
Manuscript prepared for Geosci. Model Dev.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 12 November 2015

Responses to reviewers and corresponding revisions
of the manuscript
immediate
Correspondence to: K. Arthur Endsley (endsley@umich.edu)

1 Re: Anonymous Reviewer #1

“The paper struggles to make the case for why having the data directly in the user’s

browser is desirable.”

Authors’ response: Having the data available directly in the user’s browser allows for seamless

rescaling of the visualization, e.g., changing the stretch “on-the-fly.” We have seen performance5

issues in comparable approaches to this problem, e.g., with Web Mapping Services, which must re-

quest the data again from the server whenever scaling changes are desired. We believe scale changes,

changes in the palette, and similar changes are in the purview of the client application; as they are

merely changes in the application’s state, they should be performed asynchronously in the client

application without requiring interaction with the remote server.10

Changes in manuscript: We have underscored the most important advantages of the Carbon Data

Explorer in two places in the revised manuscript: in the “Concluding remarks” and in the last para-

graph of the “Introduction.” Quote from revised manuscript: “The ability to quickly load spatially

explicit scientific data in a web browser allows for the online querying and comparison of measure-

ment values at specific locations across datasets and the rapid, online filtering and aggregation of15

measurement data. These features are not currently available in Giovanni and alternative data man-

agement frameworks and web servers, such as TDS—particularly those that provide only rasterized

data representations, such as WMS—are not capable of delivering this level of analysis or speed of

interactivity...It contains all the tools necessary for online scientific data analysis in one package,

including a non-blocking web server, an extensible, light-weight API, and a user-friendly web ap-20

plication. The text-based JSON format for storage and data interchange is not only fundamentally

compatible with web browsers, it allows for scientific data to be manipulated in the web browser,

providing asynchronous, rapid filtering and aggregation.”

We have also revised section 2.4, “Provision of scientific data on the web,” to read: “The RESTful

design of the web server’s API underscores an important point about having scientific data directly25

available in the user’s web browser. We believe scale changes, changes in the palette, and similar

changes are in the purview of the client application; as they are merely changes in the applica-

1



tion’s state, they should be performed asynchronously in the client application without requiring

interaction with the remote server. Keeping data on the server requires that new representations are

generated even for relatively minor changes in application state. One example is the seamless rescal-30

ing of the visualization, e.g., changing the stretch “on-the-fly.” We have seen performance issues in

comparable approaches to this problem, e.g., with WMS, which must request the data again from the

server whenever scaling changes are desired. While similar tools such as Giovanni have also enabled

seamless changes to visualization parameters, they don’t allow for map-based querying of measure-

ment values or simultaneous comparison of measurement values across datasets, as the Carbon Data35

Explorer does.”

“The paper also does not put the CDE’s ability to “manage, aggregate, visualize, and

share datasets” in the context of the THREDDS Data Server.”

Authors’ response: It is possible that we haven’t provided enough context for the THREDDS Data

Server, as we’re less familiar with its operation. We will address that in revising the text. Specifically,40

we will compare the CDE’s features with those of the THREDDS Data Server.

Changes in manuscript: We have revised the manuscript throughout in order to put the Carbon

Data Explorer in the context of the THREDDS Data Server and Ferret-THREDDS. Quote from

revised manuscript’s Introduction: “In its capacity as a data management and data access web server,

the Carbon Data Explorer is similar to the THREDDS Data Server (TDS); its analytical capabilities45

make it similar to Ferret-THREDDS. The Carbon Data Explorer expands on both by providing

an integrated front-end for visualization and analysis. While the THREDDS Client Catalog requires

data to be registered with XML descriptors, the Carbon Data Explorer Python API has a user-friendly

command-line interface that allows for faster, repeatable, one-time registration of data without the

need to open a text editor and write XML. In data interchange, it also substitutes bulky XML for50

light-weight and more human-readable JavaScript Object Notation (JSON). In addition, it eschews

the vulnerability-prone Java environment and Tomcat web server for a light-weight, non-blocking

web server in Node.js that can be hidden behind a proxy server such as Apache. This design choice

trades off the protocol interoperability of TDS, which was not identified as a requirement by our user

community, for the ease of development and deployment of web services with newer, JavaScript-55

based technologies on the server...The ability to quickly load spatially explicit scientific data in

a web browser allows for the online querying and comparison of measurement values at specific

locations across datasets and the rapid, online filtering and aggregation of measurement data. These

features are not currently available in Giovanni and alternative data management frameworks and

web servers, such as TDS—particularly those that provide only rasterized data representations, such60

as WMS—are not capable of delivering this level of analysis or speed of interactivity.”

Quote from the revised manuscript’s “Other features” section (3.4): “This is similar to the ‘virtual

variables’ of Ferret-THREDDS but provides not only access to an analysis but access to a client for

visualizing and interacting with that analysis.”

2



“The text claims the CDE and this approach results in high performance (page 4, line65

22), but no performance metrics are given.”

Authors’ response: We will provide performance metrics for the API in the revised manuscript.

Changes in manuscript: We provided a table of request completion times for the API in the

revised manuscript.

“I also cannot understand how a text representation of a number used in the CDE does70

not massively increase the size of the original data.”

Authors’ response: I believe this comment is related to a remark in the manuscript on page 4, line

24: “This text-based representation has the added benefits of compressing the data and enabling

rapid filtering and aggregation.” This remark is unclear and we will revise it in the manuscript. The

text-based representation is not compressed relative to the original data, rather, we have eliminated75

redundancies that would come from a straightforward rendition of the data as text. Specifically,

the spatial structure of the data have been separated from the measurement values so they can be

transmitted to the client separately and without redundancy.

Changes in manuscript: In the revised manuscript, “This text-based representation...” was re-

vised to read: “This text-based representation is not only compatible with web browsers, it allows80

for the data to be manipulated directly in the website, providing asynchronous rapid filtering and

aggregation. Only the OGC Web Coverage Service (WCS), a protocol also based in a data cube

metaphor, allows for this level of interaction and online analysis of data. However, in our experience,

stand-alone WCS implementations are usually undocumented or the documentation is relegated to

the WCS standard.”85

“The authors need to be clear what core goals the CDE addresses that these existing

tools [THREDDS and Ferret-THREDDS] do not capture. In the context of data sharing,

what does CDE do that OpenDAP does not? Is the distinction that OpenDAP generally

requires desktop applications, whereas the goal here is to provide web browser access?

Again, the case needs to be made for why client-side data provides superior capabilities90

to the current server-side approach.”

Authors’ response: We will revise the manuscript to elaborate on the differences between the CDE

and Ferret-THREDDS and between the CDE and OpenDAP. As you intuited, a core difference is that

the CDE can be run in a web browser on any computer without requiring the installation of depen-

dency libraries (e.g., Java). In addition, the provision of the data directly in the web browser allows95

for a level of interaction and immediacy with the data we feel are not available with alternatives.

Changes in manuscript: We revised the Introduction of the manuscript to state: “In its capac-

ity as a data management and data access web server, the Carbon Data Explorer is similar to the

THREDDS Data Server (TDS); its analytical capabilities make it similar to Ferret-THREDDS. The

3



Carbon Data Explorer expands on both by providing an integrated front-end for visualization and100

analysis. While the THREDDS Client Catalog requires data to be registered with XML descrip-

tors, the Carbon Data Explorer Python API has a user-friendly command-line interface that allows

for faster, repeatable, one-time registration of data without the need to open a text editor and write

XML. In data interchange, it also substitutes bulky XML for light-weight and more human-readable

JavaScript Object Notation (JSON). In addition, it eschews the vulnerability-prone Java environment105

and Tomcat web server for a light-weight, non-blocking web server in Node.js that can be hidden

behind a proxy server such as Apache. This design choice trades off the protocol interoperability of

TDS, which was not identified as a requirement by our user community, for the ease of development

and deployment of web services with newer, JavaScript-based technologies on the server.” As stated

earlier, we have also revised section 2.4, “Provision of scientific data on the web,” in order to “[make110

the case] for why client-side data provides superior capabilities to the current server-side approach.”

“Could the concept of JSON data slice access be integrated into the THREDDS soft-

ware stack as opposed to using MongoDB? ...When datasets can be rather large, I don’t

practically see modeling centers hosting two copies of their datasets, one for THREDDS

(which they will do for CMIPs) and a text version for CDE.”115

Authors’ response: That is a compelling idea and one worth exploring in future work. I don’t

see any reason why a module for THREDDS could not be developed to support this. Fast JSON

serialization of global-scale climate data is one of the things we’ve demonstrated with CDE, as

many data representations are transformed inside the database on-demand, so we’re confident that

THREDDS could accomplish this “on the fly” in a similar manner without storing a redundant JSON120

format.

Changes in manuscript: We added a line to the “Concluding remarks” section: “Also, as a proto-

type, it is hoped that the software’s seamless, interactive visualization and comparison features will

inspire the expansion of existing data management and data access frameworks such as TDS and

Ferret-THREDDS to support more rich, JavaScript-based visualization libraries.”125

“It is not clear from the introduction that the CDE is software that is installed at a

modelling data center as opposed to an online service or API.”

Authors’ response: CDE could be installed anywhere but we anticipate CDE would be installed by

the people who “own” the data. We will strive to make this more clear in our revisions.

Changes in manuscript: We revised the “Implementation” section to read: “This suite of software130

could be run on a single computer or separately on multiple computers, each running any UNIX-like

operating system (Mac OS X or a GNU/Linux system). The suite is designed to be installed on the

data provider’s (modeler’s) network, with the server API optionally facing the public web.”

“Likewise, since the software is installed locally, should the name Carbon Data Ex-

plorer be generalized?”135

4



Authors’ response: Other reviewers have suggested the name could be changed as the software is

not restricted to visualizing carbon science datasets. However, as the software we developed with the

aim of visualizing carbon science datasets, and as its features are likely best suited to that purpose,

we feel the name is appropriate. As for installation, the CDE could be used only locally (that is,

“in-house” by the data providers) but they are still “exploring” their data, as far as that metaphor140

can carry them. It is also our hope that the serialization to ASCII Grids and GeoTIFFs would allow

non-experts to access climate data through the CDE and, thus, it would truly allow scientists in other

domains, not just climate experts, to “explore” such data.

Changes in manuscript: We do not feel that a change to the name of the software is required.

“Can large-scale meaningful analysis (beyond mapping) practically be done in real-145

time on the client browser with current technologies?”

Authors’ response: We are not domain experts ourselves, so we collaborated with climate scien-

tists in the development of this software. With the exception of visualizing covariance structure,

the analytical capabilities they requested are fully implemented in the CDE, including side-by-side

measurement and uncertainty visualization, for global-scale gridded data on the order of 1-degree.150

We will provide performance metrics for this use case. For datasets with significantly higher spatial

resolution, CDE might not be useful.

Changes in manuscript: We provided performance metrics that demonstrate the Carbon Data

Explorer’s features are feasible in real time on a remote web client.

“What are the ‘rich analytical capabilities’ mentioned? Are they JavaScript math li-155

braries? Is the text referring to temporal and spatial averages or more complex forms

of analysis?”

Authors’ response: Our use of the word “rich” may be subjective here. JavaScript math libraries

enable the computations but they are, specifically, the aggregation of multiple data slices, the dif-

ferencing of two data slices, the calculation and visualization of anomalies, and the computation of160

summary statistics over arbitrary regions. In working with our domain experts, we identified these at

the key analytical capabilities they needed. In presenting early versions of the software to groups like

DataONE and the OCO-2 Science Team, we did not identify any significantly different analytical

workflows for these types of data (Level III gridded products).

Changes in manuscript: We revised this sentence to read: “The Carbon Data Explorer solves this165

problem by introducing a new API for text-based representations of data cubes, thereby enabling

easy integration with and high performance in browser-based web applications while also providing

capabilities for dynamic querying, aggregation, differencing, and anomaly calculations.”

“Is CMIP6 the first time ‘distributed analyses’ will be used in a CMIP? I don’t think

the Meehl et al. 2014 reference support[s] this, but rather the organization of CMIP6170

will be distributed (in a non-computing sense.”

5



Authors’ response: Thanks for this correction. We will consult this paper again and revise this

section for clarity.

Changes in manuscript: We revised this sentence in the Introduction to read: “The next phase of

the Climate Model Intercomparison Project, CMIP6, will for the first time allow ‘anyone at any time175

[to] download model data for analysis’ (Meehl et al. 2014).”

“Secondly, sharing ‘web-compatible scientific datasets’ was accomplished with the

ESGF used in CMIP5.”

Authors’ response: We did not give due credit to the prior work done by ESGF here and will revise

this section accordingly.180

Changes in manuscript: In the Introduction, just after the last-mentioned revision, we added:

“As part of CMIP5, the Earth System Grid Federation (ESGF) provides a unified gateway to sci-

entific datasets hosted anywhere in the world. Thus, the ability to share and compare model results

should motivate the further development of web-compatible scientific analyses.” The ESGF is also

mentioned and cited at the bottom of the Introduction.185

“How does the CDE ‘lower or eliminate barriers to bringing scientific results online’?

Files and metadata need to be organized prior to loading into CDE. How is the process

of making data available via CDE easier than other software such as THREDDS?”

Authors’ response: CDE provides a fairly high-level command-line interface for managing the

database, including for inserting data. Files and metadata only need to be organized insofar as they190

either need to be formatted to match a predefined data model or a data model needs to be written

to accommodate them. The latter option is not a low barrier to entry but it does require only a few

lines of Python code. In addition, if a data provider consistently generates data in a given format,

the data model for that format can be reused for all future datasets, so subsequent database uploads

are literally “one-line” commands. Once data are in the database, they are automatically available195

through the API and a connected CDE front-end web application. We will revise the manuscript to

include a comparison to data entry with THREDDS.

Changes in manuscript: The ambiguous statement about “lower[ing] or eliminat[ing] barriers”

was replaced; the sentence now reads: “The Carbon Data Explorer was designed specifically to en-

able climate modeling outputs to be brought online, visualized, and compared.” A new paragraph200

immediately following this was inserted, which reads: “In its capacity as a data management and

data access web server, the Carbon Data Explorer is similar to the THREDDS Data Server (TDS); its

analytical capabilities make it similar to Ferret-THREDDS. The Carbon Data Explorer expands on

both by providing an integrated front-end for visualization and analysis. While the THREDDS Client

Catalog requires data to be registered with XML descriptors, the Carbon Data Explorer Python API205

has a user-friendly command-line interface that allows for faster, repeatable, one-time registration

6



of data without the need to open a text editor and write XML. In data interchange, it also substitutes

bulky XML for light-weight and more human-readable JavaScript Object Notation (JSON). In addi-

tion, it eschews the vulnerability-prone Java environment and Tomcat web server for a light-weight,

non-blocking web server in Node.js that can be hidden behind a proxy server such as Apache. This210

design choice trades off the protocol interoperability of TDS, which was not identified as a require-

ment by our user community, for the ease of development and deployment of web services with

newer, JavaScript-based technologies on the server.”

“The application seems to handle one polygon/ROI, can data ‘quickly’ be aggregated

over many polygons such as counties, states, or countries?”215

Authors’ response: The CDE only supports aggregation to one polygon/ROI at a time. We have

experimented with offline aggregation over multiple geometries at once, for instance, in prepar-

ing a time-series animation of state-level carbon flux (http://spatial.mtri.org/flux/us-states-breathing.

html), but this functionality was not identified as an important feature for the CDE.

Changes in manuscript: In the last paragraph of section 3.1, we added the sentence: “Currently,220

only a single polygon can be used at a time.”

“Many atmospheric models and ocean models have irregularly spaced grids. Can CDE

read / map those grids appropriately?”

Authors’ response: CDE supports irregular spacing (i.e., holes) but not irregular cell sizes or non-

rectangular cell shapes. To be precise, CDE supports only “structured” grids and not “unstructured”225

grids. Support for unstructured grids is a compelling use case as we’re aware that there are geo-

statistical advantages to non-rectangular grid cells. It would be possible to modify CDE to support

unstructured grids (e.g., hex-bins) in the future.

Changes in manuscript: We added the following sentence to the end of section 2.3: “At the

present time, the Carbon Data Explorer supports only structured grids; that is, the gridded data in a230

scenario must share the same uniform, rectangular grid.”

2 Re: Anonymous Reviewer #2

“The tool is called ‘Carbon Data Explorer’, though the authors indicate that it is not

limited to carbon data sources alone. Why not name [it] more generically at this point?”

Authors’ response: Other reviewers have also remarked on the name. However, as the software235

we developed with the aim of visualizing carbon science datasets, and as its features are likely best

suited to that purpose, we feel the name is appropriate.

Changes in manuscript: We do not feel that a change to the name of the software is required.

7

http://spatial.mtri.org/flux/us-states-breathing.html
http://spatial.mtri.org/flux/us-states-breathing.html
http://spatial.mtri.org/flux/us-states-breathing.html


“In the introduction, one of the key innovations in CDE is that it has a new API for

text based representations of data cubes. Does this mean, the data representations are240

converted to text-based representations internally (as most earth science datasets have

large volumes and are not in text formats)? How does this scale for large data? What

are the limitations of this approach? Presumably the initial cost of registering the data

to the database must be high.”

Authors’ response: The data are indeed converted to a text-based representation. This has proven to245

be adequate global gridded datasets at 1-degree resolution The CDE was designed for regional and

global carbon science datasets at this similar scales. Performance will suffer at significantly higher

resolutions. The initial cost of registering the data to the database is indeed high but needs be done

only once by the data manager. Also, the current high cost of registration is largely a reflection of a

MongoDB API implementation on our end that is syntactically simpler but not as efficient as other250

currently available methods. This part of the overall CDE architecture, the “Models ”and “Media-

tors ”of the Python API, is amenable to revision by end-users with experience in Python and does

not currently represent the potential performance of data registration. MongoDB was also rapidly

evolving during our development of the CDE and has since incorporated important performance

improvements.255

Changes in manuscript: We revised section 2.3 to expand the discussion about the text-based

format and to include the sentence: “Thus, a document-oriented database like MongoDB allows

the latency associated with preparing scientific data for the web to be pushed offline, during initial

registration and insertion of the data to the database.”

“It is also mentioned that the text based representations has the added benefits of com-260

pressing data and enabling rapid filtering and aggregation. Generally text data don’t

lend themselves to compression formats and methods. How does the JSON document

style compare to other typically compression methods (HDF5, grib)? (The article men-

tions that the data is only ‘slightly’ compressed).”

Authors’ response: The use of the word “compress” in the manuscript was an error and has regret-265

tably caused confusion. We will clarify this in revising the manuscript. The text-based representation

is not compressed relative to the original data, rather, we have eliminated redundancies that would

come from a naive implementation of the dataset as text. Specifically, the spatial structure of the data

have been separated from the measurement values so they can be transmitted to the client separately

and without redundancy.270

Changes in manuscript: In the revised manuscript, “This text-based representation...” was re-

vised to read: “This text-based representation is not only compatible with web browsers, it allows

for the data to be manipulated directly in the website, providing asynchronous rapid filtering and

aggregation.”

8



“The background makes no mention of similar systems that have been developed and275

are being widely used. NASA itself has a whole host of similar tools (Giovanni, Mirador,

etc.). It will be good to describe CDE in the context of such tools and by describing how

different CDE is from these tools.”

Authors’ response: We will place CDE in the context of the tools you mentioned in our revisions.

Thanks for your suggestions!280

Changes in manuscript: We revised the Introduction, adding the paragraph: “The Carbon Data

Explorer shares similar aims with technologies such as NASA’s World Wind virtual globe, Giovanni,

and Mirador. Compared with World Wind, the Carbon Data Explorer provides access to analytical

capabilities that would be awkward or impossible to reproduce in a virtual globe. Also, unlike World

Wind, it requires neither a stand-alone installation nor a dependency library such as Java and runs285

in any web browser. While Mirador allows users to download spatially explicit scientific datasets

from NASA missions, it has no analytical or visualization capabilities. The Carbon Data Explorer

most closely resembles Giovanni in that both are web-based, map-centered viewers. While Giovanni

provides more sophisticated analytical capabilities, the Carbon Data Explorer is designed to deliver

results faster and allows for greater customization of the visualization and the querying of measure-290

ment values within the web client. In sum, the Carbon Data Explorer is intended for more rapid

examination and comparison of climate model outputs by the modelers themselves.” In this same

section, we added: “The ability to quickly load spatially explicit scientific data in a web browser

allows for the online querying and comparison of measurement values at specific locations across

datasets and the rapid, online filtering and aggregation of measurement data. These features are not295

currently available in Giovanni and alternative data management frameworks and web servers, such

as TDS—particularly those that provide only rasterized data representations, such as WMS—are not

capable of delivering this level of analysis or speed of interactivity.”

“The authors claim that the tool supports scalable analysis which is very important

when working with large datasets. Can you include some computational estimates that300

demonstrate this fact?”

Authors’ response: We will include performance metrics in our revisions.

Changes in manuscript: We included a table of performance metrics.

“The data example shown in the paper is very coarse (1 deg x 1 deg) and is not repre-

sentative of modern day satellite products that get down to resolutions of meters (SRTM,305

MODIS, etc.). To really claim that this technology is viable for such large data, exam-

ples should be presented using such datasets (and with associated computational esti-

mates).”

Authors’ response: We did not mean to imply that SRTM or MODIS data would be viewed in

the CDE. Rather, “geophysical variables...derived from Earth observation satellites or models” are310

9



the expected data. OCO-2, rather, is an example of the satellite platform we had in mind. Regional

and global gridded products derived from satellite measurements, such as bias-corrected carbon

concentrations, are the kinds of datasets for which the CDE was developed. We will strike the phrase

“Earth observation” from the quoted sentence to help mitigate any confusion.

Changes in manuscript: The phrase “Earth observation” was replaced or contextualized through-315

out the document to emphasize that only measurements from certain satellites, and more generally

the predictions from models that operate on those measurements, are intended for use in the Carbon

Data Explorer.

3 Re: Anonymous Reviewer #3

“Authors claim CDE is offering distributed visualization, however, this is not substan-320

tiated in detail; from what I can infer data are always loaded from (server) local files.

Visualization is addressing 3D x/y/t cubes plus multi-variables, but it remains essentially

2D plus “movie”, no 3D portrayal is mentioned.”

Authors’ response: The data cube metaphor is not meant to imply 3D visualization; rather, three to

four variables–planar coordinates, measurement value, and time–are represented. Altitude is clearly325

an important dimension in climate datasets but the CDE does not support a joint visualization of

measurement value and altitude.

Changes in manuscript: In the Introduction, we added the sentences: “The three-dimensional

data cube metaphor should not be taken to mean that visualizations of the data cube are necessarily

3D. Rather, the minimum three dimensions of the data cube include the two axes of a Cartesian330

coordinate system and an additional axis for time.”

“[W]hat is the exact storage scheme for the datacube in MongoDB?”

Authors’ response: Data cube(s) are stored as one or more “scenarios” which may each correspond

to a single model run (with particular parameters) or multiple model runs under some unified con-

ditions. Scenarios might also separately encapsulate measurement values and uncertainty, allowing335

them to be viewed side-by-side in the Coordinated View subsystem. Page 5748, Lines 2-4 state:

“Each scenario has one timeline associated with it and gridded data belonging to that scenario are

uniquely keyed by their date and time.” Slices in time (“X-Y” slices) of the data are stored. Page

5747, Lines 18-19 state: “Specifically, the data are stored and transmitted as JavaScript Object No-

tation (JSON) documents.” We will revise the quoted lines to make this more clear.340

Changes in manuscript: Section 2.3, “Data management and storage,” was thoroughly revised.

New passages include: “MongoDB is one of several ‘document-oriented’ databases capable of stor-

ing semi-structured data as key-value pairs. As the goal was to get the data on the web, we chose

MongoDB for its transparent, text-based storage. Alternatives such as Apache Hadoop and Cassan-

dra, while offering performance advantages, do not provide a clear pathway for rendering binary files345

10



as text. These alternatives may faithfully and rapidly operate on chunks of the data but would require

that input binary files be split and transformed into some kind of operational format for handling in a

map-reduce framework. As no obvious intermediate format was known at the time of development,

we opted for a format that most closely resembled the output representation—the native, text-based

representation required for the web browser—as the intermediate format to be stored and operated350

on in the database. This design choice trades off performance for flexibility and the operational

demands of bringing data in binary files onto the web.

Array databases such as PostGIS, a spatial extension to the relational database management sys-

tem (RDBMS) PostgreSQL, are another alternative to MongoDB that we considered. The use of an

array database would have satisfied the need for an intermediate format—in this case, array stores—355

but for the purposes of enabling in-client manipulation of the data (e.g., querying measurement val-

ues, changing the stretch) this approach would have required the transformation of requested data to

another format, likely text. Based on the authors’ experience with PostGIS, there were also no clear

performance advantages to array databases. Thus, a document-oriented database like MongoDB al-

lows the latency associated with preparing scientific data for the web to be pushed offline, during360

initial registration and insertion of the data to the database...

Transforming heterogeneous data to a uniform structure is a typically onerous task. In developing

the interface for storing data in MongoDB, we aimed for a flexible system predicated on sensible

defaults. The Model class of the Python API defines how measurement values can be read from

any file interface available in Python. This flexibility was also driven by the historical development365

of related software systems. For instance, we discovered that Matlab has changed the format of its

saved binary output files over the years from a proprietary data structure to one that is compatible

with HDF5. We selected Python and its essential SciPy library as together they provide support

for Matlab, HDF4, and HDF5 formats. Thus, our experience is a reminder of the importance of

backwards compatibility, which is likely well-recognized in the scientific programming community.”370

“[W]hat part of the analysis is pushed into MongoDB, and what is solved in the mid-

dleware?”

Authors’ response: Page 5751, Lines 13 through 18 read: “The temporal aggregation is handled by

the MongoDB aggregation pipeline, which facilitates very fast aggregation of multiple X–Y slices

(maps spanning time). Spatial aggregation of one or more pixels (an aggregate value spanning a375

spatially filtered subset) is achieved using a combination of the JSTS Topology Suite JavaScript

library and MongoDB’s geospatial query operators.” We will revise and extend this to elaborate

that temporal aggregation and differencing are handled by the MongoDB aggregation pipeline; that

calculation and display of anomalies is done client-side in JavaScript; that population summary

statistics are calculated in the Python API and stored in MongoDB; that all other visualization tweaks380

and statistical stretching is done “on-the-fly” in JavaScript.

11



Changes in manuscript: To section 2.3, in addition to the aforementioned expansion in this

section, we added: “The metadata also encode population summary statistics, which are calculated

by the Python API during insertion to MongoDB, to aid in visualization (e.g., calculating a stretch).”

To section 3.1, we added: “Both temporal aggregation and differencing are handled by the MongoDB385

aggregation pipeline. The calculation and display of anomalies is done client-side in JavaScript. All

other visualization tweaks and statistical stretching are done ‘on-the-fly’ in JavaScript.”

“In how far do the authors consider this architecture scalable? To this end, at least

a few performance figures would have been helpful, even better so a comprehensive

evaluation: what are response times in general? where in the architecture is time spent,390

eg: how much of the query response time goes into MongoDB, and how much into the

JavaScript middleware? How does this compare to, eg, C/C++ implementations?”

Authors’ response: We will provide performance metrics in the revised manuscript.

Changes in manuscript: We provided a table of performance metrics.

“[W]hile the paper mentions some tools and one standard (WMS) in the field it lacks395

a solid comparison against immediately “competitors”. Hadoop, Array Databases, as

well as virtual globes like NASA WorldWind come to my mind.”

Authors’ response: We will provide more context for the CDE in relation to Hadoop, Array Databases,

and NASA WorldWind within the revised manuscript.

Changes in manuscript: We provided a discussion (mentioned above) in the Introduction on400

NASA World Wind. We also added a discussion of Hadoop and Array Databases to section 2.3:

“MongoDB is one of several ‘document-oriented’ databases capable of storing semi-structured data

as key-value pairs. As the goal was to get the data on the web, we chose MongoDB for its transparent,

text-based storage. Alternatives such as Apache Hadoop and Cassandra, while offering performance

advantages, do not provide a clear pathway for rendering binary files as text. These alternatives may405

faithfully and rapidly operate on chunks of the data but would require that input binary files be split

and transformed into some kind of operational format for handling in a map-reduce framework. As

no obvious intermediate format was known at the time of development, we opted for a format that

most closely resembled the output representation—the native, text-based representation required for

the web browser—as the intermediate format to be stored and operated on in the database. This410

design choice trades off performance for flexibility and the operational demands of bringing data in

binary files onto the web.

Array databases such as PostGIS, a spatial extension to the relational database management sys-

tem (RDBMS) PostgreSQL, are another alternative to MongoDB that we considered. The use of an

array database would have satisfied the need for an intermediate format—in this case, array stores—415

but for the purposes of enabling in-client manipulation of the data (e.g., querying measurement val-

ues, changing the stretch) this approach would have required the transformation of requested data to

12



another format, likely text. Based on the authors’ experience with PostGIS, there were also no clear

performance advantages to array databases. Thus, a document-oriented database like MongoDB al-

lows the latency associated with preparing scientific data for the web to be pushed offline, during420

initial registration and insertion of the data to the database.”

“[D]ata ingestion, ie: massaging heterogeneous incoming data to a suitable service

structure, typically is an involved task. Section 2.2 does not detail on this, which would

be interesting to know: what challenges had to be met? Any innovative approach taken?”

Authors’ response: Some challenges may be merely mundane details for some readers... We dis-425

covered that Matlab has changed the format of its saved binary output files over the years from

an HDF4-like structure to one requiring an HDF5-compatible reader. We selected Python and its

essential SciPy library as together they provide support for both HDF4 and HDF5 formats. Thus,

our experience is a reminder of the importance of backwards compatibility, which is likely well-

recognized in the scientific programming community. We will add a brief remark on this and other430

considerations, such as the need for calculating population summary statistics offline, at the end of

Section 2.3.

Changes in manuscript: We added a paragraph to section 2.3: “Transforming heterogeneous

data to a uniform structure is a typically onerous task. In developing the interface for storing data

in MongoDB, we aimed for a flexible system predicated on sensible defaults. The Model class of435

the Python API defines how measurement values can be read from any file interface available in

Python. This flexibility was also driven by the historical development of related software systems.

For instance, we discovered that Matlab has changed the format of its saved binary output files

over the years from a proprietary data structure to one that is compatible with HDF5. We selected

Python and its essential SciPy library as together they provide support for Matlab, HDF4, and HDF5440

formats. Thus, our experience is a reminder of the importance of backwards compatibility, which is

likely well-recognized in the scientific programming community.”

“[M]assive binary data encoded in text form seems like a big impediment for transfer

and processing. MongoDB querying certainly does not offer competitive performance

on datacubes, and only limited functionality. Unfortunately, the paper remains superfi-445

cial here and does not explain the detailed storage schema.”

Authors’ response: Our experience with the CDE is that, for regional and global gridded climate

datasets, there are no significant impediments to display and analysis on the web. Comparisons of

the performance of NoSQL databases lacked consensus at the time we began development (in 2012)

but have since begun to show that, indeed, Cassandra and HBase provide better performance in most450

applications than MongoDB (e.g., Dede et al. 2013 in Proceedings of the 4th ACM Workshop on

Scientific Cloud Computing). However, for single nodes, MongoDB can be still provide equal or

13



better performance than alternatives such as Hadoop (as cited by Nyati et al. 2013, at International

Conference on Advances in Computing, Communications and Informatics, ICACCI). As for its “lim-

ited functionality,” in working with our domain experts, the key analytical capabilities they needed455

were all implemented in the CDE using either MongoDB or more practical front-end capabilities. In

presenting early versions of the software to groups like DataONE and the OCO-2 Science Team, we

did not identify any analytical workflows for these types of data (Level III gridded products) that we

could not support.

Changes in manuscript: The demo video, provided as supplemental material, demonstrates that460

the Carbon Data Explorer performs its intended functions in real time. We thoroughly revised section

2.3 to provide more detail about the data management and storage system. We make it clear in multi-

ple places within the manuscript that rather than “a big impediment for transfer and processing,” the

text-based representation is essential to the “rapid, online filtering and aggregation of measurement

data;” at the end of the Introduction, at the end of section 2.3, and in the Concluding Remarks.465

“Example in 2.4: the result to me, following the query logic, should be a 3D cube

extending allong the full spatial footprint and temporally reduced to the start and end

point indicated in the query. However, authors call the result a ‘timeseries’ which earlier

has been introduced as being 1-D. This might be clarified.”

Authors’ response: Only 1D time series or 2D slices of the data cube are made available through the470

web API. The “t.json” endpoint is not constrained in its design to deliver 1D time series, however, as

2D time series were not required for any of the features identified by the user community and would

be expensive to generate, the “t.json” endpoint requires “aggregate” and “interval” keywords so that

it can deliver a time series. We will expound on this in the revised manuscript.

Changes in manuscript: In the Introduction, we added the sentences: “The three-dimensional475

data cube metaphor should not be taken to mean that visualizations of the data cube are necessarily

3D. Rather, the minimum three dimensions of the data cube include the two axes of a Cartesian

coordinate system and an additional axis for time.” We also added, to the end of section 2.4 where the

quoted example is found: “While the ‘t.json’ endpoint could be conceived of as delivering multiple

2D maps (‘X-Y’ slices), it actually delivers a 1D time series. This is because fully-2D time series480

were not required for any of the features identified by the user community and would be expensive

to generate. The ‘aggregate’ and ‘interval’ keywords, which designate the the statistic and bin size

of the aggregation, respectively, are required parameters that describe how multiple 2D maps are

collapsed into a 1D time series.”

“[A]uthors characterize retrieval from MongoDB as ‘very fast’ but without indicating485

measurements, and no comparison to tools offering the same functionality.”

Authors’ response: Performance metrics for the CDE will be included in the revised manuscript.

Changes in manuscript: We provided a table of performance metrics in the revised manuscript.

14



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Manuscript prepared for Geosci. Model Dev. Discuss.
with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls.
Date: 12 November 2015

Distributed visualization of gridded
geophysical data:a web API for
carbon flux

:::::::
The

:::::::::::::::
Carbon

::::::::::
Data

::::::::::::::::::
Explorer,

::::::::::::::
version

::::::::::
0.2.3

K. A. Endsley1,2 and M. G. Billmire1

1Michigan Tech Research Institute (MTRI), Michigan Technological University, Ann Arbor,
MI, USA
2School of Natural Resources and Environment (SNRE), University of Michigan, Ann Arbor, MI,
USA

Correspondence to: K. A. Endsley (endsley@umich.edu)

1



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Abstract

Due to the proliferation of geophysical models, particularly climate models, the increasing
resolution of their spatiotemporal estimates of Earth system processes, and the desire to
easily share results with collaborators, there is a genuine need for tools to manage, ag-
gregate, visualize, and share datasets. We present a new, web-based software tool – the
Carbon Data Explorer – that provides these capabilities for gridded geophysical datasets.
While originally developed for visualizing carbon flux, this tool can accommodate any time-
varying, spatially explicit scientific dataset, particularly NASA Earth system science Level
III products. In addition, the tool’s open-source licensing and web presence facilitate dis-
tributed scientific visualization, comparison with other datasets and uncertainty estimates,
and data publishing and distribution.

1 Introduction

Today’s scientific enterprise must consider the challenges and opportunities associated with
the growing scale of scientific observations, the need for scalable analyses, and the benefits
and obligations of sharing scientific outputs. In geophysical modelsand earth observation
science

:::::::
climate

:::::::
models, in particular, a wealth of observations can be generated or collected

but rich, collaborative insight requires additional frameworks and software tools. Hence,
there is a renewed emphasis in the Earth system sciences on tools and best practices for
the documentation and sharing of analyses, metadata generation (e.g., Earth System Doc-
umentation, ES-DOC), and scientific provenance (e.g., The Kepler Project; Altintas et al.,
2004).

In this paper, we describe a new, web-based framework for managing, analyzing,
and collaboratively visualizing Earth system science datasets: the Carbon Data Explorer
(http://spatial.mtri.org/flux-client/), version 0.2.3. Although the tool’s intended use is for car-
bon science datasets (e.g., regional carbon flux, global carbon concentration), the Carbon
Data Explorer is compatible with any time-varying, spatially explicit Earth system dataset

2

http://spatial.mtri.org/flux-client/


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

or model output (e.g., land surface temperature, evapotranspiration, aerosol optical thick-
ness). We present the tool as a prototype system that addresses the challenges of increas-
ing scientific data volumes, the need for online analysis, and the desire to share results with
collaborators.

Commensurate with the growth of computing power, geophysical models and earth ob-
servation systems are producing data with increasingly fine spatial and/or temporal resolu-
tion (Nativi et al., 2015). Considering the spatial and temporal dimensions within a dataset
simultaneously can be demanding both on computational resources and on a scientist’s
ability to manage and visualize results. As a conceptual aid, a spatiotemporal dataset con-
sisting of only one parameter of interest can be visualized as a three-dimensional “data
cube” (Fig. 1), a representation commonly used in scientific computing (Alder and Hostetler,
2015). The

::::::::::::::::
three-dimensional

:::::
data

::::::
cube

::::::::::
metaphor

:::::::
should

::::
not

:::
be

::::::
taken

:::
to

:::::::
mean

::::
that

::::::::::::
visualizations

:::
of

:::
the

:::::
data

:::::
cube

::::
are

:::::::::::
necessarily

::::
3D.

:::::::
Rather,

:::
the

::::::::::
minimum

:::::
three

:::::::::::
dimensions

::
of

:::
the

:::::
data

:::::
cube

:::::::
include

::::
the

::::
two

:::::
axes

::
of

::
a
::::::::::
Cartesian

::::::::::
coordinate

:::::::
system

:::::
and

:::
an

:::::::::
additional

::::
axis

:::
for

:::::
time.

::::
The

:
data cube representation has also gained traction in recent scientific vi-

sualization tools; UV-CDAT (Santos et al., 2013) and Panoply (Schmunk, 2015) are two
examples.

The Carbon Data Explorer also adopts the data cube as a functional interface for high-
volume spatiotemporal data. A map view of a single point in time can be visualized as
“slicing” the data cube perpendicular to the time (“T ”) axis and parallel to the geographic
(“X–Y ”) plane. Conversely, a time series display at one point in space (one pair of ge-
ographic coordinates) can be visualized as a narrow threading along the time axis and
perpendicular to the X–Y plane. For multivariate data we must begin to construct and think
in terms of higher-dimensional data “hypercubes”. The Carbon Data Explorer is agnostic
as to the type of data contained in data cubes and can simultaneously accommodate any
number of variables.

While data cubes work well for storing scientific data offline, web browsers and web
applications are designed to work largely with plain text documents (interpreted variously as
HTML, XML, JavaScript, or other documents). Non-text formats can be downloaded directly

3



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

from an online directory or through File Transfer Protocol (FTP). Indeed, many scientists,
unable to procure or unaware of a more sophisticated solution, provide large collections
of outputs directly through FTP – essentially a networked folder available to the public.
Indexing, searching, or manipulating data must then be done offline.

As an alternative, open API standards
:
, such as the

:::::
Open

::::::::::
Geospatial

:::::::::::
Consoritum

:::::::
(OGC)

Web Map Service (WMS),
:
allow two computers – a web browser and a remote web server

– to communicate about data through an agreed-upon protocol (Blower et al., 2013). WMS,
as an example, allows web applications to find tiled map images such as those that form the
background of modern, interactive web maps like Google Maps. The “Open-source Project
for a Network Data Access Protocol” (OPeNDAP) is another open standard and

:::::::
protocol

::::
that

describes how Hierarchical Data Files (HDFs) and Network Common Data Form (NetCDF)
files, among other file types, are stored and accessed (Cornillon et al., 2003).

Thus, dissemination of scientific data on the web typically requires a metadata-driven ap-
plication programming interface (API) or resource description framework (RDF); these are
implemented as a kind of text-based communication protocol that describes (to a computer)
where binary data can be found and how they can be accessed. This enables web applica-
tions to ultimately retrieve and display data in formats that are not native to the web. How-
ever, these APIs incur considerable performance costs when online analysis of datasets is
required or when representations are generated dynamically from incoming, real-time data
streams (e.g., Sun et al., 2012; Alder and Hostetler, 2015).

The Carbon Data Explorer solves this problem by introducing a new API for text-based
representations of data cubes, thereby enabling easy integration with and high perfor-
mance in browser-based web applications while also providing rich analytical capabilities on
dynamic datasets

::::::::::
capabilities

:::
for

:::::::::
dynamic

:::::::::
querying,

::::::::::::
aggregation,

::::::::::::
differencing,

::::
and

::::::::
anomaly

:::::::::::
calculations. This text-based representation has the added benefits of compressing the
data and enabling

::
is

::::
not

:::::
only

:::::::::::
compatible

::::
with

:::::
web

::::::::::
browsers,

::
it
:::::::

allows
:::
for

::::
the

:::::
data

:::
to

::
be

::::::::::::
manipulated

::::::::
directly

::
in

::::
the

::::::::
website,

:::::::::
providing

::::::::::::::
asynchronous

:
rapid filtering and aggre-

gation.
::::
Only

::::
the

::::::
OGC

:::::
Web

::::::::::
Coverage

::::::::
Service

::::::::
(WCS),

::
a

::::::::
protocol

:::::
also

::::::
based

:::
in

::
a
:::::
data

:::::
cube

::::::::::
metaphor,

::::::
allows

:::
for

:::::
this

:::::
level

::
of

:::::::::::
interaction

::::
and

::::::
online

:::::::::
analysis

::
of

::::::
data.

:::::::::
However,

4



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::
in

::::
our

:::::::::::
experience,

::::::::::::
stand-alone

::::::
WCS

::::::::::::::::
implementations

::::
are

:::::::
usually

:::::::::::::::
undocumented

::
or

::::
the

::::::::::::::
documentation

::
is

:::::::::
relegated

::
to

::::
the

:::::
WCS

:::::::::
standard.

:

The adoption of web APIs for sharing data is further evidence of the scientific com-
munity’s desire to share results with a wider audience. In addition, the ubiquity of so-
cial media is bringing online conversations about science, albeit informal, and there are
even emerging social networks dedicated to scientific discourse and exchange (e.g., Re-
searchGate, Academia.edu). This unprecedented interconnectivity is also motivated by best
practices in collaborative science. The next phase of the Climate Model Intercomparison
Project, CMIP6, will for the first time involve distributed analyses of climate scenarios
(Meehl et al., 2014) .

:::::
allow

::::::::
“anyone

:::
at

::::
any

:::::
time

:
[
:
to]

:::::::::
download

:::::::
model

:::::
data

:::
for

:::::::::
analysis”

:::::::::::::::::::
(Meehl et al., 2014) .

:::
As

::::
part

::
of

::::::::
CMIP5,

:::
the

::::::
Earth

:::::::
System

:::::
Grid

::::::::::
Federation

::::::::
(ESGF)

::::::::
provides

:
a
:::::::
unified

:::::::::
gateway

::
to

:::::::::
scientific

:::::::::
datasets

:::::::
hosted

::::::::::
anywhere

:::
in

:::
the

:::::::
world.

:
Thus, the ability

to share and compare model results should motivate the
::::::
further

:
development of web-

compatible scientific datasets
::::::::
analyses.

In response to this need, the Carbon Data Explorer allows data providers to share sci-
entific datasets, analyses, and visualizations directly on the web. A data provider might
be a modeler, the principal investigator of an interdisciplinary research team, or a tech-
nician or information technology (IT) professional embedded in a research team. NASA
estimates that these scientists and model developers spend more than 60 % of their time
preparing model inputs and model inter-comparisons (as cited by Rood and Edwards,
2014). The Carbon Data Explorer was designed specifically to lower or eliminate barriers to
bringing scientific results onlineand making comparisons

::::::
enable

:::::::
climate

::::::::::
modeling

:::::::
outputs

::
to

:::
be

:::::::
brought

:::::::
online,

::::::::::
visualized,

::::
and

:::::::::::
compared.

::
In

:::
its

::::::::
capacity

:::
as

::
a
:::::

data
:::::::::::::
management

:::::
and

::::
data

::::::::
access

::::
web

:::::::
server,

::::
the

::::::::
Carbon

:::::
Data

::::::::
Explorer

::
is

:::::::
similar

:::
to

:::
the

:::::::::::
THREDDS

::::::
Data

:::::::
Server

:::::::
(TDS);

::
its

::::::::::
analytical

:::::::::::
capabilities

::::::
make

:
it
:::::::
similar

::
to

::::::::::::::::::
Ferret-THREDDS.

:::::
The

:::::::
Carbon

:::::
Data

:::::::::
Explorer

:::::::::
expands

:::
on

:::::
both

:::
by

:::::::::
providing

::
an

::::::::::
integrated

:::::::::
front-end

:::
for

::::::::::::
visualization

::::
and

:::::::::
analysis.

::::::
While

::::
the

::::::::::
THREDDS

::::::
Client

::::::::
Catalog

::::::::
requires

::::
data

:::
to

:::
be

:::::::::::
registered

::::
with

:::::
XML

::::::::::::
descriptors,

::::
the

::::::::
Carbon

:::::
Data

:::::::::
Explorer

:::::::
Python

:::
API

::::
has

::
a
::::::::::::
user-friendly

::::::::::::::
command-line

:::::::::
interface

::::
that

::::::
allows

:::
for

::::::
faster,

:::::::::::
repeatable,

:::::::::
one-time

5



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::::::::::
registration

:::
of

::::::
data

:::::::
without

::::
the

::::::
need

:::
to

::::::
open

::
a
:::::

text
::::::

editor
:::::

and
::::::

write
::::::
XML.

:::
In

:::::
data

:::::::::::
interchange,

:::
it

:::::
also

:::::::::::
substitutes

::::::
bulky

:::::
XML

::::
for

:::::::::::
light-weight

:::::
and

::::::
more

::::::::::::::::
human-readable

::::::::::
JavaScript

:::::::
Object

::::::::
Notation

:::::::::
(JSON).

::
In

:::::::::
addition,

::
it
:::::::::
eschews

::::
the

::::::::::::::::::
vulnerability-prone

:::::
Java

:::::::::::
environment

::::
and

::::::::
Tomcat

::::
web

:::::::
server

:::
for

:
a
::::::::::::
light-weight,

::::::::::::
non-blocking

:::::
web

::::::
server

::
in
::::::::
Node.js

:::
that

:::::
can

:::
be

:::::::
hidden

:::::::
behind

:::
a

::::::
proxy

::::::
server

::::::
such

:::
as

::::::::
Apache.

:::::
This

:::::::
design

:::::::
choice

:::::::
trades

::
off

::::
the

::::::::
protocol

::::::::::::::
interoperability

:::
of

:::::
TDS,

::::::
which

:::::
was

::::
not

:::::::::
identified

:::
as

::
a

:::::::::::
requirement

:::
by

::::
our

::::
user

:::::::::::
community,

:::
for

::::
the

:::::
ease

::
of

:::::::::::::
development

::::
and

:::::::::::
deployment

::
of

:::::
web

::::::::
services

::::
with

:::::::
newer,

::::::::::::::::
JavaScript-based

::::::::::::
technologies

:::
on

::::
the

::::::
server.

The scientific datasets supported
::
by

::::
the

::::::::
Carbon

:::::
Data

::::::::
Explorer

:
include any gridded or

non-gridded time-varying, spatially explicit data that can be decomposed into one variable
at a time. The canonical example of a supported dataset is any NASA Level III scientific data
product, defined as “variables mapped on uniform space–time grid scales” (NASA, 2010).
These geophysical variables are usually derived from Earth observation satellites

::::::::
satellites

:::::
(e.g.,

::::::::
OCO-2) or models, reanalysis datasets and global or regional Earth system models.

Many scientific datasets, particularly Level III products, are already stored as binary (“flat”)
files or in complex, hierarchical data structures (e.g. NetCDF or HDF) that were designed
to accommodate data cubes (Blower et al., 2013).

::::
The

:::::::
Carbon

:::::
Data

:::::::::
Explorer

::::::
shares

:::::::
similar

:::::
aims

::::
with

:::::::::::::
technologies

:::::
such

::
as

::::::::
NASA’s

::::::
World

:::::
Wind

::::::
virtual

:::::::
globe,

:::::::::
Giovanni,

::::
and

:::::::::
Mirador.

::::::::::
Compared

::::
with

:::::::
World

::::::
Wind,

:::
the

::::::::
Carbon

:::::
Data

::::::::
Explorer

::::::::
provides

::::::::
access

::
to

::::::::::
analytical

:::::::::::
capabilities

::::
that

:::::::
would

:::
be

:::::::::
awkward

::
or

:::::::::::
impossible

::
to

::::::::::
reproduce

::
in

::
a
::::::
virtual

:::::::
globe.

:::::
Also,

::::::
unlike

::::::
World

::::::
Wind,

::
it
::::::::
requires

::::::::
neither

:
a
::::::::::::

stand-alone

::::::::::
installation

::::
nor

::
a

::::::::::::
dependency

::::::
library

::::::
such

:::
as

:::::
Java

::::
and

:::::
runs

:::
in

::::
any

::::
web

:::::::::
browser.

::::::
While

:::::::
Mirador

::::::
allows

::::::
users

::
to

::::::::::
download

::::::::
spatially

:::::::
explicit

::::::::
scientific

:::::::::
datasets

:::::
from

::::::
NASA

:::::::::
missions,

:
it
::::
has

:::
no

::::::::::
analytical

:::
or

::::::::::::
visualization

::::::::::::
capabilities.

::::
The

::::::::
Carbon

:::::
Data

:::::::::
Explorer

:::::
most

:::::::
closely

::::::::::
resembles

:::::::::
Giovanni

::
in

::::
that

:::::
both

::::
are

::::::::::::
web-based,

::::::::::::::
map-centered

::::::::
viewers.

::::::
While

:::::::::
Giovanni

::::::::
provides

:::::
more

:::::::::::::
sophisticated

::::::::::
analytical

:::::::::::
capabilities,

::::
the

:::::::
Carbon

:::::
Data

:::::::::
Explorer

::
is

:::::::::
designed

::
to

:::::::
deliver

:::::::
results

::::::
faster

::::
and

::::::
allows

::::
for

:::::::
greater

::::::::::::::
customization

::
of

::::
the

::::::::::::
visualization

::::
and

::::
the

::::::::
querying

::
of

::::::::::::::
measurement

:::::::
values

::::::
within

:::
the

:::::
web

::::::
client.

::
In

:::::
sum,

::::
the

::::::::
Carbon

:::::
Data

::::::::
Explorer

6



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::
is

::::::::
intended

:::
for

::::::
more

:::::
rapid

::::::::::::
examination

:::::
and

:::::::::::
comparison

:::
of

:::::::
climate

:::::::
model

:::::::
outputs

:::
by

::::
the

:::::::::
modelers

:::::::::::
themselves.

:

In common with the Earth System Grid Federation (Williams et al., 2009), the Carbon
Data Explorer aims to provide a common environment for the access to and analysis
and visualization of Earth system science datasets.

::::
The

::::::
ability

:::
to

:::::::
quickly

:::::
load

::::::::
spatially

::::::
explicit

:::::::::
scientific

:::::
data

::
in

::
a
:::::
web

::::::::
browser

::::::
allows

:::
for

::::
the

::::::
online

:::::::::
querying

::::
and

::::::::::::
comparison

::
of

:::::::::::::
measurement

::::::
values

::
at

::::::::
specific

:::::::::
locations

::::::
across

:::::::::
datasets

::::
and

:::
the

::::::
rapid,

::::::
online

:::::::
filtering

::::
and

:::::::::::
aggregation

::
of

::::::::::::::
measurement

:::::
data.

:::::::
These

::::::::
features

::::
are

:::
not

:::::::::
currently

:::::::::
available

::
in

:::::::::
Giovanni

:::
and

:::::::::::
alternative

::::
data

:::::::::::::
management

:::::::::::
frameworks

::::
and

:::::
web

:::::::
servers,

:::::
such

:::
as

:::::::::::::::::
TDS—particularly

:::::
those

::::
that

::::::::
provide

:::::
only

::::::::::
rasterized

::::
data

::::::::::::::::
representations,

:::::
such

:::
as

:::::::::::
WMS—are

::::
not

::::::::
capable

::
of

:::::::::
delivering

::::
this

:::::
level

::
of

:::::::::
analysis

::
or

::::::
speed

:::
of

:::::::::::
interactivity.

:
We expect that these and other

features of the Carbon Data Explorer make it a useful contribution to the emerging frame-
works for data analysis and intercomparison. The remainder of the paper discusses these
and other technical details and describes the full suite of features available.

2 Technical description

2.1 Data sources

In the development and evaluation of the tool, we relied heavily on some reference datasets
exemplary of those we intend to support. These included a 1◦-by-1◦ carbon flux estimate
at 3-hour time steps from the NASA Carnegie Ames Stanford Approach (CASA) model run
with Global Fire Emissions Dataset (GFED) input data and 1◦-by-1◦ carbon concentration
(XCO2) data at 6-day time steps modeled by the Carnegie Institution for Science’s Depart-
ment of Global Ecology at Stanford University (http://dge.stanford.edu/labs/michalaklab/
CO2DAAD/). The CASA-GFED model outputs included monthly uncertainty estimates; the
XCO2 data were gridded by kriging from bias-corrected XCO2 retrievals.

7

http://dge.stanford.edu/labs/michalaklab/CO2DAAD/
http://dge.stanford.edu/labs/michalaklab/CO2DAAD/


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

2.2 Implementation

The Carbon Data Explorer has three main components: a Python application programming
interface (API) for data management, a web server API, and a client-side JavaScript web
application (Fig. 2). From a data provider’s perspective, data enter a pipeline from creation
to visualization on the web beginning with the Python API, which transforms and stores
the data in a database. The data are then automatically available on the web (or a local
area network) through the server API and can be viewed and shared through the web
application. This suite of software is designed to

:::::
could

:::
be

:
run on a single computer or

separately on multiple computers, each running any UNIX-like operating system (Mac OS
X or a GNU/Linux system).

:::
The

::::::
suite

::
is

:::::::::
designed

:::
to

:::
be

::::::::
installed

::::
on

:::
the

:::::
data

::::::::::
provider’s

::::::::::
(modeler’s)

:::::::::
network,

::::
with

:::
the

:::::::
server

::::
API

:::::::::
optionally

::::::
facing

::::
the

::::::
public

:::::
web.

The Python programming language (version 2.7) was chosen as the framework for data
management, manipulation, and storage due to its high-level language design, wide adop-
tion in the scientific community, and available open-source libraries. In particular, as many
scientific products are stored as hierarchical data files (HDF) or early Matlab files, Python
provides fast and robust support for reading scientific data products through the NumPy
(Van Der Walt et al., 2011) and SciPy (Jones et al., 2015) libraries. We also expect that
Python provides an environment that many data providers are already familiar with or can
learn easily should they need to extend the data management API to support new or cus-
tomized datasets.

The web server and web client are both implemented in JavaScript. This was a strategic
but also practical decision. JavaScript is fast and expressive. It is also the de facto language
of the web; the only language that is natively supported by every modern web browser
(Crockford, 2008). While JavaScript is not widely used for scientific computing, no experi-
ence with the language is needed to use the Carbon Data Explorer. We selected Node.js
(http://nodejs.org/) as the framework for running a JavaScript server because it provides
event-driven request handling, which, like multithreading, can significantly speed up server
response time for most web applications (Tilkov and Vinoski, 2010).

8

http://nodejs.org/


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::::::::::::
Performance

:::::::
testing

::
of

::::
the

:::::::
Carbon

:::::
Data

:::::::::
Explorer

::::
was

::::::::::
conducted

::::::
using

::::::::
Apache

:::::::
JMeter.

:::
For

:::::
each

:::
of

:::
the

:::::::::
requests

::::::
listed

::
in

:::::
Table

:::
1,

:::
10

:::::::::
identical,

:::::::::
repeated

:::::::
queries

:::::
were

:::::
sent

::
to

::::
the

::::::
server

::::
over

:::
30

:::::::::
seconds.

:::::
Tests

:::::
were

::::::
done

:::::::::::
sequentially

::::
and

:::::
were

::::::::::
performed

:::::
three

::::::
times

::::
with

:::::::
several

:::::
hours

:::
to

:::::::
several

:::::
days

::::::::
between

::::
the

::::
runs

:::
to

:::::::
ensure

:::::::
general

:::::::
results.

:

2.3 Data management and storage

Open data APIs for science capitalize on storing and sharing text-based metadata asso-
ciated with scientific data that are stored in a binary or hierarchical format. We took this
a step further and designed a data model that is text-only; that is, the format of the data
both on-disk and when transmitted over the web is plain text. Specifically, the data are
stored and transmitted as JavaScript Object Notation (JSON) documents. This approach
not only ensures compatibility with web browsers but also slightly compresses the data.
These JSON documents are stored in a MongoDB database instance which handles index-
ing and retrieval of such plain-text representationsreasonably well

:
.

:::::::::
MongoDB

::::
is

:::::
one

:::
of

::::::::
several

:::::::::::::::::::::
“document-oriented”

:::::::::::
databases

:::::::::
capable

:::
of

::::::::
storing

::::::::::::::
semi-structured

:::::
data

::::
as

:::::::::
key-value

::::::
pairs.

::::
As

::::
the

:::::
goal

::::
was

:::
to

::::
get

::::
the

:::::
data

:::
on

::::
the

:::::
web,

:::
we

::::::
chose

::::::::::
MongoDB

:::
for

:::
its

::::::::::::
transparent,

::::::::::
text-based

::::::::
storage.

::::::::::::
Alternatives

:::::
such

:::
as

::::::::
Apache

:::::::
Hadoop

:::::
and

:::::::::::
Cassandra,

::::::
while

:::::::
offering

:::::::::::::
performance

::::::::::::
advantages,

:::
do

::::
not

::::::::
provide

::
a

:::::
clear

::::::::
pathway

:::
for

::::::::::
rendering

::::::
binary

:::::
files

:::
as

:::::
text.

:::::::
These

:::::::::::
alternatives

:::::
may

:::::::::
faithfully

::::
and

:::::::
rapidly

:::::::
operate

:::
on

::::::::
chunks

:::
of

::::
the

:::::
data

::::
but

:::::::
would

:::::::
require

:::::
that

::::::
input

::::::
binary

:::::
files

::::
be

::::
split

:::::
and

:::::::::::
transformed

::::
into

::::::
some

::::
kind

:::
of

::::::::::
operational

:::::::
format

:::
for

::::::::
handling

:::
in

:
a
::::::::::::
map-reduce

:::::::::::
framework.

::
As

::::
no

:::::::
obvious

:::::::::::::
intermediate

::::::
format

:::::
was

:::::::
known

::
at

::::
the

:::::
time

::
of

:::::::::::::
development,

::::
we

::::::
opted

:::
for

:
a
:::::::
format

::::
that

::::::
most

:::::::
closely

:::::::::::
resembled

::::
the

::::::
output

::::::::::::::::::::
representation—the

::::::
native,

:::::::::::
text-based

:::::::::::::
representation

:::::::::
required

:::
for

:::
the

:::::
web

::::::::::::
browser—as

:::
the

:::::::::::::
intermediate

::::::
format

:::
to

:::
be

::::::
stored

::::
and

::::::::
operated

:::
on

:::
in

:::
the

::::::::::
database.

:::::
This

:::::::
design

::::::
choice

:::::::
trades

:::
off

::::::::::::
performance

:::
for

:::::::::
flexibility

::::
and

:::
the

:::::::::::
operational

:::::::::
demands

::
of

::::::::
bringing

:::::
data

::
in

::::::
binary

:::::
files

::::
onto

::::
the

:::::
web.

:::::
Array

:::::::::::
databases

::::::
such

:::
as

::::::::::
PostGIS,

::
a
:::::::

spatial
::::::::::

extension
:::

to
:::::

the
:::::::::
relational

::::::::::
database

::::::::::::
management

:::::::
system

::::::::::
(RDBMS)

::::::::::::
PostgreSQL,

::::
are

::::::::
another

::::::::::
alternative

:::
to

::::::::::
MongoDB

::::
that

:::
we

:::::::::::
considered.

::::
The

::::
use

::
of

:::
an

:::::
array

:::::::::
database

::::::
would

:::::
have

::::::::
satisfied

:::
the

:::::
need

:::
for

:::
an

::::::::::::
intermediate

9



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::::::::::
format—in

::::
this

:::::
case,

::::::
array

:::::::::::
stores—but

:::
for

:::
the

::::::::::
purposes

::
of

:::::::::
enabling

::::::::
in-client

::::::::::::
manipulation

::
of

:::
the

:::::
data

:::::
(e.g.,

:::::::::
querying

:::::::::::::
measurement

:::::::
values,

:::::::::
changing

::::
the

:::::::
stretch)

::::
this

:::::::::
approach

::::::
would

::::
have

:::::::::
required

:::
the

::::::::::::::
transformation

::
of

::::::::::
requested

:::::
data

::
to

::::::::
another

:::::::
format,

:::::
likely

:::::
text.

::::::
Based

:::
on

:::
the

::::::::
authors’

:::::::::::
experience

::::
with

:::::::::
PostGIS,

:::::
there

:::::
were

::::
also

:::
no

:::::
clear

:::::::::::::
performance

:::::::::::
advantages

::
to

:::::
array

:::::::::::
databases.

::::::
Thus,

::
a

::::::::::::::::::
document-oriented

:::::::::
database

::::
like

::::::::::
MongoDB

:::::::
allows

::::
the

:::::::
latency

::::::::::
associated

:::::
with

:::::::::
preparing

:::::::::
scientific

:::::
data

:::
for

::::
the

:::::
web

:::
to

:::
be

::::::::
pushed

:::::::
offline,

::::::
during

::::::
initial

::::::::::
registration

:::::
and

::::::::
insertion

:::
of

:::
the

:::::
data

:::
to

::::
the

:::::::::
database. In addition, MongoDB features an

aggregation pipeline, which allows us to make sophisticated queries such as “net carbon
flux over the last 16 days.” The web server API, which facilitates connections to the Mon-
goDB instance, contains libraries that enable further sophistication with queries, applying
fast arithmetic operations for queries such as “the difference between carbon concentration
(in ppm) today and this day last year.”

Scientific data in the Carbon Data Explorer are conceived of as belonging to a particular
run of a “scenario”, i.e., a specific geophysical modeling objective. Each scenario has one
timeline associated with it and gridded data belonging to that scenario are uniquely keyed
by their date and time. Non-gridded data are assigned arbitrary unique identifiers, making
it possible to have two pieces of non-gridded data that represent the same instance in
time (or span of time) associated with the same scenario. The gridded data in a scenario
must also share the same uniform, rectangular grid. This allows data values to be stored
and transmitted independent of the spatial reference information, compressing the data
storage and stream to levels that allow for rapid retrieval and display on the web. The “X–Y ”
values associated with gridded data – the spatial coordinates of each data point – are
stored separately and transmitted only once to the web application, eliminating redundancy
associated with viewing multiple points in the time series. In contrast, non-gridded data
are stored with their X–Y values and transmitted as GeoJSON, a spatially explicit form of
JSON, as their spatial structure may vary.

Users can shuttle scientific data into and out of the MongoDB instance by directly inter-
acting with the Carbon Data Explorer Python API classes or by using a set of accompanying
command line tools designed to ease workflow. Command line tools are available for query-

10



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

ing database contents as well as for loading, renaming, and removing datasets from the
database. When loading a dataset, its metadata must be specified either via command line
argument or via an accompanying JSON file. Examples of required metadata parameters
include column identifiers, grid resolution, units, starting timestamp, and time step length.
These metadata parameters inform the correct methods for transforming and querying the
data for use within the web server API.

::::
The

:::::::::
metadata

:::::
also

:::::::
encode

:::::::::::
population

:::::::::
summary

:::::::::
statistics,

::::::
which

:::
are

::::::::::
calculated

:::
by

::::
the

:::::::
Python

::::
API

:::::::
during

:::::::::
insertion

::
to

:::::::::::
MongoDB,

::
to

::::
aid

::
in

:::::::::::
visualization

::::::
(e.g.,

::::::::::
calculating

::
a

::::::::
stretch).

The transformation of data from binary or hierarchical flat files to a database representa-
tion is facilitated by two Python classes, Models and Mediators, which are loosely based on
the Transformation Interface described by Bulka (2001). The Model class is a data model
that describes what a scientific dataset looks like; whether it is a time series of gridded
maps or a covariance matrix, for instance. The Mediator class describes how a given Model
should be read from and the data it contains translated to a database representation. Some
basic Mediator and Model classes are provided in the Python API. It is expected that data
providers with a particular output format can easily create new Model and Mediator sub-
classes to seamless read and write data to and from the MongoDB database and the files
in which their data are currently stored.

::::::::::::
Transforming

:::::::::::::::
heterogeneous

:::::
data

:::
to

::
a
::::::::
uniform

:::::::::
structure

:::
is

::
a

::::::::
typically

:::::::::
onerous

:::::
task.

::
In

:::::::::::
developing

:::
the

:::::::::
interface

:::
for

:::::::
storing

:::::
data

:::
in

::::::::::
MongoDB,

::::
we

::::::
aimed

:::
for

::
a
::::::::

flexible
:::::::
system

::::::::::
predicated

:::
on

:::::::::
sensible

::::::::::
defaults.

:::::
The

:::::::
Model

::::::
class

:::
of

::::
the

::::::::
Python

:::::
API

::::::::
defines

:::::
how

:::::::::::::
measurement

::::::
values

::::
can

:::
be

:::::
read

:::::
from

::::
any

:::
file

:::::::::
interface

::::::::
available

::
in
::::::::
Python.

:::::
This

::::::::
flexibility

::::
was

::::
also

::::::
driven

:::
by

:::
the

:::::::::
historical

::::::::::::
development

:::
of

::::::
related

:::::::::
software

:::::::::
systems.

:::
For

:::::::::
instance,

:::
we

::::::::::
discovered

::::
that

:::::::
Matlab

:::
has

:::::::::
changed

:::
the

:::::::
format

::
of

::
its

::::::
saved

::::::
binary

:::::::
output

::::
files

::::
over

::::
the

:::::
years

::::
from

::
a

:::::::::::
proprietary

::::
data

:::::::::
structure

::
to

::::
one

:::::
that

::
is

::::::::::
compatible

:::::
with

::::::
HDF5

:::::::::::::::::::
(MathWorks, 2015) .

:::
We

:::::::::
selected

:::::::
Python

::::
and

:::
its

:::::::::
essential

::::::
SciPy

:::::::
library

:::
as

:::::::::
together

::::
they

::::::::
provide

::::::::
support

:::
for

:::::::
Matlab,

:::::::
HDF4,

::::
and

::::::
HDF5

::::::::
formats.

::::::
Thus,

::::
our

:::::::::::
experience

::
is

::
a

:::::::::
reminder

::
of

::::
the

:::::::::::
importance

::
of

:::::::::::
backwards

::::::::::::
compatibility,

::::::
which

:::
is

:::::
likely

::::::::::::::::
well-recognized

::
in

::::
the

:::::::::
scientific

:::::::::::::
programming

::::::::::
community.

:

11



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

:::::::::
Scientific

::::
data

::
in

::::
the

:::::::
Carbon

:::::
Data

:::::::::
Explorer

:::
are

::::::::::
conceived

::
of

:::
as

::::::::::
belonging

::
to

::
a

:::::::::
particular

:::
run

::
of

::
a
::::::::::
“scenario,”

::::
i.e.,

::
a
::::::::
specific

:::::::::::
geophysical

:::::::::
modeling

::::::::::
objective.

:::::
Data

:::::::
cube(s)

::::
are

::::::
stored

::
as

::::
one

:::
or

:::::
more

:::::::::::
scenarios.

:::::::
During

::::
data

:::::::::
insertion

::
to

:::::::::::
MongoDB,

::::
the

:::::
“X-Y”

::::::
slices

:::
at

::
all

:::::
time

::::::
points

:::
are

:::::::
stored

::
as

:::::::::
separate

:::::::::::
documents.

::::::
Each

::::::::
scenario

::::
has

::::
one

::::::::
timeline

:::::::::::
associated

::::
with

:
it
::::
and

::::::::
gridded

::::
data

::::::::::
belonging

::
to

::::
that

:::::::::
scenario

:::
are

:::::::::
uniquely

::::::
keyed

::
by

:::::
their

:::::
date

::::
and

:::::
time.

::::::::::::
Non-gridded

:::::
data

:::
are

::::::::::
assigned

::::::::
arbitrary

:::::::
unique

::::::::::
identifiers,

::::::::
making

::
it

::::::::
possible

:::
to

:::::
have

:::
two

:::::::
pieces

::
of

::::::::::::
non-gridded

:::::
data

::::
that

:::::::::
represent

::::
the

::::::
same

::::::::
instance

::
in

:::::
time

:::
(or

:::::
span

:::
of

:::::
time)

::::::::::
associated

::::
with

::::
the

:::::
same

:::::::::
scenario.

:::
At

:::
the

::::::::
present

:::::
time,

:::
the

:::::::
Carbon

:::::
Data

::::::::
Explorer

:::::::::
supports

::::
only

::::::::::
structured

:::::
grids;

:::::
that

::
is,

::::
the

:::::::
gridded

:::::
data

::
in

::
a
:::::::::
scenario

:::::
must

::::::
share

:::
the

::::::
same

::::::::
uniform,

::::::::::
rectangular

:::::
grid.

:::::::::::::
Measurement

:::::::
values

:::
are

::::::
stored

::::
and

:::::::::::
transmitted

::::::::::::
independent

::
of

::::
the

::::::
spatial

:::::::::
reference

:::::::::::
information,

:::::::::::
eliminating

:::::::::::::
redundancies

::::
and

::::::::
allowing

:::
for

:::::
rapid

::::::::
retrieval

::::
and

:::::::
display

::
on

::::
the

:::::
web.

:::::
The

::::::
“X-Y”

:::::::
values

::::::::::
associated

:::::
with

::::::::
gridded

::::::::::
data—the

:::::::
spatial

:::::::::::
coordinates

:::
of

:::::
each

::::
data

::::::::::
point—are

:::::::
stored

::::::::::
separately

::::
and

::::::::::
transmitted

:::::
only

:::::
once

::
to

:::
the

:::::
web

:::::::::::
application.

::
In

::::::::
contrast,

::::::::::::
non-gridded

::::
data

::::
are

:::::::
stored

::::
with

:::::
their

::::
X-Y

::::::
values

:::::
and

::::::::::
transmitted

:::
as

:::::::::::
GeoJSON,

:
a
::::::::
spatially

:::::::
explicit

:::::
form

::
of

:::::::
JSON,

:::
as

::::
their

:::::::
spatial

:::::::::
structure

::::
may

:::::
vary.

2.4 Provision of scientific data on the web

The Carbon Data Explorer web server API is designed to work out-of-the-box so that data
can be served and visualized with the web application on any web browser connected to the
same local area network. That is, any user on the same network as the computer running
the server can access the Carbon Data Explorer through its internet protocol (IP) address
in their web browser. Data providers might choose to host the Carbon Data Explorer lo-
cally so as to keep their data private and collaborate internally. Deploying the server and
web application on the public web is also easy, though it may require some familiarity with
networking technology.

The web server makes data available as resources that are each associated with a uni-
form resource identifier (URI). The model used for organizing these resources in a single
namespace (i.e., under a single host or domain name) is the Representational State Trans-
fer (REST) model (Fielding and Taylor, 2000), in which different representations of data are

12



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

provisioned with semantics. For example, a list of all available scenarios can be obtained at,
e.g., “/scenarios.json” as a JSON document. Alternately, the metadata for a single scenario,
e.g., the “casa_gfed_2004” scenario, can be obtained at “/scenarios/casa_gfed_2004.json”.

As another example, a map of carbon flux on 18 January 2004
at 03:00 UTC from the “casa_gfed_2004” scenario can be obtained at
“/scenarios/casa_gfed_2004/xy.json?time=2004-01-18T03:00:00” where “xy” refers
to the X–Y values from our data cube (i.e., a geographic map). This distin-
guishes map data from a time series, which could be requested in JSON for-
mat from the “t.json” resource, e.g., “t.json?start=2003-12-22T03:00&end=2005-01-
01T00:00&aggregate=mean&interval=daily”.

:::::
While

::::
the

:::::::
“t.json”

::::::::
endpoint

::::::
could

::
be

::::::::::
conceived

::
of

::
as

::::::::::
delivering

::::::::
multiple

:::
2D

:::::
maps

:::::::
(“X-Y”

:::::::
slices),

:
it
::::::::
actually

:::::::
delivers

::
a
:::
1D

:::::
time

:::::::
series.

::::
This

::
is

::::::::
because

:::::::
fully-2D

:::::
time

::::::
series

:::::
were

::::
not

::::::::
required

:::
for

::::
any

::
of

:::
the

::::::::
features

:::::::::
identified

:::
by

:::
the

:::::
user

::::::::::
community

::::
and

::::::
would

:::
be

::::::::::
expensive

::
to

::::::::::
generate.

::::
The

:::::::::::
“aggregate”

::::
and

:::::::::
“interval”

::::::::::
keywords,

:::::
which

::::::::::
designate

:::
the

::::
the

::::::::
statistic

::::
and

:::
bin

::::
size

:::
of

:::
the

::::::::::::
aggregation,

::::::::::::
respectively,

::::
are

::::::::
required

:::::::::::
parameters

::::
that

::::::::
describe

::::
how

::::::::
multiple

:::
2D

::::::
maps

::::
are

:::::::::
collapsed

::::
into

::
a

:::
1D

::::
time

:::::::
series.

:

These limited examples showcase only a small part of the functionality of the web server’s
API (Table 2). These relatively human-readable URIs allow experienced users to download
data directly if preferred. They are also used behind-the-scenes in the web application to
programmatically request data as indicated by a user through its graphical user interface
(GUI).

::::
The

:::::::::
RESTful

:::::::
design

::
of

::::
the

:::::
web

::::::::
server’s

:::::
API

::::::::::::
underscores

::::
an

:::::::::
important

::::::
point

::::::
about

::::::
having

:::::::::
scientific

::::::
data

:::::::
directly

::::::::::
available

::
in

::::
the

:::::::
user’s

:::::
web

:::::::::
browser.

::::
We

::::::::
believe

::::::
scale

::::::::
changes,

:::::::::
changes

:::
in

::::
the

::::::::
palette,

::::
and

:::::::
similar

:::::::::
changes

::::
are

:::
in

:::
the

:::::::::
purview

::
of

::::
the

::::::
client

:::::::::::
application;

::
as

:::::
they

:::
are

:::::::
merely

::::::::
changes

::
in

::::
the

::::::::::::
application’s

:::::
state,

:::::
they

::::::
should

:::
be

::::::::::
performed

::::::::::::::
asynchronously

:::
in

:::
the

:::::
client

:::::::::::
application

:::::::
without

:::::::::
requiring

::::::::::
interaction

::::
with

:::
the

:::::::
remote

:::::::
server.

::::::::
Keeping

:::::
data

:::
on

::::
the

:::::::
server

::::::::
requires

:::::
that

:::::
new

:::::::::::::::
representations

::::
are

::::::::::
generated

::::::
even

:::
for

::::::::
relatively

::::::
minor

::::::::
changes

:::
in

::::::::::
application

::::::
state.

::::
One

:::::::::
example

::
is

:::
the

:::::::::
seamless

:::::::::
rescaling

:::
of

:::
the

::::::::::::
visualization,

:::::
e.g.,

:::::::::
changing

:::
the

:::::::
stretch

:::::::::::
“on-the-fly.”

::::
We

:::::
have

::::::
seen

::::::::::::
performance

:::::::
issues

::
in

:::::::::::
comparable

:::::::::::
approaches

::
to

::::
this

:::::::::
problem,

::::
e.g.,

::::
with

::::::
WMS,

::::::
which

:::::
must

::::::::
request

:::
the

:::::
data

:::::
again

13



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

::::
from

::::
the

::::::
server

:::::::::
whenever

:::::::
scaling

::::::::
changes

::::
are

::::::::
desired.

::::::
While

::::::
similar

:::::
tools

:::::
such

::
as

:::::::::
Giovanni

::::
have

:::::
also

:::::::::
enabled

:::::::::
seamless

:::::::::
changes

:::
to

::::::::::::
visualization

:::::::::::::
parameters,

::::
they

::::::
don’t

::::::
allow

:::
for

::::::::::
map-based

:::::::::
querying

::
of

::::::::::::::
measurement

::::::
values

::
or

:::::::::::::
simultaneous

::::::::::::
comparison

::
of

:::::::::::::
measurement

::::::
values

:::::::
across

:::::::::
datasets,

::
as

::::
the

:::::::
Carbon

:::::
Data

:::::::::
Explorer

:::::
does.

:

3 Features

In the Carbon Data Explorer client application, a rich user interface (Fig. 3) provides users
many options for visualizing, exploring, comparing, and ultimately sharing geophysical data
that have been previously imported with the Python API and made available to the client
through the web server API. In Table 3 and in the subsequent text, we highlight some of
the chief features available to users. A demonstration video (doi:10.5281/zenodo.18941)
of the web browser application can also be seen through a link on the project website
(http://spatial.mtri.org/flux/).

3.1 Spatial visualization and analysis

The default view in the Carbon Data Explorer client application is the “Single Map View”
which displays a geographic view (an “X–Y slice”) of the data at a particular time. The Map
Settings define the map projection used (currently a choice between Equirectangular or
Mercator) and what kind of basemap should be drawn (e.g., continents with or without po-
litical boundaries). When gridded data are drawn on the map, the Symbology options allow
a user to specify a color palette from a selection of colorblind-safe, perceptually linear color
scales designed by Brewer (2014). Both sequential and diverging color scales are available
for linear data that are either constantly increasing or are diverging from a threshold or mean
value, respectively. The number of bins in the color scale can also be specified. While the
default stretch of the data to the color scale is a standard deviation about the mean, both
the measure of central tendency and the number of standard deviations can be changed.
As an alternative to this stretch, the scale can be stretched to the domain of the data or any

14

http://dx.doi.org/10.5281/zenodo.18941
http://spatial.mtri.org/flux/


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

arbitrary endpoints as entered by the user. A binary map can also be shown, where a single
color is used to code for grid cells or data points that fall within a user-specified range.

The Single Map View allows the user to explore the data as in a geographic information
system (GIS). Users can zoom into the map display, pan the map around, and query the
value of a data point by hovering over it with the cursor. Non-gridded data can be plotted on
top of gridded data and automatically share the same color scale. An optional border drawn
around the non-gridded data points can help to distinguish them from the gridded data.
This feature allows, for example, the direct comparison of gridded carbon concentration
with bias-corrected retrievals from atmospheric sounding.

Data can be quickly aggregated in time or space from within the web application. The
temporal aggregation is handled by the MongoDB aggregation pipeline, which facilitates
very fast aggregation of multiple X–Y slices (maps spanning time). Spatial aggrega-
tion of one or more pixels (an aggregate value spanning a spatially filtered subset) is
achieved using a combination of the JSTS Topology Suite JavaScript library and MongoDB’s
geospatial query operators.

::::
Both

:::::::::
temporal

:::::::::::
aggregation

::::
and

:::::::::::
differencing

::::
are

::::::::
handled

:::
by

:::
the

:::::::::
MongoDB

::::::::::::
aggregation

::::::::
pipeline.

::::
The

::::::::::
calculation

::::
and

:::::::
display

::
of

::::::::::
anomalies

::
is

:::::
done

::::::::::
client-side

::
in

:::::::::::
JavaScript.

:::
All

:::::
other

::::::::::::
visualization

:::::::
tweaks

::::
and

::::::::::
statistical

:::::::::
stretching

::::
are

:::::
done

:::::::::::
“on-the-fly”

::
in

::::::::::
JavaScript.

:

Spatial filters can be drawn directly on the map interface or imported as polygons defined
using GeoJSON or well-known text (WKT), a human-readable representation of geometry.

:::::::::
Currently,

::::
only

::
a
::::::
single

::::::::
polygon

::::
can

:::
be

:::::
used

::
at

::
a

:::::
time.

:
Map data can also be differenced –

one X–Y slice can be subtracted from another (from a different scenario and same time or
vice-versa). This may help in identifying deviation from a seasonal trend or other anomalies
as well as help in identifying differences between different models or different model runs
of the same time step.

3.2 Time series analysis

While in the Single Map View, the map can be animated in time, updating its display (at
time “T ”) with the next X–Y slice from our data cube. This update is seamless when the

15



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

web server API is hosted on the same local network or when viewed over a high-speed
internet connection, making a refresh rate of one second practical for quickly reviewing
model results at a rate of a few hours, days, or months every second (depending on the
temporal resolution of the data). A slower animation speed can be selected for a more
moderate pace. This high data throughput is made possible by the text-based data format
and compression discussed earlier. Aggregates and differenced data can also be animated
in time.

A line plot at the bottom of the map shows the “global” time series for the currently viewed
scenario by default; it is the aggregate mean value across the X–Y domain at each point
in time. This provides an overview of the overall trend in the data across the spatial domain.
When a spatial filter is applied, an aggregate time series for only that region can be gen-
erated. The non-aggregate time series for a specific pixel can also be obtained by clicking
on that grid point in the map. Retrieval of a time series data for the line plot is slower than
other data requests but it still returns results in seconds.

3.3 Multiple-time and multiple-model comparison

The “Coordinated View” allows comparison of multiple adjacent map views; it is essentially
a grid of multiple Single Map View elements. These maps synchronize their extent whenever
the user pans or zooms so that the same portion of the globe is displayed in each one. The
user’s cursor will now display not just the value of a data point in one map but the value at
that those spatial coordinates in every map facilitating pixel-to-pixel comparison across the
maps. Up to nine (9) maps can be viewed at once which allows for nine different time points
or nine different models to be viewed simultaneously.

3.4 Other features

A user’s Map Settings, Symbology, and other global settings are stored in the web browser
so that, upon closing the browser and returning to the web application later, the same color
scale, map projection, and other settings are automatically applied. This allows users to

16



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

customize their view of a dataset and their workspace within the tool. All of these settings
can also be encoded as a URI (or URL). This allows specific views of a dataset to be “book-
marked” or shared with others over the web. With this feature, a user can apply a specific
color scale, stretch (or threshold to highlight a particular anomaly) or an aggregate or differ-
enced model result and then share a link that ensures that their team member will see the
data exactly the same way.

::::
This

::
is
:::::::
similar

::
to

::::
the

:::::::
“virtual

:::::::::
variables”

:::
of

:::::::::::::::::
Ferret-THREDDS

:::
but

::::::::
provides

:::
not

:::::
only

:::::::
access

::
to

:::
an

::::::::
analysis

:::
but

:::::::
access

:::
to

:
a
::::::
client

:::
for

::::::::::
visualizing

::::
and

::::::::::
interacting

::::
with

::::
that

::::::::
analysis.

:
For offline storage and sharing of results, model visualizations and data

slices can be exported as image files, CSVs (for non-gridded data), or as geospatial data
(for gridded data) in the form of ESRI ASCII Grid files or GeoTIFFs; the latter two formats
enable model results to be downloaded and opened in a desktop GIS like ArcGIS or QGIS.

4 Concluding remarks

The Carbon Data Explorer is presented as a prototype for a comprehensive data manage-
ment, analysis, visualization, and sharing framework for Earth system science datasets,
particularly gridded spatiotemporal datasets (e.g., NASA Level III data products). With its
unique

:
It
::::::::
contains

:::
all

:::
the

:::::
tools

:::::::::::
necessary

::
for

:::::::
online

::::::::
scientific

:::::
data

::::::::
analysis

::
in

::::
one

:::::::::
package,

::::::::
including

::
a
:::::::::::::
non-blocking

::::
web

::::::::
server,

:::
an

::::::::::
extensible,

::::::::::::
light-weight

::::
API,

:::::
and

::
a

::::::::::::
user-friendly

::::
web

:::::::::::
application.

:::::
The text-based data representations, gridded scientific datasets can be

rapidly manipulated , analyzed, and displayed on the web
::::::
JSON

::::::
format

:::
for

::::::::
storage

::::
and

::::
data

:::::::::::
interchange

::
is

::::
not

::::
only

::::::::::::::
fundamentally

::::::::::
compatible

::::
with

:::::
web

:::::::::
browsers,

::
it
::::::
allows

:::
for

:::::::::
scientific

::::
data

:::
to

:::
be

::::::::::::
manipulated

:::
in

:::
the

:::::
web

:::::::::
browser,

:::::::::
providing

:::::::::::::::
asynchronous,

:::::
rapid

::::::::
filtering

::::
and

:::::::::::
aggregation. In response to the new protocols of CMIP6, the Carbon Data Explorer provides
a framework for the distributed analysis of climate model outputs.

::::::::
Analyses

::::
can

::::::::::
effectively

::
be

::::::::::::::
“bookmarked”

:::::
with

:::::
URIs

::::::::
serving

:::
as

:::::::::::
permanent

:::::
links

::
to

::
a
::::::::::
particular

::::::::::::
visualization

::::
and

::::::::
analysis

::
of

:
a
:::::
data

:::::
cube

::
at

::
a
::::::
given

:::::
point

::
in

:::::
time. The framework’s open source licensing and

web integration enable the visualization and sharing of scientific data through either a se-
cure network or public portal.

:::::
Also,

::
as

::
a
::::::::::
prototype,

::
it

::
is

::::::
hoped

::::
that

:::
the

::::::::::
software’s

::::::::::
seamless,

17



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

:::::::::
interactive

::::::::::::
visualization

::::
and

::::::::::::
comparison

::::::::
features

:::
will

:::::::
inspire

::::
the

::::::::::
expansion

::
of

:::::::
existing

:::::
data

::::::::::::
management

::::
and

:::::
data

:::::::
access

:::::::::::
frameworks

:::::
such

:::
as

:::::
TDS

::::
and

:::::::::::::::::
Ferret-THREDDS

::
to

::::::::
support

:::::
more

:::::
rich,

::::::::::::::::
JavaScript-based

::::::::::::
visualization

:::::::::
libraries.

:
It is hoped they will also facilitate the

future improvement of the Carbon Data Explorer and the inspiration of similar and better
tools for Earth system science.

Code availability

The source code is available from GitHub (https://github.com/
MichiganTechResearchInstitute/CarbonDataExplorer) under the MIT license. A built
version of the web browser application (“flux-client”) is available upon request. This can
significantly help integration and deployment of the visualization and analysis front-end.

The Supplement related to this article is available online at
doi:10.5194/gmdd-0-1-2015-supplement.

Acknowledgements. The software described in this paper was developed by the Michigan Tech
Research Institute (MTRI) in partnership with Anna Michalak at the Carnegie Institution for Sci-
ence’s Department of Global Ecology at Stanford University and with funding from NASA (Grant
#NNX12AB90G). The authors would also like to acknowledge the contributions of Nicholas Molen
to the early development of the Carbon Data Explorer and of Reid Sawtell to the front-end web
browser application. Special thanks go to Mae Qiu at Stanford University and Vineet Yadav at NASA
Jet Propulsion Laboratory for their contributions to design and testing. The authors would also like
to thank James Arnott and Scott Kalafatis at the School of Natural Resources and Environment at
the University of Michigan for their reviews of an early draft of this paper.

References

Alder, J. R. and Hostetler, S. W.: Web based visualization of large climate data sets, Environ. Modell.
Softw., 68, 175–180, doi:10.1016/j.envsoft.2015.02.016, 2015.

18

https://github.com/MichiganTechResearchInstitute/CarbonDataExplorer
https://github.com/MichiganTechResearchInstitute/CarbonDataExplorer
http://dx.doi.org/10.5194/gmdd-0-1-2015-supplement
http://dx.doi.org/10.1016/j.envsoft.2015.02.016


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock, S.: Kepler: an extensible
system for design and execution of scientific workflows, in: Proceedings 16th International Con-
ference on Scientific and Statistical Database Management, Santorini Island, Greece, 21–23 June
2004, 423–424, doi:10.1109/SSDM.2004.1311241, 2004.

Blower, J. D., Gemmell, A. L., Griffiths, G. H., Haines, K., Santokhee, A., and Yang, X.: A web
map service implementation for the visualization of multidimensional gridded environmental data,
Environ. Modell. Softw., 47, 218–224, doi:10.1016/j.envsoft.2013.04.002, 2013.

Brewer, C. A.: Color Brewer 2.0, available at: http://www.colorbrewer.org (last access: 24 June 2015),
2014.

Bulka, A.: Transformation Interface Design Pattern, available at: http://www.andypatterns.com/
files/74091232001410AndyBulkaTransformationInterfacePattern.pdf (last access: 24 June 2015),
2001.

Cornillon, P., Gallagher, J., and Sgouros, T.: OPeNDAP: Accessing data in a distributed, heteroge-
neous environment, Data Science Journal, 2, 164–174, doi:10.2481/dsj.2.164, 2003.

Crockford, D.: JavaScript: The Good Parts, 1st Edn., O’Reilly Media, Inc.,
doi:10.1241/johokanri.44.584, 2008.

Fielding, R. T. and Taylor, R. N.: Principled design of the modern Web architecture, in: ICSE
’00: Proceedings of the 22nd International Conference on Software Engineering, 407–416,
doi:10.1145/337180.337228, 2000.

Jones, E., Oliphant, T. E., and Peterson, P.: SciPy: Open source scientific tools for Python, available
at: http://www.scipy.org/ (last access: 24 June 2015), 2015.

::::::::::
MathWorks:

:::::::::::
Mat-File

:::::::::::
Versions,

::::
http://www.mathworks.com/help/matlab/import{_}export/

mat-file-versions.html
:
,
:::::
2015.

:

Meehl, G. A., Moss, R., Taylor, K. E., Eyring, V., Stouffer, R. J., Bony, S., and Stevens, B.: Climate
model intercomparisons: preparing for the next phase, EOS T. Am. Geophys. Un., 95, 77–78,
doi:10.1002/2014EO090001, 2014.

NASA: Data Processing Levels for EOSDIS Data Products, available at: http://science.nasa.gov/
earth-science/earth-science-data/data-processing-levels-for-eosdis-data-products/ (last access:
24 May 2015), 2010.

Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M., and Ochiai, O.: Big Data challenges
in building the Global Earth Observation System of Systems, Environ. Modell. Softw., 68, 1–26,
doi:10.1016/j.envsoft.2015.01.017, 2015.

19

http://dx.doi.org/10.1109/SSDM.2004.1311241
http://dx.doi.org/10.1016/j.envsoft.2013.04.002
http://www.colorbrewer.org
http://www.andypatterns.com/files/74091232001410AndyBulkaTransformationInterfacePattern.pdf
http://www.andypatterns.com/files/74091232001410AndyBulkaTransformationInterfacePattern.pdf
http://dx.doi.org/10.2481/dsj.2.164
http://dx.doi.org/10.1241/johokanri.44.584
http://dx.doi.org/10.1145/337180.337228
http://www.scipy.org/
http://www.mathworks.com/help/matlab/import{_}export/mat-file-versions.html
http://www.mathworks.com/help/matlab/import{_}export/mat-file-versions.html
http://dx.doi.org/10.1002/2014EO090001
http://science.nasa.gov/earth-science/earth-science-data/data-processing-levels-for-eosdis-data-products/
http://science.nasa.gov/earth-science/earth-science-data/data-processing-levels-for-eosdis-data-products/
http://dx.doi.org/10.1016/j.envsoft.2015.01.017


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Rood, R. B. and Edwards, P. N.: Climate Informatics: Human Experts and the
End-to-End System, Earthzine, May, available at: http://earthzine.org/2014/05/22/
climate-informatics-human-experts-and-the-end-to-end-system/ (last access: 24 June 2015),
2014.

Santos, E., Poco, J., Wei, Y., Liu, S., Cook, B., Williams, D. N., and Silva, C. T.: UV-
CDAT: analyzing climate datasets from a user’s perspective, Comput. Sci. Eng., 15, 94–103,
doi:10.1109/MCSE.2013.15, 2013.

Schmunk, R. B.: Panoply netCDF, HDF and GRIB Data Viewer, available at: http://www.giss.nasa.
gov/tools/panoply/, last access: 24 June 2015.

Sun, X., Shen, S., Leptoukh, G. G., Wang, P., Di, L., and Lu, M.: Development of a web-based
visualization platform for climate research using Google Earth, Comput. Geosci., 47, 160–168,
doi:10.1016/j.cageo.2011.09.010, 2012.

Tilkov, S. and Vinoski, S.: Node.js: using JavaScript to build high-performance network programs,
IEEE Internet Comput., 14, 80–83, doi:10.1109/MIC.2010.145, 2010.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy array: a structure for efficient
numerical computation, Comput. Sci. Eng., 13, 22–30, doi:10.1109/MCSE.2011.37, 2011.

Williams, D. N., Ananthakrishnan, R., Bernholdt, D. E., Bharathi, S., Brown, D., Chen, M., Cherve-
nak, A. L., Cinquini, L., Drach, R., Foster, I. T., Fox, P., Fraser, D., Garcia, J., Hankin, S., Jones, P.,
Middleton, D. E., Schwidder, J., Schweitzer, R., Schuler, R., Shoshani, A., Siebenlist, F., Sim, A.,
Strand, W. G., Su, M., and Wilhelmi, N.: The earth system grid: enabling access to multimodel cli-
mate simulation data, B. Am. Meteorol. Soc., 90, 195–205, doi:10.1175/2008BAMS2459.1, 2009.

20

http://earthzine.org/2014/05/22/climate-informatics-human-experts-and-the-end-to-end-system/
http://earthzine.org/2014/05/22/climate-informatics-human-experts-and-the-end-to-end-system/
http://dx.doi.org/10.1109/MCSE.2013.15
http://www.giss.nasa.gov/tools/panoply/
http://www.giss.nasa.gov/tools/panoply/
http://dx.doi.org/10.1016/j.cageo.2011.09.010
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1175/2008BAMS2459.1


D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Table 1.
::::::
Results

:::
of

::::
load

::::::
testing

:::
in

:::::::
Apache

:::::::
JMeter;

::::::::
network

:::::::
speeds

:::
are

:::
in

::::::::
seconds

::
to

:::::::
request

::::::::::
completion.

::::
The

::::::::::
off-network

::::
tests

:::::
were

:::::::::
performed

:::::
over

:
a
::::::::
wireless

:::::::
internet

::::::::::
connection;

::::::::::
on-network

::::
tests

:::::
were

:::::::::
performed

::::
with

:
a
::::::
wired,

:::::
direct

:::::::
network

::::::::::
connection

::
to

:::
the

:::::::
server.

Mean return speed, s (n=30)

::::::::
Request

::::
Data

:::::::
extent,

::::::::::
resolution

:::::::::::
Off-network

::::::::::
On-network

::::
Grid

:::::::::
structurea

::
N.

::::::::
America,

::::::
1-by-1

::::
deg.

: :::
0.17

: :::
0.03

::::
Grid

:::::::::
structureb

::::::
World,

::::::
1-by-1

::::
deg.

:::
0.44

: :::
0.08

:::::::
Gridded

::::
X-Y

:::::
datac

::
N.

::::::::
America,

::::::
1-by-1

::::
deg.

: :::
0.14

: :::
0.02

:::::::
Gridded

::::
X-Y

:::::
datad

::::::
World,

::::::
1-by-1

::::
deg.

:::
0.34

: :::
0.12

::::::::
Temporal

:::::::::::
aggregation,

:::
40

:::
X-Y

::::::
gridse

::
N.

::::::::
America,

::::::
1-by-1

::::
deg.

: :::
0.49

: :::
0.36

::::::::
Temporal

:::::::::::
aggregation,

:::
40

:::
X-Y

::::::
gridsf

: ::::::
World,

::::::
1-by-1

::::
deg.

:::
2.90

: :::
2.31

::::
Time

::::::
series

::
at

::::
X-Y

:::::
pointg

: ::
N.

::::::::
America,

::::::
1-by-1

::::
deg.

: :::
0.10

: :::
0.06

::::
Time

::::::
series

::
at

::::
X-Y

::::::
pointh

::::::
World,

::::::
1-by-1

::::
deg.

:::
0.75

: :::
0.62

::::
Time

::::::
series

:::
for

::::::
region,

::::
684

:::::
cellsi

::
N.

::::::::
America,

::::::
1-by-1

::::
deg.

: :::
0.12

: :::
0.08

::::
Time

::::::
series

:::
for

::::::
region,

::::
684

:::::
cellsj

::::::
World,

::::::
1-by-1

::::
deg.

:::
0.79

: :::
0.72

Request URIs:
a: /flux/api/scenarios/casa_gfed_2004/grid.json;
b: /api/scenarios/r2_xco2_kriged/grid.json;
c: /api/scenarios/casa_gfed_2004/xy.json?time=2004-05-01T03:00;
d: /api/scenarios/r2_xco2_kriged/xy.json?time=2009-06-15T00:00;
e: /api/scenarios/casa_gfed_2004/xy.json?start=2004-05-01T03:00&end=2004-05-06T03:00
&aggregate=positive;
f: /api/scenarios/r2_xco2_kriged/xy.json?start=2009-06-01T00:00&end=2010-02-01T00:00
&aggregate=positive;
g: /api/scenarios/casa_gfed_2004/t.json?coords=POINT(-50.5+69.5)&start=2004-05-01T03:00
&end=2004-05-02T03:00;
h: /api/scenarios/r2_xco2_kriged/t.json?coords=POINT(-50.5+69.5)&start=2009-06-15T00:00
&end=2009-08-05T00:00;
i: /api/scenarios/casa_gfed_2004/t.json?start=2004-05-01T03:00&end=2004-05-02T03:00
&interval=hourly&geom=POLYGON((-97%2B46%2C-101%2B37%2C-93%2B35%2C-89%2B42%2C-97%2B46));
j: /api/scenarios/r2_xco2_kriged/t.json?start=2009-06-15T00:00&end=2009-08-05T00:00
&geom=POLYGON((-97%2B46%2C-101%2B37%2C-93%2B35%2C-89%2B42%2C-97%2B46));

21



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Table 2. Entry points for the Carbon Data Explorer web server API.

Web Server API Entry Point Description

/scenarios.json Requests metadata for all or selected datasets
/[scenario]/grid.json Requests a GeoJSON representation of the scenario’s

X–Y grid
/[scenario]/xy.json Requests data values corresponding to the scenario’s

spatial grid
/[scenario]/t.json Requests time series data

22



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Table 3. List of features (present when marked with an “X”) in the two visualization modes of the
Carbon Data Explorer web browser application.

Category Feature Single Coordinated
Map View View

Mapping Gridded data map display × ×
Non-gridded data map display ×
Basemap selection × ×
Map projection selection × ×
Map zoom and pan × ×
View multiple map frames simultaneously ×
View global/continental/regional data × ×

Symbology Color palette selection × ×
Scaling, stretching, and thresholding × ×

Analysis Animation ×
Map pixel querying × ×
Temporal queries and aggregation ×
Spatial queries and aggregation ×
Time series line plot ×
Display difference of two maps ×
Side-by-side comparison ×

Sharing Data export (as image or GIS file) ×
Browser remembers settings ×
Shareable URI/URL generation ×

23



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 1. A three-dimensional “data cube” in which spatial data of two dimensions (e.g., latitude
and longitude) are combined with a third dimension of time. In this view, a horizontal slice perpen-
dicular to the time (t) axis corresponds to a geographic map while a line parallel to the time (t) axis
represents a time series.

24



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 2. A unified modeling language (UML) deployment diagram for the Carbon Data Explorer
(CDE), illustrating the configuration and connections between the components as currently de-
ployed.

25



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 3. Screenshot of the Carbon Data Explorer web browser application in the “Single Map View”
mode.

26


