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Abstract. We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing

on turbulence in the planetary boundary layer (PBL) in a large-eddy simulation (LES). In order

to clarify and distinguish them from other artificial effects caused by numerical schemes, we used

a fully compressible meteorological LES model with a fully explicit scheme of temporal integration.

The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial5

resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and

diffusion due to sub-grid scale turbulence plays an essential role in reproducing the theoretical−5/3

slope of the energy spectrum. If we define the filter length in LES modeling based on consideration

of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing

length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy10

piling appears at high wavenumbers. We also found that the grid aspect ratio has influence on the

turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which

becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

1 Introduction

In meteorological simulations, the grid aspect ratio a of the horizontal ∆x to vertical grid spacing15

∆z is generally much larger than in other fluid dynamics fields. Here we define the aspect ratio

as a= ∆x/∆z. The use of such large aspect ratios has been validated based on the phenomena

studied in this field. So far, most of the phenomena of interest are considerably affected by the

rotation of the earth and vertical stratification; both lead to differences between the horizontal and

vertical scales of atmospheric phenomena. Further, since it is natural to treat the atmospheric motions20

separately in the horizontal and vertical directions in order to understand the atmospheric dynamics,

a large aspect ratio is used for grids in meteorological simulations. We have a brief review of the

atmospheric phenomena of various scales and the grid aspect ratio used in numerical simulations

in the conventional studies. This background would help to understand the grid configuration in

current meteorological large-eddy simulations (LESs) and then importance of the investigation of25

the influence of the grid aspect ratio on the turbulence in LES.
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Atmospheric phenomena have a wide range in terms of both time and space. One of the initial

targets of the studies involving meteorological numerical simulations was the planetary wave. In

this case, the horizontal scale, at O(1000)–O(10 000) km, is much larger than the vertical, and is

dominated by the effect of rotation. The vertical scale is mainly determined by atmospheric thick-30

ness, characterized by the depth of the troposphere, i.e., a scale of O(10) km, and the motion is

essentially two-dimensional (barotropic). The synoptic scale phenomena, whose horizontal scales

are O(100)–O(1000) km, are also important targets, with smaller horizontal scale than planetary-

scale phenomena. They have the same vertical scale of O(10) km as planetary-scale phenomena, but

have a vertical (baroclinic) structure. To express the vertical structure of such phenomena, several35

vertical layers in a numerical simulation are configured according to the degree of vertical structure

desired. A grid aspect ratio of O(100) is typically used for these phenomena.

If we turn our attention to mesoscale phenomena, whose horizontal scales are O(10)–O(100) km,

a more detailed expression of vertical structure is required. Since moist convection plays an impor-

tant role in the vertical motion of such phenomena, hydrostatic balance, which is a good approxi-40

mation for planetary and synoptic-scale phenomena, is no longer satisfied. The spatial scale of their

vertical motion is roughlyO(1) km. Therefore, the grid aspect ratio in this case should be reasonably

determined with O(10)–O(100). In the beginning of the 1970s, one of the most significant paradigm

changes in meteorological numerical studies was the appearance of non-hydrostatic models (e.g.,

Klemp and Wilhelmson, 1978). Cumulus convection is explicitly represented in these models (e.g.,45

Skamarock et al., 2008; Hodur, 1997; Tripoli, 1982; Xue et al., 2000; Black, 1994; Saito et al.,

2006; Tsuboki and Sakakibara, 2002). Recently, global convection system-resolving models, such

as NICAM (Tomita and Satoh, 2004; Satoh et al., 2014), have been developed to investigate the

interactions between synoptic-scale phenomena, cloud clusters, and individual cumulus clouds. To

resolve vertical motion precisely, the number of vertical layers in such models is larger than in gen-50

eral circulation models (GCMs), but the grid aspect ratio is still large. For example, it is five in

Miyamoto et al. (2013, 2015).

In the atmosphere, there are many smaller scale variabilities than associated with cumulus clouds.

For example, the spatial scale of the dominant motion in the unstable planetary boundary layer (PBL)

is smaller than 1 km. Clearly, turbulence in the PBL is an important issue for all meteorological55

models, because heat and mass transport by turbulence in both the horizontal and vertical directions

strongly affect the atmospheric mass and energy balances. In particular, vertical transport is impor-

tant for atmospheric variability over the PBL. Its effect is parameterized as turbulence models in

GCMs and cloud-resolving or permitting models (e.g., Mellor and Yamada, 1982; Nakanishi and

Niino, 2004). At this scale, the effects of rotation and stratification are smaller compared with those60

of advection. Thus, we may say that such variability is essentially isotropic and three-dimensional.

This means that an isotropic grid, whose grid aspect ratio is unity, would be preferred to reproduce

these small variabilities.
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LES is a vital tool to represent such small scale variabilities explicitly. LES is designed to resolve

turbulence at scales down to the inertial sub-range by parameterizing sub-grid scale (SGS) turbulence65

based on the theory of energy cascades. From the 1970s, LES has started being used for meteoro-

logical simulations (e.g., Deardorff, 1980; Moeng and Wyngaard, 1988; Sullivan et al., 1994), and

it is recently used for realistic meteorological simulations with the rapid development of comput-

ers (e.g., vanZanten et al., 2011). The theoretical basis of most sub-grid scale models in LES is on

dynamics of three-dimensional isotropic turbulence. In terms of phenomenology and methodology,70

an isotropic grid would be the most suitable for LES. Nevertheless, the grid used in meteorological

LESs usually has a large aspect ratio, mainly because of limitations of computational resources. The

computational domain for the meteorological LES has often wider range in the horizontal than that

in the vertical as well as the previous meteorological simulations: e.g., the domain size is 3 km2

horizontal region and 1 km height in Sullivan et al. (1994); 12.8 km2 horizontal region and 4 km75

height in vanZanten et al. (2011). A grid with a large aspect ratio reduces the total number of grids.

The effect of the grid aspect ratio has not been discussed explicitly in most previous studies. The

purpose of this study is to examine the influences of the grid aspect ratio on the turbulent aspects of

the PBL from a meteorological viewpoint when LES is applied. To do so, we performed a series of

PBL experiments by systematic parameter sweeps of aspect ratio and grid spacing.80

We present an overview of the model used in this study in Sect. 2, focusing on the modeling

related to this study. Since the detailed descriptions of the model are important for the traceability of

the experiment and reliability of the model, we present them in the appendices. The configuration of

the numerical experiments are shown in Sect. 3. The influences of the grid aspect ratio on turbulence

are discussed in Sect. 4. Section 5 gives the summary and concluding remarks.85

2 Model description

The model used in this study is SCALE-LES (http://scale.aics.riken.jp/), which was developed as

a meteorological large eddy simulation model. In this section, we focus on describing the essential

parts of the model for the purposes of this study; the model dynamics and turbulence schemes are

described in Sects. 2.1 and 2.2, respectively. In the latter, we consider in particular the relationship90

between the numerical filter and spatial filter in LES.

Detailed descriptions of the model, including the discretization method, which are not directly

related to the topic of this study, are given in the appendices as follows: the governing equations

are in Appendix A1, the temporal integration scheme is in Appendix A2, the spatial discretization

is in Appendix A3, the numerical filter is in Appendix A4, and other physical processes are in95

Appendix A5. We also describe the consideration of numerical stability in determining discretization

schemes in Appendix B, and the validity of the dynamical core in Appendix C. Symbols used in this

paper are summarized in Table 1.
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2.1 Dynamics

Since the purpose of this study is to clarify the impact of the grid aspect ratio on the turbulent100

aspects, the influences of the approximations to the governing equations should be reduced as much

as possible. For this reason, we employ the set of fully compressible non-hydrostatic equations

as the governing equations. The three-dimensional momentum (ρu,ρv, and ρw, for the x, y, and

z directions, respectively), total density (ρ), mass-weighted potential temperature (ρθ), and mass

concentration of tracers (ρqx;x ∈ {v, l,s}) are used as the prognostic variables. See Appendix A1105

for the detailed formulation of the governing equations.

The central difference schemes are used for spatial discretization; the second-order scheme is ap-

plied to the pressure gradient terms in the momentum equations and divergence terms of mass flux

in the continuity equation, while the fourth-order scheme is applied to the advection terms in the

momentum and thermodynamics equations. The reason the advection terms are discretized by the110

high-order scheme is based on the accuracy of the eddy viscosity and the diffusion terms represent-

ing effect of SGS turbulence. The coefficients of the viscosity and diffusion terms are proportional

to the square of the grid spacing, so that the magnitude of the terms would be comparable to the

truncation error of the advection terms, in terms of order of accuracy, if the second-order scheme

is employed. Additionally, the higher order treatment for the advection terms is necessary from the115

different viewpoint as well. Since the advective term is a non-linear convolution and, as such, it

requires higher order treatment to resolve additional modes. The use of the lower order scheme is

justified by the scale-separation of the fast modes (acoustic and fast gravity waves) and slow modes

(advection). In the meteorological phenomena, the terms of the pressure gradient in the momentum

equations and the divergence in the continuity equation is dominant for the fast modes, while the120

advection term is dominant for the slow modes. The interaction between the fast and slow modes is

not significant generally. If we consider the SGS mixing in a local field such as several grids scale,

the fast waves would pass over this field soon before completing the SGS mixing. This means that

the fast waves do not participates the local mixing so much, compared with the mixing process itself.

The even-order schemes require the explicit numerical filter for numerical stability. However, they125

have the advantage that it is easier to evaluate the effect of the numerical diffusivity using the explicit

numerical filter than that introduced implicitly by an odd-order scheme. See Appendices A3 and A4

for details of the discretization and a discussion of the numerical filter, respectively.

A fully explicit scheme, i.e., HE-VE (horizontally explicit and vertically explicit) scheme, is used

for temporal integration in this study. This scheme generally has less implicit numerical diffusion130

than implicit schemes such as HI-VI (horizontally implicit and vertically implicit) and HE-VI (hori-

zontally explicit and vertically implicit) schemes. To focus on the influences of the grid aspect ratio,

an explicit scheme is more suitable than implicit schemes. Additionally, we do not use a time-split

scheme to avoid numerical damping of the time-splitting. See Appendix A2 for a detailed description

of the temporal scheme used in this study.135
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In order to validate the dynamical core of this model, we performed a density current experiment

(Straka et al., 1993) as a standard test case. The detailed results are described in Appendix C; we

posit that the dynamical core of the model shows reasonable performance, and is reliable enough

for the investigations performed in this study. As well as validating the dynamical core, Sato et al.

(2014) validated this model from the viewpoint of moist physical processes.140

2.2 Sub-grid model

2.2.1 Overview of LES modeling

The model for effect of SGS turbulence used in this model is a Smagorinsky–Lilly-type model

(Smagorinsky, 1963; Lilly, 1962). In the governing equations shown in Appendix A1, the effect of

the SGS turbulence can be written as ∂ρτij
∂xj

in the momentum equations, and ∂ρτ∗
i

∂xi
in the thermody-145

namics and tracer equations. In this subsection, the subscripts imply summation over the set {1,2,3}.
The τij and τ∗i are parameterized as

τij =−2νSGS

(
Sij −

1

3
Skkδij

)
+

2

3
TKESGSδij , (1)

τ∗i =−ν∗SGS
∂φ

∂xi
, (2)

where νSGS and ν∗SGS are the coefficients of the SGS eddy viscosity and diffusion, respectively, δij is150

the Kronecker delta, and φ represents scalar quantities such as θ and qx. S is the strain tensor given

by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3)

TKESGS is the turbulence kinetic energy (TKE) of the SGS turbulence:

TKESGS =
1

2
τii. (4)155

The second term of right hand side of Eq. (1) is arose according to the consistency with Eq. (4) in

the compressive flow (e.g., Moin et al., 1991).

The role of the sub-grid model is to parameterize the effect of SGS turbulence based on the energy

cascade theory of three-dimensional isotropic turbulence. The eddy viscosity and diffusion model is

employed as a sub-grid model to represent the effect. For the determination of the amount of the160

energy cascade, the mixing length of the eddy viscosity and diffusion is the most important factor.

The coefficient of the SGS eddy viscosity, νSGS in Eq. (1), is proportional to the square of the mixing

length (Lmix) in Prandtl’s mixing length theory;

νSGS = L2
mix|S|. (5)

The mixing length depends on what type of spatial filter we employ on the variables in the equa-165

tions, and the length scale of the spatial filter is the essential factor for the mixing length. The spatial
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filtering is inevitable in the discretization of the equations. The spatial filter in a numerical model is

implicitly determined by the grid spacing and discretization schemes. The artificial length character-

izing the spatial filter owing to discretization is defined as the filter length. Besides the filter length,

the shape of the grid should be also considered in the mixing length determination. Its effect can be170

represented by the grid aspect ratio. Scotti et al. (1993) proposed an equation for the effect of the

grid aspect ratio on the mixing length. Using the filter length ∆ and grid aspect ratio a, the mixing

length can be represented as

Lmix = Csf(a)∆FS, (6)

where f(a) is a function of the grid aspect ratio, and represents the effect of the grid aspect ratio on175

the mixing length. Cs is the Smagorinsky constant, and FS represents the effect of static stability.

The effect of the static stability on the mixing length is introduced in this model according to

Brown et al. (1994). They extended the Lilly model to improve the performance of the simulation

by considering the dependency of the Prandtl number, Pr = νSGS/ν
∗
SGS. For the unstable condition

(Ri< 0),180

νSGS = (Csf(a)∆)2|S|
√

1− cRi, (7)

Pr = PrN

√
1− cRi
1− bRi

, (8)

where Ri is the local (pointwise) gradient Richardson number, defined as

Ri =
N2

|S|2
. (9)

PrN is the Prandtl number in neutral conditions; PrN = 0.7. The constants c and b are 16 and 40,185

respectively, following Brown et al. (1994). They are empirically given to fit surface-layer observa-

tions. For the weakly stable condition, where Ri is smaller than the critical Richardson number Ric

(= 0.25), i.e., 0≤ Ri< Ric,

νSGS = (Csf(a)∆)2|S|
(

1− Ri
Ric

)4

, (10)

Pr = PrN

{
1− (1−PrN)

Ri
Ric

}−1

. (11)190

For the strongly stable condition (Ri≥ Ric),

νSGS = 0, (12)

Pr = 1. (13)

The TKESGS in Eq. (1) is

TKESGS =

(
νSGS

Ck∆

)2

, (14)195

where Ck is a SGS constant and assumed to be 0.1, following Deardorff (1980) and Moeng and

Wyngaard (1988).
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2.2.2 Problems of filter length and grid aspect ratio

There are two ambiguous factors in the configuration for determining the mixing length in recent

meteorological LES models. One problem is the configuration of the filter length in Eq. (6) in the200

models. The value of ∆ is usually set as the grid spacing for simplicity, not by considering the nu-

merical filter inherited by an individual model scheme. The other problem is that the effect of the

grid aspect ratio on the mixing length is not considered in determining the mixing length; corre-

spondingly, f(a) = 1 in Eq. (6).

Such rough treatment of the filter length and no consideration of the grid aspect ratio lead incor-205

rect turbulent properties. A usual remedy to such effects is a posteriori tuning of the Smagorinsky

constant, Cs in Eq. (6), so as to reproduce realistic results (e.g., Deardorff, 1971). However, this

constant should not, in principle, be determined empirically, but should be derived from the theory.

There are procedures which derive the constant dynamically, called dynamic SGS models (e.g, Ger-

mano et al., 1991). They have advantage where the assumption of the isotropic turbulence is not210

justified, e.g., very close to a boundary. However, in our opinion, there are some practical problems,

e.g., numerical stability, and, more importantly, they seem to be sort of a mathematical procedure

and seem not to be on physical basis.

Here, we should note that each theory is based on its own basic concepts. Although this means that

different theoretical concepts lead to different values for the constants, we should keep in mind that215

a certain constant is uniquely determined by a particular model on theoretical basis. The Smagorin-

sky constant is derived by integration of the kinetic energy filtered out by the spatial filter. If the

cutoff filter is employed as the spatial filter, the integration can be performed in the cubic B in

Fourier space:

B = {|kx|< π/∆x, |ky|< π/∆y, |kz|< π/∆z}, (15)220

where ki is the wavenumber in the i-direction. Lilly (1967) obtained the constant (Cs = 0.16) by

integrating in the sphere inscribed in the cubicB, while Scotti et al. (1993) obtained it more precisely

by integrating in the entire cubic. In this study, we follow Scotti et al. (1993), and use Cs = 0.13.

Let us return to the first problem, i.e., the determination of the spatial filter length ∆. Most models

in previous studies assume that the filter length is determined as the geometric mean of the grid225

spacings in the three directions (e.g., Deardorff, 1980):

∆ = (∆x∆y∆z)1/3. (16)

It is generally difficult to strictly define the spatial filter in a model because the filtering effect im-

plicitly introduced by discretization is very complicated. This difficulty is especially significant if

we apply the implicit method of time integration. On the other hand, the effect of the explicitly230

introduced numerical filter can be more easily estimated than that of an implicitly introduced fil-

ter. In our model, we introduce hyperviscosity and diffusion explicitly as the numerical filter (see
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Appendix A4). The explicit numerical filter is thought to be the dominant spatial filter because we

employ the explicit temporal integration method and even-order spatial difference scheme. This type

of filter removes the two-grid scale noise selectively. In other words, the two-grid scale variability is235

filtered out from the resolved variability. Consequently, we can say that in our model, the two-grid

scale is preferred as the filter length rather than the grid spacing defined in Eq. (16):

∆ = 2(∆x∆y∆z)1/3. (17)

In the next section, we investigate the validity of this configuration using simulation results.

The second problem is the treatment of the grid aspect ratio in LES in actual grid systems. In the240

equilibrium condition with the universal Kolmogorov spectrum, the energy flux cascaded into the

SGS variability is equal to the SGS dissipation. Since the dissipation does not depend on the artificial

grid configuration but on the physical configuration, energy cascaded to the SGS turbulence should

not depend on grid configuration, including the grid aspect ratio. The energy cascade flux, which is

equal to the dissipation, can be written as a function of the strain tensor Sij defined in Eq. (3) and245

the mixing length in Eq. (6) in Smagorinsky-type models. Sij depends on the grid configuration,

including aspect ratio. The mixing length should be thus dependent on the aspect ratio to cancel out

the dependency of Sij on the aspect ratio, otherwise the energy cascade flux and dissipation should

be dependent on the grid configuration. Scotti et al. (1993) derived an approximate function of the

f(a) in Eq. (6), considering the grid aspect ratio theoretically by integrating the energy in the cubic250

B defined in Eq. (15);

f(a) = 1.736a1/3
{

4P1(b1)a1/3 + 0.222P2(b1)a−5/3 + 0.077P3(b1)a−11/3

− 3b1 + 4P1(b2) + 0.222P2(b2) + 0.077P3(b2)− 3b2

}−3/4

, (18)

where b1 = arctan(1/a), b2 = arctan(a) = π/2− b1, and

P1(z) = 2.5P2(z)− 1.5(cos(z))2/3 sin(z), (19)255

P2(z) = 0.98z+ 0.073z2− 0.418z3 + 0.120z4, (20)

P3(z) = 0.976z+ 0.188z2 + 1.169z3 + 0.755z4− 0.151z5. (21)

Note that they considered two grid aspect ratios, while here we consider only one for simplicity, i.e.,

∆x= ∆y >∆z. Note that f(a) is a monotonic function for a, for instance, f(2) = 1.036,f(5) =

1.231,f(10) = 1.469, and f(20) = 1.790. Roughly speaking, there can exist larger scale (or lower260

wavenumber) variability in filtered out variabilities for a larger grid aspect ratio. This implies larger

turbulence kinetic energy for larger aspect ratios, and larger TKE results in a larger mixing length.

In our study, the effect of the grid aspect ratio on the mixing length is introduced in Eq. (18) by

following Scotti et al. (1993).
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3 Numerical experiments265

We performed three PBL experiments to examine the influences of the grid aspect ratio and filter

length on simulated turbulence, which are summarized in Table 2. In the control experiment, the

filter length is double the grid spacing, as in Eq. (17), and the mixing length in the sub-grid model is

modified by the grid aspect ratio, as in Eq. (18). The second experiment is a small filter length exper-

iment in which the filter length is set as in Eq. (16). The last is a fixed mixing length experiment, in270

which the mixing length in the SGS model is not modified by the grid aspect ratio, that is, f(a) = 1.

In the most current meteorological simulations, the configuration of the filter length follows Eq. (16)

and f(a) = 1 in Eq. (6).

In the three experiments above, a systematic parameter sweep of resolution and grid aspect ratios

was conducted. The spatial resolution of each run performed in the control experiment is shown in275

Table 3. The parameter set in the small filter length experiment is the same as the control experiment,

except for the 5mAR10 and 5mAR20 runs, while in the fixed mixing length experiment it is the same

as the control, except for the 10mAR3 run.

In all the runs, the domain size is 9.6km× 9.6km in the horizontal direction, and 3 km in the

vertical. The domain size is large enough to contain convective cells in the PBL. The lateral boundary280

conditions are double periodic. The vertical grid is stretched above 2 km. In the stretching layer, the

vertical velocity is damped by Rayleigh damping with an e-folding time of 10 s to reduce the effect

of the reflection of waves at the top boundary.

For the initial condition, we follow Ito et al. (2010); the potential temperature is 299 K at the

surface, with a vertical gradient of−4 K km−1 and a random small perturbation of 0.1 K. A constant285

horizontal velocity of 5 m s−1 is set in the x direction in the entire domain.

The temporal integration is done for four hours for each run. In order to focus on our purpose,

we simplify the setting of the bottom boundary condition so that a constant heat flux of 200 W m−2

is added to the lowest layer through the integration, although Ito et al. (2010) added a heat flux

with a sinusoidal temporal change to represent diurnal change. With a constant flow of 5 m s−1 and290

a ground heat flux of 200 W m−2, we expect the cellular convection to develop according to Ito et al.

(2010). In this study, we consider dry conditions without moist and radiation processes.

Different temporal intervals are used for the dynamical and physical processes. We define the dy-

namical process as that related to the fluid dynamics; the advection, pressure gradient, and gravita-

tional force terms in the governing equations are treated as the dynamical process in this model. The295

other processes are the physical process in this model. In this study, the physical processes are only

the surface flux for the momentum and the eddy viscosity and diffusion for SGS turbulence. Note

that we treat the eddy viscosity and diffusion terms, which is originated from the advection term, as

the physical process for the correspondence with the sub-grid turbulence model in RANS mode in

this model. The intervals for the dynamical process ∆tdyn are 0.006, 0.012, and 0.03 s for ∆z = 5,300

10, and 30 m, respectively. The interval for the physical processes ∆tphys is ten times ∆tdyn to re-
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duce computational resource. One concern is that use of too large a factor of ∆tphys/∆tdyn has the

non-negligible effect of an artificial acoustic wave excited by intermittent forcing added by the phys-

ical processes. In this model, the artificial wave can be reduced as described in Appendix A2.2. In

a preliminary experiment, we confirmed that simulated phenomena in the runs with ∆tphys = ∆tdyn305

and ∆tphys = 10∆tdyn do not have essential differences in the context of this study.

We used an eighth-order numerical filter, i.e., n= 8 in Eq. (A125), with the non-dimensional

coefficient γ of 2× 10−4 in this study. The higher order is preferred in order to limit the numerical

filter to smaller scale variability, but the higher-order filter requires more expensive computational

costs. As discussed in Appendix A4, we confirmed that the effect of the numerical filter of order310

eight is less than that of the eddy diffusion and viscosity. The smaller coefficient γ is preferred as

long as two-grid scale noise is prevented. The coefficient was determined by another preliminary

parameter sweep experiment of the coefficient without the SGS model for the numerical filter to

prevent two-grid noise.

4 Results and discussions315

4.1 Energy spectrum

Most sub-grid models are based on the idea of an energy cascade due to three-dimensional isotropic

turbulence so that the energy spectrum has the slope of k−5/3, where k is the wavenumber. Fig-

ure 1a shows the horizontal spectrum of the three-dimensional kinetic energy at an altitude of 500 m

in the control experiment. This height corresponds to the middle of the PBL, at which the verti-320

cal velocity is largest. The inertial sub-range with −5/3 power can be clearly seen at wavenum-

bers greater than 1/1000 m−1. The spectra for runs with various resolutions and grid aspect ratios

show good agreement with one another, except near the filter length scale, at which variabilities are

damped numerically. The largest energy appears at a scale of about 2 km; the external forcing seems

to mainly inject energy at this scale. This corresponds to the spatial structure of convective cells, as325

shown in Fig. 3a. The cells have well-known hexagonal or quadrangular structure with strong up-

ward convection in the narrow cell boundary, and relatively weak downward convection in the entire

cell region.

On the other hand, the spectrum of horizontal kinetic energy u2 + v2/2 does not clearly indicate

the power law as shown in Fig. 2. Horizontal vortexes (i.e., convections) are strongly constrained by330

the PBL top and bottom boundaries. The horizontal velocity related to convection is dominant near

the top and bottom of the convection, while it is relatively small near the middle of the convection.

As a result, the horizontal kinetic energy of large scale motion tends to be smaller around the middle

of the PBL. On the other hand, the vertical velocity is dominant in the middle of the convection,

and the energy spectrum of vertical kinetic energy is mostly power law, as shown in Fig. 2. This335

difference between vertical and horizontal velocity is more significant for larger scale motion. This
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is almost opposite for horizontal and vertical velocities near the PBL top and bottom boundaries;

the spectrum of the horizontal velocity at the lowest layer shows a slope of almost −5/3, while that

of the vertical velocity does not. These differences, due to the existence of the PBL top and bottom

boundaries, cause anisotropy as well as static stability (Yakhot et al., 1989; Horiuti, 1993).340

In most LES models, the filter length for the sub-grid model is set to be equal to the grid spacing

itself. In our model, the filter length is set to be twice the grid spacing, as described in Sect. 2. In

order to examine the influence of the filter length, we performed the small filter length experiment, in

which we use a conventional filter length, i.e., as in Eq. (16). Figure 1b shows the energy spectrum in

this experiment (only runs with ∆z = 10 m are shown). The spectra show a spurious energy profile,345

in which energy piles up at the higher wavenumbers. The slopes of the spectra become gentler than

−5/3 because of the spurious energy. The spurious energy piling is considered to be a result of

the lack of energy cascade because of SGS variability, caused by the use of a small mixing length.

We found that the situation is more significant for larger grid aspect ratios and coarser horizontal

resolution, as shown Fig. 1b, although the effect of the grid aspect ratio represented by Eq. (18) is350

taken into account in this experiment, as well as in the control experiment.

The deviation from the theoretical −5/3 slope of the energy spectrum of the resolved variability

is more obvious at the energy-dissipative range. However, the reduced energy is compensated by the

SGS energy. On the other hand, the energy pile cannot be compensated by any SGS components.

Therefore, the spurious energy pile is the most important point in terms of the reproducibility of the355

spectrum. In order to estimate the degree of the energy piling quantitatively, we introduce an index

denoted by SEP:

SEP≡max

(
E(k)

Ak−5/3

)
, (22)

where E(k) is the energy spectrum in each run, and the fitting coefficient A is calculated with

a spectrum ranging from 1/1000 to 1/100 m−1 using the highest resolution run with a grid aspect360

ratio of unity (10mAR1 run) in the control experiment as a reference solution. Thus, SEP indicates

the maximum ratio of the energy spectrum in each run to the fitting slope of −5/3 power in the

reference run. Note that the index is not influenced by the lower energy than the theoretical slope at

the energy-containing and dissipative scales. Figure 4 shows the dependency of the SEP index on the

grid aspect ratio. Since the energy spectrum is not perfectly a power law with the −5/3 slope, the365

index is not one, even in the 10mAR1 run. The index in the control experiment is smaller than 1.2 for

all the runs. On the other hand, the indices in the small filter length experiment are larger than those

in the control experiment. It tends to be larger for larger aspect ratio. This tendency can be found

both for the vertical grid resolution of 10 and 30 m. The magnitude of the SEP is larger than 1.2 for

all the runs, except when the grid aspect ratio is unity. This shows that, in this model, twice the grid370

spacing is more suitable as the filter length rather than the grid spacing itself, and suggests that the

filter length should be chosen according to the numerical schemes used in a model. In addition, the
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dependency on the grid aspect ratio can clearly be seen. These results suggest that an appropriate

filter length is necessary, especially in the case of a large grid aspect ratio.

Next, we consider the influence of f(a) in the mixing length, as in Eq. (6), on the spectrum. The375

mixing length is modified by the grid aspect ratio in the control experiment according to Scotti et al.

(1993), as described in Sect. 2. In the fixed mixing length experiment, we fixed f(a) in Eq. (6) equal

to one in order to ignore the effect of the grid aspect ratio. Figure 1c shows the spectra of the runs in

the fixed mixing length experiment; only runs with larger grid aspect ratios are shown. The spectra

for the large aspect ratio, especially greater than ten, show the spurious energy pile, as in the case380

of the small filter length experiment. The SEP index is greater than 1.3 in these cases, as shown in

Fig. 4. This means that the effect of the grid aspect ratio should be taken into account in modeling

the mixing length for the SGS turbulence model. The mixing length should be enlarged according to

the effect of the grid aspect ratio from that of the isotropic grid case, otherwise artificial energy piles

at higher wavenumbers.385

In all the experiment, the magnitude of the SEP tends to be smaller for the larger vertical resolu-

tion. This tendency is more apparent for larger aspect ratio. It is possible that amount of the energy

dissipation depends on the grid configuration, although it should be identical. The larger dissipation

could results in the smaller total energy and consequent smaller SEP in the coarser resolution runs.

4.2 Turbulence statistics390

In this subsection, we show the influence of the grid configuration of the runs on the turbulence

statistics in the PBL in the control experiment. Figure 5 shows the dependency of the vertical pro-

files of several turbulence statistics on the spatial resolution and grid aspect ratio in the control

experiment: the horizontal mean potential temperature, the vertical heat flux, the variance of the ver-

tical velocity, and the skewness of the vertical velocity. These values are averaged over the last half395

hour (t= 3.5–4 h). The change of the 30-min averaged kinetic energy at the 500 m in t= 3–3.5 h

to that in t= 3.5–4,h is small enough: just 3.4%. Consequently, we assume that the state in the last

half hour is appropriate enough for the analysis. In the calculation of these values, the horizontal

mean is defined as the mass weighted average, ρφρ , where the over-line represents the mathematical

horizontal average. These profiles are calculated from the resolved variability, except for the heat400

flux.

Figure 5a gives the vertical profile of the potential temperature for all the runs. The potential

temperature is almost uniform, and the atmosphere is well mixed in the PBL below 1.2 km height;

the difference is about 0.05 K. On the other hand, the profile in the surface layer indicates some

difference according to the resolution and grid aspect ratio. Here, we define the surface layer as405

the layer that keeps the potential temperature gradient less than −10−3 K m−1. The conclusions

in this paragraph do not change for a range of the threshold qualitatively. In the 10mAR1 run, this

steep potential temperature gradient is reproduced in the unstable surface layer below 75 m depth.
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Figure 6a shows the dependency of the depth of the surface layer on the horizontal resolution. We

found that the depth becomes larger for coarser horizontal resolution, even if the vertical resolution410

is higher. Typically, in the 5mAR20 run, the depth of the surface layer is about 140 m. The variance

of the resolved variability is smaller in the 5mAR20 run than in the 10mAR1 run as shown in Fig. 7,

and then strength of the mixing by the resolved motion is not cause of the tendency. Figure 7 shows

that the potential temperature and the variance of the horizontal velocity have similar vertical profile

against z=z/∆ in terms of the vertical gradient. This suggests that the vertical gradient of the profile415

in the surface layer is determined by the filter length.

Figure 5b shows the profile of the vertical heat flux, which is here defined as the sum of the re-

solved flux, ρw′θ′/ρ, and the SGS flux. Note that the prime represents deviation from the horizontal

mean. We define the top boundary of the PBL as the height of minimum heat flux. In all the runs,

the PBL height of 1.25 km and the heat flux profile are almost the same. The flux profile indicates420

a linear distribution in the z direction, and this means that the heating rate is constant in the PBL.

Its slope is about 0.18 W m−3, corresponding to a heating rate of about 0.6 K h−1. This value is

consistent with the sensible heat flux from the bottom boundary (200 W m−2) divided by the depth

of the region where the heat flux is positive (about 1.1 km). We can conclude that the total vertical

heat flux is reasonably reproduced regardless of grid configuration.425

The variance of the vertical velocity is shown in Fig. 5c. The variance is the largest around 500 m

height in all the runs. It is 1.75 and 1.4 m2 s−2 at 500 m height in the highest and lowest resolution

runs (10mAR1 and 30mAR5), respectively. Figure 6b shows how the grid configuration affects the

variance of vertical velocity. It is found that the variance of the vertical velocity mainly depends

on the horizontal resolution; as the horizontal grid spacing decreases, the variance of the vertical430

velocity increases, and their correlation is about −0.98. On the other hand, significant dependency

of the variance of the vertical velocity on the vertical resolution and grid aspect ratio is not seen;

their correlations are −0.21 and −0.56, respectively.

Theoretically, the variance of vertical velocity should converge to a certain value with grid refine-

ment for the following reason. The variance is approximately equal to the sum of squares of each435

wavenumber component as

Varw ≈
kmax∑
k=1

|ŵ(k)|2, (23)

where kmax and ŵ(k) are the maximum horizontal wavenumber and amplitude of the vertical ve-

locity of wavenumber k, respectively. Note that here we ignore the density variability for simplicity.

Under the condition that the energy spectrum |ŵ|2 has an exponential decay of k−5/3, the accumu-440

lated energy, which is equal to half of the variance, can be obtained analytically as

kmax∫
k0

Ak−5/3dk =B− 3

2
Ak−2/3

max , (24)
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whereA andB are constants. Nevertheless, as shown in Fig. 6b, the variance has not yet converged in

the range of resolutions. The convergence point is still a debatable issue at higher resolutions. Here,

we try to estimate the convergence point. We estimate the total energy for kmax =∞ from on Eq.445

24 in the 10mAR1 run, and it is 104% of the observed total energy in the simulation. This suggests

that the convergence point of the variance would be about 1.82 m2 s−2, i.e., 104% of 1.75 m2 s−2.

The profile of skewness shows an almost linear slope in the PBL except near the surface, as

shown in Fig. 5d. The skewness has a similar value around 500 m height for all the runs, while it

shows variety around the top and bottom of the PBL. Positive skewness implies stronger upward450

motion compared to downward motion. Around the top boundary, the hexagonal or quadrangular

cell structure of convection seen around the middle of the layer in Fig. 3a is no longer dominant,

as Fig. 3b shows. There are strong upward plumes surrounded by compensating annular downward

flow, whose horizontal scale is about 1–2 km. Most of the plumes are located above the cell vertex

at lower height. Figure 6c shows the dependency of the skewness on the horizontal resolution at455

1.2 km height (top of the PBL). The skewness is larger for coarser resolution. The logarithmic values

of skewness and horizontal resolution have a mostly linear relationship. Sullivan and Patton (2011)

tried to explain the dependency of the skewness on the horizontal resolution by the SGS moment,

but they showed that its effect is quantitatively not sufficient to explain the difference. We suppose

that localized strong upward plumes due to the larger eddy viscosity is a possible cause of the larger460

skewness based on the following explanation. Coarser resolution corresponds to larger filter length

and consequently, larger eddy viscosity. The larger viscosity prevents small scale motions. However,

the amount of heat transferred vertically should be almost the same as in other runs, because static

instability becomes strong if the vertical heat flux is smaller because motion is prevented. In fact, the

horizontal mean vertical heat flux is almost identical in all the runs (Fig. 5b). Individual convective465

plumes in coarser resolution runs could be stronger, transferring more heat than in higher resolution

runs. It is possible that such localized stronger upward plumes are the cause of the larger skewness

in coarser resolution runs.

Residuals from logarithmic linear regression of the skewness in the horizontal resolution are rel-

atively larger for coarser horizontal resolution: e.g., the 5mAR20 (cyan square) and the 30mAR5470

(green circle) runs. Dependency of the skewness on the grid aspect ratio is one of the reasons for

the residuals. The dependency on the aspect ratio can be seen in Fig. 6d. The skewness tends to be

larger for larger aspect ratios. Positive residuals from the 5mAR20 run and negative ones from the

30mAR5 run in the regression would be due to large and small aspect ratios, respectively. Also, the

skewness of the 5mAR20 run is larger than that of the 10mAR10 run (blue× symbol) at the same475

horizontal resolutions (100 m). Their difference could be due to the difference in aspect ratio. The

skewness in the 10mAR10 run is closer to that of the 10mAR1 run (black× symbol), than that of the

5mAR20 run, even if the vertical resolution is higher in the 5mAR20 run than in the 10mAR10 run.

This suggests that a large aspect ratio produces spurious large skewness in vertical velocity, that is,
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artificially strong upwind. The dependence on the grid aspect ratio seems somewhat complex, and480

the reason for the dependence is not clear. We assume that it is related to static stability. For higher

grid aspect ratios, i.e., relatively higher vertical resolution or lower horizontal resolution, static sta-

bility could vary vertically rather than horizontally. In that case, a strong shallow stable layer could

cover a relatively wider region horizontally, and strong static stability and small horizontal contrast

might prevent vertical motion and suppress the vertical eddy viscosity and diffusion. Under this con-485

dition, only a strong parcel can go upward against the thin strong stable layer. For the same amount

of vertical heat transportation independent of grid configuration, a larger grid aspect ratio might

require stronger upwind, indicating larger skewness.

5 Conclusions

We conducted a series of planetary boundary layer experiments to examine the influences of the490

aspect ratio of horizontal to vertical grid spacing on the atmospheric turbulence in a large-eddy

simulation. In order to focus on the influences, we tried to avoid artificial effects as much as possible

by employing the fully compressible governing equations. A fully explicit (i.e., HE-VE) temporal

integration scheme and a high-order central difference scheme for spatial differentials are adopted

to reduce implicitly introduced numerical viscosity and diffusion by discretization.495

In the model used in this paper, we considered the effect of spatial filter length and grid aspect

ratio on the mixing length of the eddy viscosity and diffusion, which is a parameterization of the

energy cascade to SGS variability. Explicit numerical hyperviscosity and diffusion is introduced to

reduce the two-grid scale noise in this model. This can be considered a spatial filter in LES. As

a result, the filter length in this model is double the grid spacing, while the grid spacing is used as500

the length in most LESs. The effect of the grid aspect ratio on the mixing length proposed by Scotti

et al. (1993) was also introduced.

If we use a reasonable filter length and introduce the grid aspect ratio effect, the energy spectra

of all the runs show good correspondence with the theoretical k−5/3 slope, regardless of spatial

resolution and grid aspect ratio. On the other hand, the theoretical slope in the spectrum is no longer505

obtained, and a spurious energy pile is found if the spatial filter length is set to be equal to the grid

spacing as in most meteorological LESs. The spurious energy piling is more significant for larger

grid aspect ratios. A shorter filter length results in a shorter mixing length and consequently, a smaller

energy cascade to SGS variability. Thus, an inappropriate filter length causes spurious energy.

The effect of the grid aspect ratio on the mixing length of the eddy viscosity and diffusion cannot510

be ignored. If the mixing length is not modified by the grid aspect ratio, spurious energy also piles at

higher wavenumbers because of an insufficient energy cascade to SGS turbulence at large grid aspect

ratios. In previous studies, the Smagorinsky constant was often modified as a tuning parameter to

obtain the expected energy spectrum. However, the constant should be determined theoretically and
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should not be tuned to make the energy cascade large instead of considering filter length and grid515

aspect ratio.

The horizontal resolution and grid aspect ratio also influence the turbulence statistics. The vertical

profiles of several turbulence statistics depend on the grid configuration as follows. The depth of

the unstable surface layer is larger for coarser horizontal resolution (but not vertical resolution). The

variance of the resolved vertical velocity essentially depends on the horizontal resolution, mainly be-520

cause of spatial averaging by discretization. The skewness of the vertical velocity shows dependency

on grid aspect ratio as well as on horizontal resolution. In particular, the skewness is sensitive to the

grid configuration around the top and bottom of the PBL. It becomes larger and smaller around the

top and bottom, respectively, for coarser resolution and larger grid aspect ratio. Higher resolution and

smaller grid aspect ratio are required in order to obtain accurate skewness. This is important, because525

the spurious strong upward wind near the PBL top, which is implied by larger skewness, would have

a large effect on cloud microphysical processes. For example, the reproducibility of clouds around

the PBL top, such as stratocumulus, would be sensitive to grid configuration.

We conclude that the grid aspect ratio influences the parameterization of the energy cascade to

SGS variability and the reproducibility of skewness of turbulence in the PBL. Although there are530

many meteorological LESs in which the grid aspect ratio is large, such large grid aspect ratios have

led to misinterpretation in some experiments in previous studies because of spurious energy piling

at higher wavenumbers and stronger vertical motion indicated by larger skewness. The aspect ratio

should be taken into account properly in determining the mixing length of the eddy viscosity and

diffusion as a sub-grid model for the reliability of simulations of boundary layer turbulence.535

Appendix A: Model description

A1 Governing equations

In this subsection, we introduce the governing equations for the prognostic variables

(ρ,ρu,ρv,ρw,ρθ, and ρqxs). The gas constant and specific heat are those for total (moist) air in the

thermodynamics equation and equation of state. The θ in this model is not the conventional potential540

temperature for dry air, but the corresponding value for total air, considering water content. These

variables are spatially filtered quantities, and the Favre filter (Favre, 1983) is used for u,v,w,θ, and

qxs.

A1.1 Continuity equations

The continuity equations for each material can be described in flux form:545

∂ρqd

∂t
+∇ · (ρqdu) = DIFF [qd] , (A1)

∂ρqv

∂t
+∇ · (ρqvu) = Sv + DIFF [qv] , (A2)
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∂ρql

∂t
+∇ · (ρqlu) +

∂ρqlwl

∂z
= Sl + DIFF [ql] , (A3)

∂ρqs

∂t
+∇ · (ρqsu) +

∂ρqsws

∂z
= Ss + DIFF [qs] , (A4)

where∇ is the gradient vector, and DIFF [φ] is the diffusion term by SGS turbulence (see Sect. 2.2).550

The sum of the ratios of their mass should be unity:

qd + qv + ql + qs = 1. (A5)

The source terms for water substances should satisfy the following relationship:

Sv +Sl +Ss = 0. (A6)

The sum of Eqs. (A1)–(A4) gives the continuity equation of total density:555

∂ρ

∂t
+∇ · (ρu) +

∂ρqlwl

∂z
+
∂ρqsws

∂z
= 0. (A7)

For this derivation, we use the fact that the operator DIFF [φ] is a linear operator;

DIFF [φ] =− ∂

∂xi
ρν∗SGS

∂φ

∂xi
. (A8)

Using Eq. (A5),

DIFF [qd] + DIFF [qv] + DIFF [ql] + DIFF [qs]560

= DIFF [qd + qv + ql + qs] = DIFF [1] = 0. (A9)

A1.2 Momentum equations

The momentum equations for the gas, liquid, and solid materials are described as

∂ρ(qd + qv)u

∂t
+∇ · [ρ(qd + qv)u⊗u]

=−∇p− [ρ(qd + qv)g+ (fl + fs)]ez +uSv + DIFF [(qd + qv)u] , (A10)565

∂ρqlu

∂t
+∇ · (ρqlu⊗u) +

∂ρqluwl

∂z

=−(ρqlg− fl)ez +uSl + DIFF [qlu] , (A11)

∂ρqsu

∂t
+∇ · (ρqsu⊗u) +

∂ρqsuws

∂z

=−(ρqsg− fs)ez +uSs + DIFF [qsu] , (A12)

where ⊗ represents the tensor product. The pressure is derived from the equation of state as570

p= ρ(qdRd + qvRv)T. (A13)

The sum of Eqs. (A10)–(A12) gives the total momentum equation as

∂ρu

∂t
+∇ · (ρu⊗u) +

(
∂ρqlwl

∂z
+
∂ρqsws

∂z

)
u
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=−∇p− ρgez + DIFF [u] . (A14)

Note that the drag forces from loading do not appear in Eq. (A14), because those term are canceled575

out by the summation.

A1.3 Thermodynamics equations

The equations of internal energies are given as

∂ρ(qded + qvev)

∂t
+∇ · [ρ(qded + qvev)u]

=−p∇ ·u+Qd +Qv + DIFF [(qd + qv)T ∗] , (A15)580

∂ρqlel

∂t
+∇ · (ρqlelu) +

∂ρqlelwl

∂z
=Ql + DIFF [qlT

∗] , (A16)

∂ρqles

∂t
+∇ · (ρqsesu) +

∂ρqsesws

∂z
=Qs + DIFF [qsT

∗] , (A17)

where ex are the internal energies, and defined as

ed = cvdT, (A18)

ev = cvvT, (A19)585

el = clT, (A20)

es = csT. (A21)

The DIFF operator represents the mixing by SGS turbulence. The SGS eddy viscosity should be used

for conserved quantities following the motion. The internal energies are not conserved quantities in

the Lagrangian sense, and the diffusion term in these equations and T ∗ are only conceptual, and590

should be determined to be consistent with the diffusion term in an equation for a conserved quantity

along the flow trajectory (i.e., potential temperature), which is discussed later.

The sum of Eqs. (A15)–(A17) gives the total internal energy equations:

∂ρe

∂t
+∇ · (ρeu) +

∂ρqlelwl

∂z
+
∂ρqsesws

∂z
+ p∇ ·u =Q+ DIFF [T ∗] , (A22)

where595

e= qded + qvev + qlel + qses, (A23)

and the total diabatic heating is described as

Q=Qd +Qv +Ql +Qs. (A24)

Equations (A2)–(A4), (A7), (A14), and (A22), along with Eq. (A13), form the complete set of

equations.600
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A1.4 Conservation of thermodynamics in the dynamical process

Equation (A22) is not a complete flux form, because the internal energy itself is not conserved both

in the Euler sense and the Lagrangian sense. In this section, we consider the conserved quantity for

the thermodynamics equation.

The potential temperature for dry air, which is defined as605

θd = T

(
p00

p

)Rd/cpd

, (A25)

is used as a conserved quantity in traditional models. Although it is conserved along a Lagrangian

trajectory, it is no longer conserved when the water substances are included. We introduce a new

conserved quantity following the motion in moist conditions.

Using Eqs. (A7) and (A22), without the terms for the sedimentation of water, the diabatic heating610

and diffusion can be written as

de

dt
+ p

d

dt

(
1

ρ

)
= 0. (A26)

Substituting Eqs. (A13), (A18)–(A21), and (A23) into Eq. (A26),

dqdcvdT

dt
+ p

d

dt

[
qdRdT

p

]
+

dqvcvvT

dt
+ p

d

dt

[
qvRvT

p

]
+

dqlclT

dt
+

dqscsT

dt
= 0. (A27)615

From Eqs. (A2)–(A4) and (A7), Eq. (A27) gives the following form:

qd

[
dcvdT

dt
+ p

d

dt

[
RdT

p

]]
+ qv

[
dcvvT

dt
+ p

d

dt

[
RvT

p

]]
+ ql

dclT

dt
+ qs

dcsT

dt
= 0. (A28)

Dividing this equation by T ,

qdcpd

[
dlnT

dt
+
Rd

cpd

d

dt

[
ln

(
1

p

)]]
620

+ qvcpv

[
dlnT

dt
+
Rv

cpv

d

dt

[
ln

(
1

p

)]]
+ qlcl

dlnT

dt
+ qscs

dlnT

dt
= 0, (A29)

and

qdcpd
dlnθd

dt
+ qvcpv

dlnθv

dt
+ qlcl

dlnT

dt
+ qscs

dlnT

dt
= 0, (A30)

where θv is the potential temperature for water vapor, defined as625

θv = T

(
p00

p

)Rv/cpv

. (A31)
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Thus,

d

dt

[
ln
(
θ
qdcpd
d θqvcpvv T qlclT qscs

)]
= 0. (A32)

The quantity

Θ = θ
qdcpd
d θqvcpvv T qlclT qscs = T c

∗
p

(
p00

p

)R∗

(A33)630

is conserved along the flow trajectory, where

c∗p ≡ qdcpd + qvcpv + qlcl + qscs, (A34)

R∗ ≡ qdRd + qvRv. (A35)

Here we define a new potential temperature

θ ≡Θ1/c∗p = T

(
p00

p

)R∗/c∗p

. (A36)635

This θ satisfies

dθ

dt
=

1

c∗p
Θ1/c∗p−1 dΘ

dt
= 0, (A37)

and θ is a conserved quantity along the flow trajectory, even in moist conditions. We employ ρθ for

the prognostic variable.

The pressure expression is derived diagnostically as:640

p= p00

(
ρθR∗

p00

) c∗p
c∗p−R∗

. (A38)

Figure A1a gives the vertical profile of the temperature in the US control atmosphere, and Fig. A1b

shows the vertical profiles of θ/θd under this temperature condition when we assume that qv is the

specific humidity at saturation, and ql + qs gives 0.0, 0.01, 0.02, and 0.04. The difference between θ

and θd becomes larger with height and may not be negligible.645

A1.5 Diabatic heating in the physical process

Changing the prognostic variable for thermodynamics from the internal energy to the newly defined

potential temperature θ should modify the diabatic heating and sedimentation terms in Eq. (A22).

Through the manipulation of Eq. (A26) to Eq. (A32), Eq. (A22) can be written as

ρT
dlnΘ

dt
=Q− ∂ρqlelwl

∂z
− ∂ρqsesws

∂z
+ DIFF [T ∗] . (A39)650

Substituting Eq. (A36) into Eq. (A39),

ρ
dθ

dt
=

1

c∗p

(
p00

p

)R∗
c∗p
(
Q− ∂ρqlelwl

∂z
− ∂ρqsesws

∂z
+ DIFF [T ∗]

)
. (A40)

T ∗ is the variable defined to satisfy the following equation:

1

c∗p

(
p00

p

)R∗
c∗p

DIFF [T ∗] = DIFF [θ] . (A41)
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A1.6 Summary of governing equations655

The governing equations are summarized as follows:

∂ρqv

∂t
=−∇ · (ρqvu) +Sv + DIFF [qv] , (A42)

∂ρql

∂t
=−∇ · (ρqlu)− ∂ρqlwl

∂z
+Sl + DIFF [ql] , (A43)

∂ρqs

∂t
=−∇ · (ρqsu)− ∂ρqsws

∂z
+Ss + DIFF [qs] , (A44)

∂ρ

∂t
=−∇ · (ρu)− ∂ρqlwl

∂z
− ∂ρqsws

∂z
, (A45)660

∂ρu

∂t
=−∇ · (ρu⊗u)−∇p− ρgez −

∂ρqluwl

∂z
− ∂ρqsuws

∂z
+ DIFF [u] , (A46)

∂ρθ

∂t
=−∇ · (ρθu)

+
1

c∗p

(
p00

p

)R∗
c∗p
[
Q− ∂ρqlelwl

∂z
− ∂ρqsesws

∂z

]
+ DIFF [θ] , (A47)

where665

p= p00

(
ρθR∗

p00

) c∗p
c∗p−R∗

, (A48)

c∗p ≡ qdcpd + qvcpv + qlcl + qscs, (A49)

R∗ ≡ qdRd + qvRv. (A50)

A1.7 Boundary condition

The vertical boundary conditions are that the vertical velocities at the top and bottom boundaries are670

zero. This causes the vertical flux at the top and bottom boundaries for all the prognostic variables

to be zero;

w = 0, (A51)

ρw = 0, (A52)

ρqvw = ρqlw = ρqsw = 0, (A53)675

ρuw = ρvw = ρww = 0, (A54)

ρθw = 0, (A55)

at the top and bottom boundaries.

A2 Temporal integration scheme

We conceptually separate the complete set of governing equations into dynamical and physical parts:680

∂φ

∂t
=

(
∂φ

∂t

)
dynamics

+

(
∂φ

∂t

)
physics

. (A56)
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The diabatic heating process, diffusion by SGS turbulence, sedimentation process of liquid and solid

waters, and the source and sink of water substances are treated as physical processes, and the others

are treated as dynamical processes.

According to this scheme, the dynamical processes can be written as685

∂ρqv

∂t
+∇ · (ρqvu) = 0, (A57)

∂ρql

∂t
+∇ · (ρqlu) = 0, (A58)

∂ρqs

∂t
+∇ · (ρqsu) = 0, (A59)

∂ρ

∂t
+∇ · (ρu) = 0, (A60)

∂ρu

∂t
+∇ · (ρu⊗u) =−∇p− ρgez (A61)690

∂ρθ

∂t
+∇ · (ρθu) = 0. (A62)

On the other hand, the physical processes are as follows. The governing equations for the physical

processes being

∂ρqv

∂t
= Sv + DIFF [qv] , (A63)

∂ρql

∂t
=−∂ρqlwl

∂z
+Sl + DIFF [ql] , (A64)695

∂ρqs

∂t
=−∂ρqsws

∂z
+Ss + DIFF [qs] , (A65)

∂ρ

∂t
=−∂ρqlwl

∂z
− ∂ρqsws

∂z
, (A66)

∂ρu

∂t
=−∂ρqluwl

∂z
− ∂ρqsuws

∂z
+ DIFF [u] , (A67)

∂ρθ

∂t
=

1

c∗p

(
p00

p

)R∗
c∗p
[
Q− ∂ρqlelwl

∂z
− ∂ρqsesws

∂z

]
+ DIFF [θ] . (A68)700

A2.1 Dynamical processes

A Runge–Kutta (RK) scheme with three steps is used as the temporal integration scheme for the

dynamical processes. The RK scheme with three steps used in this model is defined as

k1 = ∆tf(φt), (A69)

k2 = ∆tf

(
φt +

1

3
k1

)
, (A70)705

k3 = ∆tf

(
φt +

1

2
k2

)
, (A71)

φt+∆t = φt + k3, (A72)
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where f(φ)≡ ∂φ
∂t . Taylor expansion of the φt+∆t calculated by Eq. (A72) around φt yields

φt+∆t = φt + ∆tf(φt) +
1

2
∆t2f(φt)f ′(φt)

+
1

6
∆t3f(φt){f ′(φt)}2 +

1

8
∆t3{f(φt)}2f ′′(φt)710

+O(∆t4). (A73)

Theoretically, the Taylor expansion of φ(t+ ∆t) is

φ(t+ ∆t) = φt + ∆tf(φt) +
1

2
∆t2f(φt)f ′(φt)

+
1

6
∆t3f(φt){f ′(φt)}2 +

1

6
∆t3{f(φt)}2f ′′(φt)

+O(∆t4). (A74)715

This shows that the three-step scheme used in this model only has second-order accuracy, despite

the three steps. However, it has third-order accuracy for linear equations, because f ′′(φ) = 0 if f(φ)

is a linear function. This scheme can calculate small-amplitude perturbations with third-order ac-

curacy, and finite amplitude waves with second-order accuracy. In terms of numerical stability, this

scheme has a stability region, which is almost the same as in standard explicit RK schemes with720

three steps for small perturbations. The stability region is wider than for RK schemes with second-

order accuracy, and includes the imaginary axis, which corresponds to neutral rotating modes, while

that for second-order schemes does not. This is why we choose the three-step method instead of the

two-step method.

The advantage of this scheme compared with ordinary three-step schemes is the reduction of725

memory load and storage, which is one of the most expensive components of recent computers with

low byte per flop (B/F) ratios, along with the benefit of higher numerical stability.

A2.2 Physical processes

The acoustic wave is the fastest mode in the dynamical processes, and the temporal interval for

dynamical processes must be less than the grid spacing divided by the speed of the acoustic wave,730

to satisfy the Courant-Friedrichs-Lewy (CFL) condition. However, the time scale of the physical

processes is usually much longer than the interval, so the temporal interval for the physical processes

can be much longer than for the dynamical processes. We use a larger temporal interval to calculate

the tendencies of the physical processes than of the dynamical processes. We call the time step for

the physical processes a large time step, and for dynamical processes, a small time step.735

Traditionally, tendencies in physical processes are calculated with large time steps, and the prog-

nostic variables are updated with the Euler scheme with the tendency for large time steps. This

causes an artificial acoustic wave, as described below. In this model, the tendency in some physical

processes, such as surface flux (sensible heat flux and latent heat flux) and eddy viscosity and dif-
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fusion, are calculated with large time steps in the same way, but they are added to the prognostic740

variables with the tendency of dynamical processes in small time steps.

Figure A2 shows the horizontal averaged vertical velocity in the planetary boundary layer exper-

iment, whose details are described in Sect. 3. In the control run, in which the temporal interval for

the large time step (∆tphys) is the same as that for the small time step (∆tdyn), the velocity is almost

zero, as shown in Fig. A2a. However, in the case where ∆tphys >∆tdyn and the tendency of the745

surface flux is added to the prognostic variables at the large time step as in the traditional manner,

a vertically propagating artificial wave can be seen, as in Fig. A2b.

In addition, such a wave radiating periodically from a fixed location can cause a spurious sta-

tionary wave in the simulation output. This could lead to misinterpretation of the simulation results,

although this problem is not directly based on physics or modeling. In most practical cases, the750

temporal interval for historical output (∆toutput) is a multiple of ∆tlarge, and snapshots of physical

quantities are the output. In such cases, every snapshot has artificial acoustic waves with the same

phase, because the sampling frequency is not sufficient. This results in a spurious stationary wave in

the historical output, as we can see in Fig. A2c, that is, forcing by physical processes added at small

frequencies results in a spurious stationary wave in the historical data.755

The artificial acoustic wave and resulting spurious stationary wave can be avoided if the prognos-

tic variables are updated with the tendency calculated in the physical processes with a small time

step, although the tendency is calculated with a large time step. Figure A2d shows that the artificial

acoustic wave in (b) and (c) does not appear with this method. This shows that the tendency of the

physical processes can be calculated with a large time step (i.e., not every small time step), while the760

time integration must be done with the dynamical process at a small time step.

A3 Spatial discretization for the dynamical processes

We employ the Arakawa-C staggered grid. Central difference schemes are used for the spatial dif-

ferential for the dynamical processes, because waves such as gravity waves and acoustic waves

generally cannot keep their spatial symmetry with odd-order schemes. Based on a consideration of765

numerical stability (see Appendix B), we choose the fourth-order central difference scheme for the

advection (or convection) terms, and the second-order central difference scheme for the pressure

gradient term in the momentum equations and divergence term in the continuity equation.

Before the discretization of the differential equations, we diagnose several quantities from the

prognostic variables;770

Full-level pressure and potential temperature

pi,j,k = p00

[
(ρθ)i,j,kR

∗

p00

] c∗p
c∗p−R∗

, (A75)
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θi,j,k =
(ρθ)i,j,k
ρi,j,k

. (A76)

Half-level density

ρi+ 1
2 ,j,k

=
ρi+1,j,k + ρi,j,k

2
, (A77)775

ρi,j+ 1
2 ,k

=
ρi,j+1,k + ρi,j,k

2
, (A78)

ρi,j,k+ 1
2

=
ρi,j,k+1 + ρi,j,k

2
. (A79)

Half-level velocity

ui+ 1
2 ,j,k

=
(ρu)i+ 1

2 ,j,k

ρi+ 1
2 ,j,k

, (A80)

vi,j+ 1
2 ,k

=
(ρv)i,j+ 1

2 ,k

ρi,j+ 1
2 ,k

, (A81)780

wi,j,k+ 1
2

=
(ρw)i,j,k+ 1

2

ρi,j,k+ 1
2

. (A82)

Full-level velocity

ui,j,k =
(ρu)i+ 1

2 ,j,k
+ (ρu)i− 1

2 ,j,k

2ρi,j,k
, (A83)

vi,j,k =
(ρv)i,j+ 1

2 ,k
+ (ρv)i,j− 1

2 ,k

2ρi,j,k
, (A84)

wi,j,k =
(ρw)i,j,k+ 1

2
+ (ρw)i,j,k− 1

2

2ρi,j,k
. (A85)785

A3.1 Continuity equation

Divergence in the continuity equation is calculated with the second-order central difference scheme.

The continuity equation is discretized as

∂ρ

∂t

∣∣∣∣
i,j,k

= −
(ρu)i+ 1

2 ,j,k
− (ρu)i− 1

2 ,j,k

∆xi

−
(ρv)i,j+ 1

2 ,k
− (ρv)i,j− 1

2 ,k

∆yj
790

−
(ρw)i,j,k+ 1

2
− (ρw)i,j,k− 1

2

∆zk
. (A86)

A3.2 Momentum equations

The advection terms and pressure gradient term are calculated with the fourth and second-order

central difference schemes, respectively. The momentum equation is discretized as

∂ρu

∂t

∣∣∣∣
i+ 1

2 ,j,k

=−
(ρu)i+1,j,kui+1,j,k − (ρu)i,j,kui,j,k

∆xi+ 1
2

795
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−
(ρu)i+ 1

2 ,j+
1
2 ,k
vi+ 1

2 ,j+
1
2 ,k
− (ρu)i+ 1

2 ,j−
1
2 ,k
vi+ 1

2 ,j−
1
2 ,k

∆yj

−
(ρu)i+ 1

2 ,j,k+ 1
2
wi+ 1

2 ,j,k+ 1
2
− (ρu)i+ 1

2 ,j,k−
1
2
wi+ 1

2 ,j,k−
1
2

∆zk

− pi+1,j,k − pi,j,k
∆xi+ 1

2

, (A87)

where

(ρu)i,j,k =
−(ρu)i+ 3

2 ,j,k
+ 7(ρu)i+ 1

2 ,j,k

12
800

+
7(ρu)i− 1

2 ,j,k
− (ρu)i− 3

2 ,j,k

12
, (A88)

(ρu)i+ 1
2 ,j+

1
2 ,k

=
−(ρu)i+ 1

2 ,j+2,k + 7(ρu)i+ 1
2 ,j+1,k

12

+
7(ρu)i+ 1

2 ,j,k
− (ρu)i+ 1

2 ,j−1,k

12
, (A89)

805

(ρu)i+ 1
2 ,j,k+ 1

2
=
−(ρu)i+ 1

2 ,j,k+2 + 7(ρu)i+ 1
2 ,j,k+1

12

+
7(ρu)i+ 1

2 ,j,k
− (ρu)i+ 1

2 ,j,k−1

12
, (A90)

and the velocities at the cell wall for the staggered control volume in the x direction are defined as

vi+ 1
2 ,j+

1
2 ,k

=
vi,j+ 1

2 ,k
+ vi+1,j+ 1

2 ,k

2
, (A91)

wi+ 1
2 ,j,k+ 1

2
=
wi,j,k+ 1

2
+wi+1,j,k+ 1

2

2
. (A92)810

In this form, the fourth-order accuracy in the advection term is guaranteed on the condition of con-

stant velocity. The momentum equations in the y and z directions are discretized in the same way.

In the vertical equation, ρi,j,k+ 1
2
g is added.

A3.3 Thermodynamics equation

The thermodynamics equation is discretized as815

∂ρθ

∂t

∣∣∣∣
i,j,k

= −
(ρu)i+ 1

2 ,j,k
θi+ 1

2 ,j,k
− (ρu)i− 1

2 ,j,k
θi− 1

2 ,j,k

∆xi

−
(ρv)i,j+ 1

2 ,k
θi,j+ 1

2 ,k
− (ρv)i,j− 1

2 ,k
θi,j− 1

2 ,k

∆yj

−
(ρw)i,j,k+ 1

2
θi,j,k+ 1

2
− (ρw)i,j,k− 1

2
θi,j,k− 1

2

∆zk
, (A93)

where

θi+ 1
2 ,j,k

=
−θi+2,j,k + 7θi+1,j,k + 7θi,j,k − θi−1,j,k

12
, (A94)820

and θi,j+ 1
2 ,k

, and θi,j,k+ 1
2

are defined in the same way.
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A3.4 Tracer advection

The tracer advection process is done with the Euler scheme after the temporal integration of the

dynamical variables (ρ, ρu,ρv,ρw, and ρθ). We impose the consistency with continuity (CWC;

Gross et al., 2002) and monotonicity of the tracer advection following Niwa et al. (2011).825

With the condition of no source/sink, the ratio of the mass of tracers to the total mass in the

advection process should be conserved along the trajectory. It is, at the least, necessary that the

spatially constant mass concentration should be kept in any motion of fluid. In order to satisfy this

condition, we use the same mass flux at the last Runge–Kutta process (k3/∆t in Eq. (A72)) for

integration of tracers:830

(ρq)
t+∆t
i,j,k − (ρq)

t
i,j,k

∆t
= −

(ρu)i+ 1
2 ,j,k

qi+ 1
2 ,j,k
− (ρu)i− 1

2 ,j,k
qi− 1

2 ,j,k

∆xi

−
(ρv)i,j+ 1

2 ,k
qi,j+ 1

2 ,k
− (ρv)i,j− 1

2 ,k
qi,j− 1

2 ,k

∆yj

−
(ρw)i,j,k+ 1

2
qi,j,k+ 1

2
− (ρw)i,j,k− 1

2
qi,j,k− 1

2

∆zk
. (A95)

In order to satisfy the monotonicity of tracer advection, we employ the Flux Corrected Transport

(FCT) scheme, which is a hybrid scheme with a higher-order difference scheme and first-order up-835

wind scheme (Zalesak, 1979). In this model, we use the fourth-order central difference scheme as

a higher-order scheme.

If the fourth-order central difference is applied, q is discretized as

qhigh
i+ 1

2 ,j,k
=
−qi+2,j,k + 7qi+1,j,k + 7qi,j,k − qi−1,j,k

12
, (A96)

and qhigh
i,j+ 1

2 ,k
and qhigh

i,j,k+ 1
2

are defined in the same way. On the other hand, in the first-order upwind840

scheme, q is described as

qlow
i+ 1

2 ,j,k
=

qi,j,k if (ρu)i+ 1
2 ,j,k

> 0,

qi+1,j,k otherwise,
(A97)

and qlow
i,j+ 1

2 ,k
and qlow

i,j,k+ 1
2

are defined in the same way. The actual q is described as

qi+ 1
2 ,j,k

= Ci+ 1
2 ,j,k

qhigh
i+ 1

2 ,j,k
+
(

1−Ci+ 1
2 ,j,k

)
qlow
i+ 1

2 ,j,k
, (A98)

and qi,j+ 1
2 ,k

and qi,j,k+ 1
2

are defined in the same way.845

Equation (A95) can be written as

(ρq)
n+1
i,j,k = (ρq)

n
i,j,k −

1

∆xi∆yj∆zk

[
+
[
Ci+ 1

2 ,j,k
F high
i+ 1

2 ,j,k
+
(

1−Ci+ 1
2 ,j,k

)
F low
i+ 1

2 ,j,k

]
−
[
Ci− 1

2 ,j,k
F high
i− 1

2 ,j,k
+
(

1−Ci− 1
2 ,j,k

)
F low
i− 1

2 ,j,k

]
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+
[
Ci,j+ 1

2 ,k
F high
i,j+ 1

2 ,k
+
(

1−Ci,j+ 1
2 ,k

)
F low
i,j+ 1

2 ,k

]
850

−
[
Ci,j− 1

2 ,k
F high
i,j− 1

2 ,k
+
(

1−Ci,j− 1
2 ,k

)
F low
i,j− 1

2 ,k

]
+
[
Ci,j,k+ 1

2
F high
i,j,k+ 1

2

+
(

1−Ci,j,k+ 1
2

)
F low
i,j,k+ 1

2

]
−
[
Ci,j,k− 1

2
F high
i,j,k− 1

2

+
(

1−Ci,j,k− 1
2

)
F low
i,j,k− 1

2

]]
, (A99)

where

F high,low
i+ 1

2 ,j,k
= ∆t∆yj∆zk(ρu)i+ 1

2 ,j,k
qhigh,low
i+ 1

2 ,j,k
, (A100)855

and F high,low
i,j+ 1

2 ,k
and F high,low

i,j,k+ 1
2

are defined in the same way. The anti-diffusive flux is defined as

Ai+ 1
2 ,j,k

= F high
i+ 1

2 ,j,k
−F low

i+ 1
2 ,j,k

, (A101)

and Ai,j+ 1
2 ,k

and Ai,j,k+ 1
2

are defined in the same way. Equation (A99) can be rewritten as

(ρq)
n+1
i,j,k = (ρq)

n
i,j,k −

1

∆xi∆yj∆zk

{
+
[
F low
i+ 1

2 ,j,k
+Ci+ 1

2 ,j,k
Ai+ 1

2 ,j,k

]
860

−
[
F low
i− 1

2 ,j,k
+Ci− 1

2 ,j,k
Ai− 1

2 ,j,k

]
+
[
F low
i,j+ 1

2 ,k
+Ci,j+ 1

2 ,k
Ai,j+ 1

2 ,k

]
−
[
F low
i,j− 1

2 ,k
+Ci,j− 1

2 ,k
Ai,j− 1

2 ,k

]
+
[
F low
i,j,k+ 1

2
+Ci,j,k+ 1

2
Ai,j,k+ 1

2

]
−
[
F low
i,j,k− 1

2
+Ci,j,k− 1

2
Ai,j,k− 1

2

]}
. (A102)865

In practice, we calculate Eq. (A102) by the following steps:

1. The tentative values are calculated using the low-order flux:

(ρq)
†
i,j,k = (ρq)

n
i,j,k

− 1

∆xi∆yj∆zk

[
F low
i+ 1

2 ,j,k
−F low

i− 1
2 ,j,k

+F low
i,j+ 1

2 ,k
−F low

i,j− 1
2 ,k

870

+F low
i,j,k+ 1

2
−F low

i,j,k− 1
2

]
. (A103)

2. Allowable maximum and minimum values are calculated:

(ρq)
max
i,j,k = max{
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max[(ρq)
†
i,j,k ,(ρq)

n
i,j,k],

max[(ρq)
†
i−1,j,k ,(ρq)

n
i−1,j,k],875

max[(ρq)
†
i+1,j,k ,(ρq)

n
i+1,j,k],

max[(ρq)
†
i,j−1,k ,(ρq)

n
i,j−1,k],

max[(ρq)
†
i,j+1,k ,(ρq)

n
i,j+1,k],

max[(ρq)
†
i,j,k−1 ,(ρq)

n
i,j,k−1],

max[(ρq)
†
i,j,k+1 ,(ρq)

n
i,j,k+1]}, (A104)880

(ρq)
min
i,j,k = min{

min[(ρq)
†
i,j,k ,(ρq)

n
i,j,k],

min[(ρq)
†
i−1,j,k ,(ρq)

n
i−1,j,k],

min[(ρq)
†
i+1,j,k ,(ρq)

n
i+1,j,k],

min[(ρq)
†
i,j−1,k ,(ρq)

n
i,j−1,k],885

min[(ρq)
†
i,j+1,k ,(ρq)

n
i,j+1,k],

min[(ρq)
†
i,j,k−1 ,(ρq)

n
i,j,k−1],

min[(ρq)
†
i,j,k+1 ,(ρq)

n
i,j,k+1]}. (A105)

3. Several values for the flux limiter are calculated:

P+
i,j,k= −min

(
0,Ai+ 1

2 ,j,k

)
+ max

(
0,Ai− 1

2 ,j,k

)
890

−min
(

0,Ai,j+ 1
2 ,k

)
+ max

(
0,Ai,j− 1

2 ,k

)
−min

(
0,Ai,j,k+ 1

2

)
+ max

(
0,Ai,j,k− 1

2

)
, (A106)

P−i,j,k = max
(

0,Ai+ 1
2 ,j,k

)
−min

(
0,Ai− 1

2 ,j,k

)
max

(
0,Ai,j+ 1

2 ,k

)
−min

(
0,Ai,j− 1

2 ,k

)
max

(
0,Ai,j,k+ 1

2

)
−min

(
0,Ai,j,k− 1

2

)
, (A107)895

Q+
i,j,k =

[
(ρq)

max
i,j,k − (ρq)

†
i,j,k

]
∆xi∆yj∆zk, (A108)

Q−i,j,k =
[
(ρq)

†
i,j,k − (ρq)

min
i,j,k

]
∆xi∆yj∆zk, (A109)

R+
i,j,k =

min(1,Q+
i,j,k/P

+
i,j,k) if P+

i,j,k > 0,

0 if P+
i,j,k = 0,

(A110)

R−i,j,k =

min(1,Q−i,j,k/P
−
i,j,k) if P−i,j,k > 0,

0 if P−i,j,k = 0.
(A111)900
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4. The flux limiters at the cell wall are calculated:

Ci+ 1
2 ,j,k

=

min(R+
i+1,j,k,R

−
i,j,k) if Ai+ 1

2 ,j,k
≥ 0,

min(R+
i,j,k,R

−
i+1,j,k) if Ai+ 1

2 ,j,k
< 0,

(A112)

and Ci,j+ 1
2 ,k

and Ci,j,k+ 1
2

are defined as the same way.

A3.5 Boundary condition

The boundary condition at the top and bottom boundaries is905

wi,j,kmax+ 1
2

= wi,j,kmin− 1
2

= 0, (A113)

(ρw)i,j,kmax+ 1
2

= (ρw)i,j,kmin− 1
2

= 0, (A114)

(ρqvw)i,j,kmax+ 1
2

= (ρqvw)i,j,kmin− 1
2

= 0, (A115)

(ρqlw)i,j,kmax+ 1
2

= (ρqlw)i,j,kmin− 1
2

= 0, (A116)

(ρqsw)i,j,kmax+ 1
2

= (ρqsw)i,j,kmin− 1
2

= 0, (A117)910

(ρuw)i,j,kmax+ 1
2

= (ρuw)i,j,kmin− 1
2

= 0, (A118)

(ρvw)i,j,kmax+ 1
2

= (ρvw)i,j,kmin− 1
2

= 0, (A119)

(ρθ)i,j,kmax+ 1
2

= (ρθ)i,j,kmin− 1
2

= 0. (A120)

wi,j,kmax+ 1
2

= 0, (A121)

wi,j,kmin− 1
2

= 0. (A122)915

This leads to the boundary condition of the vertical momentum:

(ρw)i,j,kmax+ 1
2

= 0, (A123)

(ρw)i,j,kmin− 1
2

= 0. (A124)

For other prognostic variables, the vertical fluxes at the top and bottom boundaries are zero, except

those from physical processes.920

A4 Numerical filter

We impose an explicit numerical filter using the numerical viscosity and diffusion. Although the

filter is necessary for numerical stability, too strong a filter could dampen any physically meaningful

variability. In this subsection, we describe the numerical filters used in this model, and discuss the

strength of the filter.925

In order to damp the higher wavenumber component selectively, we adopt the hyperviscosity and

diffusion in the traditional way. The hyperviscosity and diffusion of the nth order is defined as

∂

∂x

[
νρ
∂n−1f

∂xn−1

]
, (A125)
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where f is an arbitrary variable (f ∈ ρ,u,v,w,θ,q).

The Laplacian of f is discretized as930

∆fi =
1

∆xi

[
1

∆xi+ 1
2

fi+1−

(
1

∆xi+ 1
2

+
1

∆xi− 1
2

)
fi +

1

∆xi− 1
2

fi−1

]
, (A126)

and

∆n/2fi =
1

∆xi

[
1

∆xi+ 1
2

∆n/2−1fi+1−

(
1

∆xi+ 1
2

+
1

∆xi− 1
2

)
∆n/2−1fi

+
1

∆xi− 1
2

∆n/2−1fi−1

]
. (A127)

Here we consider spatially dependent grid interval in calculating the Laplacian. If it is calculated935

with constant ∆xi as

∆fi =
1

∆x2
i

(fi+1− 2fi + fi−1) , (A128)

∆n/2fi =
1

∆x2
i

(
∆n/2−1fi+1− 2∆n/2−1fi + ∆n/2−1fi−1

)
, (A129)

non-negligible numerical noise appears where the grid spacing varies (e.g., stretching layer near the

top boundary).940

The hyperviscosity and diffusion can be discretized as

∂

∂x

[
νρ
∂n−1f

∂n−1x

]
∼
Fi+ 1

2
−Fi− 1

2

∆xi
, (A130)

where

Fi+ 1
2

νi+ 1
2
ρi+ 1

2

∆xi+ 1
2

(
∆n/2−1fi+1−∆n/2−1fi

)
. (A131)

The coefficient, ν, is written as945

νi+ 1
2

= (−1)n/2+1γ
∆xn

i+ 1
2

2n∆t
, (A132)

where γ is a non-dimensional coefficient. One-dimensional sinusoidal two-grid noise will decay to

1/e with 1/γ time steps. Note that the theoretical e-folding time is 2n

πn
∆t
γ . However, it is ∆t

γ with the

fourth-order central scheme used in this model.

For the numerical stability of the numerical filter itself, it should satisfy950

γ < 1 (A133)

for the one dimensional two-grid noise, and

γ <
1

3
(A134)

for the three dimensional two-grid noise. The conditions might be stricter for other types of noise.
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The flux, F , for the numerical filter is added to the advective flux as955

(ρuf)†
i+ 1

2

= (ρuf)i+ 1
2

+Fi+ 1
2
, (A135)

where the first term of the right-hand side is the flux calculated by the advection scheme. In

the present model, the advection scheme is the fourth-order central difference scheme (see Ap-

pendix A3). This concept is very important for the CWC condition in the tracer equations (see Ap-

pendix A3.4). The modified mass flux of the numerical filter should be used in the tracer advection,960

otherwise the CWC condition is violated.

The numerical viscosity and diffusion in the y and z directions are formulated in the same way as

in the x direction, although a special treatment for the z direction is needed. At the top and bottom

boundaries, the flux must be zero, Fkmax+ 1
2

= Fkmin− 1
2

= 0. In order to calculate the Fkmax− 1
2

and

Fkmin+ 1
2

, values beyond the boundaries, fkmax+1 and fkmin−1, are required, then the mirror boundary965

condition is assumed; fkmax+1 =−fkmax
and fkmin−1 =−fkmin

. This condition is appropriate to

cause the decay the vertical two-grid noise.

Vertical profiles of density, potential temperature, and water vapor usually have significant (e.g.,

logarithmic) dependencies on height. Eq. (A130) has a non-zero value even for the steady state,

and the numerical filter produces artificial motion. To reduce this artificial motion, we introduce970

a reference profile which is a function of height, and deviation from the reference is used as f instead

of ρ, θ, and qv in calculating the numerical filter. The reference profile can be chosen arbitrarily, but

a profile under hydrostatic balance is usually chosen.

Determination of the value of the non-dimensional coefficient γ is an important issue. If it is too

small, the simulation could be numerically unstable or numerical noise could violate the physical975

variability, while variability could be dampened too much if γ is too large. At least, the effect of the

numerical filter on the phenomena of the scale we want to simulate must be reasonably smaller than

the effect of the physically oriented viscosity and diffusion, i.e., the eddy viscosity and diffusion

representing the effect of the SGS turbulence.

The e-folding time of an eddy whose spatial scale is L is 2nLn

γ∆xn ∆t according to the numerical980

filter, and is L2

C2
s (2∆x)2|S| by eddy viscosity and diffusion for an isotropic grid under neutral stabil-

ity conditions. The e-folding time of an eddy whose scale is larger than the effective resolution of

the numerical filter should be longer than that for eddy viscosity and diffusion, where the effective

resolution is the smallest scale of physically meaningful phenomena that a simulation can repre-

sent. It requires that γ < 2n+2C2
s |S|∆t L

n−2

∆xn−2 . The magnitude of the characteristic velocity, U , is985

assumed to be O(1)–O(10) m s−1 for motions whose spatial scale is approximately equal to the

effective resolution. Then, |S|∆t(∼ U
∆x∆t) is estimated to be O(10−3)-O(10−2), because ∆x/∆t

is O(350)–O(1000) m s−1 according to the CFL condition. Roughly speaking, the effective resolu-

tion is usually several times the grid spacing. Here, we assume L/∆x∼ 2− 10; Skamarock (2004)
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suggested that the effective resolution is about six times the grid spacing. It is found that γ should be990

γ < O(10−3)−O(1) for n= 4, (A136)

γ < O(1)−O(105) for n= 8. (A137)

This condition is stricter than the stability condition Eq. (A134) for n= 4, so this condition must

be considered when the value of γ is determined if n= 4 is chosen. On the other hand, it is always

satisfied if the stability condition is satisfied for n≥ 8. This means that in this case, the effect of the995

numerical filter on phenomena whose spatial scale is larger than the effective resolution is always

smaller than that of the eddy viscosity and diffusion, and this condition for γ does not have to be

considered if n≥ 8 is chosen. The advantage of an explicit numerical filter is that its strength can be

controlled or tuned based on such physical considerations.

Odd-order advection schemes are generally more stable numerically than even-order schemes. In1000

general, odd-order schemes can be divided into a central difference term and a filter term (and some-

time other additional terms) conceptually. This implicit numerical filter stabilizes the calculations.

We estimate the corresponding value of γ for the implicit filter. The spatial differential of a scalar

quantity φ with the ordinary third-order upwind difference scheme is written as

∂φ

∂x

∣∣∣∣
i

∼ −φi+2 + 8φi+1− 8φi−1 +φi−2

12∆x
1005

+
∆x3

12
|U |φi+2− 4φi+1 + 6φi− 4φi−1 +φi−2

∆x4
. (A138)

The first term on the right-hand side of the equation represents the central difference with fourth-

order accuracy. The second term, divided by |U |, is written as

∆x3

12

φi+2− 4φi+1 + 6φi− 4φi−1 +φi−2

∆x4
=

∆x3

12

(
∂4φ

∂x4

∣∣∣∣
i

+O(∆x2)

)
, (A139)

and corresponds to fourth-order hyperviscosity and diffusion. This can be considered as implicit1010

numerical filter introduced to the scheme. Their dimensional coefficient is |U |∆x
3

12 , and the non-

dimensional coefficient is

γ = |U | 4∆t

3∆x
. (A140)

Considering the CFL condition, ∆t/∆x < 1/c, γ isO(10−3)–O(10−2), ifU is assumed to beO(1)–

O(10) m s−1, where c is the speed of acoustic wave and isO(102)–O(103). This mostly satisfies the1015

necessary condition (Eq. (A136).

The third-order scheme by Kawamura and Kuwahara (1984) is a modification of the third-order

scheme to enable changing the strength of the numerical filter, and is written as

∂φ

∂x

∣∣∣∣
i

=
−φi+2 + 8φi+1− 8φi−1 +φi−2

12∆x

+C
∆x3

4
|U |φi+2− 4φi+1 + 6φi− 4φi−1 +φi−2

∆x4
. (A141)1020
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We can change the constant C to control the strength of the numerical filter.

Although these schemes can be thought of as being similar to central difference and explicit

fourth-order numerical filters, the total coefficient of the filter depends on the velocity U . The

strength of the implicit filter could be too large when the basic wind state is strong, and its ef-

fect is not always smaller than that of the eddy viscosity and diffusion representing the effect of1025

SGS turbulence. As we discuss here, it is important to estimate the effect of the numerical filter

used in a model, and to control or confirm that the artificial filter does not violate the viscosity and

diffusion as a physical parameterization. This point is one of the most important factors in choosing

a numerical scheme in this type of study.

A5 Physical processes1030

Currently, the following processes are implemented as physical processes in SCALE-LES.

– Cloud microphysics

– A one-moment three-category bulk scheme (Kessler, 1969)

– A one-moment six-category bulk scheme (Tomita, 2008)

– A two-moment six-category bulk scheme (Seiki and Nakajima, 2014)1035

– A bin method (Suzuki et al., 2010)

– Sub-grid turbulence

– A Smagorinsky–Lilly-type scheme including stability effect developed by Brown et al.

(1994)

– A RANS (Reynolds Averaged Navier–Stokes Simulation) turbulence model (Nakanishi1040

and Niino, 2004, level 2.5)

– Radiation

– A parallel plane radiation model (MstrnX; Sekiguchi and Nakajima, 2008)

– Surface flux

– A Louis-type bulk model (Louis, 1979; Uno et al., 1995)1045

– A Beljaars-type bulk model (Beljaars and Holtslag, 1991; Wilson, 2001)

– Urban Canopy

– A single-layer urban canopy model (Kusaka et al., 2001; Kusaka and Kimura, 2004)
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Appendix B: Numerical stability

In this model, we use the second-order central difference scheme for the spatial differential terms1050

of the pressure gradient and the divergence of mass flux, and the fourth-order scheme for advection

terms. In this section, we investigate the numerical instability of the terms and show why we use the

second-order scheme for these terms.

For simplicity, we assume a case in which the initial potential temperature is constant θ0, and the

initial momentum is also constant. In addition, dry conditions are assumed. The potential temperature1055

is to be constant at all times.

The governing equations are

∂ρ

∂t
=−∇ · (ρu), (B1)

∂ρu

∂t
=− ∂p

∂x
, (B2)

p= p00

(
ρRdθ0

p00

) cpd
cvd

. (B3)1060

To investigate the stability, the equations are linearized. The density is divided into the basic value

and the deviation from the basic:

ρ= ρ0 + ρ′, (B4)

where

ρ0 =
p00

Rdθ0
. (B5)1065

Pressure is written as

p∼ p00

(
1 +

cpd
cvd

ρ′

ρ0

)
= p00 + c2ρ′, (B6)

where c is the speed of the acoustic wave (=
√

cpd
cvd

p00
ρ0

) in the reference state of p= p00 and ρ= ρ0.

The time derivatives are written as

∂ρ

∂t

∣∣∣∣
i,j,k

= − −a(ρu)i+1,j,k + b(ρu)i,j,k − b(ρu)i−1,j,k + a(ρu)i−2,j,k

(b− 3a)∆x
1070

− −a(ρv)i,j+1,k + b(ρv)i,j,k − b(ρv)i,j−1,k + a(ρv)i,j−2,k

(b− 3a)∆y

− −a(ρw)i,j,k+1 + b(ρw)i,j,k − b(ρw)i,jk−1 + a(ρw)i,jk−2

(b− 3a)∆z
, (B7)

∂(ρu)

∂t

∣∣∣∣
i,j,k

=− c2−aρi+2,j,k + bρi+1,j,k − bρi,j,k + aρi−1,j,k

(b− 3a)∆x
, (B8)

∂(ρv)

∂t

∣∣∣∣
i,j,k

=− c2−aρi,j+2,k + bρi,j+1,k − bρi,j,k + aρi,j−1,k

(b− 3a)∆y
, (B9)

∂(ρw)

∂t

∣∣∣∣
i,j,k

=− c2−aρi,j,k+2 + bρi,j,k+1− bρi,j,k + aρi,j,k−1

(b− 3a)∆z
. (B10)1075
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For the second-order central difference, a= 0 and b= 1, while a= 1 and b= 9 for the fourth order.

Now we consider the numerical stability of a two-grid noise. An eigen analysis showed that the

two-grid noise is the most unstable eigen mode in all the cases we tested. The density with the noise

can be written as ρti,j,k = ρ0 +Asin(π(i+j+k)). Using the third-step RK scheme, the density after

one time step, ρt+∆t
i,j,k , is1080

ρt+∆t
i,j,k − ρ0 =

(
1− 6

(a+ b)2

(b− 3a)2
c2

∆t2

∆x2

)(
ρti,j,k − ρ0

)
. (B11)

The necessary condition for the two-grid noise to decrease in time is∣∣∣∣∣1− 6

(
a+ b

b− 3a

∆t

∆tCFL

)2
∣∣∣∣∣< 1, (B12)

then

∆t <
1√
3

∆tCFL, (B13)1085

for the second-order spatial difference, and

∆t <

√
3

5
∆tCFL, (B14)

for the fourth order, where ∆tCFL = ∆x/c. If the fourth-order scheme is adopted, we need to make

∆t 0.6 times (or number of time steps multiplied by 1.67) larger than that in the second-order

scheme.1090

The accuracy of the pressure gradient term and divergence term could especially affect the high-

frequency modes of acoustic and gravity waves. The high-frequency modes seem to be less signifi-

cant meteorologically. We choose the second-order spatial scheme for terms of the pressure gradient

and divergence terms to increase ∆t in spite of the decreasing accuracy of the terms, and the fourth-

order scheme for the other terms.1095

Appendix C: Density current experiment

Straka et al. (1993) proposed a standard benchmark test of a nonlinear density current problem,

and we performed a test experiment with the same settings. A cold bubble whose size is 4× 2 km

(horizontal and vertical, respectively) and minimum thermal perturbation is −15 K, is placed in the

domain’s center horizontally, and at 3 km height in a basic resting state whose potential temperature1100

is constant at 300 K. The domain is two dimensional, and its size is 51.2 km× 6.4 km. Runs are done

with various spatial resolutions of 200, 100, 50, and 25 m. The viscosity and diffusion are given by

a coefficient of 75 m2 s−1 for the velocities and scalar quantities.

Figure A3 shows a plot of the potential temperature at t=900 s for the 100 m resolution run. The

structure, such as the position of the front of the density current, rolls caused by the K-H instability,1105

and the magnitude at the local maxima, is reasonably similar with results of various models shown
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in Straka et al. (1993). The dependency of the L2 norm of the potential temperature perturbation as

a reference solution of the 25 m run of spatial resolution shows higher-order convergence than the

second order between 100 and 50 m runs (Fig. A4). This model uses a fourth-order central difference

scheme for advection, which has fourth-order accuracy with constant velocity, and second-order1110

central difference scheme for the acoustic wave. The higher than second-order convergence seems to

be due to the fourth-order difference scheme, although the velocity is not constant, and the scheme

does not have fourth-order accuracy. The convergence is almost first-order between the 200 and

100 m runs. As Straka et al. (1993) mentioned, 200 m is too coarse to resolved this density current.
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(a) Control experiment

(c) Fixed mixing length experiment

(b) Small filter length experiment

Figure 1. Energy spectrum three dimensional velocity at height of 500 m averaged over t= 3.5 to 4 h in (a)

control experiment, (b) small filter length experiment, and (c) fixed mixing length experiment. Colors indicate

grid aspect ratio; 1 (black), 2 (red), 3 (orange), 5 (green), 6 (pink), 10 (blue), and 20 (cyan). Line types indicate

vertical resolution: 10 m (solid line), 30 m (dashed line), and 5 m (dotted line). Linear slope representing the

slope of−5/3 power fit to the spectrum of the 10mAR1 run between 1/1000 and 1/100 m−1 is superimposed.

Only spectra for ∆z = 10 m runs in the small filter length experiment and for large aspect ratio runs (a≥ 5) in

the fixed mixing length experiment are shown.
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Table 1. Notation of symbols.

ρ total density kg m−3

qd ratio of mass of dry air to total mass −

qv specific humidity −

ql specific liquid water content −

qs specific solid water content −

t time s

u velocity vector of air flow m s−1

u x component of velocity m s−1

v y component of velocity m s−1

w z component of velocity m s−1

wl relative velocity of liquid water to gas m s−1

ws relative velocity of solid water to gas m s−1

Sv source term of water vapor kg m−3 s−1

Sl source term of liquid water kg m−3 s−1

Ss source term of solid water kg m−3 s−1

p pressure N m−2

g gravitational acceleration m s−2

fl drag force from water loading by liquid water kg m−2 s−2

fs drag force from water loading by solid water kg m−2 s−2

ez vertical unit vector (upward) −

Rd gas constant for dry air for unit mass J kg−1

Rv gas constant for water vapor for unit mass J kg−1

T temperature K

Qd diabatic heating from dry air J m−3 s−1

Qv diabatic heating from water vapor J m−3 s−1

Ql diabatic heating from liquid water J m−3 s−1

Qs diabatic heating from solid water J m−3 s−1

ed internal energy of dry air J kg−1

ev internal energy of water vapor J kg−1

el internal energy of liquid water J kg−1

es internal energy of solid water J kg−1

e total internal energy J kg−1

cvd specific heat at constant volume of dry air J kg−1 K−1

cvv specific heat at constant volume of water vapor J kg−1 K−1

cpd specific heat at constant pressure of dry air J kg−1 K−1

cpv specific heat at constant pressure of water vapor J kg−1 K−1

cl specific heat of liquid water J kg−1 K−1

cs specific heat of solid water J kg−1 K−1

p00 standard pressure Pa

θd potential temperature of dry air K

θ potential temperature of total air K

Table 2. Filter lengths and the effect of grid aspect ratio on mixing length in the three experiment performed in

this study.

filter length modification by

the grid aspect ratio

control experiment 2(∆x∆y∆z)1/3 yes

small filter length experiment (∆x∆y∆z)1/3 yes

fixed mixing length experiment 2(∆x∆y∆z)1/3 no (f(a) = 1)
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Table 3. Names of runs we performed in the control experiment. Columns and rows correspond to vertical and

horizontal resolutions, respectively. The number following character “AR” represents the grid aspect ratio.

∆x\∆z 5 m 10 m 30 m

10 m – 10mAR1 –

20 m – 10mAR2 –

30 m – 10mAR3 30mAR1

50 m 5mAR10 10mAR5 –

60 m – 10mAR6 30mAR2

100 m 5mAR20 10mAR10 –

150 m – – 30mAR5

Vertical velocityHorizontal velocity

Figure 2. Same as Fig. 1, but spectrum of (left) horizontal and (right) vertical velocity at (top) height of 500 m

and (bottom) lowest layer (z = 2.5, 5, and 15 m for ∆z = 5, 10, and 30 m) in the control experiment.
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(b)

(a)

Figure 3. Horizontal cross section of the vertical velocity at (a) 500 m and (b) 1200 m height in the 10mAR1

run of the control experiment.
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Figure 4. Dependency of the index of energy pile defined in the text on the grid aspect ratio for runs in the (a)

control experiment, (b) small filter length experiment, and (c) fixed mixing length experiment. Symbol shows

vertical resolution; square, cross, and circle shows 5, 10, and 30 m, respectively. Colors represent the grid aspect

ratio as in Fig. 1.
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Figure 5. Vertical plots of horizontal mean (a) potential temperature [K], (b) heat flux [W m−2], (c) variance

of vertical velocity [m2 s−2], and (d) skewness of vertical velocity in the control experiment. These values are

averaged over t= 3.5 to 4 h. Black and cyan lines are results of 10mAR1 and 5mAR20 runs, respectively.

Shaded areas represent range between maximum and minimum of all runs in the control experiment.
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Figure 6. Scatter diagrams between some quantities and grid configurations: (a) depth of surface layer vs. hor-

izontal grid spacing, (b) variance of vertical velocity at 500 m height vs. horizontal grid spacing, (c) skewness

of vertical velocity at 1200 m height vs. horizontal grid spacing, and (d) skewness vs. grid aspect ratio in the

control experiment. Colors and symbols represent grid aspect ratio and vertical resolution, respectively, as in

Fig. 4: 1 (black), 2 (red), 3 (orange), 5 (green), 6 (pink), 10 (blue), and 20 (cyan). Squares, crosses, and circles

indicate 5, 10, and 30 m, respectively. Value at top right of each diagram is correlation coefficient. Note that the

coefficient is calculated with the logarithm of skewness, horizontal grid spacing, and aspect ratio in (c, d). The

broken line in (c) represents the regression line.
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Figure 7. The vertical profiles against z/∆ of (a) the potential temperature, (b) variance of the vertical velocity,

and (c) variance of the horizontal velocity in the 10mAR1 (black solid line), 10mAR2 (red solid), 10mAR5

(green solid), 10mAR10 (blue solid), and 30mAR1 (black broken) runs.
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Figure A1. Vertical profile of (a) US standard atmosphere; (b) several profiles of θ/θd.
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Figure A2. Time–height section of horizontal mean vertical velocity in runs where (a) ∆tdyn = ∆tphys = 0.03 s

and ∆toutput = 0.3 s, (b) ∆tdyn = 0.03 s, ∆tphys = 1.5 s, and ∆toutput = 0.3 s, and surface flux is added at large

time step intermittently, (c) same as (b) but ∆toutput = ∆tphys = 1.5 s, and (d) same as (b) but surface flux is

added at small time step.

50



Figure A3. Plot of potential temperature at t= 900 s of the 100 m resolution density current experiment. Con-

tour interval is 1 K, and contours are centered around 300 K.

Figure A4. L2 norm of potential temperature computed against the 25 m resolution experiment. Dashed lines

represent first-, second-, and fourth-order convergence.
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