis transformation) to the ξ(i) be-
fore using them in the model ξ̂(i) = T [ξ(i)]. This idea is similar to what is done in ensemble
data assimilation methods to transform variables with non-Gaussian marginal distribution
into Gaussian variables (Bertino et al., 2003; Béal et al., 2010; Brankart et al., 2012). For10

instance, this method can be very useful if the description of uncertainties in the model re-
quires positive random numbers. In this case, anamorphosis transformation can be applied
to transform the Gaussian ξ(i) into positive ξ̂(i) with lognormal or gamma distribution. This
anamorphosis option (using a gamma distribution) is used in the sea ice application (see
Sect. 3.3).15

Overall, this method provides quite a simple and generic way of generating a wide class of
stochastic processes. However, this also means that new model parameters are needed to
specify each of these stochastic processes. As in any parameterization of lacking physics,
a very important issue is then to tune these new parameters using either first principles,
model simulations, or real-world observations. This key problem of assessing the parame-20

ters involved in Eq. (1) cannot be addressed in the present paper, and we can only provide
a very brief overview of the nature of the problem. Many existing studies (e.g. Frederiksen
et al., 2012b; Achatz et al., 2013; Grooms and Majda, 2013) already addressed the prob-
lem of choosing the coefficients of the AR(n) processes to simulate the Reynolds stresses
in atmospheric and oceanic flows. Considerable progress has been made for this important25

problem, but not all unresolved processes have received so much attention, and it is often
still difficult to figure out how to derive the parameters of the AR(n) processes.

Referring to the sketch presented in Fig. 1, the general idea to tune the parameters is to
obtain reliable probabilistic information on what happens in system B, and to reduce this

7
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information to a simple statistical model (e.g. the autoregressive model described above).
More precisely, the probability distribution simulating the effect of B should also be condi-
tioned on what happens in system A. For instance, it can be very important that the prob-
ability distribution for the state of the atmosphere (e.g. surface winds) be conditioned on
the state of the ocean model (e.g. mesoscale eddies), to simulate the interaction between5

A and B. Similarly, the probability distribution for unresolved scales or unresolved diversity
usually depends on what happens in system A. This need to correctly simulate conditional
probability distributions explains why the tuning of the parameters is not easy, and why an
extensive database to learn the statistical behaviour of the coupling between A and B is
often necessary. In practice, this learning information can be obtained either from observa-10

tions of the two systems or from other models explicitly simulating the coupling between A
and B. For instance, high-resolution observations or high-resolution models can be used to
tune a statistical model for unresolved scales; a model of the atmospheric boundary layer
can be used to learn the statistical dependence of the state of the atmosphere to the ocean
conditions; a generic biogeochemical model involving a large number of species can be15

used to understand the statistical effect that unresolved diversity can produce in a simple
ecosystem model.

The identification of an appropriate statistical model is thus an important intermediate
step that is far from straightforward, and for which it is difficult to provide very precise
guidelines. Despite of these difficulties, our point of view is that the tuning of the system20

is usually even more problematic with a deterministic parameterization of unresolved pro-
cesses, since no deterministic simulation could exactly fit the real behaviour of the system.
By explicitly simulating uncertainties, we can describe the actual random behaviour of the
system (see Fig. 1); ensemble simulations can be objectively compared to observations
(using probabilistic methods, see Brier, 1950; Toth et al., 2003; Candille et al., 2005); and25

the model (including the stochastic parameters) can be rejected as soon as the ensemble
is not reliable. Unknown parameters could also be tuned by solving inverse problems, until
ensemble reliability is achieved.
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2.2 Stochastic perturbed parameterized tendency

A first way of explicitly simulating uncertainties in meteorological weather forecast was in-
troduced about 15 years ago in the ECMWF ensemble forecasting system (Buizza et al.,
1999). Their basic idea was to separate the model tendency (M) into non-parameterized
(NP) and parameterized (P) tendencies (M=NP+P). The non-parameterized tendency5

(NP) contains all processes that are fully resolved by the model, and can be assumed
free of uncertainties. The parameterized tendency (P) contains the parameterization of the
effect of unresolved processes (system B in Fig. 1), which is essentially uncertain. The
stochastic parameterization is then introduced by multiplying the parameterized tendency
(P) by a random noise, explicitly simulating the uncertainties in P . The basic motivation was10

to produce ensemble forecasts with enhanced dispersion to improve their reliability (i.e. their
consistency with available observations). This SPPT parameterization (for Stochastic Per-
turbed Parameterized Tendency) is still used today in the ECMWF ensemble forecasting
system (Palmer et al., 2009).

This kind of stochastic parameterization is also meaningful in ocean models, and it can15

be directly applied in the model using the generic implementation described in Sect. 2.1.
This can be done by using one or several of the ξ(i) given by Eq. (1) as mulitplicative noise
for the various terms of the parameterized tendency:

dx

dt
=NP(x,u,p, t)+

m∑
i=1

P(i)(x,u,p, t) ξ(i)(t) with
m∑
i=1

P(i) = P (4)

where t is time; x, the model state vector; u, the model forcing; and p, the vector of model20

parameters. In this case, the mean of the ξ(i) must be set to 1, assuming that the model
parameterized tendencies are unbiased, and the other statistical parameters (SD, time and
space correlation structure, marginal distribution) are free to be adjusted to any reasonable
assumption about the uncertainties. In ocean models, this stochastic parameterization can
be applied to any parameterization of unresolved processes (see Fig. 1), as for instance the25

diffusion operators, simulating the effect of unresolved scales, the air-sea turbulent fluxes,
9
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the parameterization of the various functions of the ecosystem dynamics, usually describing
the unresolved biologic diversity, . . . An example of this SPPT parameterization is given in
the ecosystem application (see Sect. 3.2).

2.3 Stochastic parameterization of unresolved fluctuations

Another way of explicitly simulating uncertainties in ocean models is to directly represent5

the effect of unresolved scales in the model equations using stochastic processes. Unre-
solved scales can indeed produce a large scale effect as a result of the nonlinearity of
the model equations. Important nonlinear terms in ocean model are for instance: the ad-
vection term, the seawater equation of state, the functions describing the behaviour of the
ecosystem, . . . Concerning the advection term, the effect of unresolved scales is usually10

parameterized as an additional diffusion, while for the other terms it is most often ignored.
However, in many cases, a direct way of simulating this effect would be to generate an en-
semble of random fluctuations δx(i) with the same statistical properties as the unresolved
scales, and to average the model operator over the ensemble:

dx

dt
=

1

m

m∑
i=1

M
(
x+ δx(i),u,p, t

)
with

m∑
i=1

δx(i) = 0 (5)15

This corresponds to an averaging of the model equations over a set of fluctuations δx(i) rep-
resenting the unresolved scales. The zero mean fluctuations δx(i) can produce an average
effect (corresponding to an interaction between A and B in Fig. 1) as soon as the modelM
is nonlinear. In this parameterization, the number of independent fluctuations (m) and the
statistics for each of them should be chosen to simulate the properties of the unresolved20

scales as accurately as possible.
Obviously, the main difficulty with this method is to generate fluctuations δx(i) with the

right statistics to faithfully correspond to the statistics of unresolved processes. As a first
very simple approach, this can be done using one or several of the ξ(i) given by Eq. (1),
either by assuming that the statistics of δx(i) can be directly approximated by the simple25

10
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statistical structure of autoregressive processes ξ(i), or by assuming that δx(i) can be com-
puted as a joint function of the model state x and the autoregressive processes ξ(i). For
example, if the fluctuations can be assumed proportional to the large scale gradient ∇x of
the state vector, the fluctuations δx(i) could be computed as the scalar product of ∇x with
random walks ξ(i):5

δx(i) = ξ(i) · ∇x (6)

This particular case corresponds to the stochastic parameterization proposed in Brankart
(2013) to simulate the effect of unresolved scales in the computation of the horizontal den-
sity gradient because of the nonlinearity of the seawater equation of state. Examples of
this parameterization are given in the circulation model application (Sect. 3.1) and in the10

ecosystem application (Sect. 3.2).
Before concluding this section, it is important to remember that the above discussion only

provides one possible framework for simulating the effect of unresolved fluctuations, and
that other approaches can be imagined. For instance, a specific stochastic parameterization
is already routinely applied at ECMWF to simulate the backscatter of kinetic energy from15

unresolved scales to the smaller scales that are resolved by the model (Shutts, 2005). This
scheme has been developed for atmospheric applications but might also be applicable to
ocean models. On the other hand, the external forcing u (e.g. atmospheric data, river runoff,
open-sea boundary conditions,. . . ) can also be a major source of uncertainty in the model,
which can be explictly simulated using a formulation similar to Eq. (5):20

dx

dt
=

1

m

m∑
i=1

M(x,u+ δu(i),p, t) (7)

where the fluctuations δu(i) must be tuned to correctly reproduce the effect of uncertain-
ties in the forcing. Introducing appropriate perturbations of the atmospheric data can for
instance be useful to include them in the control vector of ocean data assimilation systems
(Skandrani et al., 2009; Meinvielle et al., 2013).25
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2.4 Stochastic parameterization of unresolved diversity

Another general source of uncertainty in ocean models is the simplification of the system
by aggregation of several system components using one single state variable and one sin-
gle set of parameters. For instance, marine ecosystems always contain a wide diversity of
species, which cannot be described separately by the model, and which must be aggre-5

gated in a limited number of state variables. In a similar way, sea ice can display a wide
variety of dynamical behaviours, which cannot always be resolved by ocean models. As un-
resolved scales, unresolved diversity generates uncertainties in the evolution of the system,
which can be explicitly simulated using a similar approach:

dx

dt
=

1

m

m∑
i=1

M
(
x,u,p+ δp(i), t

)
(8)10

where δp(i) are random parameter fluctuations representing the various possible dynamical
behaviours that are simultaneously present in the system.

The application of this method requires a statistical description of the uncertainties in
the parameters; and again, as a first approach, this can be parameterized using one or
several of the ξ(i) given by Eq. (1). As a particular case, this method includes the stochastic15

parameterization proposed in Juricke et al. (2013) to explicitly simulate uncertainties in ice
strength in a finite element ocean model. It was thus very easy to apply the same scheme
in the ice component of NEMO, as an example of this parameterization (see Sect. 3.3).

3 Impact on model simulations

The purpose of this section is now to illustrate the impact of the stochastic parameteriza-20

tions presented in Sect. 2 in various components of NEMO: in the ocean circulation com-
ponent in Sect. 3.1, in the ocean ecosystem in Sect. 3.2, and in the sea ice dynamics in
Sect. 3.3. The focus of the discussion will be on the probabilistic behaviour of the system
(A) as a result of the uncertainties (the interaction with B in Fig. 1). All applications have
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been performed using the same generic code implementing the stochastic formulation of
NEMO described in Sect. 2.

3.1 Stochastic circulation model

As a result of the nonlinearity of the seawater equation of state, unresolved potential tem-
perature (T ) and salinity (S) fluctuations (in system B) have a direct impact on the large5

scale density gradient (in system A), and thus in the horizontal pressure gradient through
the thermal wind equation. As shown in Brankart (2013), this effect can be simulated using
the scheme described in Sect. 2.3, by applying Eq. (5) to the equation of state:

ρ stoch(T,S) =
1

m

m∑
i=1

ρ
(
T + δT (i),S+ δS(i)

)
with

m∑
i=1

δT (i) = 0 ,
m∑
i=1

δS(i) = 0 (9)

where δT (i) and δS(i) explicitly simulate the unresolved fluctuations of potential tempera-10

ture and salinity. These fluctuations are generated using random walks following Eq. (6),
with parameters for the ξ(i) given in Table 1 (i.e. the same parameterization as in Brankart,
2013). This stochastic parameterization simulates the exchange of potential energy be-
tween resolved and unresolved scales, which results from the nonlinearity of the equation
of state (see Brankart, 2013 for more details). As for the Reynolds stresses, this should15

be strongly constrained by physical principles, but we will stick here to the parameters pro-
posed in Brankart (2013), which were derived from a comparison with higher resolution
reanalysis data.

It is interesting to note (as a complement to what is explained in Brankart, 2013) that
there is a close similarity between this stochastic correction of the large scale density and20

the semi-prognostic method proposed in Greatbatch et al. (2004); Greatbatch and Zhai
(2006). In both cases indeed, the only correction applied to the model occurs in the ther-
mal wind equation through a direct correction of density, while the conservation equation
driving the evolution of potential temperature, salinity and horizontal velocity are all kept
unchanged. We can thus be certain that the stochastic parameterization displays the same25

13
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nice conservation properties as the semi-prognostic method, in particular there is no direct
modification of the T , S properties of the water masses, no enhanced diapycnal mixing and
thus no compromise with the fact that the ocean interior should primarily flow close to the
neutral tangent plane. The modification of the thermohaline structure of the ocean is only
produced indirectly through a modification of the main currents.5

The first impact of the stochastic T and S fluctuations is indeed on the mean circula-
tion simulated by the model. This mean effect in a low resolution global configuration of
NEMO (the ORCA2 configuration, see Madec and Imbard, 1996 for more detail) has been
described in detail in Brankart (2013). In summary, the density correction is important (and
quite systematically negative because of the convexity of the equation of state) along the10

main fronts separating the subtropical and subpolar gyres. The mean pathway of the mean
current is thus modified, significantly reducing the biases of the deterministic model. In par-
ticular, the Gulf Stream pathway no longer overshoots and the structure of the Northwest
corner becomes more realistic. The impact on the mean circulation is similar to what can
be obtained with the semi-prognostic-method (Greatbatch et al., 2004), in which the den-15

sity correction is diagnosed from observations, whereas the stochastic model behaves as
an autonomous dynamical system.

The second effect of the stochastic T and S fluctuations is to generate random variability
in the system. Because of the nonlinearity of the equation of state, the small scales con-
stantly modify the structure of the large scale density, and thus the pathway of the large20

scale circulation. There is a constant flux of information from system B (small scales) to
system A (large scales), which is represented in the stochastic model by the random pro-
cesses ξ(i), and which is totally absent in the deterministic model. This effect is illustrated
in Fig. 2, which displays the pattern of sea surface height (SSH) in several key regions of
the Atlantic: the Norhwest corner (top panels), the Brazil–Malvinas Confluence Zone (mid-25

dle panels), and the Agulhas Current retroflection (bottom panels). In the non-stochastic
simulation, in absence of interannual variability of the atmospheric forcing (as in Brankart,
2013), the interannual variability is extremely weak (see Penduff et al., 2011 for a precise
quantification): this is why only one typical year is shown, since all years would appear
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identical. In the stochastic simulation however, not only the mean SSH pattern is modified
(as shown in Brankart, 2013), the interannual variability is also strongly enhanced, and thus
becomes more compatible with the intrinsic large-scale SSH variability that is obtained from
higher resolution model or from satellite altimetric measurements (as diagnosed in Penduff
et al., 2011). This intrinsic variability (produced in absence of any interannual variability in5

the atmospheric forcing) is a good proxy to the dispersion that would be observed in a truly
probabilistic ensemble forecast. In a high resolution model, this dispersion in the large-scale
behaviour can only result from the interaction with the mesoscale (as explained in Penduff
et al., 2011). In the low resolution ORCA2 configuration, this unpredictable and intrinsically
variable behaviour of the large scales is here (at least partially) restored by a stochastic10

parameterization of the effect of the mesoscale (which is in system B) on the large scale
density. It must be mentioned however that such a small size sample is not sufficient to
provide an accurate quantitative information on the magnitude of this effect. To give more
precise quantitative results, further tuning and validation of the stochastic parameterization
are required.15

To further explore the effect of these uncertainties, we are currently applying the same
stochastic parameterization to a 1/4◦ resolution model configuration of the North Atlantic
(NATL025). The results (obtained with the parameters listed in Table 1) indicate that the
stochastic parameterization tends to produce a mean effect on the Gulf Stream pathway,
and to decorrelate the mesoscale patterns produced in different members of the ensemble.20

The first questions that we would like to address with this kind of simulation are whether it
is possible to better tune the stochastic parameterization using reference data, whether the
ensemble dispersion can explain a substantial part of the misfit with altimetric observations,
and thus whether this kind of ensemble can be used to assimilate SSH measurements in
NATL025. And then, as a longer term perspective, maybe the stochastic processes ξ(i) can25

be used as a control vector for data assimilation, which would therefore display the same
nice conservation properties as the semi-prognostic method (Greatbatch et al., 2004).
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3.2 Stochastic ecosystem model

There are many sources of uncertainty in marine ecosystem models. To simplify the discus-
sion, only two classes of uncertainty will be considered here: uncertainties resulting from
unresolved biologic diversity and uncertainties resulting from unresolved scales in biogeo-
chemical tracers (see Fig. 1). On the one hand, the most common simplification in biogeo-5

chemical model (Le Quéré et al., 2005) is to aggregate the biogeochemical components of
the ocean in a limited number of categories (defining system A in Fig. 1). This reduces the
number of state variables and parameters, and introduces uncertainties in the model equa-
tions since the various components included in one single category (unresolved diversity, in
system B) do not usually display the same dynamical behaviour. To simulate this first class10

of uncertainty, we will use the SPPT scheme described in Sect. 2.2 and multiply the “source
minus sink” terms (SMSk) of the ecosystem model by a multiplicative noise:

SMS stoch
k (Cl) = SMS ref

k (Cl)× ξ(k) (10)

where Cl are the biogeochemical tracer concentrations, and ξ(k) are autoregressive pro-
cesses obtained from Eq. (1), with parameters given in Table 1. To simulate unresolved15

diversity, the scheme described in Sect. 2.4 would probably have been more natural, but
in view of the large number of parameters in the ecosystem model, the SPPT scheme is
much easier to implement as a first approach. On the other hand, to simulate uncertainties
resulting from unresolved scales, we will use the scheme described in Sect. 2.3, by applying
Eq. (5) to the SMS terms:20

SMS stoch
k (Cl) =

1

m

m∑
i=1

SMSref
k

(
Cl + δC

(i)
l

)
with

m∑
i=1

δC
(i)
l = 0 (11)

where δC
(i)
l explicitly simulate the unresolved fluctuations of biogeochemical tracer con-

centrations. These fluctuations are generated using random walks following Eq. (6), with
parameters for the ξ(i) given in Table 1. (Since little is known about uncertainties in the
ecosystem model, we just used here reasonable values for the parameters.)25
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As a first approach, the impact of these two stochastic parameterizations has been stud-
ied in a low resolution global ocean model, based on the ORCA2 configuration coupled
with the LOBSTER ecosystem model (using exactly the same model settings as in the
previous section). The ecosystem model (see Lévy et al., 2005 for more details) is a sim-
ple model including only 6 compartments (Ck, k = 1, . . . ,6): phytoplankton, zooplankton,5

nitrate, ammonium, dissolved organic matter, and detritus. The behaviour of this model is
here illustrated in Fig. 3 by the surface phytoplankton in the North Atlantic for 15 June (in
the second year of simulation). As compared to the deterministic simulation (top left panel),
the stochastic simulation with the SPPT scheme (top right panel) does not modify very
strongly the general behaviour of the system (despite the 50% SD multiplicative noise),10

but substantially increases the patchiness of the surface phytoplankton concentration. This
suggests the conjecture that uncertainties (in particular unresolved diversity) may partly ex-
plain the patchiness of satellite ocean colour images. Conversely, the stochastic simulation
of unresolved scales (bottom left panel) does not increase patchiness, but can significantly
affect the local behaviour of the system, sometimes increasing or decreasing the production15

(whether the second derivative of the SMS term is positive or negative). At first sight, these
two sources of uncertainty are thus insufficient to explain the considerable misfit between
model simulation and ocean colour data.

As an additional experiment, the two stochastic parameterizations have then been used
together (bottom right panel), by simply generating a sufficient number of autoregressive20

processes (corresponding to the two columns together in Table 1) to feed the two schemes.
This result shows that there is a strong interaction between the two schemes, leading to
a deep modification of the general behaviour of the system, and to enhanced patchiness as
compared to the SPPT scheme alone. In our view, this directly leads to the idea that uncer-
tainties may be an important ingredient to understand the dynamical behaviours of marine25

ecosystems, and to make the model distribution consistent with ocean colour observations
(in magnitude and pattern). It must be noted however that these experiments only represent
a first attempt to explicitly simulate uncertainties in the ecosystem component of NEMO, and
that further studies are needed before any meaningful quantitative result can be obtained.
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3.3 Stochastic sea ice model

One of the main difficulties of sea ice models is to correctly simulate the wide diversity
of ice dynamical behaviours. Among ice characteristics, the most sensitive parameter is
certainly the ice strength P ?. In simple ocean models (as in LIM2 in NEMO), P ? is assumed
constant, whereas, in more complex models (as in LIM3 in NEMO), the variations of P ?

5

can be explicitly resolved as a function of the various types of ice simultaneously present
at every model grid point. The impact of uncertainties in P ? has already been studied in
the work of Juricke et al. (2013) using a finite element ocean model (FESOM), coupled to
a simple sea ice model similar to LIM2. The purpose of this section is to reproduce their
parameterization in NEMO/LIM2 using the generic technical approach described in Sect. 2.10

This can be done very easily, almost without any additional implementation effort, using the
scheme described by Eq. (8) with m= 1 and

P ?+ δP ? = P ?× ξ (12)

where ξ is one of the autoregressive processes given by Eq. (1), with parameters given in
Table 1. The parameters are chosen to be close to the stochastic parameterization in Ju-15

ricke et al. (2013). Specificities are the use of order 2 instead of order 1 autoregressive
processes, and the use of a gamma marginal distribution instead of another kind of positive
distribution in Juricke et al. (2013).

This stochastic parameterization has been applied to a low resolution global ocean con-
figuration of NEMO, again without interannual variability in the atmospheric forcing (using20

the same model settings as in Brankart, 2013). The behaviour of the model is here illus-
trated in Fig. 4 by the ice thickness in the Arctic at the end of March (when the ice exten-
sion is close to its maximum). As compared to the deterministic simulation (top left panel),
the first impact of the stochastic parameterization is to systematically increase ice thick-
nesses, especially in the regions of old ice (North of Greenland and Western Canada), and25

to slightly decrease the ice extension. This mean effect results from the nonlinearity of the
model response to P ?: during the periods of small P ?, the ice thickness has the opportunity
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to increase, and this increase is not counterbalanced by a symmetric decrease of thickness
during the periods of large P ?. This behaviour is very similar to what is described in Juricke
et al. (2013), and cannot be reproduced by a simple uniform modification of P ?.

On the other hand, the stochastic fluctuations of P ? also generate random variability in
the system. As for SSH in Sect. 3.1, the interannual variability of ice thickness pattern is5

extremely weak in ORCA2 without interannual variability of the atmospheric forcing (which
is why only one typical year is shown in Fig. 4). In the stochastic simulation however, not
only the mean ice thickness pattern is modified (as for SSH in Fig. 2), the interannual
variability (which is again a good proxy to ensemble dispersion as explained in Sect. 3.1)
is also strongly enhanced. What is expected from these results is thus that the explicit10

simulation of uncertainties can provide us an adequate basis for probabilistic comparison
with sea ice observations, and help us producing reliable ensemble forecasts for sea ice
data assimilation problems. Consequently, it might also be that this stochastic approach
represents a worthwhile alternative to explicit resolution of sea ice diversity (as in LIM3).

4 Conclusions15

In this paper, a simple and generic implementation approach has been presented, with the
purpose of transforming a deterministic ocean model (like NEMO) into a probabilistic model.
With this method, it is possible to easily implement various kinds of stochastic parameteri-
zation mimicking the non-deterministic effect of unresolved processes, unresolved scales,
unresolved diversity, . . . It has been shown indeed that ocean systems can often display20

a random behaviour, which needs to be explicitly represented in ocean models. Ensem-
ble simulations are then required to sample all possible behaviours of the system. Getting
a reliable overview of all dynamical possibilities is necessary to objectively compare mod-
els to observations, and to correctly apply the model constraint in ocean data assimilation
problems.25

Technically, what is proposed here is a very simple algorithmic solution that is easy to
adapt to many kinds of model, and that is generic enough to deal with many different
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sources of uncertainty. This is obviously not intended to be the final theoretical or tech-
nical solution for simulating uncertainties, The algorithms and framework proposed in this
study only provide a first-guess solution, which is simple enough to make a first quick eval-
uation of the effect of a given source of uncertainty, and flexible enough to easily evolve as
a better understanding of the problem is progressively obtained.5

This technique has been applied to several applications, showing that randomness is
ubiquitous in ocean systems: in the large-scale circulation (e.g. because of the effect of
unresolved scales through the nonlinear equation of state), in the ecosystem model, (e.g.
because of the effect of unresolved scales and unresolved biogeochemical diversity), and in
the sea ice dynamics. (e.g. because of the unresolved diversity of sea ice characteristics).10

In each of these applications, uncertainty can be viewed as an essential dynamical charac-
teristic of the system, which can modify our understanding of the ocean behaviour. As for
any complex system, constructing ocean models using optimal (but imperfect) components
can often be worse (less robust) than using unreliable components dealing explicitly with
their respective inaccuracy. The ocean is like a dice rolling on the table of a casino: we are15

unable to grasp all subtleties of its movements, and we can only sample from all possible
outcomes of the game using probabilistic models.

Appendix A: Implementation issues

All examples of stochastic parammeterizations described in this paper have been performed
with the same generic tool that we have implemented in NEMO. The purpose of this ap-20

pendix is to describe this tool, and to show that it could be easily adapted to work in any
other modelling system.

The computer code is made of one single FORTRAN module, with 3 public routines to
be called by the model (in our case, NEMO):

– The first routine (sto_par, see Algorithm 1) is a direct implementation of Eq. (1), ap-25

plied at each model grid point (in 2-D or 3-D), and called at each model time step (k) to
update every autoregressive process (i= 1, . . . ,m). This routine also includes a filter-
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ing operator, applied to w(i), to introduce a spatial correlation between the stochastic
processes.

– The second routine (sto_par_init, see Algorithm 2) is an initialization routine mainly
dedicated to the computation of parameters a(i), b(i), c(i) for each autoregressive pro-
cess, as a function of the statistical properties required by the model user (mean, SD,5

time correlation, order of the process, . . . ). This routine also includes the initialization
(seeding) of the random number generator.

– The third routine (sto_rst_write) writes a “restart file” with the current value of all au-
toregressive processes to allow restarting a simulation from where it has been inter-
rupted. This file also contains the current state of the random number generator. In10

case of a restart, this file is then read by the initialization routine (sto_par_init),
so that the simulation can continue exactly as if it was not interrupted.

Algorithm 1 sto_par

for all (map i= 1, . . . ,m of autoregressive processes) do
Save map from previous time step: ξ−← ξi
if (process order is equal to 1) then

Draw new map of random numbers w from N (0,1): ξi← w
Apply spatial filtering operator Fi to ξi: ξi←Fi[ξi]
Apply precomputed factor fi to keep SD equal to 1: ξi← fi× ξi

else
Use previous process (one order lower) instead of white noise: ξi← ξi−1

end if
Multiply by parameter bi and add parameter ci: ξi← bi× ξi+ ci
Update map of autoregressive processes: ξi← ai× ξ−+ ξi

end for
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Algorithm 2 sto_par_init

Initialize number of maps of autoregressive processes to 0: m← 0
for all (stochastic parameterization k = 1, . . . ,p) do

Set mk, the number of maps of autoregressive processes required for this parameteri-
zation
Increase m by mk times the process order ok: m←m+mk× ok

end for
for all (map i= 1, . . . ,m of autoregressive processes) do

Set order of autoregressive processes
Set mean (µi), standard deviation (σi) and correlation timescale (τi) of autoregressive
processes
Compute parameters ai, bi, ci as a function of µi,σi, τi
Define filtering operator Fi

Compute factor fi as a function of Fi

end for
Initialize seeds for random number generator
for all (map i= 1, . . . ,m of autoregressive processes) do

Draw new map of random numbers w from N (0,1): ξi← w
Apply spatial filtering operator Fi to ξi: ξi←Fi[ξi]
Apply precomputed factor fi to keep standard deviation equal to 1: ξi← fi× ξi
Initialize autoregressive processes to µ+σ×w: ξi← µ+σξi

end for
if (restart file) then

Read maps of autoregressive processes and seeds for the random number generator
form restart file (thus overriding the initial seed)

end if
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This module has been used to produce the 3 examples of stochastic parameterization
given in the paper, with the parameters given in Table 1. The same set of basic routines
has thus been applied to simulate the random walks of the stochastic equation of state in
Sect. 3.1, the random perturbation of the ecosystem model in Sect. 3.2, and the random
sea ice dynamics in Sect. 3.3. Moreover, as can be seen from Algorithms 1 and 2, these5

parameterizations can easily be applied alltogether or separately.
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Table 1. Parameters of autoregressive processes for all applications described in this paper. The
number of processes is the number of autoregressive processes used in each stochastic param-
eterization (sometimes multiplied by 3 to produce one process for each component of the random
walks). The mean, SD and correlation timescale are the parameters µ(i), σ(i) and τ (i) used in Eqs.
(2) and (3). For the stochastic parameterization of the equation of state (circulation model), the SD
are multiplied by sin φ for ORCA2, and by sin 2φ for NATL025, where φ is latitude.

Circulation model Ecosystem Sea ice
unresolved unresolved unresolved

ORCA2 NATL025 diversity scalesF diversity

Number of processes 6× 3 1× 3 6 1× 3 1
Order of processes 1 1 1 1 2
Mean value 0 0 1 0 0

SD
σxy = 4.2
σz = 1

σxy = 1.4
σz = 0.7

0.5
σxy = 3
σz = 1

1.

Correlation timescale 12 days 10 days 3 days 12 days 30 days
Spatial filtering no no no no Laplacian
Anamorphosis no no no no gamma
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Figure 1. Schematic of the separation between resolved and unresolved processes (systems A
and B). Even if A∪B can be assumed deterministic, system A alone is not deterministic in general,
because of the interactions with system B.
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Figure 2. Sample of sea surface height patterns (in meters), illustrating the intrinsic interannual
variability generated by the stochastic parameterization of the equation of state in a low resolution
global ocean model configuration (ORCA2): northwest corner of the North Atlantic drift (top panels),
Brazil–Malvinas Confluence Zone (middle panels), and Agulhas Current retroflection (bottom pan-
els). For each region, the left panel represents the non-stochastic simulation, and the other panels
are 3 different years of the stochastic simulation.
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Figure 3. Surface phytoplankton concentration (in mmol-Nm−3) for 15 June as obtained with var-
ious stochastic parameterizations of uncertainties in the ecosystem model: no stochastic parame-
terization (top left panel), stochastic simulation of unresolved diversity (top right panel), stochastic
simulation of unresolved scales (bottom left panel), stochastic simulation of unresolved diversity and
unresolved scales (bottom right panel).
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Figure 4. Sample of ice thickness patterns (in meters) in winter (end of March), illustrating the
intrinsic interannual variability generated by the stochastic parameterization of ice strength in a low
resolution global ocean model (ORCA2). The top-left panel represents the non-stochastic simulation,
and the other panels are 3 different years of the stochastic simulation.
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