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Abstract

Ecosystem models are often assessed using quantitative metrics of absolute ecosys-
tem state, but these model-data comparisons are disproportionately vulnerable to dis-
crepancies in the location of important circulation features. An alternative method is to
demonstrate the models capacity to represent ecosystem function; the emergence of
a coherent natural relationship in a simulation is a strong indication that the model has
a appropriate representation of the ecosystem functions that lead to the emergent rela-
tionship. Furthermore, as emergent properties are large scale properties of the system,
model validation with emergent properties is possible even when there is very little or
no appropriate data for the region under study, or when the hydrodynamic component
of the model differs significantly from that observed in nature at the same location and
time.

A selection of published meta-analyses are used to establish the validity of a com-
plex marine ecosystem model and to demonstrate the power of validation with emer-
gent properties. These relationships include the phytoplankton community structure,
the ratio of carbon to chlorophyll in phytoplankton and particulate organic matter, the
ratio of particulate organic carbon to particulate organic nitrogen and the stoichiometric
balance of the ecosystem.

These metrics can also inform aspects of the marine ecosystem model not avail-
able from traditional quantitative and qualitative methods. For instance, these emergent
properties can be used to validate the design decisions of the model, such as the range
of phytoplankton functional types and their behaviour, the stoichiometric flexibility with
regards to each nutrient, and the choice of fixed or variable carbon to nitrogen ratios.
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1 Introduction

Numerical models of the environment are used frequently for informing policy deci-
sions, for forecasting the impact of climate change, and to obtain a deeper understand-
ing of nature. However, in order for a model to be used for any of these purposes,
the model must first be shown to be a valid representation of the system under study.
There are two objective strategies available to demonstrate that the model is a valid
representation of the system under study. The first strategy is to reproduce the spatial
and temporal distributions of historic observations, and the second is to reproduce the
functional relationships.

There is a long history of works which demonstrate model validation using static
fields, spatial distributions and dynamic variability, including Droop (1973); Fasham
et al. (1990); Taylor (2001); Blackford (2004); Allen et al. (2007); Jolliff et al. (2009);
Shutler et al. (2011); Saux Picart et al. (2012); de Mora et al. (2013); Kwiatkowski et al.
(2014). However, validating a modern ecosystem model using static fields and spatial
distributions may give an appropriate assessment of the coupled biogeochemical and
hydrodynamic modelled system, but the performance of the ecosystem model may be
obscured by deficiencies in the modelled circulation. For instance, the point-to-point
analysis described in de Mora et al. (2013) is vulnerable to discrepancies between the
model and the observations in the location of important circulation features such as
fronts, coastlines or up-welling regions. Validation methods that use historic data are
also sensitive to initial conditions and the boundary conditions of the model. These
problems are amplified for models with coarse spatial and temporal resolution, such
as the monthly mean of a 1° global model. The disentanglement of the performance
of the biogeochemical model from that of the physics is a major challenge in marine
ecosystem modelling (Holt et al., 2014).

Furthermore, these methods risk compartmentalising the validation of ecosystems
and may not cover the interaction of their parts. The ability of a model to represent
present day measurements are important, but it does not inform about the models

6097

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/6095/2015/gmdd-8-6095-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/6095/2015/gmdd-8-6095-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

representation of the behaviour of the ecosystem as a whole. Historical static fields
may not necessarily validate a model which is subjected to a changing climate due to
the scarce availability of long-term time-series datasets.

As a solution to the problem of the absence of data and presence of poorly con-
strained physics, Holt et al. (2014) wrote “there is a need for metrics that assess the fi-
delity of the biogeochemical processes independently of the physics”. In that work, they
identify one such functional relationship: the link between diatom chlorophyll and total
community chlorophyll. They demonstrated that the fraction of the community chloro-
phyll that originates in diatoms increases with total chlorophyll. In effect, a well known
relationship seen in many in situ datasets also appeared in multiple biogeochemical
models. This relationship is important because it occurred independently of the hydro-
dynamic model, and because it reflected the functioning of the modelled ecosystem
in a way that would not be visible in a simple point-to-point comparison of ecosystem
state.

Many interacting parts of an ecosystem can affect the balance of diatoms chloro-
phyll against the total community chlorophyll: the diatoms response to nutrients, light
and temperature; competition for light and nutrients from other phytoplankton; and the
predation on diatoms and other phytoplankton. Each of these interactions between two
or more components of the ecosystem are examples of “ecosystem functions”. In the
context of marine ecosystem modelling, ecosystem functions are physical, biological
or geochemical interactions, processes or relationships that take place within a models
framework. Ecosystem function in models can be both explicitly enforced during the
model development and tuning, or they can emerge without being explicitly parame-
terized. The interplay of multiple ecosystem functions often results in the emergence
of observable relationships. The link between diatom chlorophyll and total community
chlorophyll, as shown by Holt et al. (2014), is an example of such an “emergent re-
lationship”. These emergent relationships can be used to characterise and validate
the ecosystem and its functioning. As in the example from Holt et al. (2014), these
emergent relationship are important because they occurred independently of the hy-
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drodynamic model, and because they reflect the functioning of the modelled ecosystem
in a way that would not be visible in a simple point-to-point comparison of ecosystem
state.

In addition, model validation with emergent properties can be more valuable than
a direct comparison of model to experiments, such as primary production bottle mea-
surements. This is because emergent property validation are a large scale test of many
combinations of factors, simultaneously testing the model in a wide range of physical
and biogeochemical environments.

A selection of historically published large-scale emergent relationships are proposed
to illustrate the validation of a complex ecosystem model and demonstrate the power
of emergent property validation. The example ecosystem model used here is the Eu-
ropean Regional Seas Ecosystem Model (ERSEM), and it is run in a coupled NEMO-
ERSEM global hindcast scenario. The emergent relationships shown here are the com-
munity structure, the carbon to chlorophyll ratio, the ratio of particulate organic carbon
against particulate organic nitrogen and stoichiometric balance.

After this introductory section, Sect. 2 contains a brief description of the circulation
model, NEMO, the ecosystem model, ERSEM, and the sea ice model, CICE, used in
this study. Section 3 is a non-exhaustive list of examples of ecosystem relationships
that have been investigated in the ERSEM ecosystem model. An expanded version
of the community structure relationship described by Holt et al. (2014) is included in
Sect. 3.1. Section 3.2 shows the ratio of carbon to chlorophyll in phytoplankton and
particulate organic matter. Section 3.3 demonstrates how the model reproduces the ra-
tio of particulate organic carbon and nitrogen as described by Redfield (1934); Martiny
et al. (2013). Section 3.4 illustrates the internal stoichiometric relationships for ERSEM
for each of the nutrient currencies modelled. Finally, Sect. 4 discusses the successes,
potential and limitations of these methods.
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2 The ERSEM and NEMO models

The European Regional Seas Ecosystem Model (ERSEM) is a lower trophic level bio-
geochemical cycling, carbon based process model that uses the functional-group ap-
proach (Blackford, 2004). The carbon, nitrogen, phosphorus, silicon and iron cycles
are explicitly resolved. The pelagic ERSEM model simulates four phytoplankton func-
tional types, three zooplankton functional types, one bacterial functional type and six
detritus size classes. It contains variable stoichiometric ratios for each of the plankton
functional types. ERSEM can be run in parallel with any one of a range of benthic mod-
els of varying complexity, the parametrisation used for this publication uses a simple
parametrisation of remineralization where sedimented organic matter is recycled to the
water column in inorganic form.

The initial nutrient conditions for nitrate, phosphorus and silicate were taken from
the World Ocean Atlas database (Garcia et al., 2010). The initial iron concentrations
were zonally averaged interpolations of the iron data from Tagliabue et al. (2012). The
iron dust surface deposition climatology was based on Mahowald et al. (2005). The
remaining biogeochemical fields were initialised to low concentrations.

In order to be a better representation of nature, marine ecosystem models like
ERSEM are typically run in conjunction with an ocean circulation model, such as
the Nucleus for European Modelling of the Ocean, NEMO (Madec, 2008). NEMO is
a framework of ocean related engines, ocean dynamics, thermodynamics, sinks and
sources, and transport. It was designed to be a flexible tool for studying the ocean
and its interactions with the other components of the earth climate system over a wide
range of space and time scales. The version of NEMO used in this study was ver-
sion 3.2 and the ocean circulation model was interfaced with the Los Alamos Sea Ice
model, CICE (Hunke et al., 2013). CICE has several interacting components: a thermo-
dynamic sub-model, an ice dynamics sub-model, a vertical and a horizontal transport
sub-model.
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The coupled NEMO-ERSEM-CICE models were run simultaneously in the ORCA1
1° global tripolar grid, with 75 fixed depth layers on the UK Met Office super-
computing system, MONSooN. The atmospheric boundary conditions were taken from
the COREZ2 global air—sea flux dataset (Yeager and Large, 2008). The coupled model
was run for 117 years, from 1890 to 2007. The initial conditions for the circulation model
at 1890 were taken from a 60 year physics-only climatological spin up from a still global
ocean. The first 60 years (1890-1950) of coupled NEMO-ERSEM running were spun
up using climatological COREZ2 forcing. After 1950, the remaining 57 years were run
with the inter-annually variable version of the CORE2 forcing.

The simulation was run as part of the iMarNet project: an inter-comparison project
of six UK biogeochemical models (Kwiatkowski et al., 2014). The ERSEM model run
shown here is an updated parametrisation relative to the ERSEM model data used
in that study. A unique requirement of this project was that the six biogeochemical
models were run under identical physical conditions, using the same parameters and
settings for NEMO, the same computing resource, the same coding framework and
the same initial conditions for nutrients. In other words, the physical parametrisations
were prescribed according to specific pre-defined settings and no further changes to
the physical settings were permitted.

3 Ecosystem function in marine biogeochemical models

In an ideal world, this work would present a comprehensive set of ecosystem func-
tions to validate any given marine ecosystem model. However, models can differ enor-
mously in their complexity, design choices, parametrisations, location and scope, such
that each unique model would need to be validated using different set of emergent
properties.

The use of emergent relationships and ecosystem functions to validate models works
best under certain conditions. The desired scenario is when the historical measured in
situ emergent relationship has been observed multiple times with several independent
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datasets, is valid over large spatial and temporal ranges, and has been reported with
a high statistical probability, if fitted to a mathematical function. The ideal scenario
regarding the model version of the ecosystem function is that that is is an emergent
property of the model, and is not constrained or imposed in anyway. The modelled
emergent property should not be a direct extrapolation of the choices made in model
design, the emergent property should not be reproduced in the simulation by tuning
a small number of parameters, and the model should not be explicitly tuned to match
the data.

As emergent relationships are large scale properties of the system, validation with
emergence is possible even when there is very little or no appropriate data for the
region under study, or when the physical circulation component of the model differs
significantly from that observed in nature at the same location and time. This is one
of the strengths of the validation with emergent properties method: it can be used to
demonstrate ecosystem model quality in the absence of perfectly simulated physical
marine environment or extensive local measurements. Nevertheless, it is important
that the model and the data originate from similar marine environments. For instance,
emergent property validation can not compensate for a catastrophic failure of the hy-
drodynamic model, nor can it be used to validate the model in regions with unusual
and understudied behaviour. However, it is not crucial to match up the exact locations
in model and data, as used in the point to point study in de Mora et al. (2013).

A full understanding of the causal nature of the relationship is not a strict requirement
in order to be informative. There are many naturally occurring phenomena for which an
explicit explanation is not immediately available, but for which the relationship is nev-
ertheless stable. A well known example is the Redfield ratio, (Redfield, 1934; Arrigo,
2005). Unexplained relationships can inform about the validity of some aspect of the
model behaviour. Furthermore, if the model could reproduce a natural emergent prop-
erty in the absence of a causal relationship, then it may be possible to use the model
to discover a causal relationship.
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The emergence of a coherent natural relationship in a simulation is a strong indica-
tion that the model has a appropriate representation of the ecosystem functions that
create the emergent relationship. If the emergent relationship is not seen in the model,
this implies that the ecosystem functions that bring about the emergence are not cor-
rectly implemented in the model. If the emergent relationship is present in the model,
but breaks down under certain conditions, this means that those conditions are not
correctly modelled. Such break down points can be a combination of extreme physical,
chemical or biological conditions, and can be used to pinpoint the limitations of the
simulation, allowing for powerful and precise criticisms of the model. However, some
caution is required as there may also be break down conditions for the emergent prop-
erty in nature.

The remainder of this section is a non-exhaustive list of the emergent properties
that can be used to validate the NEMO-ERSEM iMarNet hindcast. The first emergent
property shown here is an extension of the diatom chlorophyll relationship previously
described in Holt et al. (2014).

3.1 Phytoplankton community structure

Phytoplankton are often grouped into size or function based classifications. Phytoplank-
ton cell size can influence a range of ecosystem processes, both internally such as
nutrient uptake, metabolic rates, physiology and light absorption. At the ecosystem
scale, these individual effects combine together to create functional differences in the
community primary production, export, the food web, and light and heat absorption by
seawater. Phytoplankton function based classifications are also used, and function can
influence the classes role in the ecosystem, their preferred nutrient sources, and their
production and export rates.

Many marine ecosystem models use a size or function based classification. The
phytoplankton classification in ERSEM follows a size and function based classifica-
tion. There are four plankton functional types (PFT) in ERSEM. Three of the groups
are sized based: nanophytoplankton, picophytoplankton and large phytoplankton. The
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fourth group, diatoms, are between nanophytoplankton and large phytoplankton in size
but include a silicon component. Each PFT has different nutritive affinities and require-
ments, metabolic rates, and different desirability as a food source for predators.

In both the ecosystem and in the model, the relative abundance of each class is
referred to as the community structure. The relative abundance is often measured in
terms of chlorophyll, but it also can be gauged in units of cell count, total cell volume, or
carbon or nitrogen biomass. The community structure is dependent on a large number
of factors, including: the nutritive affinity and nutritional storage capacity of each PFT
relative to each nutrient, the desirability as a food source of each PFT for each zoo-
plankton functional type, and local environmental conditions such as light, temperature
and nutritive up-welling. In ERSEM, there is no explicit parametrisation of their abso-
lute or relative abundances, it is a property that arises out of a combination of many
ecosystem functions.

The relationship between the abundance of each plankton functional type and the
total community chlorophyll has been presented repeatedly with data from both high
performance liquid chromatography (HPLC) and size fractionated filtration (SFF) mea-
surements. Five examples of this relationship are Hirata et al. (2011); Devred et al.
(2011); Brewin et al. (2012, 2014, 2015). Each of these fits is prepared using a dif-
ferent dataset. Hirata et al. (2011) used multiple HPLC databases from around the
world. Devred et al. (2011) used chlorophyll and absorption data from the Northwest
Atlantic region that was collected between 1996 and 2003. Brewin et al. (2012) used
HPLC data in the Indian ocean taken between 1995 and 2007. Brewin et al. (2014)
used SFF from the Atlantic Meridianal Transect (AMT) cruises in the Atlantic ocean
between 1996 and 2012. Brewin et al. (2015) used a aggregation of 16 unique globally
distributed databases.

Figure 1 shows the five fits of in situ community structure and the least squared
fit of ERSEM to the three-population absorption model of Brewin et al. (2010). For
all three panels, the x axes are the total community chlorophyll, and the y axes are
the percentage of the total chlorophyll that came from each PFT. The diatom and
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large phytoplankton functional types are summed together in the left panel. The mid-
dle panel shows nanophytoplankton and the right panel shows picophytoplankton. The
dashed vertical line indicates a typical detection limit of HPLC and SFF measurements
of 0.1 mgChIm‘S. The Devred et al. (2011); Brewin et al. (2012, 2014, 2015) are also
fitted to the three-population absorption model, but the Hirata et al. (2011) is fitted with
its own community structure model. The difference between the Hirata model and the
three-population model is that the Hirata model is a best fit to the data, whereas the
three population model is derived based on empirical principles. Despite their differ-
ences, these fits have little variability in the overall shape of the fit between datasets
and methodologies.

Note that only the fits are shown in Fig. 1, the in situ data itself is not shown, nor
is the model data. Showing the fit as a smooth line hides the substantial spread of
the in situ data. For instance, the data shown in the widely published Fig. 2 of Hirata
et al. (2011) has already been smoothed with a 5-point running mean, and that running
mean is further smoothed to the fit line shown in Fig. 1.

Figure 2 is a three panel plot of phytoplankton community structure showing the
model data as a logarithmically scaled two dimensional data density histogram in blue-
scale. This figure also shows a fit to the model data, and the in situ data fits from Brewin
et al. (2015); Hirata et al. (2011). For clarity, the other fits are not shown. For all three
panels, the shared x axis is the total community chlorophyll, and the y-axes are the
percentage of the total chlorophyll that came from each PFT. The model data is shown
as a logarithmically scaled two dimensional data density histogram in blue-scale. The
diatom and large phytoplankton functional types are summed together in the top panel.
The middle panel shows nanophytoplankton and the bottom panel shows picophyto-
plankton. The dashed vertical line indicates a typical detection limited of HPLC and
SFF measurements. Note that only the fits to the in situ data are shown, the in situ
data itself is not shown. The fit to ERSEM, the Brewin 2015 and the Hirata 2011 lines
are identical in Figs. 1 and 2.
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The model data in Fig. 2 was taken from the top 40 m of the global ocean, exclud-
ing the Arctic and Antarctic regions, the shallow seas and inland seas. The Arctic and
Antarctic oceans were excluded from this analysis for two reasons: firstly, there were
no Arctic community structure data in four of the studies mentioned above, and Brewin
et al. (2015) only includes a small number of Antarctic data. Secondly, they were ex-
cluded because this is a region where the physics in this model run was particularly
troublesome. As mentioned in Sect. 2, the physics model was fully prescribed as part
of the iMarNet inter-comparison project, and no tuning of the physics was permitted.
The shallow and inland seas were excluded because a coarse 1° global model can
not resolve the complex dynamics needed to reproduce these regions. The model data
and in situ data were both fit to the same three-population absorption model (Brewin
et al., 2010), and both sets of fit parameters are shown in Table 1.

The model reproduces the overall shape of the picophytoplankton community struc-
ture in Fig. 2, in that the picophytoplankton contribution to community chlorophyll is
higher at low chlorophyll concentrations. However, the picophytoplankton community
structures is concave in the model and convex in the three-population model. The
model picophytoplankton community structure is more similar in shape to the the Hi-
rata et al. (2011) fit, which is the only in situ data fit from Fig. 1 not based on the three
population model.

The three-population absorption model of Brewin et al. (2010) can be summarised
in the following equations. The picophytoplankton component of the total community
chlorophyll, chly, is calculated as:

chly = Cg'- (1 - exp(-S,, - chl)) (1)

where chl is the total community chlorophyll, C;" is the maximum picophytoplankton
chlorophyll, and S, is the initial slope of the exponential function for picophytoplankton.
Note that Figs. 1 and 2 show the phytoplankton functional type contribution as a per-
centage of total community chlorophyll instead of as the chlorophyll concentration used
in Eq. (1).
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The combined picophytoplankton and nanophytoplankton chlorophyll, or “piconano”

chlorophyll, chl, n, is calculated in Eq. (2).

chlp n = Cpl - (1 —exp(=S, - chl)) )
where Cmn is the maximum piconano chlorophyll and S, |, is the initial slope of the
exponentlal function for piconano. The chl, , function is not shown explicitly in either
Fig. 1 or Fig. 2, but is used in the calculation of the nanophytoplankton, diatoms and
large phytoplankton functional types community structure.

Unlike chl, and chl, ,,, the nanophytoplankton chlorophyll, chl,, and microphyto-
plankton chlorophyll, chl,,, are not explicitly fitted. Instead, their contribution to total
community chlorophyll are determined from a combination of Egs. (1) and (2). The
nanophytoplankton chlorophyll, chl,, shown in Eq. (3), is the difference between the
piconano group chlorophyll and the picophytoplankton chlorophyll. This is shown in the
middle pane of Figs. 1 and 2.

chl,, = chl, , - chl, (3)

The diatoms and large phytoplankton, (together also known as microphytoplankton)
chlorophyll, chl,,, are the remainder of the total chlorophyll that is not accounted for
by the piconano component. It is calculated is the difference between the piconano
chlorophyll and the total chlorophyll. This is shown in the top pane of Fig. 2.

chly, = chl - chl, (4)

Just to explicitly state the overarching assumption used here, the total chlorophyll,
chl, is equal to the sum of the three components functional types chlorophyll.

chl = chly, +chl,, +chl, (5)

Note that the three fits of Fig. 2 are not free to vary independently. For any given
value of total chlorophyll on the x axis, the sum of the three populations much be equal
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to 100 %. Furthermore, the fits are not free to vary to any shape, they are limited by
the structure available to Egs. (1), (3) and (4). Equations (1) and (2) are fitted to the
simulated ERSEM data using in the least squares fit. In addition, the fits are most
influenced by the high data density regions in this figure. For these reasons, the fits
may not appear to match the overall shape of the model distribution, while still being
an acceptable fit.

In the top panel of Fig. 2, there is a cluster of points where the diatom and large
phytoplankton functional types unexpectedly dominate the community structure at low
total chlorophyll. These points account for less than 0.2 % of the data, after the cuts de-
scribed above were applied. Furthermore, they only appear adjacent to the excluded
shallow and polar seas. While there is also some evidence of the proportion of large cell
increased in the polar regions (Sosik and Olson, 2002), we postulate that it is a com-
bination of multiple factors that creates this excess microphytoplankton. Firstly, in the
polar regions there is an abundance of nutrients, and especially silicon, caused by ex-
cessive mixing in the physical model. Secondly, the model is parameterized to favour
diatoms in low light regions. These factors collude to create an abundance of diatoms
and large phytoplankton at low total chlorophyll. When the polar, shallow and inland
sea regions are included in the model, the number of points included in these regions
of the figure increases. As an example, the fit to the three population model was per-
formed to all the model data from the top 40 m of the surface. The results of this fit are
shown in the ERSEM (Top 40 m) column of Table 1. Relative to the Brewin et al. (2015)
fit, the fit for this dataset had an overabundance of diatoms and large phytoplankton
and an underestimate of picophytoplankton at almost all chlorophyll concentrations,
Nevertheless, it is important to stress that the three population community model is an
appropriate emergent property for open ocean outside the polar regions.

Similarly, both Figs. 1 and 2 show that the model has a surplus of diatoms and large
phytoplankton at low chlorophyll concentrations in this simulation, which coincides with
a low proportion of picophytoplankton. It is likely that this fault is caused by the same
factors that cause the microphytoplankton PFT to dominate the community in a small
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number of cases. However, it is likely to be mitigated in most of the ocean by a lower
silicate concentrations leading to slightly stronger silicate limitation for diatoms.

Despite these limitations, ERSEM was very successful at reproducing the overall
shape of the community structure. Furthermore, the fit to the model is very similar to
the most recent and most comprehensive data derived fits. This is a robust and well
known emergent property that can be reproduced successfully by ERSEM, despite the
problems in the prescribed physical simulation.

3.2 The carbon to chlorophyll ratio in particulate organic matter and
phytoplankton

The ratio of carbon to chlorophyll is an important indicator of ecosystem state. This
ratio has ecosystem relevance on any scale, from an individual cellular level up to the
entire community. Within a given cell, the carbon to chlorophyll ratio is a sensitive indi-
cator of a cells physiological state (Geider, 1987) and is affected by the cells response
to irradiation, temperature and nutrient supply. On the ecosystem scale, the carbon to
chlorophyll ratio is influenced by the food web, community structure and stoichiomet-
ric balance. In terms of scientific usage, this ratio also plays a significant role in the
modelling of global primary production and in the calculation of phytoplankton biomass
from ocean colour. For these reasons, much effort has been dedicated to the study and
modelling of the carbon to chlorophyll ratio in modelling and in situ measurements.

It has long been known that a single value for the carbon to chlorophyll ratio under
all environmental conditions is inappropriate for ecological studies (Geider, 1987). In
a low light environment, cells can produce excess chlorophyll relative to their carbon
content in order to maximise light harvesting. In contrast, the cells invest in different
compounds to protect the fragile parts of the cell from irradiation damage in a high light
environment, (Polimene et al., 2014). This behaviour is known as photo-acclimation.
Similarly, it has long been known that the carbon to chlorophyll ratio increases with de-
creasing temperature (Eppley, 1972). While the exact pathway is not fully understood,
it has been suggested that this shift is limited by physical properties of the components
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of photosynthetic apparatus. For instance, an increase in carbon relative to chlorophyll
may be required to maintain fluidity at cold temperature, or low temperature might im-
pose constraints on the enzyme catalytic reactions. Similarly, each plankton functional
type responds in a different way to changes in temperature, affecting the community
structure, which may in turn influence the carbon to chlorophyll ratio.

While there are many techniques available for measuring total chlorophyll concen-
tration, the direct measurement of phytoplankton carbon biomass is difficult because it
requires the mechanical separation of phytoplankton from the other particulate organic
matter. Instead, chlorophyll concentration is typically used as a proxy for phytoplank-
ton biomass. For obvious reasons, comparing biomass derived from total chlorophyll to
total chlorophyll is not an independent method for obtaining the carbon to chlorophyll
ratio. However, it is possible to measure total community chlorophyll and Particulate
Organic Carbon (POC) simultaneously and independently.

A meta-study of simultaneous particulate organic carbon and chlorophyll measure-
ments was published in Sathyendranath et al. (2009). The chlorophyll measurements
were divided according to two measurement technologies: high performance liquid
chromatography (HPLC) chlorophyll, and Turner fluorometer data. The data used was
taken from 16 cruises in the Labrador Sea, the Scotian shelf and the Arabian Sea,
between 1993 and 2001. Then they used the accumulated data to produce a fit to the
following relationship:

POC = m- chl? (6)

where POC is the particulate organic carbon, chl is the total community chlorophyll and
m and p are the fitted parameters.

In order to study the relationship between phytoplankton carbon and total chlorophyll,
Sathyendranath et al. (2009) applied the assumption that “at any given chlorophyll
concentration, the lowest particulate carbon observed represents the phytoplankton
carbon associated with that chlorophyll concentration.” Then, they used a 1 % quartile
regression to determine a relationship between the lowest particulate organic carbon
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observed for each total chlorophyll concentration. Although the methodology was more
complex, they produced a fit that was mathematically similar to Eq. (6):

C =n-chl9 (7)

where C is the phytoplankton carbon, chl is the total community chlorophyll and n and
g are the fitted parameters.

ERSEM employs a variant of the Geider model (Geider et al., 1997, 1998) for de-
scribing the carbon to chlorophyll ratio in phytoplankton. Each PFT in ERSEM has
a different parametrisation of the Geider model, allowing for phytoplankton carbon to
chlorophyll behaviour to differ for each plankton functional type and to vary according to
local conditions. In practice, the range of possible values of the phytoplankton carbon to
chlorophyll ratio has a minimum and maximum value for each functional type, but each
phytoplankton carbon to chlorophyll ratio is free to vary inside that envelope. There are
no limits imposed on the community phytoplankton carbon to chlorophyll ratio.

The total community chlorophyll in ERSEM is the sum of the chlorophyll concentra-
tion of each phytoplankton functional type. The modelled POC is the sum of the carbon
components of all four phytoplankton functional types, all three zooplankton functional
types, and the particulate detrital carbon fields. Each one of these carbon compart-
ments is free to vary independently of total chlorophyll. For these reasons, the ratio of
POC to community chlorophyll is not a direct consequence of model choices, and can
not be tuned with a small number of parameters. The ratio of the particulate organic
carbon against the total chlorophyll is not explicitly restrained or parameterized in any
way.

Figure 3 shows the relationship between particulate organic carbon and total chloro-
phyll. The model data is shown as a logarithmically scaled two dimensional density
histogram with in blue-scale, and the model distribution is taken as the top 40 m of the
monthly climatology of the final ten years of the simulation, excluding shallow seas, in-
land seas and the Arctic and Antarctic oceans. A fit of the models relationship between
particulate organic carbon and total chlorophyll to Eq. (6) is also shown as a full green
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line. The two Sathyendranath et al. (2009) fits of POC to chlorophyll are also shown in
as full lines and the two 1 % quartile regression fits representing phytoplankton carbon
against chlorophyll are shown as dashed lines. The parameters of these fits are shown
in Table 2.

The two 1% quartile regressions fits are included in Fig. 3 because they indicate
a theoretical lower bound for the modelled POC:Chl field. Approximately 3 % of the
data fall below the theoretical lower limit indicated by the 1% Sathyendranath et al.
(2009) Turner line. This is an acceptable fraction, as the 1% quartile regression was
an arbitrary cut off point for the minimum POC concentration for each chlorophyll range
in the data. However, the data below this line occur in the model only on the edges
of the Arctic and Antarctic oceans in the winter. When the entire model domain is
included down to 40 m deep, including the arctic and Antarctic and inland and shallow
seas, the fraction of data becomes as high as 11 %. This is another indication that
either the model has not captured the behaviour of the Polar regions, or the emergent
property breaks down in these regions. Unfortunately, Sathyendranath et al. (2009) did
not include any data from Polar regions in the winter that could be used to test this
hypothesis.

Figure 4 shows the total phytoplankton carbon against total chlorophyll. This figure
also shows the model data as a two dimensional density histogram with logarithmically
scaled in blue-scale and a least squares fit of the data to Eq. (7). In a modelling anal-
ysis, it is unnecessary to apply the 1% quartile regression, as it is straightforward to
extract phytoplankton carbon. Figure 4 also shows the two 1 % quartile regression fits
from Sathyendranath et al. (2009) as dashed lines as in Fig. 3. However, the model
data shown in this figure is phytoplankton carbon against total chlorophyll; accord-
ingly, the model data and fit are expected to match these dashed lines. As before,
the model distribution is the top 40 m of the monthly climatology of the final ten years
of the simulation, excluding shallow seas, inland seas and the Arctic and Antarctic
oceans. Both the fits and the bulk of the data distribution in this figure coincide with the
two Sathyendranath et al. (2009) phytoplankton carbon to total chlorophyll relationship.
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This indicates that the modelled phytoplankton may have an appropriate response to
temperature, light and nutrients in much of the global ocean.

In Fig. 4, there is a region where the phytoplankton carbon is much less than the
Sathyendranath et al. (2009) fit, and this group of data appears to have a different
slope. The phytoplankton carbon in the data points are almost entirely composed of di-
atoms and large phytoplankton, near the polar regions, and account for approximately
2.5 % of the dataset. Similarly to Sect. 3.1, this region highlights that the issues of the
abundance of silicate caused by excessive mixing, the favouring of diatoms in low light
regions and the relatively low grazing pressure on microphytoplankton from zooplank-
ton at low phytoplankton biomass concentrations. When the polar, shallow and inland
sea regions to a depth of 40 m are included in the model, the number of points included
in these regions of the figure increases up to approximately 10 % of the dataset.

The carbon to chlorophyll relationship has many knock-on effects in the model: it
influences the entire carbon and carbonate cycle. It has a huge impact on the calcula-
tion of total global primary production. It also relates to the community structure shown
in Sect. 3.1. When the model successfully reproduces the carbon to chlorophyll ratio
in a global ocean simulation, this is an indicator that it has a good approximation of
the roles of light, temperature and nutrient limitation in each of the plankton functional
types. The fact that the model reproduces the natural range of behaviours of the car-
bon to chlorophyll ratio highlights that the ecosystem model functions appropriately in
a range of environments.

3.3 Particulate organic carbon and particulate organic nitrogen

The ratio of carbon to nitrogen in the ocean has long been a historically important
measurement, with the ratio first published by Redfield (1934). The interplay of carbon
and nitrogen has since been a major component of the modern understanding of ocean
biogeochemistry, underlying modern theories of nutrient cycles, nutrient limitation in
phytoplankton and stoichiometric variability. The balance of carbon to nitrogen in the
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ocean has been historically measured in the ratio of carbon to nitrogen in particulate
organic matter (POM).

A meta-study of the ratio of particulate organic carbon (POC) against particulate or-
ganic nitrogen (PON) was published in Martiny et al. (2013). Their paper used over
forty thousands globally distributed POC-PON paired samples from 5383 unique sta-
tions in the upper 200 m of the ocean water column. They produced a histogram of
the distribution of POC against PON in the global ocean. The power of this figure was
that it was a clear demonstration of the discrepancy between a modern understanding
of the stoichiometric balance of carbon to nitrogen and the canonical Redfield ratio.
Instead of a static Redfield ratio, the observed POC : PON ratio varied between 2 and
20, and the canonical Redfield ratio was closer to the median of the dataset than to the
mean or the mode.

The POC : PON histogram from Martiny et al. (2013) was reproduced using simulated
data in Fig. 5. This figure shows the POC :PON ratio calculated in the model, the
POC : PON ratio of the in situ data from Martiny et al. (2013), but also the canonical
Redfield ratio. Both the model and the in situ histograms in Fig. 5 were normalised to
unity area. A summary of the statistical analysis of Fig. 5 is shown in Table 3. The mode
shown in Table 3 was calculated by finding the most populous group after binning the
model ratio in bins of width 0.1. The bin widths used to calculate the mode are finer
than those shown in Fig. 5.

The POC of the model in Fig. 5 was calculated as the sum of the carbon components
of all phytoplankton functional types, all zooplankton functional types and the particu-
late detritus groups. These are the same groups that were used to calculate POC in
Sect. 3.2. The PON was calculated as the sum of the nitrogen components of the
same groups. An artificial detection limit of 0.1 umolm‘3 was applied to the modelled
PON component of the ratio. The model data was a monthly climatology of the final
ten years of the simulation (1997-2007), excluding the Arctic ocean and all model data
below 200 m. Unlike the data selections of Sects. 3.1 and 3.2, the Antarctic domain,
inland seas and shallow seas are included in this data. This is because the Martiny
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et al. (2013) dataset does not contain any measurements from the Arctic Ocean, but it
does include many data from the Southern Ocean, inland seas and shallow seas.

In nature as in models, particulate organic matter is usually composed of a combi-
nation of phytoplankton, zooplankton and detritus. Experimentally, particulate organic
matter (POM) is typically measured as all organic matter over a certain size that can
accumulate in a filter. In ERSEM, POM is the sum of the all four phytoplankton func-
tional types, all three zooplankton functional types, and the particulate detrital fields.
Each phytoplankton functional type has an internal variable stoichiometry and the abil-
ity to accumulate a luxury buffer of nitrogen. The micro-zooplankton and heterotrophic
nanoflagellates also have variable stoichiometry that follows from their food source.
The mesozooplankton has fixed stoichiometry and exudes the excess nitrogen back
into detritus. There are six detritus size classes in ERSEM: three dissolved and three
particulate classes, but the dissolved organic matter fields did not contribute to the
POM shown here. The three particulate detritus classes include carbon, nitrogen and
phosphorus currencies, and all three also have a silicon and/or an iron component.
None of the detritus fields have any limitations on their stoichiometric variability. This
means that the models POC : PON ratio can vary according to local conditions and
predation, and the overall particulate organic matter stoichiometry in ERSEM is not
susceptible to tuning via a small number of parameters. In order for all of these inter-
locking and competing components to reproduce the POC : PON ratio variability in the
global ocean, it requires all the phytoplankton functional types, zooplankton functional
types and detrital fields to be balanced and healthy.

In addition to those fields included in the POC and PON fields, ERSEM includes
a bacterial component. The bacterial component of the model compete for nutrients
with the phytoplankton, are predated by zooplankton, but do not contribute to particu-
late detritus.

While the model captures the mode of the in situ data, it does not capture the range
of observed POC : PON ratios or the shape of the distribution seen in the data. The
model underestimates the frequency of POC : PON ratios in the tails below 5 or more
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than the Redfield ratio. It is possible that some of this difference is due to spatial bias
and uneven sampling of the in situ data. In that case, it may be possible to capture
more of the shape of the Martiny et al. (2013) data by sub-sampling the model data
to match the distribution used to produce their data. However, the model data shown
here is a monthly mean of a 1° by 1° square of ocean. The variability seen when taking
an instantaneous measurement of the concentration in a bottle of seawater will always
be more extreme that the mean value of a 1° by 1° square of ocean. Secondly, in this
work, we attempt to validate the models ecosystem function over a large scale without
the use of point-to-point matching.

The model’s narrow POC : PON distribution is reflected in its the standard devia-
tion(0.61), which is much lower than that seen in data (2.46). However, the standard
deviation of a Gaussian distributions decreases with increasing number of data. Al-
though the POC : PON is clearly not a Gaussian distribution, the difference in sample
size may partially explain the difference in standard deviation. While the Martiny dataset
is composed of approximately 40k data, a monthly climatology of a 1° model contains
more than 21 million points even after removing land points, masked deep water and
Arctic data points. However, the range of stoichiometric variability seen in measured
POC : PON data is underestimated in the model.

Furthermore, there are precisely zero model data with a POC : PON ratio below 4.3
or above 16.5. The model does a better job of capturing the excess POC relative to
PON than it does capturing the excessive PON. This behaviour is linked to the fixed
maximum luxury buffer of nitrogen relative to carbon in all the phytoplankton func-
tional types. This maximum nitrogen buffer translates to a fixed minimum value of the
POC : PON ratio, which is maintained as it cascades through the trophic levels. On the
other end of the scale, there is a minimum requirement of nitrogen to carbon, below
which the phytoplankton are nitrogen limited and do not grow.

Despite these limitations, the ERSEM simulation was very successful at reproduc-
ing the mode of the POC : PON ratio of Martiny et al. (2013). The means that a the
most common values in the model data are the same as the most comment values in
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the POC : PON ratio data. The reproduction of the mode of the dataset by the ERSEM
model is a strong indication that the most common behaviour of the POC : PON rela-
tionship is appropriately simulated.

3.4 Intracellular elemental stoichiometry

Stoichiometry in marine ecosystem modelling is the balance of each element in organ-
isms and in the ecosystem. As mentioned previously, Redfield observed co-variability
in the concentrations of dissolved nitrate and phosphate in seawater, (Redfield, 1934).
While further co-variation has since been observed, considerable variability in the bal-
ance of elements in particulate organic matter and intracellular material has also been
observed, (Martiny et al., 2013). The ratio of each element against carbon has been
shown to vary significantly between region, taxa, ecosystem role and physiological sta-
tus, (Moore et al., 2013). The co-variability of nutrients and carbon in the ocean is
closely linked with many important metrics of ecosystem behaviour, such as primary
productivity, community structure, export and growth rates, and nutrient limitation.
Despite the significance of marine nutrient cycles, co-limitation by two or more nu-
trients is still poorly understood, and appears infrequently in models, (Moore et al.,
2013). Furthermore, variable stoichiometry and co-limitation are required features in
order to represent the spatial distribution of nutrient limitation. ERSEM is one of the
few models that does implement variable stoichiometry. In addition to its carbon cy-
cle, ERSEM resolves four nutrient cycles: nitrogen, phosphorus, iron, and silicon. All
four nutrients can become limiting or co-limiting for any given phytoplankton functional
type, with the exception that only the diatoms interact with silicon. In addition, nitrogen,
phosphorus and iron uptake and limitation in ERSEM are based on the Droop model
(Droop, 1973), which uses the internal nutrient concentration to carbon ratio rather than
external inorganic nutrient concentrations to determine phytoplankton behaviour. The
silicate limitation and uptake for diatoms is computed from the external availability of
dissolved silicate, based on Michalis—Menten kinetics, (Johnson and Goody, 2011).
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In their meta-study, Moore et al. (2013) compiled multiple datasets of simultaneous
measurements of particulate organic carbon and nutrients. To visualise this data, they
presented a comparison of the ratio of each element against carbon. For each nutrient,
they plotted the typical organic nutrient:carbon ratio on the x axis against the typical
inorganic nutrient:carbon ratio on the y axis. Figure 6 shows a version of this figure
produced using the four ERSEM nutrients. This figure shows the model distribution with
mean of the model data in circular markers, and the typical in situ value and observed
range from Moore et al. (2013) in square markers with black bars.

The organic component of Fig. 6 was calculated as the ratio of particulate organic
nutrient to particulate organic carbon for each nutrient. The POC was calculated in the
same way as in Sects. 3.2 and 3.3: where POC is the sum of the carbon components of
all phytoplankton functional types, all zooplankton functional types and the particulate
detritus groups. The particulate organic nitrogen, phosphorus and iron were calculated
as the sum of the nitrogen, phosphorus and iron components of the same groups.
Although ERSEM includes four pelagic silicon fields (diatom silicon, inorganic silicate,
and medium and large particulate detrital silicon), the calculation of particulate organic
silicon follows the methods of Moore et al. (2013), and only uses the silicon component
of diatoms.

As previously described, the modelled ratio of particulate organic nutrient to carbon
can vary according to local conditions such as light, temperature and predation. For all
of these interlocking and competing components to reproduce the stoichiometric vari-
ability of the global ocean, all phytoplankton functional types, zooplankton functional
types and detrital fields and their interactions need to be parameterized sensibly. The
overall particulate organic matter stoichiometry in ERSEM is not susceptible to tuning
via a small number of parameters.

Furthermore, the nutrient cycles of carbon, nitrogen, phosphorus and iron are also in-
fluenced by the bacterial loop. The bacterial biomass does not contribute their biomass
to the calculation of particulate organic matter used here, but the bacterial functional
type competes with the phytoplankton for the inorganic nutrients except dissolved iron
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and is an additional food source for zooplankton. This variable stoichiometry bacterial
functional type contributes to the flexibility of ERSEM. The bacteria also compete with
the zooplankton to scavenge non-silicon particulate detritus. In addition, the bacterial
group only excretes to labile and semi-labile detrital fields.

The inorganic component of the model data was taken directly from the output of
the simulation. The dissolved inorganic carbon (DIC) cycle in the model is described
in Artioli et al. (2012). There are no explicit limitations of the upper or lower limits of
inorganic nitrogen, phosphorus or silicon in the model. However, there is a soft cut off
for iron at 0.6 nM to take into account for hydroxide precipitation (Aumont et al., 2003)
and a firmer upper limit of 2 nM to take into account for the saturation concentration.

The minimum, maximum and mean values of each ratio against carbon in Fig. 6
are shown in Table 4. This table includes the “typical” Moore et al. (2013) data mean
and range, and the data from the model run. Moore et al. (2013) did not include any
measure of variability in the inorganic data; the inorganic range shown in Fig. 6 and
Table 4 was included here as another test of the model. The variability in the inorganic
axis is due to the co-variability in the dissolved inorganic carbon and the dissolved
inorganic nutrient. However, the range of variability in DIC is usually of order 15 %, but
dissolved inorganic nitrogen, phosphorus, iron and silicon can vary by several orders
of magnitude. This means that most of the variability in the y axis is usually due to the
nutrient, not the DIC. Here, this variability is estimated using the Moore et al. (2013)
“typical” value for the DIC, and the minimum and maximum values of the nutrients
contribution to the Nutrient to DIC ratio were taken from data from the World Ocean
Atlas (Garcia et al., 2010) for nitrogen, phosphorus and silicon, and GEOTRACES for
Iron (Henderson et al., 2007). This means that the ranges are not the most extreme
values ever recorded, but rather the most extreme ratio of inorganic nutrient to DIC
seen on a climatological global scale.

Furthermore, the range of variability in the organic nutrient:carbon ratios might not
reflect the most current knowledge. The Moore et al. (2013) “maximum and minimum
values will typically correspond to nutrient replete or limited cultures respectively and
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ranges could potentially be extended through observations of other taxa and growth
conditions.” For instance, Moore et al. (2013) cite an observed maximum phytoplank-
ton quota of 0.169 for the ratio of nitrogen to carbon, but Martiny et al. (2013) has
observed data all the way down to their cut off of 0.5. (Note that Martiny et al. (2013)
showed C:N instead of N:C, so their lower cut off value is 2.0 in Fig. 6.) Also, note
that the model data does not show any density distribution, only presence/absence.
The presence/absence model data in Fig. 6 is extracted from the top 40 m of the global
model between 1997 and 2007 and excludes the shallow seas, inland seas and the
Arctic and Antarctic oceans. The model data was not further sub-sampled to match the
sampling locations of the in situ data. This data has monthly time resolution and is not
climatologically averaged.

The ratio of nitrogen to carbon is shown in blue in Fig. 6. The model captured the
mean organic ratio, but had a wider range of values than that quoted in the Moore
et al. (2013) work. However, as mentioned earlier, the maximum value of this ratio
has been extended from 0.169 to 0.5 when included the Martiny et al. (2013) results.
The model underestimated both the mean inorganic ratio and the range of variability
in the inorganic N: C ratio. The model appears to have a fixed lower limit of dissolved
inorganic nitrogen that is higher than the minimum nitrogen observed in nature. The
inorganic nitrogen in the model never gets as depleted as observed in reality. This is
a problem with the model parametrisations that has also been seen in Sect. 3.3 which
will need to be addressed in future parametrisations.

The mean organic phosphorus:carbon ratio is overestimated the model, but the
mean inorganic P : C ratio is underestimated. The range of the inorganic and organic
P : C ratios were underestimated by the model relative to the Moore et al. (2013) data.
However, both the organic and inorganic phosphorus in the model show a wide range
of behaviours, reflecting those seen in nature. Similarly to the nitrogen, the lower limit
of dissolved inorganic phosphorus in the model is higher than the minimum inorganic
phosphorus:carbon ratio observed in nature. The inorganic phosphorus in the model
never gets as depleted as observed in reality. However, the inorganic range shown in
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figure has no indication of the frequency or locations of such low concentrations. The
dataset clearly illustrated the effect of external resource limitation: as the inorganic ratio
decreases, the organic ratio also decreases, indicating that the phytoplankton become
increasingly nutrient stressed in low phosphorus environments.

The ERSEM model has four pelagic silicon fields: diatom silicon, inorganic silicate,
and medium and large detritus silicon. The C:Si ratio in Moore et al. (2013) and in
Fig. 6 are strictly limited to diatoms; there are no quotas associated with silicon in
other components of the ecosystem. The modelled ratio of silicon to carbon, shown in
purple in Fig. 6, captured the range of variability in the inorganic version of the ratio. As
only diatom silicon are included in this figure and ERSEM has very little variability in
the silicate stoichiometry for diatoms, there is no variability in the organic component
for silicate. Also, there is only a very slim range of Si: C ratios allowed in the model,
so the nutrient stress effect seen in the phosphorus:carbon ratio is not seen in the
silicon:carbon ratio in this figure. Instead of becoming silicon-stressed, the community
structure changes to disfavour diatoms.

The organic iron:carbon has a deficit in the model, relative to the same ratio in Moore
et al. (2013): the model underestimated the mean organic ratio by an order of magni-
tude. However, the Fe:C ratio is the only inorganic nutrient:carbon ratio where the
model captured the measured in situ range.

While there is an atmospheric iron source from dust, the model does not include any
atmospheric, riverine or hydrothermal sources of nitrogen, silicon or phosphorus. The
nitrogen, silicon and phosphorus shown in this paper have been circulated, consumed
and recycled for more than 100 simulated years and the relationship between organic
and inorganic nutrients, and nutrients against carbon are still all representative of na-
ture. On the other hand, the iron cycle is nudged towards what is observed in nature by
an climatological surface deposition, and through hydroxide precipitation and satura-
tion removal of excess iron. This means that arguably the distribution of inorganic iron
is not an emergent property of the model, but rather a tuned outcome. These nudges
are needed because the iron cycle is ERSEM is much less complex than that seen in
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a nature. An example of a more natural iron model is Tagliabue et al. (2009), which has
three bio-available forms of iron and two complexed forms of iron. Despite this, as the
inorganic Fe: C ratio decreases, the organic ratio also decreases, indicating that the
phytoplankton become increasingly nutrient stressed in low iron environments.
Anthropogenic nutrient loading is expected to increasingly influence nutrient cycles
in the ocean and this may lead to shifts in the nutrient balance, (Paerl, 1997). Unfortu-
nately, this model does not include any anthropogenic nutrient loading, or indeed any
flux of riverine nutrients, and the dust deposition is forced with an annual climatology.
Overall, this figure informs us about the relationship between the inorganic and or-
ganic component of the stoichiometric balance. Effectively, it illustrates whether nutrient
limitation and nutrient stress are parameterized in a way that reflects nature. Much of
the modelled organic matter appears to be iron poor and phosphorus rich relative to
nature. The model never captures the lowest dissolved inorganic nitrate, phosphate, or
silicate concentrations. It might be expected that the model will produce a wider range
of quotas than the historic datasets as the ocean is vastly under-sampled relative to
the model. On the other hand, the model is the mean of a 1° by 1° patch of ocean, and
the data is typically the mean of a one litre bottle, which would imply less variability
in the model. Furthermore, some of the in situ data may originate in coastal datasets
which have a higher spatial variability than would be seen in a coarse global model.

4 Discussions

It has been shown that the ERSEM global hindcast successfully reproduced many
natural behaviours of the ecosystem. Each of these behaviours has covered a different
aspect of ecosystem function, and when combined together they illustrate the power
of model validation with emergent properties and ecosystem function. Many of the
features seen here would not be visible in a flat comparison of model to data.

First, it was shown in Sect. 3.1 that the model captures the natural balance of phy-
toplankton abundance between the four PFTs. This means that the combination of the
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nutrient affinity, growth rates, photosynthetic behaviour and predation rates ecosystem
functions were appropriate to bring out a natural emergent community structure. This
method was limited to the top 40 m of the surface ocean, and the relationship breaks
down in Arctic waters in the model. Hints of the breakdown of the community struc-
ture appear in the in situ data, but are seen clearly in the model. It became clear that
the large phytoplankton and diatom functional types are in excess at low chlorophyll
concentrations in the modelled community structure. In addition, the picophytoplank-
ton chlorophyll as a fraction of the community behaves much more like the empirical fit
to data seen in Hirata et al. (2011) than like the three-population model of Brewin et al.
(2010).

Together, the particulate organic carbon to chlorophyll and phytoplankton carbon to
chlorophyll ratios from Sect. 3.2 demonstrate that the phytoplankton biomass forms
an appropriate fraction of the particulate organic matter. This means that the balance
of producers to the rest of organic matter, including zooplankton and detritus, is simi-
lar to nature over the range of observed total community chlorophyll. This figure also
helped identify some unusual behaviour from the diatom and large phytoplankton func-
tional types. As in Sect. 3.1, the abundance of silicate caused by excessive mixing, the
favouring of diatoms in low light regions and the relatively low grazing pressure on mi-
crophytoplankton from zooplankton at low phytoplankton biomass concentrations were
suggested as causes of this discrepancy.

The ratio of particulate organic carbon to particulate organic nitrogen in Sect. 3.3
illustrates that the carbon to nitrogen balance matches with the historic distribution of
measurements. While the model did not reproduce the standard deviation or the tails of
the distribution seen in data, the ERSEM simulation was particularly successful at re-
producing the mode of the POC : PON ratio. The most common values in the modelled
POC : PON ratio are the same as the most comment values in the in situ measurement
of POC: PON. It was postulated that some of the difference was due the decrease of
Gaussian distributions standard deviation with increasing sample size. The ability to
reproduce this ratio from the combination of four phytoplankton functional types, three
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zooplankton functional types and 3 classes of particulate organic detritus, all of which
have variable stoichiometry (except mesozooplankton), is a strong indication of the
validity of model.

The stoichiometric variability of particulate organic matter against inorganic ratio of
nutrient to DIC from Sect. 3.4 inform that the range of behaviours present in the model
match those measured in situ. The nutrients in the model do not typically become as
sparse as those seen in nature, apart from iron. The nitrogen, silicon and phosphorus
shown in this model have been circulated, consumed and recycled for more than 100
simulated years and the natural relationship between organic and inorganic nutrients,
and natural relationships between nutrients and carbon have survived through to the
end of the run. The iron cycle is nudged towards nature by an appropriately parame-
terized climatological surface deposition, and is also a healthy, if somewhat artificial,
representation of nature. An interesting feature of this dataset is that as the inorganic
ratios of Fe: C and P : C decrease, their organic counterpart also decreases, indicating
that the phytoplankton become increasingly nutrient stressed in low nutrient environ-
ments.

Combined together, these relationships have informed about community structure
and balance of C: Chl in phytoplankton, the ratio of POC : PON in particulate organic
matter, the stoichiometric flexibility of POM and dissolved inorganic nutrients. While
some selection cuts have been necessary to reduce the impact of nonphysical be-
haviour, the combination of the relationships can be used to validate the ecosystem
model without relying on the model to reproduce an historic measurement at exactly
the right place and time. It compliments validation methods, such as the point to point,
that may not function in an inappropriately parameterized physical ocean model.

While it has since expanded beyond its original remit, the European Regional Seas
Ecosystem Model was originally built as a model for simulating temperate shelf seas.
This work has demonstrated that many of ERSEM’s design choices and parametri-
sation are still appropriate in a global context. Furthermore, these relationships were
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not explicitly parameterized in model development; all of them arise naturally out of
a combination of many other well understood natural behaviours.

The combination of these well known phenomena have allowed a test of the majority
of the modelled fields throughout the surface ocean. However, these relationships do
not cover all aspects of the model. They do not inform about the food web such as the
balance of zooplankton and detritus functional types to each other and to the phyto-
plankton functional types, or about the bacterial or benthic communities in the model.
Also these relationship do not cover important fluxes such as primary production, air
sea flux gas exchange, or export from the surface or bacteria growth efficiency.

In order to get a better validation of the ecosystem functions of the bacterial class,
this would require more measurements of the ratio of primary production to bacterial
production. Alternatively, the bacterial growth efficiency could be used to gauge the
model’s bacterial behaviour.

The models grazers biomass were implicitly included in the POC: PON, POC : Chl
and the stoichiometric relationships. However, there are no metric included here to
study the zooplankton by themselves. The authors are not aware of a stable metric for
describing the community structure of grazers.

These emergent relationships were selected to reduce the impact of spatial biases,
but these relationships may still be influenced by uneven in situ data spatial and tempo-
ral coverage. This bias could potentially be resolved by using a point to point analysis
for the emergent properties, however this may limit the scope and the power of the
emergent property validation. These emergent properties also require the assumption
that the property can be extended to cover the entire ocean. Some emergent proper-
ties have not been tested in shallow or Polar seas, and may not hold across all marine
environments.
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5 Conclusions

Ecosystem relationships are coherent structures, patterns and properties that are ob-
served to be robust in nature and can be reproduced by a sufficiently complex model.
They allow us to demonstrate how natural behaviour emerges from the model. As they
are well established functional relationships that hold true over large regions of the
global ocean, they are a valuable tool for validating ecosystem model in data sparse
regions.

As ecosystem functions arise independently of physical conditions of the ocean, they
can be used to demonstrate model quality in the case when the physical features of
a sea are not co-located in the model and in nature.

Most importantly, ecosystem functions are the only way to demonstrate the models
capacity to represent ecosystem function, as opposed to quantitative metrics of ab-
solute ecosystem state. Many of the features shown here would not be visible in a flat
comparison of model to data. For these reasons, ecosystem functions are a critical tool
for the validation of marine ecosystem models.

Code availability

The ERSEM model is available under the GNU Public License version 3 (GPL3). In-
terested parties are encouraged to register at the Shelf Seas Biogeochemistry home
page, www.shelfseasmodelling.org, to register in order to download and use the model
for their own purposes.

The analysis toolkit used in this work is available from the author upon request under
the terms of the Revised Berkeley Software Distribution (BSD) 3-clause license.
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Table 1. Parameters of the fits to the three population absorption model for the Brewin et al.
(2015), and for ERSEM. Two fits to ERSEM are shown: the first is the fit to the ERSEM dataset
excluding the polar, shallow and inland seas, and the second includes all these regions to a
depth of 40 m. The parameters are: ngn: maximum piconano chlorophyll, S,  is the slope for

piconano chlorophyll, C;,“ is the maximum picophytoplankton chlorophyll and S, is the slope for

picophytoplankton.
Brewin et al. (2015) ERSEM ERSEM (Top 40 m)
Con 0.77  0.345 0.742
Sp.n 1.22 2.147 0.799
Cg‘ 0.13 0.061 0.289
S, 6.16 10.56 1.168
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Table 2. The parameters of the particulate organic carbon to total chlorophyll and phytoplankton
carbon to chlorophyll fits to the Eqgs. (6) and (7).

Sathyendranath et al. (2009) ERSEM

HPLC Turner
Particulate Organic Carbon
m 1802 157 £2 145

p 0.48+0.014 0.45+0.013 0.51

Phytoplankton Carbon

n 79" 64" 66
q 0.65 0.63" 0.72

" These values were calculated using a 1 % quartile
regression.
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Table 3. Statistics to describe the POC : PON distribution as reported by Martiny et al. (2013),
compared to the result of this study and to the canonical Redfield Ratio.

Martiny et al. (2013) Redfield ERSEM

Mean 7.06 6.63 5.93
Mode 5.9 5.8
Median 6.5 5.84
SD 2.46" 0.61

* This standard deviation was not included in the original publication;
it was calculated based on their dataset.
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Table 4. Table showing the typical, minimum and maximum organic and inorganic ratios against

carbon for Moore et al. (2013) and for the ERSEM simulation.

Moore et al. (2013) ERSEM

N:C 0.13 0.17

Mean P:C 0.008 0.02
Organic  Si:C 0.13 0.14
Fe:C 6.1 x10° 5.4 x10°

N:C [0.05, 0.17 (0.5%)] [0.09,0.21]

Range P:C [0.001, 0.026] [0.006, 0.039]
Organic  Si:C [0.08, 1.01] [0.13, 0.15]
Fe:C [2.1x10°%2.6x10" [1.5x10°3.5x10°]

N:C 0.013 0.0008

Mean P:C 0.00089 0.0002
Inorganic Si:C 0.044 0.0053
Fe:C 2.4x10’ 2.8 x10’

N:C (8.9 x108, 0.02] [5.0x10°, 0.012]

Range P:C [8.9x10% 0.01] [2.8x10°, 0.0008 ]
Inorganic  Si:C [1.7 x107, 0.06] [5.4 x10°, 0.036]
Fe:C [8.7x10° 2.6x10°] [6.8x10% 2.4x10°]

" indicates values from Martiny et al. (2013) which were not taken into account in
Moore et al. (2013).
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Figure 1. Phytoplankton community structure for all fits including the fit to ERSEM. The panes
labelled a, b and c are diatoms and large phytoplankton, nanophytoplankton and picophyto-
plankton, respectively. The least squared fit of the three-population absorption model to ERSEM
is shown as a green line. The other coloured lines are the five fits from (Hirata et al., 2011; De-
vred et al., 2011; Brewin et al., 2012, 2014, 2015). The dashed vertical line indicates a typical
detection limit of HPLC and SFF methods.
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Figure 2. Phytoplankton community structure. The model data is shown as the logarithmically
scaled two dimensional data density histogram in blue-scale. A least squares fit of the model
data to the three-population absorption model of Brewin et al. (2010) is shown as a full green
line, and the fit of historic in situ data to the three-population absorption model from Brewin
et al. (2015) is shown in a purple line. A fit to data from Hirata et al. (2011) is shown in a black
line. The dashed vertical line indicates a typical detection limited of HPLC and SFF methods.
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Figure 3. The ratio of particulate organic carbon to total chlorophyll. The model data is shown
as the logarithmically scaled two dimensional data density histogram in blue-scale. The full
lines indicate the two Sathyendranath et al. (2009) fits to data, and a fit of the model to Eq. (6).
The dashed lines show the two 1% quartile regression fit from the data and they indicate

a theoretical lower bound for the modelled POC:Chl field.
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Figure 4. The ratio of phytoplankton carbon to total chlorophyll. The model data is shown as
the logarithmically scaled two dimensional data density histogram in blue-scale. The dashed
lines show the fit to data, a fit of the model to Eq. (7), and the results of the two 1 % quartile

regression from Sathyendranath et al. (2009).
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Figure 5. The ratio of Particulate Organic Carbon to Particulate Organic Nitrogen in the Martiny
et al. (2013) in situ dataset and in the model. The Redfield ratio is also shown as a red vertical
line. The model data was taken from a monthly climatology of the top 200 m of the final ten
years of running, excluding the Arctic ocean. Both the ERSEM and the Martiny et al. (2013)
histogram were normalised to unity area.
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Figure 6. A comparison of the ratio of each modelled nutrient to carbon ratio in organic matter
against the dissolved inorganic nutrient to carbon ratios. This figure shows a colour coded
distribution of the modelled nitrogen, phosphorus, iron and silicon to carbon ratios. The model
distribution means are indicated by circular markers, and the typical in situ value and observed
range from Moore et al. (2013) are shown as square markers with bars.
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