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Abstract. This paper presents theoretical foundations, nu-
merical implementation and examples of application of a
two-dimensional Discrete-Element bonded-particle Sea Ice
model DESIgn. In the model, sea ice is represented as an as-
semblage of objects of two types: disk-shaped ‘grains’, and5

semi-elastic bonds connecting them. Grains move on the sea
surface under the influence of forces from the atmosphere
and the ocean, as well as interactions with surrounding grains
through a direct contact (Hertzian contact mechanics) and/or
through bonds. The model has an experimental option of10

taking into account quasi-threedimensional effects related to
space- and time-varying curvature of the sea surface, thus
enabling simulation of ice breaking due to stresses resulting
from bending moments associated with surface waves. Ex-
amples of the model’s application to simple sea ice deforma-15

tion and breaking problems are presented, with an analysis of
the influence of the basic model parameters (‘microscopic’
properties of grains and bonds) on the large-scale response
of the modeled material. The model is written as a toolbox
suitable for usage with the open-source numerical library20

LIGGGHTS. The code, together with a full technical doc-
umentation and example input files, is freely available with
this paper and on the Internet.

1 Introduction

Sea ice cover in polar and subpolar seas is a complex assem-25

blage of ice blocks of various sizes, thickness, age, structure
and properties resulting from their genesis, typically consist-
ing of multiple cycles of partial melting, (re)freezing and me-
chanical deformation resulting from the action of external
agents (wind, waves, solar radiation, etc.) and from interac-30

tions with surrounding ice. In favorable conditions, the ice
blocks may join (freeze) to form larger blocks (ice floes), be-
having like semi-rigid bodies, so that the deformation of ice

is localized, limited to narrow shear and compression zones.
This type of ice cover is characteristic for the compact, cen-35

tral Arctic ice pack. Close to the ice edge, extensive breaking
primarily caused by ocean waves produces ice behaving as a
polydisperse granular material composed of individual, rela-
tively small floes of various diameters. In all cases, many im-
portant aspects of sea ice dynamics are directly related to its40

discrete, discontinuous nature. Consequently, although some
of the large-scale effects of those processes can be parame-
terized in continuum sea ice models, mechanisms underly-
ing them can be investigated and understood only by means
of models that properly take into account the fundamental45

physics.
Probably the most appreciable way in which the granu-

lar nature of sea ice influences other processes, including its
own behavior, is through the floe size (mean and the floe-
size distribution, FSD). Examples include: mechanical weak-50

ening of ice after storms resulting from its fragmentation
(Holt and Martin, 2001; Asplin et al., 2012, 2014), manifest-
ing itself for example in the intensity of inertial ice motion
(Gimbert et al., 2012; Haller et al., 2014) and influencing
large-scale changes of sea ice extent (Kohout et al., 2014);55

strong contribution of the form drag due to floe edges to the
total surface drag coefficient at medium ice concentrations
(Steele et al., 1989; Lu et al., 2011; Lüpkes et al., 2012); lat-
eral melting rates dependent on the total floe perimeter within
a given area (Steele, 1992); spatial light distribution under60

ice, with effects analogous to those observed under melt
ponds (Frey et al., 2011); and wave propagation and atten-
uation in the marginal ice zone (MIZ; e.g., Williams et al.,
2013a, b). The range of these mechanisms is much wider than
this list suggests (see further Sect. 2.2) and only begins to65

be appreciated as new observational and computational tech-
niques provide new insights into sea ice physics and dynam-
ics.
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The Discrete-Element, bonded-particle Sea Ice model DE-
SIgn presented here has been developed as a tool for studying70

the processes mentioned above at the floe level, with hope
that it will help to deepen our understanding of ice dynamics
at different scales, and possibly to develop parameterizations
of relevant processes for continuum models.

This paper presents the theoretical background, underlying75

assumptions and equations of the model, its numerical imple-
mentation and examples of applications to sea-ice problems.
The model is an extension of the earlier versions described in
Herman (2013a, b). The paper is accompanied by the model
code and a full technical documentation, so that it can be80

freely used and modified by anyone, as described in the last
section. A full, very detailed description of all equations used
in the model is provided, even if some of them are standard in
discrete-element models (DEMs) – for the sake of complete-
ness and in order to make it easier for users inexperienced in85

DEM to configure and run their own simulations. The main
purpose of the modeling results presented here is the verifi-
cation of the model’s consistency and its new features rather
than validation against observational data, which will be pre-
sented in further works.90

The model is two-dimensional (2D), but it enables to take
into account some wave-related effects, i.e., stresses resulting
from flexural moments acting on sea ice when surface waves
are present. It can be applied to a wide range of sea ice types,
although it is worth stressing here that the word ‘granular’95

in the present context describes macroscopic, large-scale ice
properties, i.e., the fact that it is composed of individual ice
floes. It does not refer in any way to smaller-scale mate-
rial structure at the level of (groups of) ice crystals. Also,
in view of specific assumptions underlying the model (e.g.,100

the above-mentioned two-dimensionality), it is not suitable
for early stages of sea ice formation, like frazil and grease
ice; pancake ice can be regarded as a rough lower limit of the
model validity in terms of floe size. On the other hand, al-
though the model was designed for sea ice, it can be applied105

to other 2D materials composed of disk-shaped grains.
The paper is structured as follows: The next section con-

tains a short review of hitherto attempts to account for the
granular nature of sea ice in numerical models of its dynam-
ics. Section 3 begins with the general concept and underly-110

ing assumptions of the model proposed here, followed by the
presentation of the equations. The mechanics of grains and
bonds is discussed in Sects. 4 and 5, followed in Sect. 6 by
the presentation of the types of internal forcing implemented
in the present model version. The numerical implementa-115

tion of the model is described in Sect. 7. Modeling results
illustrating the most important aspects of the bond-related
model behavior are presented in Sect. 8, followed by a dis-
cussion of possible directions of the further model develop-
ment in Sect. 9.120

2 Modeling granular effects in sea ice dynamics –
A brief review

2.1 Sea ice floe-size distribution

From the point of view of processes analyzed here, one of
the most important properties of sea ice is the FSD. Since125

the seminal paper of Rothrock and Thorndike (1984), obser-
vations from various parts of the world showed that typi-
cal FSDs are very wide and can be well approximated by
a power law (e.g., Lytle et al., 1997; Holt and Martin, 2001;
Paget et al., 2001; Toyota and Enomoto, 2002; Inoue et al.,130

2004; Toyota et al., 2006; Lu et al., 2008; Steer et al., 2008;
Toyota et al., 2011). However, only a few attempts have been
made to create models that would explain the observed vari-
ation of the FSD shapes, including the values of the expo-
nent of the distribution and deviations from the power law135

occurring in certain situations. The validity and range of ap-
plicability of the proposed statistical models (Herman, 2010;
Toyota et al., 2011; Perovich and Jones, 2014) remain to be
assessed. Power laws are produced by a very wide range
of models, including very simple models of breaking, mak-140

ing the selection of a proper model and the identification of
mechanisms that are important in any particular real-world
situation a challenge.

2.2 Parametrization of granular effects in continuum
models145

A number of parameterizations have been developed to im-
prove the performance of continuum sea ice models in sit-
uations when granular effects have significant influence on
the large-scale sea ice behavior. One group of parameteri-
zations is related to the so-called collisional rheology, de-150

scribing stress in fragmented sea ice due to inelastic col-
lisions between floes, relevant especially in the MIZ. In
the existing collisional rheology models, stress is calculated
from the average collision frequency and momentum trans-
ferred during collisions, assuming uniform distribution of155

the floes on the sea surface and either constant (Shen et al.,
1984, 1986; Leppäranta et al., 1989) or variable floe sizes
(Lu et al., 1989). Although the models proved useful in re-
producing some aspects of sea ice flow in MIZ (Feltham,
2005), collisional rheology is very rarely taken into account160

in ice modelling, presumably partly because the rather unre-
alistic assumptions on which it is based tend to underestimate
the contribution of collisional effects to the total stress.

Tremblay and Mysak (1997) developed a parametrization
of dilatation effects, i.e., flow-induced expansion of gran-165

ular materials accompanying their slow shear deformation
and related to the directional distribution of contacts between
neighboring grains. Their model relates the effective angle
of friction of sea ice – its macroscopic property – to the mi-
croscopic angle of friction characterizing the material. Im-170

plemented in a continuum sea ice model of the Arctic, the
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parametrization permits ice concentrations lower than 1 in
the central ice pack, mimicking the lead-opening processes.

Steele (1992) proposed a parametrization of the lateral-
melting rate in sea ice composed of separate floes of a175

given mean diameter. A number of studies concentrate on
parametrization of floe-related effects on the effective skin
and drag coefficients over fragmented sea ice (Steele et al.,
1989; Lu et al., 2011; Lüpkes et al., 2012, and references
therein), as well as on various aspects of sea-ice–wave in-180

teractions in MIZ. For example, Dumont et al. (2011) for-
mulated the first combined strain and stress failure crite-
ria for ice breaking in a flexural mode due to the action of
waves. Their results were used by Williams et al. (2013a, b)
to formulate a wave–ice interaction model for MIZ, in which185

waves break the ice thus determining the maximum floe size
and the FSD, and in turn the FSD is used to estimate the
wave-attenuation term in the wave energy balance equation.

Following the well-established theory describing the evo-
lution of the ice-thickness distribution in continuum sea ice190

models, Zhang et al. (2015) proposed analogous equations
for the floe-size distribution, thus providing a general frame-
work within which advection, lateral freezing and melting,
as well as ridging and fragmentation processes can be pa-
rameterized, making continuum models more suitable for the195

MIZ.

2.3 Discrete-element methods in sea ice modeling

Although continuum models remain a standard tool for sim-
ulating sea ice dynamics, especially at large scales, a num-
ber of discrete-element models have been developed in re-200

cent decades, in which sea ice is represented as an assem-
blage of interacting objects (‘particles’); although the mod-
els share the same underlying idea, they differ in terms
of the shape and properties of their building blocks, de-
tails of the contact mechanics formulations, parametriza-205

tion of physical processes not explicitly accounted for in
the model (e.g., ridging), as well as numerical algorithms
used to solve the model equations. Some models combine an
Eulerian, grid-based approach typical for continuum models
with a Lagrangian, particle-based approach used in DEMs210

– examples include particle-in-cell (PIC) models (Flato,
1993; Huang and Savage, 1998), distributed-mass/discrete-
floe (DMDF) models (Rheem et al., 1997; Fujisaki et al.,
2007) or smoothed-particle hydrodynamics (SPH) models
(Gutfraind and Savage, 1997a, b, 1998; Li et al., 2014). In215

PIC and DMDF, ice floes are represented by individual par-
ticles, advected in a Lagrangian manner based on veloci-
ties obtained from momentum equations solved on a fixed
grid. To the contrary, in SPH models Lagrangian particles
represent sets of discrete ice floes. The SPH models with220

Mohr-Coulomb rheology, implemented within the viscous-
plastic approach of Hibler, proved particularly useful for sea
ice problems with strong-deformation zones and/or compli-
cated geometry (Gutfraind and Savage, 1997a, b, 1998). It is

worth stressing that the authors use a DEM model, concep-225

tually very similar to the one proposed here (Savage, 1995;
Sayed et al., 1995), to verify their SPH model – they treat
DEM as “a very useful tool for the determination of the most
appropriate rheology to describe ice as a continuum”. Their
DEM model is 2D, based on disk-shaped particles, and takes230

into account contact forces as well as air and water drag as
external forcing to calculate motion of each particle in the
system.

In a series of papers by Hopkins and cowork-
ers (Hopkins and Hibler III, 1991; Hopkins, 1992, 1996;235

Hopkins et al., 2004; Hopkins and Thorndike, 2006), the ice
pack of the DEM model consists of blocks of thick, multi-
year ice and thin ice filling spaces between them, with both
types of ice approximated as convex polygons. The model
contains a ridging parametrization and, in the newer ver-240

sion that includes elastic joints that may fail under ten-
sion or compression, enables to simulate crack generation
and propagation in compact sea ice and produces realistic
floe-area distributions in computations of sustained deforma-
tion in the Arctic basin. Hopkins (1994) and Hopkins et al.245

(2004) developed a joint-particle DEM model of ridging due
to flexural failure of a floating ice sheet. The same model
with an incorporated shear-rupture mechanism was used by
Wilchinsky et al. (2010) to study sea ice fragmentation under
convergent wind stresses, and by Wilchinsky et al. (2011) in250

a study on the influence of changing wind direction on evo-
lution of the crack patterns in sea ice. Hopkins and Tuhkuri
(1999) used a 3D DEM model based on disk-shaped particles
with a circular edge to study floe rafting and underturning
during compression; the same model has been applied to sim-255

ulations of pancake ice on waves (Hopkins and Shen, 2001;
Sun and Shen, 2012). A DEM model of sea ice has been also
used by Xu et al. (2012) to study sea ice breaking and floe
formation in MIZ due to the action of waves. Although their
model is based on the same joint-particle principles as the260

one proposed in this paper, it is used in 2D-V (2D vertical),
i.e., the initial ice floe representing MIZ, composed of a 1-m
thick layer of small, bonded particles, is subject to flexural
strain induced by the oscillatory motion of prescribed am-
plitude and frequency. In a very recent work, Rabatel et al.265

(2015) proposed a DEM sea ice model in which floes are
defined as rigid, polygonal objects subject to oceanic and at-
mospheric drag, and collisions are treated as linear comple-
mentarity problems. The model reproduces certain aspects of
‘granular’ sea ice dynamics, e.g., formation of floe clusters270

due to dissipation of kinetic energy during collisions.
Finally, the works by Herman (2011, 2012, 2013a, b,

c) present results obtained with DEM models of increas-
ing complexity that have led to the development of the
model presented here: from a simple event-driven molecular-275

dynamics type of model suitable for low-concentration sea
ice (Herman, 2011, 2012), to a DEM including a contact me-
chanics model suitable for studying deformation of a com-
pact ice cover (Herman, 2013a, b, c). The common focus of
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these works has been on strong polydispersity (i.e., hetero-280

geneity of sizes) of sea ice floes and the role that it plays in
sea ice dynamics, including cluster formation of ice floes and
stress transmission in ice under shear deformation.

3 Bonded-particle discrete-element sea ice model

3.1 General model concept285

The sea ice model proposed in this work describes the mo-
tion and interactions of two types, or classes, of objects. Fol-
lowing the nomenclature used in similar models of rocks and
soils, we will refer to those two types of objects as ‘grains’
or ‘particles’, and ‘bonds’. (In the documentation of the nu-290

merical libraries on which the numerical model is based, the
terms ‘atoms’ and ‘bonds’ are used independently on the type
of those objects; see Sect. 7.) Together they form a heteroge-
neous granular material with large-scale macroscopic behav-
ior depending on the mechanical properties of its individual295

parts interacting at a ‘microscopic’ scale. In rock mechan-
ics, where bonds represent the cement filling spaces between
grains of sedimentary or crystalline rocks, such models have
been shown to reproduce a wide range of observed rock be-
havior, including crack formation and propagation, damage300

accumulation, and dilational effects (Potyondy and Cundall,
2004; Cho et al., 2007; Asadi et al., 2012; Bahaaddini et al.,
2013). Similarly, bonded-particle models are successfully
used to study the behavior of cohesive soils, as well as calv-
ing and fracturing of glaciers (Åström et al., 2013).305

In the context of sea ice, we define the particles as disk-
shaped sea-ice blocks moving within a two-dimensional
space representing the sea surface. The bonds form when the
neighboring disks freeze together. In other words, bonds rep-
resent new, usually thinner ice filling cracks, leads and other310

open spaces between thicker ice blocks. Throughout this pa-
per, sets of bonded particles will be called floes – similarly
as in Hopkins and Thorndike (2006), who treated ice floes as
groups of frozen discrete elements of their model. Depending
on the context and the purpose of a particular model configu-315

ration, the ice disks may be interpreted as elementary ‘build-
ing blocks’ of sea-ice floes, or as floes themselves (Fig. 1).
In the first case, useful for example in studies of floe forma-
tion and evolution of the floe-size distribution (FSD), it is
reasonable to base the simulation on a very large number of320

disks with sizes much smaller than the expected floe size. In
the second case, the FSD may be regarded as given, and its
influence on the sea ice behavior analyzed in a way similar
to that in Herman (2011, 2012, 2013a, b), whose model is a
special case of the one presented here.325

There are two essentially independent mechanisms of in-
teractions between neighboring particles. The first, based on
repulsive and frictional forces between particles, requires
that they are in direct contact with each other. The second
requires that the particles are connected with an elastic bond.330

Crucially, whereas forces are transmitted in both cases, bonds
are also able to transmit momentum. Another substantial dif-
ference between the two interaction types results from the
fact that bonds have certain tensile strength. Consequently, if
they are present in a material, it attains a tensile strength at a335

macroscopic level as well.
From the point of view of sea-ice modeling, the bonded-

particle approach has a number of important advantages and
provides an opportunity to overcome several drawbacks of
the existing models. In particular, the model is suitable for340

arbitrary ice concentration A, from a compact ice cover at
A≃ 1 to very loose ice composed of freely drifting floes
at A≪ 1. The same equations describe short pairwise col-
lisions and semi-permanent contact between floes. Also, the
model is suitable for both a rapid flow regime with rela-345

tively large ice velocities and to quasi-static deformation in a
compact ice pack. Further, non-cylindrical floes can be mod-
eled as bonded assemblages of disk-shaped elementary par-
ticles, so that the model equations are still solved for simple,
centrally-symmetric objects, without the need to calculate350

and store their orientation – which is not the case in models
based e.g. on polygonal elements, which require complicated
algorithms for calculating grain overlap, force momenta and
orientation (see, e.g., Hopkins, 1992, 2004).

In typical soil and rock applications of bonded-particle355

models, the simulations are initiated with fully-bonded ma-
terial, and the bonds are allowed to break, but not to recover
during a simulation (see, e.g., Potyondy and Cundall, 2004;
Bahaaddini et al., 2013). In the present version of the sea ice
model, new bonds may be created at selected time instances360

between pairs of grains located closer to each other than a
specified distance (see the technical documentation).

3.2 Basic definitions and assumptions

Let us consider an ensemble of N disk-shaped ice grains,
each with a constant mass density ρ, and with variable thick-365

ness hi and radii ri, for i= 1, . . . ,N . To make a clear distinc-
tion between the horizontal and the vertical dimension, we
adopt the following notation in a Cartesian coordinate sys-
tem: [xi,zi] = [x1,i,x2,i,zi] denotes the position of the cen-
ter of the ith disk, [ui,uz,i] = [u1,i,u2,i,uz,i] – translational370

velocity of its mass center, and [ωi,ωz,i] = [ω1,i,ω2,i,ωz,i]
– its angular velocity. As already mentioned, the model is
two-dimensional, with some effects related to surface waves
included. Precisely, this means that zi ≡ 0, uz,i ≡ 0 and the
distance between disks i and j is calculated as δij = ∥xi −375

xj∥− (ri+rj), i.e., within the x1x2-plane. In the absence of
waves, the vertical axes of the disks are perpendicular to the
horizontal sea surface. If waves are present, zi and uz,i are
still equal to zero; the only change is that ωi ̸= 0 and the de-
viation of the disks’ axes from the vertical axis are described380

by a tilt [θi,0] = [θ1,i,θ2,i,0]. For details of the wave-related
effects, see further Sect. 6.3.



A. Herman: Discrete-element bonded-particle sea ice model 5

The horizontal space S available to the particles may be
unlimited, or bounded by rigid walls representing shorelines,
concrete structures etc.; in a general case, they may change385

their position over time. The motion of the disks within S
is influenced by (i) the body and surface forces from the
ocean and the atmosphere, and (ii) the particle–particle and
particle–wall interaction forces. For the sake of simplicity
and conciseness, the particle–wall forces are not included390

in the equations formulated below (in the model implemen-
tation, they are treated in exactly the same way as their
particle–particle counterparts, as the contact model used is
equally valid for both kinds of contact).

Let Ci(t) denote the set of all disks in contact with disk395

i at a certain time instance t. For each j ∈ Ci, the respective
pairwise contact force will be denoted with Fc,ij . It is conve-
nient to express this force as a sum of two components, nor-
mal and tangential to the plane of contact: Fc,ij,n and Fc,ij,t.
The normal component contributes to the translational mo-400

tion of disks i and j, and the tangential component – to their
rotation. The respective torque Mc,ij equals:

Mc,ij = rij ×Fc,ij,t, (1)

where rij is a vector of length ri pointing from the center of
disk i to the contact point with disk j.405

Analogously, let Bi(t) denote the set of all disks that are
bonded to disk i at time t, and Fb,ij , Mb,ij – the bond-
transmitted force and torque, respectively, calculated for all
j ∈ Bi. Again, Fb,ij is a sum of two components, Fb,ij,n

and Fb,ij,t, but the total torque Mb,ij results not only from410

Fb,ij,t, but also includes bending and twisting components,
as detailed in Sect. 5.2.

Finally, the net external force acting on disk i, Fe,i, can
be obtained from the density of surface and body forces, fs,i
and fb,i (measured in N/m2 and N/m3, respectively):415

Fe,i =

∫
Si

fs,ids+

∫
Vi

fb,idv, (2)

where Si and Vi denote the total surface area and volume of
the disk. Analogously, the net moment of those forces is:

Me,i =

∫
Si

r× fs,ids+

∫
Vi

r× fb,idv, (3)

where r denotes distance from the disk center.420

3.3 Momentum equations for grains

Let us define a unit vector pointing upward, n= [0,0,1], and
a 3×3 projection matrix H from the 3D space to the x1x2-
plane: H11 =H22 = 1 and all remaining elements are zero.
By definition, the horizontal position xi and tilt θi are related425

to ui and ωi, respectively, through:

ui =
dxi

dt
, (4)

ωi =
dθi
dt

. (5)

The general form of the equation describing the translational430

motion of the i-th grain is:

mi
dui

dt
=H

Fe,i +
∑

j∈Ci(t)

Fc,ij,n +
∑

j∈Bi(t)

Fb,ij,n

 , (6)

where mi = πρhir
2
i is the mass of the grain and t denotes

time. Analogously, the angular-momentum equations can be
written in the form of Euler’s rotation equations for a rigid435

body:

Ix,i
dωi

dt
= (Iz,i − Ix,i)ωz,in× [ωi,ωz]

+ H

Me,i +
∑

j∈Bi(t)

Mb,ij,t

 , (7)

Iz,i
dωz,i

dt
= n ·

Me,i +
∑

j∈Ci(t)

Mc,ij +
∑

j∈Bi(t)

Mb,ij,t

 . (8)440

In the grain-fixed frame of reference, in which these equa-
tions are formulated, the inertia tensor is diagonal and its
principal values are:

Ix1,i = Ix2,i = Ix,i =
1

12
mi

(
3r2i +h2

i

)
, Iz,i =mi

r2i
2
.

(9)

In accordance with the assumptions formulated in the pre-445

vious section, the torques due to contact forces have only
vertical components and hence do not appear in (7).

4 Grain–grain contact mechanics

Each of the normal and tangential forces Fc,ij,n and Fc,ij,t is
a sum of two terms. The two normal forces are: the repulsive450

force and the viscoelastic damping force; the tangential force
is a sum of the shear force and the damping force. The damp-
ing components depend on the relative velocity between the
interacting particles. At each time step, the amplitude of the
tangential force is limited through the Coulomb friction law:455

|Fc,ij,t| ≤ µ|Fc,ij,n|, (10)

where µ is the static yield criterion.
The details of the formulation of the contact forces de-

pend on the selected contact model and on the geometry of
the interacting particles, as described in the Supplementary460

Note S1, which also contains the derivation of the full set of
equations used in the present sea ice model. Both alternative
formulations available are based on the Hertzian contact me-
chanics. Additional details of the Hertzian model in a gen-
eral context can be found, e.g., in Brilliantov et al. (1996);465
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Zhang and Makse (2005); Schwager (2007); Zhou (2011). In
sea ice studies, (elements of) this model were used, e.g., by
Hopkins and Thorndike (2006); Fortt and Schulson (2011);
Xu et al. (2012).

Notably, in the quasi-3D version of the model, the con-470

tact forces are calculated in the same way as in the 2D ver-
sion, i.e., without taking into account the tilt between grains
– which amounts to the assumption that the orientation of
the axes of symmetry of neighboring grains do not deviate
significantly from each other.475

5 Elastic bonds

5.1 Bond properties

In the following, the bonds are identified by the pair of in-
dices of grains that they connect. Each bond, cuboid in shape,
is characterized by the following set of properties: thickness480

hij ; length bij ; width 2Rij (measured in the direction per-
pendicular to the line connecting the centers of grains i and
j, see Fig.2); Young modulus Eb; ratio of the normal to shear
stiffness λns; tensile strength σt,max; compressive strength
σc,max; shear strength τmax. In the present model formula-485

tion:

Rij = λRmin{ri, rj}, (11)
bij = λb(ri + rj), (12)

where λR ∈ (0,1], λb ∈ (0,1] – similarly as Eb, σt,max,
σc,max, τmax – are global parameters, common for all bonds490

of a given type (the model enables to define a number of bond
types with different properties). When λb = 1, elastic defor-
mation is calculated as if it were distributed across grains
(as, e.g., in the sea ice model of Hopkins et al., 2004); when
λb → 0, it is limited to narrow zones at the grains’ bound-495

aries. Note that the distance δ between the grains’ edges
(Fig. 2) is not included in the calculation of bij . The nor-
mal and shear stiffness, kn,ij and kt,ij , depends on Eb and
the bond’s length:

kn,ij =
Eb

bij
and kt,ij =

kn,ij
λns

. (13)500

The moments of inertia of the bond are: Ix1,ij = Ix2,ij =
Ix,ij =

1
6h

3
ijRij , Iz,ij = 2

3hijR
3
ij , and the polar moment of

inertia Jij = Ix,ij + Iz,ij .

5.2 Bond mechanics

The forces and torques acting on the grains connected with a505

bond result from the (finite) relative displacement and rota-
tion of those grains; they can be decomposed into axial, tan-
gential, bending and twisting components (Obermayr et al.,
2013). Similarly to the history effects in the contact model,
the force increment during a time period ∆t can be calculated510

based on differences between the grains’ linear and angular
velocities, ∆uij = uj −ui and ∆ωij = ωj −ωi.

The components of the force due to the relative displace-
ment are calculated from a linear elastic material law, in
which the force is proportional to the displacement, given515

by ∆t∆uij :

Fb,ij,n(t) = γdFb,ij,n(t−∆t)+ kn,ijSij∆t∆uij,n,(14)
Fb,ij,t(t) = γdFb,ij,t(t−∆t)+ kt,ijSij∆t∆uij,t, (15)

where Sij = 2Rijhij is the cross-sectional area of the bond,
γd is a damping coefficient (preventing spurious oscillations520

of the forces), and ∆uij,n and ∆uij,t denote components
of ∆uij normal and tangential to the plane of contact (or,
equivalently, parallel and perpendicular to the bond axis). In
the 2D model, both forces act in the horizontal plane and thus
Fb,ij,t contributes to the grains’ rotation around the z-axis.525

Analogously, twisting and bending moments due to
changes of the relative orientation of grains i and j are given
by:

Mb,ij,tw(t) = γdMb,ij,tw(t−∆t) (16)
− kt,ijJij∆t[∆ωij,n,0],530

Mb,ij,bn(t) = γdMb,ij,bn(t−∆t) (17)
− kn,ij∆t[Ix,ij∆ωij,t, Iz,ij∆ωij,z],

where ∆ωij,n, ∆ωij,t denote the normal and tangential com-
ponents of ∆ωij , respectively.

In total, Mb,ij,t in (7) and (8) is given by:535

Mb,ij,t = rij ×Fb,ij,t +Mb,ij,tw +Mb,ij,bn. (18)

In the 2D version of the model, the twisting moment
Mb,ij,tw ≡ 0 and only the z-component of the bending mo-
ment Mb,ij,bn can be different from zero. Note that in (14)–
(17), the forces and moments have to be rotated after each540

time step due to changes of the orientation of the bond.

5.3 Breaking criteria

According to the classical beam theory, the shear stress act-
ing on the bond can be calculated as:

τb,ij =
|Fb,ij,t|
Sij

+
|Mb,ij,tw|Rij

Jij
. (19)545

The normal stress reaches its maximum value at the bond
peripheries. It has two components, one from the bending
moment resulting from the relative rotation of the grains (let-
ters ‘C’ and ‘T’ in Fig. 3), and one from the normal force.
The bending moment produces tension and compression on550

the opposite sides of the bond, which may be enhanced or
reduced by the normal force depending on its sign. Thus, the
maximum tensile and compressive normal stress can be writ-
ten as:

σt,ij = −Fb,ij,n

Sij
+

|HMb,ij,bn|hij

Ix,ij
+

|n ·Mb,ij,bn|Rij

Iz,ij
,(20)555

σc,ij =
Fb,ij,n

Sij
+

|HMb,ij,bn|hij

Ix,ij
+

|n ·Mb,ij,bn|Rij

Iz,ij
,(21)
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In the present version, the bond breaks if at least one of the
stress components (19)–(21) acting on that bond exceeds the
bond strength, i.e., if:

σt,ij > σt,max or σc,ij > σc,max or τb,ij > τmax.

(22)560

6 External forcing

In terms of the formulation of forces acting on the grains,
the model is very flexible and enables to specify any com-
bination of forces that may be space- and time-varying and
depend on the properties of the individual grains (e.g., their565

mass or size). To make the configuration of the model more
convenient, formulae describing the forces most relevant to
the motion of sea ice on the sea surface have been imple-
mented in the code and the corresponding forces can be acti-
vated easily by means of simple commands described in the570

User’s Guide. These forces include the Coriolis force, and
the skin and form drag due to the wind and surface current.

6.1 The Coriolis force

The Coriolis force acting on the ith grain, FC,i, is given as:

FC,i =−mifn×ui, (23)575

where the Coriolis parameter f = 2ΩZ sinϕ, ΩZ denotes the
angular velocity of the Earth, and the latitude ϕ can be con-
stant or spatially variable. The net torque due to the Coriolis
force MC,i ≡ 0.

6.2 Wind and surface currents580

In most real-world situations, the dominating surface forces
acting on sea ice floes are the atmospheric and oceanic skin
drag, τha,i and τhw,i, and body drag, τva,i and τvw,i:

τha,i = ρaCha|ua|ua, (24)
τhw,i = ρwChw|uw −ui|(uw −ui), (25)585

τva,i = ρaCva|ua|ua, (26)
τvw,i = ρwCvw|uw −ui|(uw −ui), (27)

where ρa and ρw denote the air and water density, ua and uw

are the wind and current velocities, and Cha, Chw, Cva, Cvw

– drag coefficients at the respective surfaces of the grain. The590

skin drag acts on the upper and lower surface of the grains,
respectively, with surface area of both equal πr2i . The atmo-
spheric and oceanic body drags, τva,i and τvw,i, act on the
grain’s edges above and below the water line, respectively.
Here we assume that the vertical area exposed to τva,i equals595

πrihf,i, and the area exposed to τvw,i equals πri(hi−hf,i),
where hf,i = hi(ρw − ρ)/ρw is the grain’s freeboard. In the
case of deformed ice, additional drag acting on the slopes of
ridges and keels could be taken into account by modifying

these expressions. In the present form, the net forces from600

the atmosphere and the ocean integrated over the respective
surface areas become:

Fa,i = πr2i ρa

(
Cha +

hi

ri

ρw − ρ

ρw
Cva

)
|ua|ua, (28)

Fw,i = πr2i ρw

(
Chw +

hi

ri

ρ

ρw
Cvw

)
|uw −ui|(uw −ui).(29)

The net torque of Fa,i equals zero (a direct consequence of605

the assumption that the air–ice stress does not depend on the
grain’s motion). Because of the dependence of Fw,i on the
disk’s velocity relative to the water, the z-component of the
torque associated with this force, Mz,w,i, is different from
zero and has a damping effect on the disk’s rotation:610

Mz,w,i =−π
r4i
2
ρw

(
Chw +

hi

ri

ρ

ρw
Cvw

)
ωz,i. (30)

6.3 Surface waves

6.3.1 General idea

In MIZ, as well as in regions with low ice concentration, sea
ice is affected by surface waves (wind waves and, most im-615

portantly, swell). Flexural stresses related to the curvature
of the sea surface are one of – or presumably the – domi-
nant factor leading to floe breakup (e.g., Dumont et al., 2011;
Williams et al., 2013a). However, these stresses, being re-
lated to forces and torques acting out of the horizontal x1x2-620

plane, cannot be taken into account in a 2D model. A ques-
tion emerges, if – and how – some of the wave-induced ef-
fects can be included in the model without introducing full
three-dimensionality, i.e., without having to abandon the ob-
vious advantage of calculating the floe–floe distances and625

solving the equations within a 2D plane.
The wave-related effects available in the present version

of the model are under development and should be treated
as a starting point for more advanced models. At present,
two wave-related processes have been implemented: forces630

due to the oscillating surface current, and a net moment of
buoyancy forces due to the time-varying sea surface slope
and curvature. These two mechanisms tend to be relevant in
different conditions. The alternating convergence and diver-
gence associated with oscillatory motion of the sea surface,635

and the resulting tensile and compressive stress, influences
pancake ice formation and dynamics (Shen et al., 2004). It
is generally significant for relatively small floes, whereas
larger ones are affected by the curvature of the sea surface
(Dumont et al., 2011).640

Obviously, there are a number of other wave-related ef-
fects that are very important, but not included in the present
model. Most crucially, the wave properties have to be pre-
scribed – they may be spatially and temporarily variable, but
are unaffected by the ice, which means that, for example,645

wave scattering and reflection at the floes’ edges cannot be



8 A. Herman: Discrete-element bonded-particle sea ice model

taken into account. Similarly, although the tilt of the grains
is calculated, this is not the case for their vertical movement.
Whereas some of these additional aspects of wave–ice in-
teractions can be relatively easily implemented in the type650

of model described here, other, like for example rafting and
ridging during compression, would require either a fully 3D
computations (like in Hopkins and Tuhkuri, 1999) or some
kind of parametrization – see the last section for more dis-
cussion.655

6.3.2 Oscillating surface current

Let us suppose that the sea surface elevation ξ = ξ(x, t) is
given as a superposition of Nwv propagating harmonic deep-
water waves:

ξ =

Nwv∑
n=1

an cos(kn ·x−ωnt+ϕn) =

Nwv∑
n=1

an cosφn, (31)660

where an, ωn and ϕn denote wave amplitude, frequency
and phase, respectively, of the nth component and kn =
[k1,n,k2,n,0] is its wavenumber vector. The instantaneous
horizontal velocity uwv,n of water particles at the sea sur-
face (z = 0), associated with that component equals:665

uwv,n = ωnan
kn

kn
cosφn. (32)

After summing the contribution from all elementary waves
and averaging over the surface of the i-th grain we obtain:

uwv,i =
1

πr2i

Nwv∑
n=1

ωnan
kn

kn

∫
Si

cosφndS

and finally:670

uwv,i =

Nwv∑
n=1

ωnan
kn

kn

sin(k1,nri)

k1,nri

sin(k2,nri)

k2,nri
cosφn. (33)

The oscillatory current is effective only for small grains
and long waves (knri → 0), when sin(knri)/(knri)→ 1. At
the opposite extreme, when the grain diameter is large in
comparison to the wavelength, the influence of the oscilla-675

tions cancels. Formula (33) has a computationally convenient
form, as it is a product of a time-dependent term evaluated at
the position of the grain’s center, and terms that are functions
only of the grain’s size.

If the oscillating current is to be taken into account in the680

model, uwv,i is added to the formula for the current-induced
force (29): uw = ūw +uwv,i, where ūw denotes the slowly-
varying component of the total current.

6.3.3 Wave-induced horizontal torque

As mentioned above, the presence of waves and the as-685

sociated space- and time-varying slope of the sea surface

induces torque and rotation around the horizontal axes of
the ice grains. In the following, an assumption is made that
the x-components of torque are produced by the unbalanced
buoyancy forces acting on a disk if its upper surface is not690

parallel to the local sea surface, as shown in Fig.4. It is
also assumed for simplicity that exactly half of the disk
experiences an excess of buoyancy, the other half – an
excess of gravity (see also Dumont et al., 2011). As defined
in Sect. 3.2, θi = [θ1,i,θ2,i,0] denotes the tilt of the disk,695

i.e., θ1,i and θ2,i are angles between the z axis and the
projection of the symmetry axis of the disk onto the x1z- and
x2z-plane, respectively. Further, let θs,i = [θs,1,i,θs,2,i,0]
denote the mean sea surface slope ‘under’ the disk:
tanθs,1,i = (ξ(x1,i + ri,x2,i)− ξ(x1,i − ri,x2,i))/(2r),700

tanθs,2,i = (ξ(x1,i,x2,i + ri)− ξ(x1,i,x2,i − ri))/(2r).
The unbalanced part of the (vertical) buoyancy force acting
on an elementary volume Ṽ (r) at the horizontal distance
r= r[cosθ,sinθ,0] from the grain center (dashed area in
Fig. 4) is:705

Fwv,z,i(r) = ρ̂gh̃i(r)rdθdr,

where h̃i(r) = βi · r, βi = tan(θi −θs,i), and ρ̂ equals ρ or
ρw for the emerged or submerged part of the grain. Thus, the
total torque, integrated over the disk’s volume, is:

Mwv,i =

ri∫
0

2π∫
0

Fb,z,i(r)n× rdθdr,710

which gives:

Mwv,i =
π

4

ρ+ ρw
2

gr4i n×βi. (34)

It should be added as part of Me,i to the right-hand side
of (7); as the vertical component of Mwv,i equals zero, it
does not contribute to (8).715

For unbonded grains, their angular momentum resulting
from (34), and thus variation of their tilt, depends both on
their size and the wave characteristics: they decrease with
increasing grain radius and wave length.

7 The numerical model720

The numerical model is based on two libraries designed for
effective simulation of large systems of objects interacting
through a variety of short- or long-range forces: LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simula-
tor; Plimpton, 1995, http://lammps.sandia.gov/)725

and LIGGGHTS (LAMMPS Improved for General
Granular and Granular Heat Transfer Simulations;
Kloss and Goniva, 2010, 2011; Kloss et al., 2012,
http://www.cfdem.com). The code of the DE-
SIgn model has a form of a toolbox that – thanks to the730

modular, easily extendable nature of the above libraries –
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can be incorporated into the standard LIGGGHTS program
in a straightforward manner, as described in the attached
documentation. Importantly, many changes to the model
configuration, including specification of additional forcing735

types, can be made via configuration files, without modifica-
tion and recompilation of the code. All information on the
availability of the code can be found in Sect. 10 at the end of
this paper.

Details regarding the numerical aspects of the model740

can be found in the User’s Guide (available in the ‘doc’
folder in the attached material) and in the documentation of
LAMMPS/LIGGGHTS. DESIgn uses the standard methods
of the solution of the governing equations implemented in
LIGGGHTS. Therefore, only the most important facts re-745

garding the numerical aspects of the model are given here.
The momentum equations are integrated in time using the

energy-conserving velocity Verlet solver suitable for finite-
size grains and taking into account not only position and ve-
locity of the center of mass of the particles, but also their750

angular velocity. Due to numerical stability and so-called en-
ergy drift issues, the computations require very small time
steps. For sea ice simulations, in which grains typically have
diameters of 100 − 102 m, time steps of 10−4 − 10−3 s are
necessary, making the model very expensive computation-755

ally. Therefore, realistic model configurations require paral-
lel computations.

8 Modeling results

All simulations described in Herman (2011, 2012, 2013a,
b, c), obtained with older, LAMMPS-based versions of the760

model, can be reproduced with its present version, with
proper model settings. Therefore, the results presented here
concentrate on the new model features, related to the func-
tioning of bonds and to the influence of waves on sea ice.
They have been obtained with very simple configurations and765

can be treated as test cases that verify the model behavior in
clearly defined, easily interpretable situations. Both groups
of calculations presented below (Sects. 8.1 and 8.2) were per-
formed for the so-called reference model setting, as well as
for a number of settings differing from the reference ones770

in terms of one selected parameter, so that the influence of
that parameter on the model behavior could be analyzed. The
model parameters used in the two reference simulations are
listed in Tables 1–3. Simulations similar to those presented
below are useful for calibration purposes, as they help to find775

relationships between the ‘microscopic’ properties of grains
and bonds, and the desired ‘macroscopic’ properties of sea
ice such as its compressive or tensile strength, which in real
sea ice varies strongly with changing temperature, ice poros-
ity, microstructure, etc. For a summary of material properties780

of sea ice, see, e.g., Schulson (1999) and Petrovic (2003).

8.1 Sea ice breakup under plane stress

In the first set of simulations, a rectangular sample of com-
pact sea ice (densely packed grains with uniform size dis-
tribution, fully connected with their neighbors) is subject to785

a prescribed uniaxial tensile, uniaxial compressive, or shear
strain. The strain rate is obtained by setting to zero the veloc-
ity of the grains located at the lower boundary of the domain,
and moving the grains located at the upper boundary with a
specified velocity until terminal failure (see Herman, 2013c,790

for a similar model configuration without bonds). In all cases
the strain rate increased linearly in time from ε0 to the max-
imum value εe. In the great majority of cases, macroscopic
failure of the sample occurred before the end of the simula-
tion. Figure 5 shows examples of damage patterns resulting795

from compressive, tensile and shear deformation. The evolu-
tion of the global maximum normal stress and the shear stress
under compressive and shear strain is shown in Figs. 6 and 7,
respectively. Analogous plots for tensile strain simulations
are shown in Supplementary Fig. 3.800

In all cases, the initial increase of strain results in a fast,
approximately linear increase of stress. The rate of the stress
accumulation in the material depends on its properties. In
particular, it increases with increasing mean bond thickness
hm and bond Young modulus Eb (panels a–d in Figs. 6, 7805

and Supplementary Fig. 3). To the contrary, the width of the
bond-thickness distribution δh – that is, the spatial inhomo-
geneity of the bond thickness – hardly influences the slope
of the stress curves. However, it understandably does influ-
ence the final damage pattern: for a given value of hm, higher810

δh implies larger number of thin, weak bonds distributed
throughout the material, and thus more potential spots where
breaking can be initialized. Consequentially, a more com-
plex damage pattern develops, with a larger number of frac-
ture zones with more-ragged surfaces. This can be seen even815

in the simplest configurations, like those in Fig. 5a,b: under
tension, a uniform material tends to break along an approxi-
mately straight line, whereas large δh in situation in panel b
resulted in two competing fractures propagating in opposite
directions. Easier initiation of breaking is also responsible for820

slightly lower macroscopic strength of samples with larger δh
(panels a,b in Figs. 6, 7 and Supplementary Fig. 3).

The role of λns, defined in (13), is more complex, as its
influence on the macroscopic material behavior depends on
the type of deformation. (It is worth stressing that λns deter-825

mines the shear stiffness kt; it has no influence on the nor-
mal stiffness kn.) Under uniaxial compression, higher kt sta-
bilizes the bonds and contributes to the overall strength of
the material. Under shear strain, varying λns manifests itself
in very different fracture patterns. Small λns, i.e., large kt,830

produces fracture zones aligned approximately with the di-
rection of motion of the upper boundary of the sample, as
in Fig. 5f. The dominating bond breaking mechanism in this
case is related to the shear-stress criterion (19) in zones of
high velocity gradient. To the contrary, large λns and small835
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kt are conducive to breaking related to extensive normal
stresses acting on bonds. As a result, tensile fractures de-
velop, penetrating deep into the sample, as for example in
Fig. 5e.

In all simulations initialized with ε0 = 0, the initial grad-840

ual buildup of stress was related with only isolated break-
ing of single bonds. This phase was followed by a rapid,
avalanche-like increase of bond-breaking rates, manifesting
itself in terminal failure of the material and the associated
sudden drop in internal stress as the fraction of broken bonds845

increased (Figs. 8, 9). Under compression, damage has a
character of a single, clearly defined event; under shear, dam-
age tends to occur through a large number of events of com-
parable magnitude. However, the course of stress buildup
and the associated deformation of the sample is obviously850

strongly related to the history of strain, which can be il-
lustrated by varying ε0. In the case of compressive strain,
putting ε0 close to εe amounts to suddenly hitting the mod-
eled sample, which results in very different failure patterns
than those described above, with wide damage zones – see855

Fig. 5d and, for more extreme examples with rapidly increas-
ing strain rates, Supplementary Fig. 4.

A very important aspect of the model, mentioned in the
introduction, is that both types of interactions – those due to
bonds and those due to a direct contact between grains – act860

mutually and contribute to the overall properties of the mod-
eled sea ice. In the simulations discussed above, the majority
of grains were in direct contact with their neighbors. Even
though, macroscopically, the stress due to pairwise interac-
tions tends to be more than an order of magnitude lower than865

the stress transmitted through bonds (e.g., it never exceeded
2–3% in the reference model run), it in many ways influences
the sea ice behavior. In particular, pairwise interactions play
a crucial role in the development of the fracture zones, as, ob-
viously, after bond breaking they are the only type of grain–870

grain interactions present. Thus, friction between grains in-
fluences sliding along deformation zones, as well as their
width. Figures 10 and 11 show example snapshots of instan-
taneous stress acting on individual grains under compres-
sive and shear deformation, respectively. Fig. 10 illustrates875

how the strands of grain–grain forces span the whole sam-
ple, transmitting the stress across the fracture zone. Fig. 11
illustrates the complementary role of bonded and pairwise
interactions in transmitting shear stress through the sam-
ple (the spatial pattern of normal stresses is similar): grain–880

grain forces are strong in regions subject to compression and
along fractures (bottom right in Fig. 11b), whereas bond-
transmitted forces are strongest in regions under tension.

8.2 Wave-induced sea ice fragmentation

In the second group of simulations, compact, undamaged sea885

ice is subject to flexural stresses generated by regular deep-
water surface waves with a prescribed, spatially uniform am-
plitude a, period T and length L. All computations are per-

formed until no bond breaking occurs. For the purpose of
the basic verification of the model concept described in Sec-890

tion 6.3, simple one-dimensional (1D) simulations are per-
formed first (Section 8.2.1), in which a set of N linearly ar-
ranged identical grains bonded to their neighbors are subject
to a prescribed propagating wave.

This 1D setting is equivalent to a 2D one in which a unidi-895

rectional wave propagates through a regular matrix of iden-
tical grains, each bonded to its four neighbors. Because in
this case the moments acting on bonds oriented parallel to
the wave crests are identically zero, the model produces long
parallel stripes with a breaking pattern exactly the same as900

that obtained with a 1D model version. Therefore, in Sec-
tion 8.2.2, devoted to 2D simulations, only results obtained
with an irregular arrangement of grains are analyzed, with a
focus on the influence of this factor on the obtained floe sizes
and shapes.905

8.2.1 One-dimensional simulations

Let us consider a set of N identical grains with radius r and
thickness h, arranged regularly (with spacing 2r) along a line
parallel to the wave propagation direction. In this case, in the
absence of other forcing, the problem reduces to 2N +Nb910

equations, where Nb denotes the number of bonds:

dθi
dt

= ωi, i= 1, . . . ,N, (35)

Ig
dωi

dt
= Mvw,i +Mi,i+1 −Mi,i−1, i= 1, . . . ,N,(36)

dMi,i+1

dt
= −knIb(ωi −ωi+1), i= 1, . . . ,Nb. (37)

These equations follow directly from equations (5), (7), and915

(17) with an assumption that the damping coefficient γd = 1.
Some indices have been omitted for the sake of simplic-
ity, and it is assumed that Ix1,i = Ig for all grains, and
Ix1,i,i+1 = Ib, kn,i,i+1 = kn for all bonds. If the initial floe
is freely floating on the sea surface, the outermost grains920

(i= 1 and i=N ) have only one neighbor, Nb =N − 1 and
M0,1 =MN,N+1 = 0. If one end of a floe is ‘frozen’, e.g.,
connected to the coast or the landfast ice which remains mo-
tionless, we set Nb =N and assume ωN+1 = θN+1 = 0 and
M0,1 = 0.925

The wave forcing is calculated directly from (34), and the
breaking criteria (19)–(22) reduce to a single one:

|Mi,i+1|hb/Ib > σt,max, (38)

where again hi,i+1 = hb for all bonds.
In the reference simulation summarized in Table 2, the930

initial floe has length equal n0L, where n0 = 100, L is the
wavelength, and with the selected grain radius of 3 m, there
are roughly 26 grains per wavelength. Initially, no breaking is
allowed (hence the infinite bond strength in Table 2) and n0 is
varied to analyze the response of floes of various sizes to the935

wave forcing. Figures 12 and 13 show the range of variability
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of the grains’ tilt (separated into the rigid and flexural compo-
nent) and the stress acting on bonds for three selected cases:
small (n0 = 1 and n0 = 5) freely floating floes (Fig. 12a–d),
and large (n0 = 100) floes both freely floating (Fig. 12e,f)940

and connected to a landfast ice (Fig. 13a,b). In all cases, three
floe lengths, (n0 − 1

2 )L, n0L and (n0 +
1
2 )L are considered,

because the motion of floes with lengths being an exact mul-
tiple of the wavelength tends to be different from the mo-
tion of similar floes that do not fulfill this criterion. Whereas945

in general, as expected, the amplitude of the rigid floe mo-
tion increases with decreasing floe size, and for small floes
(n0 < 10) exceeds the amplitude of the flexural motion by at
least an order of magnitude (compare continuous and dashed
lines in Fig. 12a,c), the rigid motion remains negligible for950

floes with n0 ∈ N, and their flexural response is dominated
by bending in the middle of the floe. Notably, the smallest
floe considered, that of size 0.5L (green lines in Fig. 12a),
follows the slope of the sea surface, which in the case con-
sidered reaches ±1.15◦, almost exactly, even with a slight955

inertia-related ‘overshoot’. An analysis of periodograms of
the grains’ tilts in the cases presented in Figs. 12, 13 shows
that for grains within large floes the power spectra have one
dominating frequency – that of the external forcing – whereas
additional peaks are present in spectra representing grains960

within small floes, corresponding to the normal modes of the
floes.

Understandably, if only one end of the floe is allowed to
move freely, the above-mentioned influence of the exact ratio
of the floe size to the wavelength is much less pronounced965

(Fig. 13a).
For large floes, the amplitude of their flexural motion is

largest in vicinity of their free ends: in the cases tested, it has
a roughly exponential profile within the distance of 10–20
wavelengths from the free floe’s ends (Figs. 12e, 13a). This970

is extremely important from the point of view of stress act-
ing on the ice (Figs. 12f, 13b) and, consequently, on the pat-
tern of breaking and the final distribution of floe sizes. Fig-
ure 14 shows an example of breaking history of a large floe
like that shown in red in Fig. 13, obtained with bond strength975

σt,max = 0.33 ·105 Pa, so that the wave-induced stresses ex-
ceed this value close to the floe edge, but not in its inner
parts. In this case, breaking starts at the floe boundary, grad-
ually progresses deeper into the ice, and continues until no
floes larger than 0.5L remain (inset in Fig. 14a). The pattern980

of dots in Fig. 14 shows that breaking events are clustered
and tend to occur in series spanning a few wavelengths and
a small fraction of the wave period. Indeed, almost 40% of
breaking events occur within the distance of one wavelength
from the previous one, and the histogram of distances be-985

tween subsequent breaking events has a clear maximum at
∼ 0.25L (not shown). The final pattern of floe sizes is not
perfectly regular (Fig. 14b), but there is one clearly dominat-
ing floe size seen in the histogram in Fig. 14a.

Two aspects of these results are worth stressing. First, this990

breaking pattern, progressing from the ice edge towards in-

ner regions, has been obtained with spatially constant wave
amplitude. In a more realistic configuration, with wave am-
plitude decreasing with the distance from the ice edge due to
attenuation, this effect would be even stronger. Second, with995

a constant wave amplitude, progressive breaking is possible
only if the wave-induced stress acting on the ice far from its
edge remains smaller than its strength. In real-world situa-
tions, such ‘tuning’ of the wave steepness to the ice strength
is presumably rare in stationary settings, but can be expected1000

to occur frequently during periods of wave amplitude in-
creasing in time, e.g., when the onshore wind strengthens or
when swell from distant locations arrives at the ice edge with
gradually increasing amplitude. Thus, breaking similar to
that shown in Fig. 14 may be more frequent than the oversim-1005

plified model setting used here suggests. On the other hand,
obviously, the great majority of combinations of the model
parameters produce either very strong, almost instantaneous
fragmentation of the whole initial floe (with the majority of
bonds destroyed and a clearly defined maximum floe size),1010

or almost no fragmentation (with only a very small fraction
of bonds broken).

8.2.2 Two-dimensional simulations

As already mentioned in the introduction to this section, a
2D model initialized with a regular, square matrix of identi-1015

cal grains produces floes in the form of long stripes parallel
to the wave crests. However, in order for the model to be ap-
plicable to more general conditions, e.g., with waves coming
from different directions, it is desirable that the model pro-
duces realistic results (in terms of both floe sizes and shapes)1020

when it is initialized with randomly distributed grains of dif-
ferent sizes, and thus contains bonds with a range of spatial
orientations, not aligned with the wave direction.

As can be expected, most aspects of the behavior of the
2D model are fully analogous to those of the 1D model. In1025

particular, the dependence of the amplitude of the flexural
and rigid motion of the floes on their size, described in the
previous section, is very similar in 1D and 2D. As previ-
ously, the model has been run for a reference run (Table 3)
and for a set of configurations with one selected parame-1030

ter varied. Obviously – as in the 1D case – most combina-
tions of the coefficients produce either almost no breaking or
very intense breaking (like that shown in Fig. 15b). However,
within a narrow range of the model parameters between these
two ‘regimes’, breaking results in floes with rather unrealis-1035

tic shapes, with ‘branches’ of connected grains stretching in
different directions (some of these features can be seen in
Fig. 15a) or even floes with ‘holes’ in the middle, filled with
loose grains or smaller floes. This tendency for ‘branching’
floes to survive breaking is related to another rather pecu-1040

liar aspect of these configurations: a wide range of sizes of
the floes. For example, as shown in Fig. 16, for wave pe-
riod T = 25 s (i.e., the reference run, illustrated in Fig. 15a)
the floe sizes span at least three orders of magnitude. The
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results are very different for both longer and shorter waves.1045

With wave period of less than 23 s, hardly any floes contain
more than 10 grains (Figs. 16 and 15b); with wave period
higher than 26 s, a few largest floes contain more than 90%
of all grains in the system, i.e., most of the ice remains intact.
Varying other model parameters produces similar model be-1050

havior, see Supplementary Figs. 5 and 7 for examples show-
ing the effects of changing the mean bond thickness hm and
the bond elastic modulus Eb, respectively. (Notably, increas-
ing spatial variability of the bonds’ thickness, and thus their
stiffness, has almost no influence on the resulting floe-size1055

distribution; see Supplementary Fig. 6.)
It was not possible to obtain a wide distribution of floe

sizes in the 1D model, which supports the notion that this
feature is directly linked to irregular floe shapes in the 2D
model. Also, it must be remembered that these features tend1060

to disappear if some irregularity is introduced to the model
(e.g., if the forcing is specified as a superposition of more
than one elementary waves with different directions and
phases), so that it may seem irrelevant in more realistic model
settings than those analyzed here, but nevertheless it signals1065

an undesired feature of the model. The tendency to produce
non-convex floes decreases with increasing shear stiffness
and decreasing shear strength of bonds (relative to their nor-
mal stiffness and compressive strength, respectively), but it
remains to be investigated whether adjusting these parame-1070

ters accordingly does not produce any other negative effects.
In any case, the general conclusion is that the orientations of
bonds in the model do determine the resulting geometry of
the floes. In particular, although the floes tend to be elongated
in the direction of the wave crests (Fig. 15), it is not possible1075

to obtain long stripes even with perfectly unidirectional wave
forcing.

9 Discussion and further perspectives

The modeling results presented in this paper have been lim-
ited to very simple configurations, with the goal to test the ba-1080

sic model features and to analyze the influence of the model
parameters on its behavior. Further work is necessary to ver-
ify the model – its underlying assumptions, numerical algo-
rithms etc. – in a wider range of configurations. Importantly,
the modular structure of LIGGGHTS in general and of the1085

sea ice toolbox in particular make it relatively easy to mod-
ify and/or replace some parts should better or alternative so-
lutions become available. In the same way, the model may be
extended with new features, including time variability of the
properties of grains and bonds (e.g., changes of their thick-1090

ness due to thermodynamic processes), other contact models
or bond breaking criteria, or a model of wave–sea ice interac-
tions in which the wave characteristics are not prescribed, but
modified based on the properties of the ice cover. As noted
earlier in Sect. 6.3.1, the wave-induced flexural breaking of1095

ice is just one of a number of breaking mechanisms that may

be of different importance in different conditions. In partic-
ular, it is desirable to include at least some of those mecha-
nisms in DESIgn, e.g., by adding the vertical component to
the grains’ positions and taking into account buoyancy forces1100

acting on the ice on the vertically moving sea surface. This is
planned for the next version of the model that will be avail-
able soon. It is also worth mentioning that the model can be
applied to simulate the motion of icebergs (solitary or em-
bedded in sea ice) and any other objects floating on the sea1105

surface, provided suitable forcing is formulated. On the other
hand, the basic assumption regarding two-dimensional na-
ture of contact forces between grains, makes it difficult to
implement in the model processes that are inherently three-
dimensional, like for example rafting and ridging. Some pa-1110

rameterizations of these processes will be necessary to make
the model applicable to situations when ridging cannot be
disregarded.

The fact that DESIgn is a toolbox of LIGGGHTS offers
a possibility to relatively easily combine this model with1115

a wide range of functionalities offered by LIGGGHTS. In
particular, the mesh-free SPH method available in the open-
source LIGGGHTS version could be used to simulate sea
ice in a manner similar to Gutfraind and Savage (1997a, b,
1998). Also, coupling the DEM sea ice model with a con-1120

tinuum model of the ocean and/or atmosphere is possible
thanks to the CFD–DEM Engine (Goniva et al., 2012), where
CFD stands for Computational Fluid Dynamics (see also
Zhao and Shan, 2013). The tool provides solvers for both
unresolved and resolved coupling. In the first method, the1125

grains are taken into account in the Navier-Stokes equations
by means of a volume fraction they occupy in each com-
putational cell. The second method, suitable for relatively
large grains, resolves the fluid motion around each grain.
The CFD–DEM could be used, e.g., to solve the equations1130

of the ocean mixed layer under fragmented ice; or to sim-
ulate the wave–ice interactions as a fully coupled problem.
The above-mentioned resolved coupling would be particu-
larly useful for that purpose, allowing for simulation of 3D
water motion around floating ice floes. Among more tech-1135

nical issues, meshes with complex geometry can be used in
simulations with coastlines and other boundaries.

Among the challenges related to the usage of DESIgn (and
other, similar models) to realistic sea ice problems, valida-
tion with observational data undoubtedly belongs to the most1140

urgent ones. Although substantial progress has been made
in recent years in terms of availability of high resolution
remote-sensing data, the temporal and spatial resolution of
that data is still too low to capture some rather subtle effects
described in Herman (2011, 2012, 2013a, b, c) and in this1145

paper. Moreover, they only provide information on the po-
sition of objects within images, from which average veloc-
ities between subsequent snapshots can be calculated with
the help of motion-tracking algorithms. Validation at shorter
time scales and in terms of other variables requires carefully1150

planned and usually expensive in situ or laboratory measure-
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ments, e.g., with accelerometers and stress sensors placed on
(a number of) ice floes within a given area, combined with
meteorological and oceanographic observations. Because of
very high costs of such undertakings, numerical models may1155

be a particularly useful in planning of experiments, suggest-
ing processes worth investigating and methods suitable for
their analysis.

10 Code availability

The code of DESIgn, together with a full techni-1160

cal documentation and example input files, is freely
available with this paper and at the internet page
http://herman.ocean.ug.edu.pl/LIGGGHTSseaice.html.
The present version of the model is 1.3; effort will be taken
to keep the code of the toolbox compatible with future1165

versions of LIGGGHTS, although no guarantee can be given
that there is a DESIgn version suitable for every version
of LIGGGHTS, as its code is evolving very fast and new
releases appear every couple of months.

All comments, questions, suggestions and critics regarding1170

the functioning of the DESIgn model can be directed to the
author of this paper.

Acknowledgements. The development of the sea ice model would
not be possible without LAMMPS and LIGGGHTS. In particular,
the bond-related code of DESIgn is based on the experimental ver-1175

sion of the bond package available through the LIGGGHTS home
page. Part of the simulations presented in this paper have been
conducted at the Academic Computer Center in Gdansk (TASK,
http://task.gda.pl/).
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Table 1. Physical and numerical model parameters used in the ref-
erence simulations in Sect. 8.1

Parameter Symbol Value Units

Grains

Density ρ 910 kg/m3

Thickness h 1.5 m
Minimum radius rmin 50.0 m
Maximum radius rmax 150.0 m
Elastic modulus E 6.0·109 Pa
Poisson’s ratio ν 0.33 —
Static yield criterion µ 0.7 —

Bonds

Length coefficient λb 0.8 —
Radius coefficient λR 1.0 —
Mean thickness hm 1.0 m
Width of thick. distr. δh 0.0 m
Ratio of normal to shear stiffness λns 2.5 —
Elastic modulus Eb 6.0·109 Pa
Compressive strength σc,max 1.0·106 Pa
Tensile strength σt,max 1.0·105 Pa
Shear strength τmax 1.0·106 Pa

No. of grains N 7829 —
Initial no. of bonds Nb 15967 —
Time step ∆t 0.0005 s
Initial strain rate ε0 0.0 s−1

Final strain rate εe 1.0 · 10−4 s−1

Table 2. Physical and numerical model parameters used in the ref-
erence simulations in Sect. 8.2.1

Parameter Symbol Value Units

Grains

Density ρ 910 kg/m3

Thickness h 1.0 m
Radius r 3.0 m

Bonds

Length coefficient λb 1.0 —
Radius coefficient λR 1.0 —
Thickness hm 0.8 m
Elastic modulus Eb 9.0·109 Pa
Tensile strength σt,max ∞ Pa

Waves

Amplitude a 0.5 m
Period T 10.0 s

No. of grains N 2602 —
Initial no. of bonds Nb N − 1 —
Time step ∆t 0.0001 s

Table 3. Physical and numerical model parameters used in the ref-
erence simulations in Sect. 8.2.2

Parameter Symbol Value Units

Grains

Density ρ 910 kg/m3

Thickness h 1.5 m
Minimum radius rmin 12.5 m
Maximum radius rmax 37.5 m
Elastic modulus E 6.0·109 Pa
Poisson’s ratio ν 0.33 —
Static yield criterion µ 0.7 —

Bonds

Length coefficient λb 0.4 —
Radius coefficient λR 1.0 —
Mean thickness hm 0.5 m
Width of thick. distr. δh 0.0 m
Ratio of normal to shear stiffness λns 2.0 —
Elastic modulus Eb 9.0·109 Pa
Compressive strength σc,max 5.0·105 Pa
Tensile strength σt,max 5.0·104 Pa
Shear strength τmax 5.0·104 Pa

Waves

Amplitude a 1.5 m
Period T 25.0 s

No. of grains N 30000 —
Initial no. of bonds Nb 73421 —
Time step ∆t 0.0005 s

(a) (b)

Figure 1. Two approaches to the usage of grains and bonds in DE-
SIgn: without bonds, when ice floes identical with grains and the
FSD is prescribed (a); with bonds, when ice floes are assemblages
of bonded grains and the FSD is obtained as a solution (b).
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Figure 2. Geometry of two grains, i and j, connected with a semi-
elastic bond.
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Figure 3. Forces and torques acting on an elastic bond connecting
grains i and j: top view (a) and side view (b). Letters C and T denote
points where maximum compressive and tensile stress, respectively,
occurs due to the bending moment caused by ∆ωij,z in (a) and
∆ωij,t in (b). Gray curved arrow in (b) denotes twisting moment
associated with ∆ωij,n
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Figure 4. A sketch of a circular grain on a sloping sea surface, il-
lustrating the variables involved in calculation of the wave-induced
torque (see text for details).
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reference settings (c) ε0 = 0.3 · 10−4 s−1 (d)

λns = 3.0 (e) δh = 0.9 m (f)

Figure 5. Example damage patterns obtained in simulations of an initially compact sample under uniaxial tensile (a,b), uniaxial compressive
(c,d), and shear (e,f) strain. Thick gray lines show the bonds between grains. Model parameters that differed from the reference run are given
with each panel. See Supplementary Figs. 3–5 for more images.
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Figure 6. Amplitude of the maximum normal (a,c,e) and shear (b,d,f) stress due to bonded interactions in simulations under uniaxial com-
pressive strain, with variable model parameters.
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Figure 7. As in Fig. 6, but in simulations under shear strain.
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Figure 8. Temporal evolution of the fraction of broken bonds and the rate of bond breaking (a); relationships between the fraction of broken
bonds and and the global normal and shear stress in simulations under uniaxial compression (reference model settings).
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Figure 9. As in Fig. 8, but in simulation under shear strain.
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(a) (b)

Figure 10. Instantaneous normal stress (color scale; in Pa) acting on individual grains in simulation under uniaxial compressive strain short
after terminal failure of the material (t= 600 s, see Figs. 6,8). Panel (b) shows a fragment within the rectangle marked in (a), with bonds
between grains illustrated with thick blue lines. Reference model settings.

(a) (b)

Figure 11. Instantaneous shear stress (color scale; in Pa) acting on individual grains due to bond interactions (a) and pairwise interactions (b)
in simulation under shear strain at t= 2000 s (see Figs. 7,9). Reference model settings. Note different color scales in (a) and (b).
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Figure 12. Results of 1D simulations of sea ice response to waves (without breaking): tilt of the grains (a,c,e) and stress acting on bonds
(b,d,f), for floe lengths equal (n0 − 1

2
)L (green), n0L (red) and (n0 +

1
2
)L (blue); n0 = 1 in (a,b), n0 = 5 in (c,d), and n0 = 100 in (e,f).

In all cases, both ends of the floe could move freely (see text). The distance along the floes is measured relative to the floes’ centers. In
(a,c,e), continuous and dashed lines show the range of variability (i.e., the minimum and maximum values recorded during a simulation) of
the flexural and rigid components of the floe’s motion, respectively. In (b,d,f), the continuous and dashed lines show the maximum and the
standard deviation of the stress, respectively. Note different ranges of the vertical axes in the panels. In (a), the dashed and continuous red
lines overlap.
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Figure 13. As in Fig. 12e,f, i.e., for n0 = 100, but for a floe with the right end ‘frozen’ (see text). The distance along the floes is measured
relative to the floes’ right edges.
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Figure 14. Wave-induced breaking of an ice floe with initial size 100L, ‘frozen’ at its right end (x= 0). In the main panel in (a), individual
breaking events are shown with dots in function of their position and time. The inset in (a) shows the histogram of the floe sizes (l/L) after
breaking. In (b), a fragment of the initial floe, 20L-long, is shown, with breaking positions marked with vertical lines.
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(a) (b)

Figure 15. Fragments of the model domain at the end of the reference simulation, with T = 25 s (a; wavelength L= 976 m), and a simulation
with T = 23 s (b; wavelength L= 826 m), showing the pattern of floes. The wave propagation direction is from top to bottom. Note that the
whole area of both panels is covered with ice, i.e., the large white spaces are large floes, not open water.
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Figure 16. Rank-order statistics of floe sizes (a: number of grains in a floe; b: floe surface area) obtained in simulations with different wave
period T . The dashed line in (b) marks the area of the largest individual grain in the ensemble. Results of the reference run are shown with
crosses.


