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Response to Reviewer 

We thank the reviewer for the constructive and helpful suggestions. Below, we provide our 

responses to the reviewer’s comments. We think our manuscript is much improved after 

addressing the reviewer’s comments.  

The main paper improvements are: 

 The abstract has been modified;  

 Proofreading and grammar check have been performed. 

 

The reviewer’s specific comments (shown in blue) are replied and addressed below. 

Response to Anonymous Referee #1 

Submitted on 12 Jan 2016 

The manuscript by Belikov et al. has been substantially revised. As requested in the initial 

review, the authors provided clarity in several areas, and expanded their evaluation of the 

forward model using additional observations. Overall, I find the revision to be a significant 

improvement. That being said, there are still a few rough spots that could use some 

clarification of the writing, where things are either not clear or simply vague. Also, the 

paper requires proof-reading and editing for grammar throughout. I provided a few 

comments for the abstract and introduction, but stopped after that point.  

 

16: The authors did not comply with my previous request to be quantitative in their 

abstract. The state “However, we do not consider it is necessary to include any numbers in 

the introduction.” This isn’t the introduction, it is the abstract. As such, quantitative 

assessments of “improvements” are not only hight recommended but essentially a 

requirement. I strongly suggest they reconsider, if they want their work to be relevant and 

useful.  

The abstract was revised to introduce quantitative assessments: “Mean bias and standard 

deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when 

using the coupled model. The adjoint of the Eulerian model was shown, through several 

numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6e-

14) compared to direct forward sensitivity calculations.” 

 

4.25: It would be more correct to say high dimensional inverse modeling.  

Revised. 
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Eq 1: This is difficult to read. Try putting the summation indices above and below the 

summation sign, rather than to the right. Use a horizontal bar for fractions rather than 

forward slash.  

Revised 

 

Section 2.1. Both reviewers requested clarification on the time-coupling described in this 

section. Despite the revisions, unfortunately it still isn’t very clear. Could the authors 

consider some sort of schematic or equations to explain, given that the writing is a bit hard 

to follow? For example, statements such as “add contribution from surface sources” are 

vague.  

The computational scheme of the coupled model was added. See Figure 1. 

The sentence “… add contribution from surface sources.” was revised as follows: “To obtain 

the concentrations for the observation time we transport the background concentrations 

from NIES TM gridbox and contribution from surface sources to the location of observation 

point along the trajectory ensemble calculated by FLEXPART model.” 

 

Figs 2-5: You might refer to Table 1 in the figure captions for definition of the cases.  

We have added “The definitions of the cases 1-3 are in Table 1” in the captions of Figure 2-

4. The caption of Figure 5 already had such kind of reference.  

 

Fig 2-4 and associated text: The use of additional measurements to evaluate the forward 

model is appreciated. However, the discussion and analysis of these results is a bit lacking. 

Why are is correlation degraded at some locations (e.g., PRS)? Why is the correlation better 

for some sites than others? Statements like “Most significant improvement” on 11.13 are 

quite vague. Please be more quantitative. Other statements aren’t really correct, such as 

11.21: The improvements….are higher than those obtained by increasing the resolution… 

It’s easy to find cases that contradict this statement, for example there is a 50% reduction 

in STD between Case 1 and 2 for the ALT site (Fig 4a), but no apparent improvement 

between the Eulerian-only and coupled mode (Fig 4b). Recognizing, vaguely, that there are 

issues at some sites in the final paragraph of this section (11.28 - 12.3) doesn’t really count; 

try merging this content into a singe cohesive, precise, discussion. I’m not arguing that the 

coupled mode isn’t better overall. Definitely it is! It’s just that the authors need to be much 

more precise and careful with the writing and discussion of their results for a scientific 

paper. 
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Sentence at 11.13 revised as “Therefore, the simulation for CO2 for these sites shows the 

full potential of the coupled model.” 

Sentence at 11.15 – 12.3 revised as: 

“Figures 5 compares the coupled and Eulerian model results with observations from the 

Igrim and Vaganovo towers. The recent modifications indicated in Sect. 2.2 have 

significantly improved the performance of NIES TM compared with the results reported by 

Ganshin et al. (2012). However, compared to the updated NIES TM the coupled model is 

better reproducing short term peaks of concentration. This explains the observed 

reduction of the mean bias and STD (up to 1.5 ppm), and the better simulation of the 

seasonal variation (in phase and amplitude). Generally, the improvements in the CO2 

simulations due to the addition of the Lagrangian component to the Eulerian model are 

higher than those obtained by increasing the resolution of the Eulerian NIES transport 

model, as seen for the third group of sites (Fig. 2-4).  

However, improvements in CO2 simulation due to the implementation of the GELCA model 

were obtained not for all the considered sites. There are several factors that limit the 

coupled model performance improvement. First, no significant improvement can be 

expected for the remote and marine sites since they are influenced by very distant 

emissions and/or nearby homogeneous emissions that are managed appropriately by the 

Eulerian model. The Lagrangian model introduces very significant improvements for sites 

influenced by relatively nearby inhomogeneous sources. Second, the use of the very rough 

Eulerian grid (10.0°) causes a wrong reproduction of the CO2 seasonal cycle due to the large 

aggregation error, e.g., this happens for ALT and BRW. However, note that such low 

resolution is used in a rather synthetic case, which is unlikely to be used for actual 

simulations. Third, temporal irregularities in the observations and noise in the 

meteorological data bring erroneous signal to the Lagrangian model, causing spurious 

short term peaks of tracers, which cause degraded results at some locations (e.g., PRS, 

YAK). This shows that further modification of the setup (i.e. more detailed meteorological 

data, switch to higher resolution) is necessary. Fourth, the Lagrangian part is very sensitive 

to the local flux quality. Thus, it is quite problematic to use the highly uncertain surface 

fluxes to simulate the tracer concentrations and use these concentrations for estimating the 

quality of different model configurations. However, we cannot improve our analysis, 

because we do not have concentration measurements for tracers whose surface fluxes are 

more accurately known, like SF6.  

 Given the large difference in computational costs running the NIES TM model when using 

the lower- and the higher-resolution grids (e.g., the computational cost increases by a 

factor of ~4 between Case 2 and 3), the coupled model is an effective way to improve the 

CO2 simulation without changing the Eulerian model resolution.” 
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13.8: Another potential drawback is that discrete adjoints of nonlinear advection routines 

have been shown to have poorer performance for 4D-Var optimization than the continuous 

adjoints (Liu and Sandu, 2008, doi 10.1002/Fld.1547).  

Added 

 

15.29: In my understanding, checkpointing or recalculation of variables for an adjoint 

model are needed when nonlinearities arise. Yet your model is linear, no? So what is it that 

needs to be checkpointed? 

Yes, the model is linear. The text has been revised and the following sentences have been 

removed: “the forward NIES model was altered so that at each model timestep it saved any 

variables that were also needed by the adjoint model. Therefore, these variables did not 

have to be recalculated for being used in the adjoint model. This was possible because we 

used a discrete version of the adjoint, which was fully compatible with the forward model. “ 

 

Editorial: 

2.16: reproducing —> reproduction 

3.15: an —> of an  

3.17: using for the first time of —> for the first time using 

3.18: use —> using 

3.19: develop —> , and development  

4.4: effective —> effective in (or effective at) 

4.4: remove “of” 

4.5: The Lagrangian —> Lagrangian 

4.6: tracks —> track 

4.13: with set —> with a set 

4.16: gradient —> gradients 

4.18: 1990s, 

4.20: data assimilation —> assimilation 

5.4: adjoint, that —> adjoint that  

All these editorial errors have been corrected 
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Abstract 1 

We presented the development of the Adjoint of the Global Eulerian–Lagrangian Coupled 2 

Atmospheric (A-GELCA) model that consists of the National Institute for Environmental 3 

Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART 4 

(FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). 5 

The forward tangent linear and adjoint components of the Eulerian model were constructed 6 

directly from the original NIES TM code using an automatic differentiation tool known as TAF 7 

(Transformation of Algorithms in Fortran; http://www.FastOpt.com), with additional manual 8 

pre- and post-processing aimed at improving transparency and clarity of the code and 9 

optimizing the performance of the computing, including MPI (Message Passing Interface). The 10 

Lagrangian component did not require any code modification, as LPDMs are self-adjoint and 11 

track a significant number of particles backwad in time in order to calculate the sensitivity of 12 

the observations to the neighboring emission areas. The constructed Eulerian adjoint was 13 

coupled with the Lagrangian component at a time boundary in the global domain. The 14 

simulations presented in this work were performed using the A-GELCA model in forward and 15 

adjoint modes. The forward simulation shows that the coupled model improves 16 

reproductioning of the seasonal cycle and short-term variability of CO2. Mean bias and 17 

standard deviation for five of the six Siberian sites considered were decreased roughly by 1 18 

ppm when using the coupled model. The adjoint of the Eulerian model was shown, through 19 

several numerical tests, to be very accurate (within machine epsilon with mismatch around to 20 

±6e-14) compared to direct forward sensitivity calculations. The developed adjoint of the 21 

coupled model combines the flux conservation and stability of an Eulerian discrete adjoint 22 

formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward 23 

trajectory formulation. A-GELCA will be incorporated into a variational inversion system 24 

designed to optimize surface fluxes of greenhouse gases. 25 

 26 

Keywords: atmospheric transport and inverse modeling, adjoint model, carbon cycle 27 
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1. Introduction 1 

Forecasts of CO2 levels in the atmosphere and predictions of future climate depend on 2 

our scientific understanding of the natural carbon cycle (IPCC, 2007; Peters et al., 2007). To 3 

estimate the spatial and temporal distribution of carbon sources and sinks, inverse methods 4 

are used to infer carbon fluxes from geographically sparse observations of the atmospheric 5 

CO2 mixing ratio (Tans et al., 1989). The first comprehensive efforts in atmospheric CO2 6 

inversions date back to the late 1980s and early 1990s (Enting and Mansbridge, 1989; Tans et 7 

al., 1989). With the increase in spatial coverage of CO2 observations and the development of 8 

three-dimentional (3-D) tracer transport models, a variety of numerical experiments and 9 

projects have been performed by members of the so-called “TransCom” community of inverse 10 

modelers (e.g., Law et al., 1996, 2008; Denning et al., 1999; Gurney et al., 2002, 2004; Baker et 11 

al., 2006; Patra et al., 2011). A number of studies have proposed improvements to the inverse 12 

methods of atmospheric transport, i.e. the efficient computation of the transport matrix by the 13 

model adjoint proposed by Kaminski et al. (1999b), use of monthly mean GLOBALVIEW-CO2 14 

ground-based data (current version is for 2014) by Rödenbeck et al. (2003), development of 15 

an ensemble data assimilation method by Peters et al. (2005), flux inversion at high temporal 16 

(daily) and spatial (model grid) resolution using for the first time using of continuous CO2 17 

measurements over Europe by Peylin et al. (2005), usinge satellite data to constrain the 18 

inversion of CO2 by Chevallier et al. (2005), and development of a new observational 19 

screening technique by Maki et al. (2010). Despite progress in atmospheric CO2 inversions, a 20 

recent intercomparison (Peylin et al., 2013) demonstrated the need for further refinement. 21 

In recent decades, the density of the observational network established to monitor 22 

greenhouse gases in the atmosphere has been increased, and more measurements taken 23 

onboard ships and aircraft are becoming available (Karion et al., 2013; Tohjima et al., 2015). 24 

However, on a global scale CO2 observations do not exist for many remote regions not covered 25 

by networks. This lack of data is one of the main limitations of atmospheric inversions, which 26 

can be filled by monitoring from space (Rayner and O’Brien, 2001). The satellite observation 27 

data from current (GOSAT, Kuze et al., 2009; Yokota et al., 2009; OCO-2, Crisp et al., 2004) and 28 

future missions (CarbonSat/CarbonSat Constellation; Bovensmann et al., 2010; Buchwitz et 29 

al., 2013) offer enormous potential for CO2 inverse modeling. Optimal application of large 30 

observed datasets requires expanding the inverse analysis of CO2 to finer resolution, higher 31 

precision and faster performance. 32 

To link surface fluxes of CO2 to observed atmospheric concentrations, an accurate model 33 
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of atmospheric transport and an inverse modeling technique are needed. Generally, the 1 

atmospheric constituents transport may be described in two different ways: the Lagrangian 2 

and the Eulerian approaches. The Eulerian method treats the atmospheric tracers as a 3 

continuum on a control volume basis, so it is more effective at reproducing of long-term 4 

patterns, i.e. the seasonal cycle or the interhemispheric gradient. The Lagrangian Particle 5 

Dispersion Models (LPDMs) consider atmospheric tracers as a discrete phase and tracks each 6 

individual particle, therefore LPDMs are better for resolving synoptic and hourly variations. 7 

To relate fluxes and concentrations of long-lived species like CO2, a transport model must 8 

cover a long simulation period (e.g., Bruhwiler et al., 2005). Therefore, computing time is a 9 

critical issue and minimization of the computational cost is essential. For chemically inert 10 

tracers, the transport can be represented by a model’s Jacobian matrix, because the simulated 11 

concentration at observational sites is a linear function of the flux sets. Theoretically, to 12 

compute such matrix the transport model is run multiple times with a set of prescribed 13 

surface fluxes. However, this would require an extremely large number of forward model 14 

evaluations. The adjoint of the transport model is an efficient way to accelerate calculation of 15 

concentration gradients of the simulated tracer at observational locations (Kaminski et al., 16 

1999). Marchuk (1974) first applied the adjoint approach in atmospheric science. After that, 17 

this method became widely used in meteorology. In the 1990s, the use of this approach was 18 

expanded to the field of tracer transport modeling (Elbern et al., 1997; Kaminski et al., 1999).  19 

Adjoint models have numerous applications, including the data assimilation of 20 

concentrations, inverse modeling of chemical source strengths, sensitivity analysis, and 21 

parameter sensitivity estimation (Enting, 2002; Haines et al., 2014). Recent studies have used 22 

this method to constrain estimates of the emissions of CO2 using retrieved column integrals 23 

from the GOSAT satellite (Basu et al., 2013; Deng et al., 2014; Liu et al., 2015). 24 

Using the adjoint model speeds up the process of high dimensional inverse modeling. 25 

However, high CPU and memory demands prevent us from using Eulerian chemical transport 26 

models (CTMs) with high-resolution grids in inversions. It would be beneficial to increase the 27 

model resolution close to observation points, where the strong observation constraint can 28 

significantly improve the optimization of the resulting emission fluxes. 29 

LPDM running in the backward mode can explicitly estimate a source–receptor 30 

sensitivity matrix by solving the adjoint equations of atmospheric transport (Stohl et al., 31 

2009), which is mathematically presented by a Jacobian expressing the sensitivity of 32 

concentration at the observational locations. Marchuk (1995), and Hourdin and Talagrand 33 
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(2006) provided derivations proving equivalence of the adjoint of forward transport models 1 

to backward transport models. 2 

In order to exploit the advantages of both methods, Lagrangian and Eulerian chemical 3 

transport models can be coupled to develop an adjoint, that is suitable for the simultaneous 4 

simulation of contributions from global and regional emissions. Coupling can be performed in 5 

several ways; e.g., a regional-scale LPDM can be coupled to a global Eulerian model at a 6 

regional domain boundary (Rödenbeck et al., 2009; Rigby et al., 2011), or a global-scale LPDM 7 

can be coupled to an Eulerian model at the time boundary (Koyama et al., 2011; Thompson 8 

and Stohl, 2014). 9 

The goal of this study is to present the development and evaluation of an Adjoint of the 10 

Global Eulerian–Lagrangian Coupled Atmospheric model (A-GELCA), which consists of an 11 

Eulerian National Institute for Environmental Studies global Transport Model (NIES-TM; 12 

Maksyutov et al., 2008; Belikov et al., 2011, 2013a, 2013b) and a Lagrangian particle 13 

dispersion model (FLEXPART; Stohl et al., 2005). This approach utilizes the accurate transport 14 

of the LPDM to calculate the signal near to the receptors, and efficient calculation of 15 

background responses using the adjoint of the Eulerian global transport model. In contrast to 16 

previous works (Rödenbeck et al., 2009; Rigby et al., 2011; Thompson and Stohl, 2014), in 17 

which the regional models were coupled at the spatial boundary of the domain, we 18 

implemented a coupling at a time boundary in the global model domain (as described in Sect. 19 

2.1). A-GELCA can be integrated into a variational inverse modeling system designed to 20 

optimize surface fluxes. 21 

The remainder of this paper is organized as follows. An overview of the coupled model is 22 

provided in Sect. 2. In Sect. 3 we describe the variational inversion scheme. In Sect. 4 we 23 

address several problems regarding the coupled model that have not been covered previously 24 

(Ganshin et al., 2012). In Sect. 5 we describe the formulation and evaluation of the adjoint 25 

model. The computational efficiency of the adjoint model is analyzed in Sect. 6, and the 26 

conclusions are presented in Sect. 7.  27 

  28 
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2. Model and method 1 

2.1. Global coupled Eulerian-Lagrangian model 2 

In this paper we use a global Eulerian-Lagrangian coupled model, the principles of which 3 

are described by Ganshin et al. (2012). The coupled model consists of FLEXPART (version 8.0; 4 

run in backward mode) as the Lagrangian particle dispersion model, and NIES TM (version 5 

NIES-08.1i) as the Eulerian off-line global transport model. For concentration 𝐶(𝑥𝑟 , 𝑡𝑟) (mole 6 

fraction) at receptor point 𝑥𝑟 and time 𝑡𝑟 we provide the equation in its discrete form, as 7 

implemented in the model for the case of surface fluxes: 8 
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where i, j, and k are the indices that characterize the location of each grid cell; s is the 11 

time index; l

ijF  are the surface fluxes in kg⋅m–2⋅s–1; B

ijkC  are the background concentrations 12 

calculated by the Eulerian model at the coupling time; n

ijkf  equals unity if the particle is within 13 

cell i, j, k, otherwise it equals zero; T is the duration of the backward trajectory; S is the 14 

number of steps in time; N is the total number of particles; h is the height up to which the 15 

effect of the surface fluxes is considered significant; ρ is the average air density below height 16 

h; and mair and mCO2 are the molar masses of air and carbon dioxide, respectively. The first 17 

term in this formula describes the contribution of the nearby sources of the considered 18 

component; these sources are located along the trajectories inside layer h (500 m). The value 19 

of the first term is proportional to the flux in each cell along the trajectory, and to the time 20 

during which the air particle is inside this cell (Ganshin et al., 2012). The background grid 21 

values of the concentrations (calculated by the Eulerian model), which are interpolated to the 22 

final points of the backward trajectories, are transferred to the observation point and are the 23 

second term in the right-hand side of Eq. (1). The FLEXPART model starts simulation at the 24 

observation point and calculates seven-day backward trajectories for 1000 air particles, 25 

which are dispersed under the influence of turbulent diffusion. The number of particles has 26 

been chosen to optimize the computational cost without compromising the quality of 27 

modeling by Ganshin et al., (2013). The scheme of concentration calculation for the given 28 

location includes coupling of two model approaches. NIES TM calculates global concentrations 29 

for the selected time period (usually 1 year to exclude spin-up effect), but stops 7 days before 30 
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the time of the observations. To obtain the concentrations for the observation time we 1 

transport the background concentrations from NIES TM gridbox and contribution from 2 

surface sources to the location of observation point along the trajectory ensemble calculated 3 

by FLEXPART model (Fig. 1) and add contribution from surface sources. Therefore we have 4 

implemented the coupling at a time boundary in the global domain of the NIES transport 5 

model, while nested regional modeling systems such as one by Rodenbeck et al (2009) have to 6 

couple at both region boundary and time boundary. 7 

Since the first publication of the GELCA model in 2012, the NIES transport model has 8 

undergone significant updates. We provide a brief outline of the major features of the current 9 

model. NIES TM is a global three-dimensional CTM that simulates the global distribution of 10 

atmospheric tracers between the Earth’s surface and a pressure level of 5 hPa. The model 11 

employs the standard horizontal latitude–longitude grid with reduced number of meshes 12 

towards the poles and a spatial resolution of 2.5° × 2.5° near the equator(Belikov et al., 2011). 13 

The vertical coordinate is a flexible hybrid sigma–isentropic (σ–θ) with 32 levels (Belikov et 14 

al., 2013b). To parameterize turbulent diffusivity we follow the method proposed by Hack et 15 

al. (1993), with a separate evaluation of transport processes in the free troposphere and the 16 

planetary boundary layer (PBL). The PBL heights are provided by the European Centre for 17 

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. The modified Kuo-type 18 

parameterization scheme is used for cumulus convection (Belikov et al., 2013a). 19 

Inverse modeling assumes that the model reasonably well reproduces the relationship 20 

between atmospheric mixing ratio and surface fluxes, assuming that the biases between the 21 

simulated and observed concentrations are mostly due to the emission inventories errors. To 22 

ensure that this is the case, the NIES TM model has been evaluated extensively. Comparisons 23 

against SF6 and CO2 (Belikov et al., 2011, 2013b), CH4 (Patra et al., 2011; Belikov et al., 2013b), 24 

and 222Rn (Belikov et al., 2013a) measurements show the model ability to reproduce seasonal 25 

variations, interhemispheric gradient and vertical profiles of tracers. 26 

2.2. FLEXPART 27 

FLEXPART, like other LPDMs, considers atmospheric tracers as clouds of individual 28 

particles and tracks the pathway of each particle. The advantage of this approach is the direct 29 

estimation of the sensitivity of the measurements to the neighboring sinks and sources by 30 

tracking the particles backward in time. Usually it is sufficient to simulate for a limited 31 

number of days (2-10) to determine where particles intercept the surface layer before they 32 

spread vertically and horizontally. 33 
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2.3. Meteorological data 1 

To run both models we use reanalysis dataset combining the Japanese 25-yr Reanalysis 2 

(JRA-25) and the Japanese Meteorological Agency Climate Data Assimilation System (JCDAS) 3 

dataset (Onogi et al., 2007). The JRA-25/JCDAS dataset is distributed on a Gaussian T106 grid 4 

with horizontal resolution 1.25° × 1.25°, 40 sigma-pressure levels and in 6-hour time steps. 5 

The use of JRA-25/JCDAS data for Eulerian and Lagrangian models provides consistency in the 6 

calculated fields; however, some features of FLEXPART and NIES TM require different 7 

methods for processing the meteorological data. 8 

2.3.1. Meteorological data processing for NIES TM 9 

Isolation of the transport equations is an effective way to save a significant amount of 10 

CPU time during tracer transport simulation. At the preprocessing stage, the NIES TM core 11 

produced a static archive of advective, diffusive, and convective mass fluxes with time step 12 

similar to the one of the original JRA-25/JCDAS data (6 hour). After that the archive is used by 13 

an “offline” model specially designed only for passive transport of tracer. Intermediate fluxes 14 

are derived by interpolation. 15 

Besides the mass fluxes, the static archives contain fields of temperature, pressure, 16 

humidity, vertical grid parameters (variation of the sigma-isentropic vertical coordinate over 17 

time), and others. The pre-calculated and stored data field can be used directly for any of the 18 

inert tracers. It is also possible to simulate chemically active tracers if the chemical reaction 19 

can be written in the linear decay form; e.g., for 222Rn, CH4. Approximately 20 3-D and 1-20 

dimensional arrays are written to a hard disk for every record. This comprises around 10 GB 21 

of data per modelled month for the model’s standard resolution of 2.5° × 2.5°. 22 

2.3.2. Meteorological data processing for FLEXPART 23 

Originally, FLEXPART was driven by ECMWF reanalysis dataset distributed on a grid 24 

with regular latitude–longitude horizontal structure and sigma–pressure vertical coordinate. 25 

The current version of the model was adapted to use JRA-25/JCDAS data, by horizontal 26 

bilinear interpolation of the required parameters from a Gaussian grid to a regular 1.25 × 1.25 27 

grid. The vertical structure and temporal resolution of JRA-25/JCDAS data were used without 28 

modification.  29 

Given the large differences in structure, resolution and parameter estimation methods 30 

used in different reanalysis dataset, the use of the same meteorology for both Eulerian and 31 
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Lagrangian models provides significant benefit.  1 

3. Inverse modeling for the flux optimization problem 2 

Although the variational inversion method for minimizing the discrepancy between 3 

modeled and observed mixing ratios has been well described and published (i.e. Chevallier et 4 

al., 2005), we summarize it here.  5 

The aim of the inversion problem is to find the value of a state vector x with n elements 6 

that minimizes the cost function J(x):  7 

          1 11 1
,

2 2

T T

b bJ       x x x B x x Hx y R Hx y  (2) 8 

where y is a vector of observations with m elements, and the matrix H represents the forward 9 

model simulation mapping the state vector x to the observation space. Here, R  is the 10 

covariance matrix (size m × m) for observational error, which includes instrument and 11 

representation errors. The matrix R  also includes errors of the forward model H. B  is the 12 

covariance matrix (size n × n) of error for prior information of the state vector xb. The use of 13 

the cost function in the form of Eq. (2) assumes that all errors have Gaussian statistics and are 14 

unbiased (Rodgers, 2000).  15 

The minimization of the cost function (Eq. 2) has an analytic solution that involves a 16 

matrix inversion. If the Jacobian H is available this analytic solution can implemented, unless 17 

the matrix sizes are too large for the available computing resources. Alternatively, Eq. 2 can be 18 

solved through an iterative minimization algorithm. In this case, the existence of the gradient 19 

of J(x) with respect to x allows using of powerful gradient algorithms for minimization. This 20 

gradient is efficiently provided by the adjoint (Giering and Kaminski, 1998; Kaminski et al., 21 

1999; Chevallier et al., 2005).  22 

4. Assessment of the coupled model 23 

The effect of different horizontal resolutions on Eulerian models is discussed in detail by 24 

Patra et al. (2008). In general, higher resolution helps to resolve a more detailed distribution 25 

of the tracer. However, the use of a higher resolution grid leads to additional computational 26 

cost, which is not always justified by the resulting model output. Higher resolution does not 27 

produce better results largely due to the limited availability of high-resolution meteorology 28 

and tracer emission datasets. 29 

The paper by Ganshin et al. (2012) describing the development of the GELCA model 30 
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provides a model testing report. The advantage of GELCA in reproducing the high-1 

concentration spikes and short-term variations caused mainly by anthropogenic emissions is 2 

more vivid when using high resolution (1 km × 1 km) surface fluxes compared to standard 3 

resolution (1° × 1°) fluxes. However those tests considered only short 4-month simulations 4 

for a limited number of locations. 5 

We expanded the comparison undertaken by Ganshin et al. (2012) to a two-year period 6 

using an updated set of prescribed fluxes, which combines four components similar to the 7 

analysis performed by Takagi et al. (2011) and Maksyutov et al. (2013): (a) anthropogenic 8 

fluxes from the Open source Data Inventory of Anthropogenic CO2 (ODIAC; Oda and 9 

Maksyutov, 2011) and the Carbon Dioxide Information Analysis Center’s (CDIAC; Andres et 10 

al., 2009, 2011) datasets; (b) biosphere fluxes simulated by the Vegetation Integrative 11 

SImulator for Trace gases (VISIT) terrestrial biosphere model (Ito, 2010; Saito et al., 2011, 12 

2013); (c) oceanic fluxes predicted by a data assimilation system based on the Offline ocean 13 

Tracer Transport Model (OTTM; Valsala and Maksyutov, 2010); and (d) biomass burning 14 

emissions from the Global Fire Emissions Database (GFED) version 3.1 (van der Werf et al., 15 

2010). Biosphere fluxes have daily time step, while the others are monthly. The initial global 16 

CO2 distribution was obtained from GLOBALVIEW-CO2 (2014). 17 

We considered several cases with different model resolutions. For NIES TM we tested 18 

grids at 10.0°, 2.5°, and 1.25° resolutions, with FLEXPART running at 1.0° (Table 1). The 19 

resolution of the input fluxes was matched to that of FLEXPART. Model results were 20 

compared with observations from the World Data Centre for Greenhouse Gases (WDCGG 21 

2015) and the Siberian observations obtained by the Center for Global Environmental 22 

Research (CGER) of the National Institute for Environmental Studies (NIES) and the Russian 23 

Academy of Science (RAS), from six tower sites (JR-STATION) as described by Sasakawa et al. 24 

(2010). The selected site locations are shown in Fig. 12. 25 

Although the total number of observational stations contributing to the WDCGG is about 26 

several hundreds, the set of sites conducting continuous (high temporal resolution is needed 27 

for the coupled model) observations is much smaller. We selected 19 sites (Table 2). Most of 28 

them are concentrated in the temperate latitudes of the northern hemisphere, where the 29 

variations in CO2 concentration are most noticeable. 30 

Siberia is assumed to be a substantial source and sink of CO2, with high uncertainties in 31 

the fluxes describing them (McGuire et al., 2009; Hayes et al., 2011; Saeki et al., 2013). As a 32 

result, CTMs tend to reproduce the interannual variability of CO2 quite poorly. We selected six 33 
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tower JR-STATION sites to check the model performance in the Siberian region (Table 3). 1 

The analyzed sites are divided into three groups. The first group includes remote and 2 

marine sites (ALT, AMS, BRW, CPT, IZO, JBN, MLO, MNM, ZEP) with very weak influence of 3 

local sources, so the seasonal variation of CO2 is controlled by global, large-scale variations. 4 

For these sites contribution by using the Lagrangian component is negligible (see Fig. 23-45 5 

panel b to analyze the difference between the coupled and the Eulerian models).  6 

The second group includes sites with domination of long term variability of CO2 and 7 

relatively smooth and weak short term variations. Typically, these sites are located on the 8 

border of two regions with very different fluxes (AMY, CMN, MHD, PAL, PRS, YON).  9 

The sites selected to the third group are strongly influenced by local emissions and 10 

global transport at the same time. Therefore the CO2 concentration variation is controlled by 11 

the strength and direction of wind, the depth of the boundary layer and other factors. Such 12 

sites are mainly in the northern mid-latitudes (HUN, PUY, SSL, WSA) including all Siberian 13 

towers (DEM, IGR, KRS, NOY, VGN, YAK). For these locations contributions of the Eulerian and 14 

Lagrangian components are comparable. Therefore, the simulation of CO2 for these sites 15 

showallows the fullfilling potential of the coupled model. 16 

 introduces the most significant improvement when simulating CO2 for these sites.  17 

Figures 65 compares the coupled and Eulerian model results with observations from the 18 

Igrim and Vaganovo towers. The recent modifications indicated in Sect. 2.2 have significantly 19 

improved the performance of NIES TM compared with the results reported by Ganshin et al. 20 

(2012). However, compared to the updated NIES TM the coupled model is better reproducing 21 

short term peaks of concentration. This explains the observed reduction of the mean bias and 22 

STD (up to 1.5 ppm), and the better simulation of the seasonal variation (in phase and 23 

amplitude). Generally, the improvements in the CO2 simulations due to the addition of the 24 

Lagrangian component to the Eulerian model are higher than those obtained by increasing the 25 

resolution of the Eulerian NIES transport model, as seen for  (the third group of sites (Fig. 23-26 

45). Given the huge difference in computation costs between NIES TM for low- and high-27 

resolution grids (i.e. a difference by a factor of ~15 between grids with resolution 10.0° and 28 

2.5°), the advantage of the GELCA model is clear. Performance is important, as the setup 29 

considered here is almost identical to that used in the inverse modeling of CO2.  30 

However, improvements in CO2 simulation due to the implementation of the GELCA 31 

model were obtained not for all the considered sites. There are several factors that limit the 32 

coupled model performance improvement. First, no significant improvement can be expected 33 
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for the remote and marine sites since they are influenced by very distant emissions and/or 1 

nearby homogeneous emissions that are managed appropriately by the Eulerian model. The 2 

Lagrangian model introduces very significant improvements for sites influenced by relatively 3 

nearby inhomogeneous sources. Second, the use of the very rough Eulerian grid (10.0°) causes 4 

a wrong reproductioning of the CO2  seasonal cycle due to the large aggregation error, e.g.,i.e. 5 

this happens forat ALT and , BRW. However, nNote that, such low resolution is used in a 6 

rather synthetic case, which is unlikely to be used for actual simulations. Third Second, a 7 

temporal irregularitiesy in theof observations and a noise in the meteorological data bring 8 

erroneous signal to the Lagrangian model, causinges spurious short term peaks of tracers, 9 

which causes degraded results degraded at some locations (e.g., PRS, YAK). This shows that 10 

further modification of the setup (i.e. more detailed meteorological data, switch to higher 11 

resolution) is necessary. FourthThird, the Lagrangian part is very sensitive to the local flux 12 

quality. Thus, it is quite problematic to use the highly uncertain surface fluxes to simulate the 13 

tracer concentrations and use these concentrations for estimating the quality of different 14 

model configurations. However, we cannot improve our analysis, because we do not have 15 

concentration measurements for tracers whose surface fluxes are more accurately known, 16 

like SF6. 17 

Given the hugelarge difference in computational costs running thebetween NIES TM 18 

model when using thefor lower- and the higher-resolution grids (ei.ge., the computational 19 

costa difference increases  by a factor of ~15 between grids with resolution 10.0° and 2.5°~4 20 

between Case 2 and 3), the advantage of the GELCA model is clear. Performance is important, 21 

as the setup considered here is almost identical to that used in the inverse modeling of 22 

CO2.This shows that further modification of the setup (i.e. more detail meteorological data, 23 

switch to higher resolution) is necessary. Nevertheless, the coupled model is an effective way 24 

to improve the CO2 simulation of CO2 without changing increasing the resolution of the 25 

Eulerian model resolution. We recognize that is quite problematic to use the highly uncertain 26 

surface fluxes to simulate the tracer concentrations and use these concentrations for 27 

estimating the quality of different model configurations. Nevertheless, we cannot improve our 28 

analysis, because we do not have concentration measurements for tracers whose surface 29 

fluxes are more accurately known, like SF6. 30 
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5. Construction and validation of the adjoint model 1 

5.1. Construction 2 

In this section, we present the development of the adjoint of the coupled model. The 3 

incorporation of the Lagrangian component does not require any modification to the code, as 4 

LPDMs are self-adjoint. The development of the adjoint of the Eulerian part is more 5 

complicated. We decided to develop a discrete adjoint of NIES TM in order to make it 6 

consistent with the forward model. An alternative approach is the construction of a 7 

continuous adjoint derived from the leading equations of the forward model (Giles and Pierce, 8 

2000). The main advantage of the discrete adjoint model is that the resulting gradients of the 9 

numerical cost function are exact, even for nonlinear or iterative algorithms, and this makes 10 

easier to validate the adjoint model, which is an essential and complicated task.  11 

The adjoint model for NIES TM was created manually to achieve maximum 12 

computational efficiency, while the adjoint of NIES TM to FLEXPART coupler was created 13 

using the Transformation of Algorithms in Fortran (TAF) software 14 

(http://www.FastOpt.com). However, the use of this tool required some manual treatment of 15 

the code. TAF successfully produces the tangent linear and adjoint code of individual 16 

procedures, but it gets confused when the model has complex structures (such as loops and 17 

conditional operators). Therefore we often manually redesigned and optimized the 18 

automatically generated adjoint code to optimize the efficiency, improve readability and 19 

clarity of the adjoint model and optimize the performance of computing using MPI, as the TAF 20 

code used here (version 1.5) do not fully support MPI routines. 21 

The advantages of our coupled adjoint model are as follows. 22 

1.  Simple incorporation of the Lagrangian part, since no modification of the LPDM is 23 

required. Potentially, NIES TM can be coupled to any Lagrangian model. 24 

2.  Minimization of the simulation time can be obtained, as once calculated the output from 25 

the Lagrangian model is applicable for different long-lived tracers. 26 

3. Reduction of aggregation errors can be achieved, as the sensitivity for small regions and 27 

even individual model cells near to observation sites is estimated using the LPDM part, 28 

while the sensitivity for large regions remote from the monitoring sites is derived using 29 

the Eulerian part (Kaminski et al., 2001). 30 

4.  Minimization of the computational cost can be obtained, as high-resolution simulation 31 

are performed over a limited number of regions nearby to the observational sites using 32 

http://www.fastopt.com/
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the LPDM part, while for the rest of the globe the coarse-resolution results are 1 

calculated by the Eulerian part. 2 

5.  High consistency of the tracer fields calculated by the Lagrangian and the Eulerian 3 

models due to the fact that both models use the same input meteorology. 4 

The main drawback of the method is that the deriving of discrete adjoint of Eulerian 5 

model is а significant technical challenge. Another potential drawback is that discrete adjoints 6 

of nonlinear advection routines have been shown to have poorer performance for 4D-Var 7 

optimization than the continuous adjoints (Liu and Sandu, 2008). 8 

5.2. Validation of the coupled adjoint 9 

An essential stage of the adjoint model construction is its validation. A lack of accuracy 10 

in the adjoint model will likely degrade the performance of the cost function minimization 11 

(Eq. 2). Several different tests were carried out to evaluate the accuracy and precision of the 12 

constructed adjoint model. Considering the simple formulation of the Lagrangian part, we 13 

focused on testing the NIES TM adjoint.  14 

5.2.1. Validation of the NIES TM adjoint 15 

The discrete adjoint obtained through automatic differentiation can be easily validated 16 

by comparing the adjoint sensitivities with forward model gradients calculated using the 17 

finite difference approximation (Henze at al., 2007).  18 

The forward model sensitivity, λF, is calculated using the one- or two-sided finite 19 

difference equation, 20 

 𝜆𝐹 =
𝑀′(𝒙+𝜀)−𝑀′(𝒙)

𝜀
 (3) 21 

 𝜆𝐹 =
𝑀′(𝒙+𝜀)−𝑀′(𝒙−𝜀)

2𝜀
 (4) 22 

where M` denotes the tangent linear model. A range of ε = 0.1–0.01 was proved in most cases 23 

to give an optimal balance between truncation and roundoff error (Henze at al., 2007). 24 

In the first test, adjoint simulations were carried out using an initial CO2 distribution, 25 

zero surface flux for 2 days (1-2 January 2010) and a horizontal grid with resolution 2.5° × 26 

2.5°. The adjoint gradient was then compared with that from the finite difference calculated 27 

using Eq. (3). This equation was selected in order to save CPU time by minimizing the number 28 

of forward model function calculations. For this test we used ε = 0.01.  29 

To quantify the difference between the two calculations of the sensitivity λ, we define 30 
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the local relative error 1 

 𝐸(𝑙𝑜𝑛, 𝑙𝑎𝑡) =
|𝜆𝐴−𝜆𝐹|

𝑚𝑎𝑥 𝜆𝐴
, (5) 2 

where the subscripts A and F refer to adjoint and finite difference respectively, whereas lon 3 

and lat refer to longitude and latitude, respectively. Figure 67c shows E(lon, lat) with a 4 

logarithmic color scale. The sensitivities obtained for the adjoint have maximum relative error 5 

of order 10−16, indicating that transport in the NIES TM adjoint is correct over short 6 

timescales. The overall comparisons did not seriously change if we select different grid cells 7 

or use other values of ε. 8 

The definition of the adjoint of the tangent linear forward model M* requires that for an 9 

inner product ,  and two random vectors u and v, the following expression should hold: 10 

 ∀𝐮, ∀𝐯  〈𝑀′𝐮, 𝐯〉 =  〈𝐮, 𝑀∗𝐯〉. (6) 11 

For practical use the identity in Eq. (6) is rewritten as follows (Wilson et al., 2014): 12 

 
‖𝑀′(u)‖

2

(u,𝑀∗(𝑀′(u)))
= 1. (7) 13 

We use Eq. (7) to test the adjoint model initialized using several different random 14 

random vectors u and v. For all cases, Eq. (7) compares well within machine epsilon with 15 

mismatch around to ±6e-14between -3e-14 to 6e-14. 16 

5.2.2. Real case simulation 17 

The next series of calculations was made for real measurements. We used data from the 18 

Siberian observation network (Table 3) for the period 1–4 January 2010. CO2 initial 19 

conditions and fluxes were the same as those used for the CELGA forward simulations in 20 

Section 4. We run A-GELCA using grids of 10.0° and 2.5° for Eulerian part and of 1.0° for 21 

Lagrangian component (similar to Cs-1 and Cs-2 in Table 1) and considered several cases.  22 

The sensitivities of CO2 concentrations were calculated using the Eulerian component 23 

only in Figs. 7,8,9 a) (resolution of 2.5°º), b) (resolution of 10.0º°), using the Lagrangian 24 

component only in Figs. 8,97,8 c)(resolution of 1.0º°), and d) (resolution of 1.0º°, but 25 

aggregated on a grid with resolution of 2.5º°), and using the coupled adjoint model in Fig. 26 

8,97,8 e) (Eulerian component at a resolution of 2.5º° and the Lagrangian component 27 

aggregated on the grid with a resolution of 2.5º°), and f) (as for e) , but the resolution of the 28 

Eulerian adjoint model was 10.0º°). Figure 78 corresponds to the 2-nd day of simulation, 29 

while Figure 89 is for 4-th day. 30 
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Above, we have already stated that the Eulerian part of the coupled model is more 1 

effective in reproducing of long-term patterns, while the Lagrangian part is better for 2 

resolving synoptic and hourly variations. This follows from the fact that the A-GELCA 3 

components have different footprints. The Eulerian adjoint has a wider footprint, with the 4 

greatest values in an area where the effect of all stations is summed. The Euler model 5 

monitors global and large-scale changes, although some stations can be outside this zone (i.e. 6 

YAK, at Fig. 78a,g or NOY, at Fig. 89a,b). These figures illustrate why the Eulerian model, even 7 

with a sufficiently detailed grid, fails to reproduce CO2 variations (Sect. 4). The footprint width 8 

decreases when the NIES TM resolution is increased, but the value of the sensitivity increases.  9 

The FLEXPART model sensitivity shows more irregular distributions, and higher values 10 

closer to the observational sites, thereby reflecting the model's ability to monitor small-scale 11 

changes (Fig. 8-97-8 panels c,d). 12 

During coupling, the sensitivity is aligned due to the crosslinking of components (Fig. 13 

78-89 panels e,f). Thus, the intensity has maximum near the stations and smoothly decreases 14 

when distance increases. The Eulerian and Lagrangian models employ different approaches 15 

and grid resolutions for the modeling of atmospheric tracers, and can thus resolve processes 16 

with different time and spatial scales, and underlying physics. By changing the Eulerian model 17 

resolution, it is possible to change size of the footprint. This system can utilize responses 18 

calculated at higher resolutions, such as 0.5° or 0.1°, but these setups require more accurate 19 

driving data and regular observations available for smaller time steps.  20 

6. Computational efficiency 21 

We tested several different methods to reduce the computational cost of the adjoint 22 

model. First, the Eulerian part of the adjoint model was driven by static archives of 23 

meteorological parameters, as described in Sect. 2.4.1. Second, the forward NIES model was 24 

altered so that at each model timestep it saved any variables that were also needed by the 25 

adjoint model. Therefore, these variables did not have to be recalculated for being used in the 26 

adjoint model. This was possible because we used a discrete version of the adjoint, which was 27 

fully compatible with the forward model. Third, the Lagrangian part of the adjoint model 28 

made use of pre-calculated response functions, as described in Sect. 2.4.2. 29 

To run the adjoint model we used a Linux workstation with 8 Intel(R) Xeon(R) E5-4650 30 

2.70 GHz processors and 64 GB of RAM. The CPU time of the adjoint model (backward only) 31 

was almost equal to CPU time required to run the forward model. It took about 1.3 min for a 32 
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week-long iteration (forward and backward). The memory demand was about 1 GB. Henze et 1 

al. (2007) reports that the ratio between simulation time in backward and forward modes for 2 

adjoint models derived for other CTMs, as follows: GEOS-Chem: 1.5, STEM: 1.5, CHIMERE: 3–4, 3 

IM-AGES: 4, Polair: 4.5–7, and CIT: 11.75. Thus, the adjoint of the developed coupled model 4 

GELCA is quite efficient. To achieve this level of efficiency, a substantial amount of manual 5 

programming effort is required, despite the automatic code generated by TAF. The main 6 

disadvantage of TAF is that many redundant recomputations are often generated by the 7 

compiler. A crucial optimization of the adjoint code is required to eliminate these extra 8 

recomputations. 9 

  10 
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7. Summary 1 

In this paper we have presented the construction and evaluation of an adjoint of the 2 

global Eulerian–Lagrangian coupled model GELCA that will be integrated into a variational 3 

inverse system designed to optimize surface fluxes. The coupled model combines the NIES 4 

three-dimensional transport model as its Eulerian part and the FLEXPART plume diffusion 5 

model as its Lagrangian component. The Eulerian and Lagrangian components are coupled at 6 

a time boundary in the global domain. The model was originally developed to study the 7 

carbon dioxide and methane atmospheric distributions.  8 

The Lagrangian component did not require any code modification, as FLEXPART is a self-9 

adjoint and tracks a significant number of particles backward in time in order to calculate the 10 

sensitivity of observations to the neighboring emissions areas. 11 

For Eulerian part, the discrete adjoint was constructed directly from the original NIES 12 

TM code, instead of contrasting a continuous adjoint derived from the forward model basic 13 

equations. The tangent linear and adjoint models of the NIES TM to FLEXPART coupler were 14 

derived using the automatic differentiation software TAF (http://www.FastOpt.com), which 15 

significantly accelerated the development. However, considerable manual processing of 16 

forward and adjoint model codes was necessary to improve the transparency and clarity of 17 

the model and to optimize the computational performance of, including MPI, as the TAF code 18 

used here (version 1.5) does not fully support MPI routines. 19 

The main benefit of the developed discrete adjoint is accurate calculation of the 20 

numerical cost function gradients, even if the algorithms are nonlinear. The overall 21 

advantages of the developed model also include relatively simple incorporation of the 22 

Lagrangian part and fast computation using the Lagrangian component, scalability of 23 

sensitivity calculation depending on distance to monitoring sites, thereby reducing 24 

aggregation errors, and computational efficiency even for high-resolution simulations.  25 

The transport scheme accuracy of the forward coupled model was investigated using the 26 

distribution of the atmospheric CO2. The GELCA components and the model itself had 27 

previously been validated using various tests and by comparison with measurements and 28 

with other transport models for CO2 and other tracers. The analyses in the present paper have 29 

shown that CELGA is effective in capturing the seasonal variability of atmospheric tracer at 30 

observation sites. Decreasing of the Eulerian model resolution does not significantly distort 31 

the transport model performance; however, running the coupled model using NIES TM with 32 

low resolution grid can maximize simulation speed and use of data storage. 33 

http://www.fastopt.com/
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The Eulerian adjoint was validated using various tests in which the adjoint gradients 1 

were compared to gradients calculated with numerical finite difference. We evaluated each 2 

routine of the discrete adjoint of the Eulerian model and the adjoint gradients of the cost 3 

function. The precision obtained of the results of the considered numerical experiments 4 

demonstrates proper construction of the adjoint.  5 

The CPU time needed by the adjoint model is comparable with those of other models, as 6 

we used several methods to reduce the computational cost. The forward NIES model was 7 

altered so that at each model time step it saved all variables that were also being needed by 8 

the adjoint model. These variables therefore did not have to be recalculated for use in the 9 

adjoint model. In addition, the adjoint simulation was isolated from the recalculation of NIES 10 

TM meteorological parameters and Lagrangian response functions. All supplementary 11 

parameters were pre-calculated before running the adjoint and were stored in static archives. 12 

The developed A-GELCA model will be incorporated into a variational inversion system 13 

aiming studying greenhouse gases (mainly CH4 and CO2), by assimilating tracer 14 

measurements from in situ, aircraft and remote sensing observations. However, before 15 

performing real inverse modeling simulations it is necessary to select a proper minimization 16 

program and find the optimal values for the error covariance matrices R and B. 17 

  18 
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Code availability 1 

All code in the current version of the NIES forward model is available on request. Any 2 

potential user interested in these modules should contact D. Belikov 3 

(dmitry.belikov@nies.go.jp) or S. Maksyutov (shamil@nies.go.jp), and any feedback on the 4 

modules is welcome. Note that that potential users may need help using the forward and 5 

adjoint model effectively, but open support for the model is not available due to lack of 6 

resources. The code of the adjoint part of the current NIES model is unavailable for 7 

distribution, as it was generated using the commercial tool TAF (http://www.FastOpt.com). 8 

However, we can provide the sources which were used as input for TAF. 9 

The FLEXPART code was taken from the official web site http://flexpart.eu/. The 10 

procedures necessary to run FLEXPART with the JCDAS reanalysis are also available upon 11 

request. 12 
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Table 1. The coupled model setups analyzed in this study. 1 

Case 

Resolution, ° 

Flux combination 

NIES TM FLEXPART 

Cs-1 10.0 1.0 VISIT + CDIAC + OTTM 

Cs-2 2.50 1.0 VISIT + CDIAC + OTTM 

Cs-3 1.25 1.0 VISIT + CDIAC + OTTM 

    
 2 

Table 2. WDCGG continuous observation sites. 3 

# 

Identif

ying 

code 

Location Lat., ° Lon.,° 
Heigh

t, m 

Contributor, 

contact person  

1 ALT Alert, Canada 82.45 -62.52 210 
EC,  

Doug Worthy 

2 AMS 
Amsterdam Island, 

France 
-37.8 77.53 55 

LSCE, 

Michel Ramonet 

3 AMY Anmyeon-do, Korea 36.53 126.32 47 
KMA,  

Haeyoung Lee 

4 BRW Barrow, USA 71.32 -156.6 11 
NOAA/ESRL,  

Kirk W Thoning 

5 CMN Monte Cimone, Italy 44.18 10.7 2165 

IAFMS,  

Centro Aeronautica 

Militare di 

Montagna 

6 CPT 
Cape Point, South 

Africa 
-34.35 18.48 230 

SAWS, 

Thumeka Mkololo 

7 HUN Hegyhatsal, Hungary 46.95 16.65 248 
HMS,  

Laszlo Haszpra 

8 IZO Izana, Spain 28.3 -16.5 2367 

AEMET, 

Angel J. Gomez-

Pelaez 

9 JBN Jubany, Argentina -62.23 -58.67 15 
CNR-ICES, DNA-IAA, 

Claudio Rafanelli 

10 MHD Mace Head, Ireland 53.33 -9.9 8 
LSCE, 

Michel Ramonet 

11 MLO Mauna Loa, USA 19.54 -155.58 3397 
NOAA/ESRL,  

Kirk W Thoning 

12 MNM 
Minamitorishima, 

Japan 
24.28 153.98 8 

JMA, Greenhouse 

Gas observation 

section 

13 PAL 
Pallas-Sammaltunturi, 

Finland 
67.97 24.12 560 

FMI,  

Juha Hatakka 

14 PRS Plateau Rosa, Italy 45.93 7.7 3480 
RSE,  

Francesco Apadula 

15 PUY Puy de Dome, France 45.77 2.97 1465 
LSCE, 

Michel Ramonet 

16 SSL Schauinsland, Germany 47.92 7.92 1205 
UBA,  

Karin Uhse 

17 WSA Sable Island, Canada 43.93 -60.02 5 
EC,  

Doug Worthy 

18 YON Yonagunijima, Japan 24.47 123.02 30 

JMA, Greenhouse 

Gas observation 

section 
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19 ZEP 
Zeppelinfjellet, 

Norway 
78.9 11.88 475 

ITM,  

Birgitta Noone 

 1 

Here AEMET - Izana Atmospheric Research Center,Meteorological State Agency of Spain; 2 

CNR-ICES - International Center for Earth Sciences - CNR, Institute of Acoustics and Sensors; 3 

DNA-IAA - Direcion Nacional del Antartico- Istituto Antartico Argentino; EC - Environment 4 

Canada; HMS - Hungarian Meteorological Service; IAFMS - Italian Air Force Meteorological 5 

Service; ITM - Department of Applied Environmental Science, Stockholm University; JMA - 6 

Japan Meteorological Agency; KMA - Korea Meteorological Administration; LSCE - Laboratoire 7 

des Sciences du Climat et de l'Environnement; NOAA/ESRL - National Oceanic and 8 

Atmospheric Administration/Earth System Research Laboratory; RSE - Ricerca sul Sistema 9 

Energetico - RSE S.p.A.; FMI - Finnish Meteorological Institute; SAWS - South African Weather 10 

Service; UBA - Federal Environmental Agency Germany. 11 

 12 
  13 
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Table 3. Tower network sites in Siberia (JR-STATION). 1 

# 
Identifying  

code 
Location Lat.,° Lon.,° Height, m 

1 DEM Demyanskoe 59.79 70.87 63 

2 IGR Igrim 63.19 64.42 47 

3 KRS Karasevoe 58.25 82.42 67 

4 NOY Noyabrsk 63.43 75.78 43 

5 VGN Vaganovo 54.50 62.32 85 

6 YAK Yakutsk 62.09 129.36 77 

 2 
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 1 

 2 

Fig. 1. The computational scheme of the coupled model. 3 

 4 

Fig. 1.Fig. 2. Map showing the location of the 19 WDCGG sites (red dots, blue labels) and 6 5 

tower network sites in Siberia (magenta dots, green labels) for which we have 6 

performed comparison using forward GELCA simulation. 7 

 8 
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 1 

Fig. 2.Fig. 3. a) Correlation coefficients between the CO2 concentrations simulated with the 2 

coupled model and those observed, b) difference in correlation coefficients due to the 3 

application of the Lagrangian component (positive values mean the results of the 4 

coupled model are better than those of the Eulerian model alone) at the selected 5 

WDCGG and JR-STATION locations for 2009-2010. The dDefinitions of the cases 1-3 6 

are in Table 1 7 

 8 

 9 

Fig. 3.Fig. 4. a) Mean bias for the CO2 concentrations simulated with the coupled model, b) 10 
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difference in mean bias due to the application of the Lagrangian component (for 1 

positive bias – the most usual case – negative values mean the results of the coupled 2 

model are better than those of the Eulerian model alone) at the selected WDCGG and 3 

JR-STATION locations for 2009-2010. The dDefinitions of the cases 1-3 are in Table 1 4 

  5 
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 1 

Fig. 4.Fig. 5. a) Standard deviation (STD) for the CO2 concentration model-observation mismatch 2 

when using the coupled model, b) difference in STD due to the application of 3 

Lagrangian component (negative values mean the results of the coupled model are 4 

better than of the Eulerian model alone) at the selected WDCGG and JR-STATION 5 

locations for 2009-2010. The dDefinitions of the cases 1-3 are in Table 1. 6 

  7 



35 

1 

 2 

Fig. 5.Fig. 6. CO2 mixing ratios observed at a) the Igrim and b) Vaganovo towers, and simulated 3 

using the coupled (c) and Eulerian-only (e) models using the setups from Table 1 for 4 

2009–2010. Symbols show individual observations; lines depict two-weeks running 5 

averages. Here, R, S and M mean the Pearson correlation, standard deviation and 6 

mean bias respectively.  7 

 8 

a) 
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 1 

Fig. 6.Fig. 7. Comparison of sensitivities of CO2 concentrations (ppm/(µmol/m2s)) for test 1: (a) 2 

sensitivity calculated considering only the Eulerian adjoint model at a resolution of 3 

2.5°, (b) the same sensitivity calculated directly from NIES forward runs using the one-4 

sided numerical finite difference method with perturbations of ε, and c) the relative 5 

difference between derived adjoint and the numerical finite difference gradients. 6 

Magenta dots with labels depicts the locations and names of the Siberian observation 7 

towers.  8 
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 1 
 2 

Fig. 7.Fig. 8. Comparison of sensitivities of CO2 concentrations [ppm/(µmol/m2s)] at day 2 (see 3 

Sect. 5.2.2) calculated using: a) the Eulerian adjoint with a resolution of 2.5°, b) the 4 

Eulerian adjoint with a resolution of 10.0°, c) the Lagrangian model on the native 5 

model grid with a resolution of 1.0°, d) as for c), but aggregated on the grid with a 6 

resolution of 2.5°, e) the coupled adjoint model; results from the Lagrangian adjoint 7 

model were aggregated on the grid with a resolution of 2.5°, f) as for e), but the 8 

resolution of the Eulerian adjoint model was 10.0°. Note the logarithmic color scale for 9 

the plots. 10 
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 2 

Fig. 8.Fig. 9. As for Fig. 78, but for day 4. 3 

 4 
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