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We	would	like	to	thank	the	reviewers	for	the	valuable	comments.	The	response	
to	this	comments	helped	us	to	improve	the	manuscript	in	many	ways.		In	our	
response	we	first	quote	entire	review	of	Referees	and	then	answer	to	issues	
raised	by	them	one	by	one,	quoting	the	appropriate	fragments	from	the	
manuscript.	The	manuscript	quotes	are	enclosed	between	>>	signs.	The	modified	
fragments	that	address	issues	raised	by	the	referees	are	marked	in	bold	red	face.		
	
Referee	#1	
	
This	manuscript	describes	a	study	that	used	machine	learning	methods	to	
analyze	climate	simulation	failure	(model	crash)	caused	by	perturbations	in	
uncertain	model	parameters.	The	dataset	and	the	goal	of	analysis	were	the	same	
as	those	of	Lucas	et	al.	(2013).	However,	different	methods	were	applied,		which	
led	to	the	conclusion	that	some	of	the	parameters	deemed	important	by	the	
analysis	of	Lucas	et	al.	(2013)	were	redundant	or	irrelevant.	
Simulation	failure	analysis	is	a	relevant	topic	for	climate	model	development,	
and	a	more	accurate	identification	of	important	parameters	is	beneficial.		
Hence,	the	results	of	this	study	are	potentially	useful.	On	the	other	hand,	I	would	
recommend	a	serious	revision	so	that	the	manuscript	can	be	made	more	
informative	-	and	the	messages	more	convincing	-	for	climate	model	developers	
and	users.	
	
My	main	difficulty	with	the	manuscript	is	that	it	might	not	have	been	written	
with	geo-	scientific	model	developers	as	the	target	audience.	As	such,	I	wonder	
whether	the	manuscript	is	more	suited	for	a	statistics	or	computer	science	
journal.	
From	the	perspective	of	a	climate	modeler,	I	think	the	manuscript	does	not	
provide	sufficiently	detailed	descriptions	of	the	methods	and	analysis	procedure	
to	allow	many	readers	of	GMD	to	reproduce	the	results	or	apply	the	same	
methods	to	analyze	other	datasets.	
Comparing	this	study’s	results	to	those	of	Lucas	et	al.	(2013),	it	is	worth	noting	
that	the	3	strongly	relevant	parameters	identified	in	this	study	were	listed	
among	the	top-4	important	parameters	by	Lucas	et	al.	The	benefit	of	this	study’s	
methods	thus	seems	marginal.	It	would	also	be	interesting	to	know	what	price	
one	has	to	pay,	in	terms	of	algorithm	complexity	and	computing	time,	in	order	to	
do	the	cross-validation	and	estimate	the	statistical	uncertainty	of	the	results.	
	
Response	
Firstly,	we	would	like	to	thank	the	reviewer	for	the	general	opinion	
that	the	subject	and	results	of	the	study	may	be	useful	for	the	climate	
modelling	community.		



	
As	computer	scientists	developing	and	applying	machine	learning	
methods	we	are	very	much	interested	in	making	fellow	scientist	in	
different	disciplines	of	science	aware	of	the	applicability	of	our	tools	
and	methods	for	their	research	problems.		We	have	strived	to	make	
our	article	both	reasonably	succinct	and	accessible	for	non-
specialists.	Apparently,	we	have	not	achieved	the	second	goal.	
	
Answers	to	the	more	specific	issues	raised	by	the	referee	#1	are	
given	below.		
	
#1	
My	main	difficulty	with	the	manuscript	is	that	it	might	not	have	been	written	with	geo-	
scientific	model	developers	as	the	target	audience.	As	such,	I	wonder	whether	the	
manuscript	is	more	suited	for	a	statistics	or	computer	science	journal.	
	
Answer	
Our	 intended	audience	 is	 the	 climate	model	developers.	We	believe	
that	 the	 results	 of	 the	 study	will	 be	 interesting	 for	 this	 community.		
We	wanted	to	achieve	several	goals.		
Firstly,	we	wanted	 to	 strengthen	 the	message	 from	 the	 Lucas	 et	 al.	
that	machine	 learning	methods	 can	 be	 a	 useful	 tool	 for	 diagnosing	
problems	in	model	development.		
Additionally,	we	introduced	methodology	that	is	more	robust	and	in	
the	same	time	easier	to	apply.		
In	 comparison	 with	 SVM	 used	 by	 Lucas	 et	 al.	 the	 Random	 Forest	
algorithm	is	much	easier	to	apply	–	 it	gives	reasonably	good	results	
with	 default	 parameters.	 Similarly,	 the	 Boruta	 algorithm	 simply	
returns	 a	 list	 of	 relevant	 variables	 with	 relative	 ranking	 of	 their	
importance.	On	the	other	hand,	to	achieve	good	results	with	SVM	one	
has	 to	 select	 an	 appropriate	 kernel	 function	 and	 perform	
optimisation	of	the	parameters.		
Finally,	we	have	improved	results	of	the	original	work.	We	elaborate	
on	this	in	the	answer	to	the	third	issue	raised	by	the	referee	#1.		
	
#2	
From	the	perspective	of	a	climate	modeler,	I	think	the	manuscript	does	not	provide	
sufficiently	detailed	descriptions	of	the	methods	and	analysis	procedure	to	allow	many	
readers	of	GMD	to	reproduce	the	results	or	apply	the	same	methods	to	analyze	other	
datasets.	
	
Answer	
We	have	improved	the	manuscript	in	this	respect.	We	have	
introduced	the	more	detailed	description	of	the	tools	used,	extended	



the	description	of	both	tests	performed	in	the	study,	and	added	the		
graphical	summaries		of	both	tests.			
Firstly,	we	have	included	the	following	description	of	tools	used	in	
the	study:		
	
>>	
We	have	used	a	different	classification	algorithm,	namely	Random	Forest	
(Breiman,	2001)	and	instead	of	the	sensitivity	analysis	we	have	applied	the	all-
relevant	feature	selection	algorithm	Boruta		(Kursa	et	al.,	2010).	All	
computations	were	performed	in	R	environment	for	statistical	modelling	
(R	Development	Core	Team,	2008),	using	the	randomForest	package	for	
classification	(Liaw	and	Wiener,	2002)	and	the	Boruta	package	for	feature	
selection.	(Kursa	and	Rudnicki,	2010).		
>>	
	
Then	we	have	rewritten	and	extended	description	of	the	first	test.	We	
have	also	added	a	graphical	representation	of	the	protocol	used	in	
new	Figure	1.		We	have	explicitly	named	the	packages	and	functions	
used	in	the	protocol.		The	modified	paragraf	is	shown	below.		
	
>>	
The	climate	simulations	dataset	is	highly	biased	towards	successful	completion	
of	simulation.	Only	46	cases	out	of	540	are	failures.	Such	unbalanced	datasets	are	
often	difficult	for	classification	because	the	automatic	selection	of	the	majority	
class	results	in	good,	but	useless,	classification	accuracy.	In	such	a	case	no	
information	is	gained	and	hence	one	cannot	perform	feature	selection.	In	the	
first	test	of	the	current	study	this	problem	was	avoided	by	application	of	
the	following	protocol,	see	Fig	1.	Firstly	eleven	balanced	subsamples	of	
training	set	were	constructed,	each	subsample	consisted	of	all	objects	from	
minority	class	(failed	simulations)	and	1/11th	of	majority	class	(successful	
simulations).	In	order	to	check	specificity	of	the	feature	selection	each	
dataset	was	extended	by	contrast	variables.	To	this	end	each	original	
variable	was	duplicated	and	its	values	were	randomly	permuted	between	
all	objects.	In	this	way	a	set	of	shadow	variables	that	were	non-informative	
by	design	was	added	to	the	original	variables.	Then	the	feature	selection	
procedure	was	performed	on	each	subsample	with	the	help	of	the	all-
relevant	feature	selection	algorithm,	implemented	in	Boruta	function	of	
the	Boruta	package.	The	procedure	was	repeated	60	times.		Altogether	all	
relevant	feature	selection	was	performed	660	times.	The	number	of	times	
when	the	artificially	constructed	shadow	variables	were	selected	as	
important	gives	an	estimate	of	the	expected	level	of	false	discovery.	The	
variables	that	were	selected	as	important	significantly	more	often	than	random	
were	examined	further,	using	different	test.			
>>	
	



For	the	second	test	we	included	the	information	about	the	R	package	
and	function	used	to	build	models.		We	have	also	added	the	graphical	
summary	of	the	protocol	for	the	second	test	in	new	Figure	2.			
	
>>	
The	test	was	performed	similarly	to	the	one	reported	in	the	original	study,	see	
Figure	2.	The	data	set	was	randomly	split	into	a	training	set	containing	360	
objects	and	a	validation	set	containing	180	objects.	The	split	was	performed	
separately	for	the	minority	and	majority	class,	so	the	number	of	minority	class	
objects	in	each	training	set	was	32	and	in	the	validation	set	it	was	14.	The	
randomForest	function	from	the	identically	named	R	package	was	used	to	
perform	classification	and	error	estimate.	The	procedure	was	repeated	30	
times	and	results	of	30	repetitions	were	analysed.	
>>	
	
Finally,	we	discussed	the	selection	of	the	value	for	the	key	parameter	
of	the	Random	Forest,	namely	the	number	of	trees	in	the	ensemble:		
	
>>	
The	number	of	trees	in	the	forest	was	set	to	5000	both	for	feature	selection	
and	classification	tasks,	In	both	cases	the	number	of	variables	examined	for	
each	split	was	equal	to	the	square	root	of	the	total	number	of	variables.		In	
our	experience	these	settings	are	fairly	robust,	we	have	examined	them	
internally	over	multiple	datasets	(Rudnicki	et	al.,	2015).	Moreover,	we	
have	checked	whether	they	influence	results	in	the	initial	trials.	The	
number	of	trees	used	was	10	times	higher	than	default,	to	assure	that	
importance	estimate	in	Random	Forest	converge	to	their	asymptotic	
values,	the	number	of	trees	for	classification	was	the	same	for	consistency.		
>>	
		
	
#3	
Comparing	this	study’s	results	to	those	of	Lucas	et	al.	(2013),	it	is	worth	noting	that	the	
3	strongly	relevant	parameters	identified	in	this	study	were	listed	among	the	top-4	
important	parameters	by	Lucas	et	al.	The	benefit	of	this	study’s	methods	thus	seems	
marginal.		
	
Answer	
Regarding	the	observation	of	the	referee,	that	the	main	result		is	not	
much	different	from	the	results	published	by	Lucas	et	al.		and	hence	
the	value	of		the	contribution	is	marginal.		We	believe	that	there	are	
at	least	three	reasons	why	the	work	is	valuable	for	the	climate	
modellers.		
	
Firstly,	the	confirmation	of	the	main	results	of	the	previous	work	by	a	
different	methodology	is	valuable	by	itself.	We	have	shown,	that	
application	of	more	rigorous	and	computationally	demanding	



methods	confirmed	the	importance	of	6	out	of	8	parameters,	and	we	
concluded	that	3	out	of	them	were	non-redundant.	We	don’t	say	that	
the	4-th	parameter	is	not	important,	but	that	nearly	all	variance	in	
data	could	be	explained	by	models	built	on	3	main	parameters.			
	
This	result	can	be	directly	useful	for	modellers	since	it	reduces	the	
effort	required	to	improve	the	simulation	codes.	While	we	don’t	have	
experience	with	climate	models,	the	general	experience	with	
software	shows	that	the	difficulty	of	improving	the	code	grows	
combinatorially	with	the	number	of	free	parameters.	Hence	the	
reduction	from	four	to	three	may	in	some	cases	turn	problem	from	
very	hard	to	a	reasonably	hard	and	help	to	get	solution	quicker	and	
with	less	effort.	
		
Secondly,	we	have	shown	that	some	conclusions	of	the	original	work	
were	far-fetched	and	not	supported	by	data.	In	particular	Lucas	et	al.		
analysed	minute	effects	of	different	thresholds	on	the	AUC	obtained	
on	the	single	split	of	data	between	training	and	test	set.	We	have	
shown,	that	this	effect	is	dwarfed	by	variance	due	to	the	composition	
of	the	training	and	test	sets,	and	hence	is	irrelevant.	This	part	of	the	
paper	shows	that	any	conclusion	drawn	from	application	of	machine	
learning	methods	must	be	supported	by	a	solid	cross-validation	
study.		
	
Finally,	we	have	shown	a	very	simple	methodology	for	establishing	
the	importance	of	variables	for	complex	and	obscure	phenomena.	
Here	it	was	applied	to	analysing	the	influence	of	the	selected	
parameters	for	the	simulation	crashes,	however,	it	can	be	equally	
well	used	for	analysis	of	the	standard	simulations	and	exploring	
unexpected	relations	between	variables.		
	
#4	
It	would	also	be	interesting	to	know	what	price	one	has	to	pay,	in	terms	of	algorithm	
complexity	and	computing	time,	in	order	to	do	the	cross-validation	and	estimate	the	
statistical	uncertainty	of	the	results.	
	
The	complexity	of	the	algorithm	is	not	increased	significantly	by	
cross-validation,	it	simply	requires	repeating	entire	modelling	
procedure	several	times,	using	different	splits	of	data	between	
training	set	and	test	set.	It	is	straightforward	to	implement	this	in	a	
script	that	performs	all	modelling.		The	additional	benefit	is	that	
cross-validation	procedure	imposes	rigour	on	the	modelling	



procedure	–	it	needs	to	be	defined	in	a	repetitive	script.	Therefore,	
the	research	is	easily	reproducible.			
Regarding	the	time	required	for	modelling.	We	have	added	the	
following	paragraph	at	the	end	of	the	results	section	that	deals	with	
this	issue:				
	
>>	
A	single	run	of		the	Boruta	algorithm	in	the	first	test	took	2	minutes	on	a	
server	equipped	with	Intel	Xeon	E5620@2.4GHz	CPU.	The	entire	protocol	
took	less	than	24	hours	of	single	CPU	core.	The	second	test	is	far	less	
computationally	demanding.	A	single	run	of	the	randomForest	function	
takes	less	than	20	seconds	and	the	same	CPU,	therefore,	computations	for	
the	entire	protocol	take	less	than	10	minutes.		This	effort	is	negligible	in	
comparison	with	the	time	required	to	run	540	simulations	of	the	climate	
model	itself.		
>>	
	
	
Referee	#2.		
	
Summary	Statement:	 
The	main	purpose	of	the	technical	note	by	Paja	et	al.	is	to	re-evaluate	the	climate	model	
failure	data	reported	in	Lucas	et	al.	(2013).	In	particular,	Paja	et	al.	use	a	feature	
selection	technique	based	on	random	forests,	instead	of	sensitivity	analysis,	to	identify	
parameters	that	influence	simulation	failures.	Their	results	largely	agree	with	those	in	
the	original	paper.	Lucas	et	al.	determined	that	4	parameters	account	for	most	of	the	
variance	in	the	failures	(about	90%),	which	are	the	same	four	parameters	identified	by	
Paja	as	has	having	the	largest	feature	scores.	Paja	et	al.	also	show	that	the	feature	scores	
of	the	less	influential	parameters	(i.e.,	those	ranked	lower	than	the	top	4)	depend	on	the	
train/test	split.	Their	results	are	reasonable	and	not	surprising	because	the	raw	data	
displayed	in	figure	2	of	Lucas	et	al.	shows	that	the	relationship	between	failures	and	
parameter	values	degrades	significantly	going	from	higher	to	lower	ranked	parameters.	
It	is	less	clear	how	much	value	the	geoscientific	community	can	take	from	the	Paja	et	al.	
study	because	it	re-evaluates	an	existing	paper	and	reaches	similar	conclusions.	I	am	not	
inclined	to	recommend	the	paper	for	publication	in	GMD	as	an	original	manuscript,	but	
as	a	technical	note	it	could	suffice	after	addressing	the	items	and	comments	listed	below.	
I	leave	it	to	the	discretion	of	the	editor	to	decide	if	it	passes	this	bar.	 
Item	1.	The	presentation	of	the	material	is	still	rough	around	the	edges	in	terms	of	
readability	and	language.	I	recommend	that	the	authors	work	with	someone	to	improve	
the	readability.	 
Item	2.	There	is	a	mistake	on	page	5420	line	23.	It	should	say	540	simulations,	not	480	
simulations.	On	the	same	line,	"randomly"	is	probably	a	better	word	than	
"systematically".	 
Item	3.	On	page	5421	line	24,	the	authors	state	that	the	setup	used	by	Lucas	et	al.	
"precludes	estimation	of	statistical	uncertainty".	This	is	not	strictly	true,	as	bootstrap-	
ping	estimates	the	distribution	of	failure	probability	due	to	different	train/test	splits	
and	as	a	function	of	input	parameter	values.	Even	though	they	did	not	report	the	
uncertainty	in	their	sensitivity	indices,	Lucas	et	al.	used	bootstrapping	for	the	sensitivity	
analysis.	 



Item	4.	Page	5423	describes	the	general	random	forest	algorithm,	but	doesn’t	provide	
the	values	used	for	the	control	parameters.	One	potential	problem	with	random	forests	
is	the	tradeoff	between	bias	and	variance	during	fitting.	Can	the	authors	comment	on	
how	they	determined	the	values	of	the	control	parameters,	whether	they	controlled	for	
bias	or	variance,	and	what	the	impact	of	their	choice	is	on	the	feature	ranking?	 
Item	5.	As	shown	in	figure	1,	the	importance	scores	using	the	Boruta	algorithm	have	
values	that	range	from	about	-10	to	+120.	How	do	these	translate	into	sensitivity	indi-	
cies?	The	latter	are	fractions	between	0	and	1,	and	thus	define	the	amount	of	variance	
explained	by	the	parameters.	Can	a	similar	interpretation	be	made	for	the	Boruta	
scores?	 
Item	6.	Random	forests	can	also	have	difficulties	with	correlated	features,	whereas	
polynomial	chaos	expansions,	by	design,	explicitly	decompose	the	sensitivities	into	
various	combinations	of	features.	The	authors	should	make	some	assessment	of	the	
potential	effects	of	correlated	features	on	their	results.	Furthermore,	it	is	important	to	
point	out	that	a	climate	model	parameter	may	be	considered	to	be	important	even	if	it	
has	a	low	feature	score	by	itself	but	is	correlated	with	parameters	having	high	scores.	
This	situation	is	analogous	to	parameters	in	figure	10	that	have	relatively	small	nodes	
but	large	edges.	 
Item	7.	Paja	et	al.	should	also	be	aware	that	some	of	the	co-authors	of	the	Lucas	et	al	
paper	were	co-authors	on	a	related	paper	that	computed	sensitivity	information	using	
random	forest	feature	scores	(doi:10.1002/2014JD022507).	 
 
	
Response	
We	would	like	to	thank	the	referee	#2	for	the	detailed	review	of	our	
contribution.	We	agree	that	this	is	more	a	technical	note	than	the	
regular	article.	This	is	why	we	tried	to	make	it	as	brief	as	possible	
when	explaining	methodology.		Regarding	the	specific	issues	raised	
by	referee	#2	
	
Item	1.	The	presentation	of	the	material	is	still	rough	around	the	edges	in	terms	of	
readability	and	language.	I	recommend	that	the	authors	work	with	someone	to	improve	
the	readability.	 
	
Answer	
We	have	sought	advice	of	the	professional	proofreader	and	improved	
language	and	readability.	Stylistic	and	grammatical	changes	were	
introduced	in	numerous	places	in	the	manuscript.		
	
Item	2.	There	is	a	mistake	on	page	5420	line	23.	It	should	say	540	simulations,	not	480	
simulations.	On	the	same	line,	"randomly"	is	probably	a	better	word	than	
"systematically".		
 
Answer	
Corrected	
	
Item	3.	On	page	5421	line	24,	the	authors	state	that	the	setup	used	by	Lucas	et	al.	
"precludes	estimation	of	statistical	uncertainty".	This	is	not	strictly	true,	as	bootstrap-	
ping	estimates	the	distribution	of	failure	probability	due	to	different	train/test	splits	
and	as	a	function	of	input	parameter	values.	Even	though	they	did	not	report	the	



uncertainty	in	their	sensitivity	indices,	Lucas	et	al.	used	bootstrapping	for	the	sensitivity	
analysis.	 
	
Answer	
After	careful	rereading	our	statement	we	think	that	indeed	this	
statement	is	too	general.		It	pertains	to	the	analysis	of	the	influence	of	
the	choice	of	particular	decision	function	for	the	AUC	of	the	
predictive	model,	however	it	is	not	true	for	the	sensitivity	analysis.	
Therefore	we	modified	manuscript	in	two	ways.	Firstly	we	modified	
the	paragraph	in	the	following	way:		
	
In	the	original	paper	the	authors	performed	true	prediction	and	achieved	a	high	
degree	of	accuracy,	therefore	showing	the	true	predictive	power	of	this	
approach.		On	the	other	hand,	this	setup	precludes	estimation	of	statistical	
uncertainty	for	some	of	their	findings.	In	particular,	the	discussion	of	the	
prediction	accuracy	in	sections	4.4	and	4.5	is	based	on	a	single	split	of	data	
between	training	and	test	sets	and	ignores	possibility	that	effects	may	
depend	on	the	particular	split.			
	
We	have	also	modified	the	following	paragraph,	to	stress	that	Lucas	
et	al.	have	used	cross-validation	in	the	original	study	for	sensitivity	
analysis.		
	
>>	
The	results	of	individual	trials	will	differ	in	most	cases,	allowing	one	to	draw	
conclusions	not	only	about	mean	values	but	also	about	variance	and	even	shape	
of	probability	distribution.	Lucas	et	al.	have	used	this	approach	for	the	
sensitivity	analysis,	utilising	ensembles	of	SVM	(Vapnik,	1995)	learners	for	
classification.	Each	member	of	the	ensemble	was	obtained	using	different	
subsample	of	the	training	set.	The	classifier	was	then	used	for	prediction	of	the	
simulation	result	for	the	validation	set.			
>>	
	
We	believe	that	in	this	way	we	describe	correctly	limitations	of	the	
original	work	by	Lucas	et	al.		The	entire	discussion	of	the	prediction	
accuracy	in	sections	4.4	and	4.5	is	based	on	the	single	split	of	540	
experiments	between	the	training	set	and	the	test	set.	In	particular,	
authors	discuss	how	a	selection	of	the	decision	criteria	can	influence	
the	result	and	result	in	a	prediction	quality	measured	by	AUC	score	
to	vary	between	0.963	and	0.966.	In	this	case	the	range	of	changes	is	
0.003.	We	have	shown	that	different	splits	of	the	same	data	between	
training	and	test	set	can	result	in	AUC	that	varies	between	0.848	and	
0.990	–	the	range	of	results	is	0.142	which	is	nearly	two	orders	of	
magnitude	higher.	It	is	possible,	that	using	different	criteria	for	a	
decision	would	indeed	improve	results	for	most	splits	or	even	all	



splits,	but	the	discussion	in	sections	4.4	and	4.5	simply	ignores	the	
effect	that	is	nearly	two	orders	of	magnitude	higher	and	can	
significantly	influence	the	results.		
	
Item	4.	Page	5423	describes	the	general	random	forest	algorithm,	but	doesn’t	provide	
the	values	used	for	the	control	parameters.	One	potential	problem	with	random	forests	
is	the	tradeoff	between	bias	and	variance	during	fitting.	Can	the	authors	comment	on	
how	they	determined	the	values	of	the	control	parameters,	whether	they	controlled	for	
bias	or	variance,	and	what	the	impact	of	their	choice	is	on	the	feature	ranking?	 
	
Answer	
The	balance	between	bias	and	variance	in	random	forest	can	be	to	
some	extent	regulated	by	the	number	of	variables	tried	for	
performing	the	split	–	the	mtry	parameter	and	by	the	depth	of	the	
trees.	In	our	experience	the	default	value,	which	for	classification	is	a	
root	square	of	the	total	number	of	variables,	gives	good	compromise	
between	bias	and	variance.	What	is	more,	small	changes	of	the	
default	value	usually	don’t	influence	the	classification	error.		When	
random	forest	is	used	in	Boruta,	the	number	of	variables	may	vary	
drastically	between	initial	and	final	stages	of	the	algorithm.	
Therefore,	unless	there	are	very	good	reasons	to	modify	the	default	
variables,	the	default	value	of	mtry	parameter	is	the	best	choice.		
Moreover,	initially	we	have	checked	whether	modification	of	the	
mtry	parameter	would	give	better	classification	results	but	without	
any	apparent	changes	in	the	outcome,	so	we	decided	to	use	the	
default	value	also	in	this	work.		
On	the	other	hand,	we	have	not	modified	the	depth	of	the	trees.		This	
is	technically	possible,	but	it	is	generally	against	the	spirit	of	the	
Random	Forest	algorithm	and	one	should	avoid	modifications	of	this	
parameter	unless	everything	else	fails.		In	our	case	Random	Forest	
gave	results	very	similar	to	those	obtained	with	the	help	of	SVM	
ensembles	by	Lucas	et	al.	and	we	were	quite	happy	with	this	
performance.		
	
We	have	introduced	following	modifications	in	the	paper	to	account	
for	the	issues	discussed	above:		
Firstly,	we	have	mentioned	which	software	tools	were	used:		
	
>>	
All	computations	were	performed	in	R	environment	for	statistical	modelling,	
using	the	randomForest	package	for	classification		(Liaw	and	Wiener,	2002)	and	
the	Boruta	package	for	feature	selection	(Kursa	and	Rudnicki,	2010).		
>>	
	



Secondly,	we	have	modified	paragraph	introducing	Random	Forest	in	
the	following	way:		
	
>>	
Random	Forest	is	an	ensemble	algorithm	based	on	decision	trees.	To	ensure	the	
low	correlation	between	elementary	learners,	each	tree	is	grown	using	a	
different	random	subsample	of	the	original	data	set.	Moreover,	each	split	in	the	
tree	is	built	using	only	a	random	subset	of	the	predictor	variables.	The	number	
of	variables	in	this	subset	influences	the	balance	between	bias	and	
variance	for	the	training	set.	The	default	value	for	classification	tasks	is	a	
square	root	of	the	total	number	of	variables	and	it	is	usually	a	very	robust	
selection.	Random	Forest	is	a	robust	“of	the	shelf”	algorithm	that	is	easily	
applicable	to	various	classification	and	regression	tasks.	It	has	only	few	control	
parameters	and	usually	it	does	not	need	fine	tuning	for	the	particular	problem	
under	scrutiny.	
>>	
	
	
Finally,	at	the	end	of	methods	section	we	have	added	information	of	
the	number	of	trees	that	was	used	both	in	standalone	Random	Forest	
algorithm	as	well	as	in	the	Random	Forest	used	by	Boruta	algorithm	
for	feature	selection:	
	
>>	
The	number	of	trees	in	the	forest	was	set	to	5000	both	for	feature	selection	
and	classification	tasks,	In	both	cases	the	number	of	variables	examined	for	
each	split	was	equal	to	the	square	root	of	the	total	number	of	variables.		In	
our	experience	these	settings	are	fairly	robust,	we	have	examined	them	
internally	over	multiple	datasets	(Rudnicki	et	al.,	2015).	Moreover,	we	
have	checked	whether	they	influence	results	in	the	initial	trials.	The	
number	of	trees	used	was	10	times	higher	than	default,	to	assure	that	
importance	estimate	in	Random	Forest	converge	to	their	asymptotic	
values,	the	number	of	trees	for	classification	was	the	same	for	consistency.		
>>	
	
Item	5.	As	shown	in	figure	1,	the	importance	scores	using	the	Boruta	algorithm	have	
values	that	range	from	about	-10	to	+120.	How	do	these	translate	into	sensitivity	indi-	
cies?	The	latter	are	fractions	between	0	and	1,	and	thus	define	the	amount	of	variance	
explained	by	the	parameters.	Can	a	similar	interpretation	be	made	for	the	Boruta	
scores?	 
 
Answer	
The	importance	measure	in	Boruta	is	an	average	permutation	
importance	obtained	from	multiple	iterations	of	random	forest.		
Importance	for	a	single	variable	is	related	to	the	decrease	of	
classification	accuracy	of	elementary	classifiers	in	ensemble,	when	
information	about	given	variable	is	removed.	It	is	not	directly	



proportional	to	the	amount	of	variance	explained	by	this	variable	in	
the	model,	although	there	is	strong	correlation	between	these	two.			
We	have	added	the	following	note	after	discussion	of	the	Figure	3	
(Figure	1	in	the	previous	version	of	manuscript):		
	
>>	
One	should	note,	that	the	importance	returned	by	Boruta	is	the	averaged	
importance	obtained	from	the	underlying	Random	Forest	algorithm.	It	is	
not	directly	interpretable	in	terms	of	the	fraction	of	variance	explained	by	
given	variable.			
>>	
	
Item	6.	Random	forests	can	also	have	difficulties	with	correlated	features,	whereas	
polynomial	chaos	expansions,	by	design,	explicitly	decompose	the	sensitivities	into	
various	combinations	of	features.	The	authors	should	make	some	assessment	of	the	
potential	effects	of	correlated	features	on	their	results.		
	
Answer	
We	don’t	agree	with	this	statement.		Random	Forest	deals	very	well	
with	correlated	features	–	it	can	build	useful	models	for	systems	with	
multiple	correlated	features.		When	there	are	multiple	highly	
correlated	features	in	the	system	Random	Forest	will	assign	similar	
importance	to	all	these	features.		This	is	because	importance	is	
measured	only	for	these	base	classifiers	that	use	given	feature.		The	
sensitivity	of	the	feature	selection	may	go	down	if	many	correlated	
features	are	present	since	fewer	trees	uses	any	of	these	features.	
However,	this	can	be	circumvented	by	using	higher	number	of	trees	–	
what	we	did	in	the	study.	This	property	of	the	Random	Forest	is	
exploited	by	Boruta	for	finding	all	relevant	feature	selection.		
	
Item	6	–	continued.		
Furthermore,	it	is	important	to	point	out	that	a	climate	model	parameter	may	be	
considered	to	be	important	even	if	it	has	a	low	feature	score	by	itself	but	is	correlated	
with	parameters	having	high	scores.	This	situation	is	analogous	to	parameters	in	figure	
10	that	have	relatively	small	nodes	but	large	edges.	 
	
Answer	
We	agree	with	this	statement	wholeheartedly,	this	is	the	underlying	
idea	of	the	all-relevant	feature	selection	algorithm.	We	identify	all	the	
variables	that	are	more	informative	than	random	contrast	variables	
and	return	all	available	information	to	the	user	of	the	algorithm.	It	is	
up	to	her/his	domain-specific	knowledge	to	take	best	advantage	of	
the	whole	information.		
	



We	think	that	the	results	of	two	analyses	diverge	for	less	important	
variables,	due	to	more	non-linear	character	of	the	underlying	base	
classifiers.	Lucas	et	al.	have	used	SVM	that,	despite	using	a	kernel	
trick,	may	be	less	suited	for	highly	non-linear	and	non-continuous	
systems	than	decision	trees.			
As	a	simple	example	–	the	decision	tree	can	handle	simple	XOR	
problem	easily	in	two	dimensions,	whereas	SVM	requires	additional	
dimension	–	either	by	direct	extension	of	the	feature	space	or	by	
some	kernel	trick.		Hence,	the	decision	trees	may	find	solutions	that	
require	less	variables	than	SVM.	In	this	sense	the	extra	variables	are	
useful	for	SVM,	whereas	they	are	not	truly	informative	in	the	sense	of	
perfect	Bayesian	classifier.		Moreover,		in	our	analysis	the	apparent	
importance	of	the	variables	was	compared	with	that	of	the	contrast	
variables,	and	only	those	variables	that	were	declared	important	
significantly	more	often	than	contrast	variables	were	declared	
important.	On	the	other	hand	such	analysis	was	not	performed	in	the	
original	work.		
	
We	have	added	the	following	paragraph	at	the	end	of	the	Results	and	
Discussion	to	accommodate	these	considerations:	
	
>>	 	
The	results	of	the	study	are	mostly	in	good	agreement	with	the	results	of	
Lucas	et	al.,	however,	importance	of	the	variables	is	not	identical.	The	most	
important	difference	is	the	importance	of	the	variable	V13	in	both	studies.	
This	variable	is	more	important	than	V14	in	the	SVM-based	model	by	Lucas	
et	al.,	whereas	our	analysis	deems	it	relevant	but	redundant.	However,	one	
should	note	that	in	the	first	test	V13	was	deemed	relevant	in	nearly	90%	of	
cases,	only	slightly	less	than	in	the	case	of	V14.	Only	the	second	test	
revealed	that	V13	contains	mostly	redundant	information	and	on	average	
it	does	not	improve	quality	of	Random	Forest	predictions.	The	difference	is	
most	likely	due	to	the	underlying	classifier	used	in	each	approach.	The	SVM	
is	essentially	a	linear	classifier,	which	can	be	applied	to	nonlinear	
problems	using	some	nonlinear,	continuous	kernel	transformation.	On	the	
other	hand	the	Random	Forest	is	based	on	nonlinear	and	discrete	decision	
trees.	Figure	2	in	the	Lucas	et	al.	suggests	that	the	decision	space	of	the	
system	under	scrutiny	is	non-continuous.	The	Random	Forest	can	treat	
such	systems	more	efficiently	using	less	variables,	whereas	SVM	needs	
higher	dimensional	spaces	to	build	hyper-plane	separating	two	classes.	We	
have	observed	such	effects	in	other	systems,	for	example	in	our	earlier	
study	of	the	recognition	of	musical	instruments,	(Kursa	et	al.	2009).		The	
other	differences	are	less	important,	since	they	involve	variables	with	
marginal	relevance.			
>>	 	
	



Item	7.	Paja	et	al.	should	also	be	aware	that	some	of	the	co-authors	of	the	Lucas	et	al	
paper	were	co-authors	on	a	related	paper	that	computed	sensitivity	information	using	
random	forest	feature	scores	(doi:10.1002/2014JD022507).	 
	
Answer	
We	would	like	to	thank	the	referee	for	this	information.	We	were	not	aware	of	
this	article.	Indeed	Boyle	et	al.	use	Random	Forest	for	estimation	of	the	
importance	of	variables,	and	although	the	approach	used	in	their	paper	is	far	
simpler,	but	it	shows,	that	Random	Forest	is	a	useful	tool	for	analysis	of	climate	
simulations	and	in	particular	for	finding	the	importance	of	parameters.		We	
believe	that	the	procedure	applied	in	our	paper	could	be	used	for	analysis	of	this	
data	as	well	and	return	a	little	bit	more	information	–	namely	the	criterion	
separating	truly	informative	variables	from	the	non-informative	ones.	We	have	
included	reference	to	the	article	in	the	description	of	methods,	at	the	end	of	the	
following	paragraph:	
	
>>	
We	have	used	a	different	classification	algorithm,	namely	the	Random	
Forest	(Breiman,	2001)	and	instead	of	the	sensitivity	analysis	we	have	applied	
the	all-relevant	feature	selection	algorithm	Boruta		(Kursa	et	al.,	2010).	All	
computations	were	performed	in	R	environment	for	statistical	modelling	
(R	Development	Core	Team,	2008),	using	the	randomForest	package	for	
classification	(Liaw	and	Wiener,	2002)	and	the	Boruta	package	for	feature	
selection.	(Kursa	and	Rudnicki,	2010).		Interestingly,	some	of	the	authors	of	
Lucas	et	al.	have	recently	used	Random	Forest	in	their	analysis	of	the	
results	of	the	CAM5	model	applied	for	study	of		Madden	Julian	Oscillation.		
It	was	applied	to	analyse	the	influence	of	the	model	parameters	on	selected	
diagnostic	variables.		
>>	
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Abstract 16 

The climate models are extremely complex pieces of software. They reflect the best 17 

knowledge on the physical components of the climate, nevertheless, they contain several 18 

parameters, which are too weakly constrained by observations, and can potentially lead to a 19 

crash of simulation. Recently a study by Lucas et al. has shown that machine learning 20 

methods can be used for predicting which combinations of parameters can lead to the crash of 21 

simulation, and hence which processes described by these parameters need refined analyses. 22 

In the current study we re-analyse the dataset used in this research using different 23 

methodology. We confirm the main conclusion of the original study concerning the suitability 24 

of machine learning for the prediction of crashes. We show that only three of the eight 25 

parameters indicated in the original study as relevant for prediction of the crash are indeed 26 

strongly relevant, three other are relevant but redundant, and two are not relevant at all. We 27 

also show that the variance due to the split of data between training and validation sets has 28 
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 2 

a large influence both on the accuracy of predictions and relative importance of variables, 1 

hence only cross-validated approach can deliver a robust prediction of performance and 2 

relevance of variables.  3 

1 Introduction 4 

The development of realistic models of climate is one of the most important areas of research 5 

due to the dangers posed by global warming. It is by no means a trivial task since it involves 6 

the parameterisation of many processes that are not directly solved within the model. It has 7 

been shown by (Lucas et al., 2013) that certain combinations of these parameters, lead to 8 

failure of a model, despite each individual parameter having a reasonable value.  Authors of 9 

this study performed 540 simulations with randomly varied combinations of 18 parameters of 10 

the Parallel Ocean Program (POP2) (Smith et al., 2010) module in the Community Climate 11 

System Model Version 4 (CCSM4) (UCAR, 2010). About 10 percent of these simulations 12 

crashed due to numerical instabilities.  Then they have applied machine learning methods to 13 

attribute failures to the parameters of the model. To this end they had used the support vector 14 

machine (SVM) (Vapnik, 1995) classification to quantify and predict the probability of failure 15 

as a function of the values of 18 from POP2 parameters. The causes of the simulation failures 16 

were determined through a global sensitivity analysis. Combinations of 8 parameters related 17 

to ocean mixing and viscosity from three different POP2 parameterizations were then 18 

determined as the major sources of the failures. These 8 parameters were indicated as targets 19 

for more detailed research.  20 

These results are somewhat disappointing, since the number of parameters is still rather high. 21 

Hence we decided to check whether more elaborate method for analysis could decrease this 22 

number further. We have observed potential weak points of the analysis performed by Lucas 23 

and co-workers, namely, they have not fully taken into account that the apparent importance 24 

of a variable for classification may be in fact the result of a spurious fluctuation. The problem 25 

is most acute when a sample used for machine learning algorithm is small. In such a case 26 

random fluctuation may introduce spurious correlations within data, which can be utilized by 27 

the classification algorithm for model building. The appropriate procedure should be applied 28 

to minimize the influence of such random correlations on the final results. 29 

Lucas and co-workers have also analyzed the impact of the decision variable that is used for 30 

the classification on the quality of results. While the models were built as an ensemble of 31 

learners built on the bootstrap samples of the training set, the evaluation of the classification 32 
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 3 

performance was based on a single split of data between training set and test set. This setup 1 

was due to the construction of the study – simulations for the validation set were performed 2 

after the predictions have been made. While this is a very honest method for the verification 3 

of the predictions, however, it precludes the estimation of the statistical uncertainty of the 4 

result. In particular, it is impossible to say whether the observed differences between 5 

classification accuracy observed for different decision functions are significant or do they 6 

arise due to statistical fluctuations. 7 

The current study is devoted to the reanalysis of the data.  It aims at minimizing the influence 8 

of random fluctuations on the final results. Our aim was to establish all variables that truly 9 

contribute to the final result of the simulations, i.e. whether the simulation was finished 10 

successfully or it crashed. To this end we use contrast variables that carry no information on 11 

the decision variable, apply Boruta algorithm for all-relevant feature selection and extensive 12 

Monte Carlo sampling. We also compare the quality of classification for several subsets of 13 

variables used for prediction of simulation result, to perform a parallel check of relevance of 14 

variables. 15 

 16 

2 Methods 17 

Similarly to the original work, we rely on machine learning algorithms to identify parameters 18 

that critically influence the fate of the simulation. The fundamental idea is that when the 19 

classification algorithm can predict result of the simulation, i.e. the successful completion of 20 

simulation or the crash, using only the information on the values of certain combinations of 21 

selected parameters, then these parameters are indeed responsible for the result. In the original 22 

paper the authors performed true prediction and achieved a high degree of accuracy, therefore 23 

showing the true predictive power of this approach.  On the other hand, this setup precludes 24 

estimation of statistical uncertainty for some of their findings. In particular, the discussion of 25 

the prediction accuracy in sections 4.4 and 4.5 is based on a single split of data between 26 

training and test sets and ignores possibility that effects may depend on the particular split.   27 

In the current study we know all results beforehand, thus we are limited to virtual predictions 28 

only. In this approach we split the entire dataset into training and validation sets. We then 29 

build a model using the training set and check its quality by performing virtual prediction on 30 

the validation set and comparing the predicted results with the true ones. One can take 31 

advantage of virtualisation to obtain information about the probability distribution of results. 32 
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 4 

To this end one can perform multiple virtual experiments, with different splits between 1 

training and validation sets, and perform classification experiment on each of these splits. The 2 

results of individual trials will differ in most cases, allowing one to draw conclusions not only 3 

about mean values but also about variance and even shape of probability distribution. Lucas et 4 

al. have used this approach for the sensitivity analysis, utilising ensembles of SVM (Vapnik, 5 

1995) learners for classification. Each member of the ensemble was obtained using different 6 

subsample of the training set. The classifier was then used for prediction of the simulation 7 

result for the validation set.   8 

We have used a different classification algorithm, namely the Random Forest (Breiman, 9 

2001) and instead of the sensitivity analysis we have applied the all-relevant feature selection 10 

algorithm Boruta  (Kursa et al., 2010). All computations were performed in R environment 11 

for statistical modelling (R Development Core Team, 2008), using the randomForest package 12 

for classification (Liaw and Wiener, 2002) and the Boruta package for feature selection. 13 

(Kursa and Rudnicki, 2010).  Interestingly, some of the authors of Lucas et al. have recently 14 

used Random Forest in their analysis of the results of the CAM5 model applied for study of  15 

Madden Julian Oscillation. It was applied to analyse the influence of the model parameters on 16 

selected diagnostic variables.  17 

Random Forest is an ensemble algorithm based on decision trees. To ensure the low 18 

correlation between elementary learners, each tree is grown using a different random 19 

subsample of the original data set. Moreover, each split in the tree is built using only a 20 

random subset of the predictor variables. The number of variables in this subset influences the 21 

balance between bias and variance for the training set. The default value for classification 22 

tasks is a square root of the total number of variables and it is usually a very robust selection. 23 

Random Forest is a robust “of the shelf” algorithm that is easily applicable to various 24 

classification and regression tasks. It has only few control parameters and usually it does not 25 

need fine tuning for the particular problem under scrutiny. In many cases it has a performance 26 

comparable or even better than state of the art classifiers and it rarely fails. A big advantage of 27 

the algorithm is that it estimates both the estimate of the classification error and of the 28 

importance of variables by internal cross-validation. To estimate the latter it measures how 29 

much the accuracy of base learners is decreased when information about variable in question 30 

is removed from the system. 31 
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 5 

The Boruta algorithm for all-relevant feature selection uses the Random Forest importance 1 

measure to infer their relevance. To this end it extends the information system by variables 2 

that are non-informative by design – the so-called contrast variables. It then compares the 3 

apparent importance of the original variables with that of the non-informative ones. It 4 

performs this multiple times using different realizations of the non-informative variables and 5 

performs a statistical test.  The algorithm finds both strongly and weakly relevant variables. 6 

The notions of strong and weak relevance were introduced by (Kohavi and John, 1997) in the 7 

context of the ideal classification algorithm. The features are strongly relevant when 8 

removing them from the description always results in decreased classification accuracy. 9 

Features are weakly relevant, when their removal in some cases may decrease classification 10 

accuracy. For a more detailed discussion of relevance and the Boruta algorithm see (Kohavi 11 

and John, 1997; Rudnicki et al., 2015). Algorithm has been used in different fields, including 12 

bioinformatics, remote sensing, bacteriology and medicine (Aagaard et al., 2012; Ackerman 13 

et al., 2013; Buday et al., 2013; Duro et al., 2012; Herrera and Bazaga, 2013; Leutner et al., 14 

2012; Ma et al., 2014; Menikarachchi et al., 2012; Saulnier et al., 2011; Strempel et al., 2013). 15 

The climate simulations dataset is highly biased towards successful completion of simulation. 16 

Only 46 cases out of 540 are failures. Such unbalanced datasets are often difficult for 17 

classification, because the automatic selection of the majority class results in good, but 18 

useless, classification accuracy. In such a case no information is gained and hence one cannot 19 

perform feature selection. In the first test of the current study this problem was avoided by 20 

application of the following protocol, see Fig 1. Firstly eleven balanced subsamples of 21 

training set were constructed, each subsample consisted of all objects from minority class 22 

(failed simulations) and 1/11th of majority class (successful simulations). In order to check 23 

specificity of the feature selection each dataset was extended by contrast variables. To this 24 

end each original variable was duplicated and its values were randomly permuted between all 25 

objects. In this way a set of shadow variables that were non-informative by design was added 26 

to the original variables. Then the feature selection procedure was performed on each 27 

subsample with the help of the all-relevant feature selection algorithm, implemented in 28 

Boruta function of the Boruta package. The procedure was repeated 60 times.  Altogether all 29 

relevant feature selection was performed 660 times. The number of times when the artificially 30 

constructed shadow variables were selected as important gives an estimate of the expected 31 

level of false discovery. The variables that were selected as important significantly more often 32 

than random were examined further, using different test.   33 

Witold Rudnicki� 2.12.15 12:55

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 2.12.15 12:55

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 2.12.15 15:46

Witold Rudnicki� 2.12.15 15:46

Witold Rudnicki� 3.12.15 21:24
Formatted: Font:Italic

Witold Rudnicki� 2.12.15 12:58

Witold Rudnicki� 3.12.15 08:59

Witold Rudnicki� 3.12.15 21:24
Formatted: Font:Italic

Witold Rudnicki� 2.12.15 15:43

Witold Rudnicki� 2.12.15 15:45

Witold Rudnicki� 2.12.15 15:44

Deleted: Algorithm 

Deleted: Features 

Deleted: constructing ten

Deleted: and performing feature selection on each 
subsample. E

Deleted: Procedure 

Deleted: In order to check specificity of the 
feature selection each dataset was extended by 
contrast variables. Each original variable was 
duplicated and it’s values were randomly permuted 
between all objects. Hence a set of non-informative 
by design shadow variables was added to original 
variables. 

Deleted:  

Deleted:  

Deleted: ,



 6 

The second test probing the importance of variables was performed by analysing the influence 1 

of variables used for model building on the prediction quality. The first experiment revealed 2 

four variables that were classified as important by Boruta in all, or nearly all, of 660 trials. 3 

These variables were considered to form a core variable set, and the model built using these 4 

variables was used as a reference. We examined whether removing one of the core variables 5 

and whether adding another variable respectively decreases or increases the classification 6 

quality measured by AUC. The extension of the core test was examined for three variables 7 

that were classified in the first test as important significantly more often than the randomised 8 

variables. 9 

The test was performed similarly to the one reported in the original study, see Figure 2. The 10 

data set was randomly split into a training set containing 360 objects and a validation set 11 

containing 180 objects. The split was performed separately for the minority and majority 12 

class, so the number of minority class objects in each training set was 32 and in the validation 13 

set it was 14. The randomForest function from the identically named R package was used to 14 

perform classification and error estimate. The procedure was repeated 30 times and results of 15 

30 repetitions were analysed.  16 

The number of trees in the forest (parameter ntree both in randomForest and in Boruta 17 

functions) was set to 5000 both for feature selection with Boruta and classification with 18 

randomForest. In both cases the number of variables examined for each split was equal to the 19 

square root of the total number of variables.  In our experience these settings are fairly robust, 20 

we have examined them internally over multiple datasets (Rudnicki et al., 2015). Moreover, 21 

we have checked whether they influence results in the initial trials. The number of trees used 22 

was 10 times higher than default, to assure that importance estimate in Random Forest 23 

converge to their asymptotic values, the number of trees for classification was the same for 24 

consistency.  25 

 26 

3 Results and Discussion 27 

The summary of the results of the study is presented in the Table 1. The V1 and V2 variables 28 

were deemed important in all 660 cases. Variables V13 and V14 were deemed important in 29 

nearly all cases — 593 and 623 cases, respectively. All these variables were also indicated as 30 

most important by Lucas et al.  However, the results do not agree so well for other variables. 31 

Lucas et al. indicated variables V4, V5, V16 and V17 as important but their influence on the 32 
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 7 

final result was much weaker than that of the first group. In the current study the variables V4 1 

and V16 were deemed important by Boruta for 44 and 66 subsamples, respectively. In both 2 

cases the number is significantly higher than the average for the random variables, which was 3 

obtained as 25±9. On the other hand variables V5 and V17 were deemed important for 19 and 4 

17 subsamples respectively, and these numbers are lower than the average for random 5 

variables. Moreover, variable V9, which was not indicated as important by Lucas et al., was 6 

deemed important for 62 subsamples. 7 

Hence the first experiment confirmed the importance of variables V1 and V2, has shown that 8 

importance of V13 and V14 is nearly universal, it also confirmed the weak importance of 9 

variables V4 and V16. On the other hand the importance of variables V5 and V17 was not 10 

confirmed with our method, instead variable V9 was found to be weakly important.  The 11 

example result of the Boruta run for an interesting sample is presented in Figure 3.  In this 12 

sample the importance was confirmed for variables V9 and V16, whereas variable V13 was 13 

deemed irrelevant. The importance of V4 was higher than that of highest random variable, but 14 

only barely so, and hence the final decision of Boruta was “tentative”. One should note, that 15 

the importance returned by Boruta is the averaged importance obtained from the underlying 16 

Random Forest algorithm. It is not directly interpretable in terms of the fraction of variance 17 

explained by given variable.   18 

One should note, that Boruta is an all-relevant feature selection algorithm that aims at finding 19 

both strongly and weakly relevant variables, as defined by Kohavi and John. The second test 20 

aimed at discerning between strongly and weakly relevant variables. In the case of V1, V2 the 21 

removal of the variable from the core dataset resulted in a dramatic drop of AUC, confirming 22 

that these variables are truly informative, see Table 1 and Figure 2. In the case of V14 the 23 

difference in AUC –	 referenced	 further	 as	 Δ(AUC)	 –	 was smaller, but still statistically 24 

significant, whereas for the V13 the Δ(AUC) was much smaller than the standard deviation. 25 

Similarly, adding either of the three remaining variables, namely V4, V9 and V16, to the core 26 

set, lead to an increase of the AUC by insignificant amount, see Table 1 and Figure 4.  27 

Another auxiliary metric that can be used to evaluate the relevance of variables is the number 28 

of samples in which the AUC for the model containing the variable is higher than that for the 29 

model built without that variable.  The results of this metric are consistent with results for the 30 

Δ(AUC) – it is 30 for both V1 and V2 and 26 for V14 and these are the only results that are 31 

significantly different from random ones. Therefore one can conclude, that only three 32 
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 8 

variables, namely V1, V2 and V14 are strongly relevant, whereas the remaining variables are 1 

weakly relevant. 2 

One should note that the results of the second test were highly variable and largely dependent 3 

on the split of data between test and validation sets. It is illustrated in Figure 5 and examples 4 

of the results from several samples are given in Table 2. The highest AUC obtained in the 5 

experiment was 0.990 for model built using core variables and V16 in sample #12. In the 6 

same sample the AUC for model built from core-V2 was 0.888. On the other hand for sample 7 

#1 the highest AUC was obtained for the model built on core+V9 and it was 0.879. Also the 8 

relative importance of variables depends strongly on the test sample. For example adding 9 

variable V4 to the core set can improve AUC by as much as 0.032 (sample #22) or decrease it 10 

by 0.006 (sample #6). Similarly for V16 AUC can decrease by 0.016 (sample #6) or increase 11 

by 0.016 (sample #22). Most interestingly removing variable V13, which was deemed 12 

relevant by Boruta in nearly 90% of samples, can either decrease the AUC by 0.011 (sample 13 

#6) or increase it by 0.030 (sample #22). This results show that one cannot rely on a single 14 

split between the training set and test set for the estimate of influence of parameters, and that 15 

only the average over sufficiently large number of alternative splits can give robust estimates.  16 

The average of the cross-validated AUC obtained for three strongly important variables, 17 

namely V1, V2 and V13, was 0.924.  The highest average AUC was obtained for model built 18 

using five variables, namely {V1, V2, V9, V13, V14}, nevertheless the value AUC=0.931 19 

was not significantly higher than the value obtained for simpler model built using only three 20 

variables. The small differences in AUC arise due to small improvements for assigning the 21 

probability of failure of the simulation. Such improvement results in small shift in the ranking 22 

from least probable to most probable to fail, without actually improving the error rate at the 23 

cost of including two more variables in the model.  24 

A single run of the Boruta algorithm in the first test took 2 minutes on a server equipped with 25 

Intel Xeon E5620@2.4GHz CPU. The entire protocol took less than 24 hours of single CPU 26 

core. The second test is far less computationally demanding. A single run of the randomForest 27 

function takes less than 20 seconds on the same CPU, therefore, computations for the entire 28 

protocol take less than 10 minutes.  This effort is negligible in comparison with the time 29 

required to run 540 simulations of the climate model itself.  30 

The results of the study are mostly in good agreement with the results of Lucas et al., 31 

however, importance of the variables is not identical. The most important difference is the 32 

Witold Rudnicki� 2.12.15 16:05

Witold Rudnicki� 2.12.15 16:07

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Unknown

Deleted: 3

Deleted: of 

Deleted: 



 9 

importance of the variable V13 in both studies. This variable is more important than V14 in 1 

the SVM-based model by Lucas et al., whereas our analysis deems it relevant but redundant. 2 

However, one should note that in the first test V13 was deemed relevant in nearly 90% of 3 

cases, only slightly less than in the case of V14. Only the second test revealed that V13 4 

contains mostly redundant information and on average it does not improve quality of Random 5 

Forest predictions. The difference is most likely due to the underlying classifier used in each 6 

approach. The SVM is essentially a linear classifier, which can be applied to nonlinear 7 

problems using some nonlinear, continuous kernel transformation. On the other hand the 8 

Random Forest is based on nonlinear and discrete decision trees. Figure 2 in the Lucas et al. 9 

suggests that the decision space of the system under scrutiny is non-continuous. The Random 10 

Forest can treat such systems more efficiently using less variables, whereas SVM needs 11 

higher dimensional spaces to build hyper-plane separating two classes. We have observed 12 

such effects in other systems, for example in our earlier study of the recognition of musical 13 

instruments, (Kursa et al. 2009).  The other differences are less important, since they involve 14 

variables with marginal relevance.   15 

 16 

Conclusions 17 

Our reanalysis of the results of 540 simulations is in general qualitative agreement with the 18 

results of Lucas et al. The results of the simulation can be predicted with fairly good accuracy 19 

using the machine learning approach, and the two different methods give very close results. 20 

The cross-validated AUC reported by Lucas et al. by ensemble of SVM classifiers was 0.93. 21 

In the current study the average of the cross-validated AUC obtained for three strongly 22 

important variables, was 0.924.  23 

We have shown by cross-validation that the AUC reported for the prediction experiment 24 

performed by Lucas et al. falls within the range of values that can be expected in such a 25 

prediction, however, one should not assign any weight to the particular value obtained. If the 26 

split between the training set and test set was set differently the resulting AUC for prediction 27 

could be any number between 0.88 and 0.99.   28 

The three most important conclusions for the climate modelling community are following. 29 

Firstly, the efforts on improving the numerical stability of simulations should be concentrated 30 

on 3 parameters of the CCSM4 parallel ocean model, namely vconst_corr, vconst_2, and 31 

bckgrnd_vdc1, that were earlier reported as most important by Lucas et al. The remaining 32 
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0 

parameters indicated as important in that study are either redundant or not relevant. Secondly 1 

– the machine learning methods in general, and all-relevant feature selection in particular are 2 

useful tools for analysis of influence of simulation parameters on the final outcome. Finally, 3 

application of machine learning should involve cross-validation, and all important modelling 4 

steps should be included in the cross-validation loop.  5 

Author contributions. W. Paja performed most computations and drafted the first version of 6 
the manuscript, M. Wrzesien and R. Niemiec performed computations and contributed to the 7 
writing. W. R. Rudnicki designed the experiments, and wrote the manuscript. 8 

 9 

10 

Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, 12 pt, Not Italic, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, 12 pt, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, 12 pt, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: Font:(Default) Times New
Roman, 12 pt, English (UK)
Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)



 1

1 

 1 

References 2 

Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T.-A., Coarfa, C., Raza, S., Rosenbaum, 3 
S., den Veyver, I., Milosavljevic, A., Gevers, D., Huttenhower, C., Petrosino, J. and 4 
Versalovic, J.: A Metagenomic Approach to Characterization of the Vaginal Microbiome 5 
Signature in Pregnancy, PLoS One, 7(6), e36466, doi:10.1371/journal.pone.0036466, 2012. 6 

Ackerman, M. E., Crispin, M., Yu, X., Baruah, K., Boesch, A. W., Harvey, D. J., Dugast, A. 7 
S., Heizen, E. L., Ercan, A., Choi, I., Streeck, H., Nigrovic, P. A., Bailey-Kellogg, C., 8 
Scanlan, C. and Alter, G.: Natural variation in Fc glycosylation of HIV-specific antibodies 9 
impacts antiviral activity, J. Clin. Invest., 123(5), 2183–2192, 2013. 10 

Boyle, J. S., Klein, S. A., Lucas, D. D., Ma, H. Y., Tannahill, J., & Xie, S. The parametric 11 
sensitivity of CAM5's MJO. J. Geophys. Res. Atmos. 120(4), 1424-1444, 2015. 12 

Breiman, L.: Random forests, Mach. Learn., 5–32, doi:10.1023/A:1010933404324, 2001. 13 

Buday, B., Pach, F. P., Literati-Nagy, B., Vitai, M., Vecsei, Z. and Koranyi, L.: Serum 14 
osteocalcin is associated with improved metabolic state via adiponectin in females versus 15 
testosterone in males. Gender specific nature of the bone-energy homeostasis axis., Bone, 16 
57(1), 98–104, doi:10.1016/j.bone.2013.07.018, 2013. 17 

Duro, D. C., Franklin, S. E. and Dubé, M. G.: Multi-scale object-based image analysis and 18 
feature selection of multi-sensor earth observation imagery using random forests, Int. J. 19 
Remote Sens., 33(14), 4502–4526, 2012. 20 

Herrera, C. M. and Bazaga, P.: Epigenetic correlates of plant phenotypic plasticity: DNA 21 
methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium 22 
(Aquifoliaceae) trees, Bot. J. Linn. Soc., 171(3), 441–452, 2013. 23 

Kohavi, R. and John, G. H.: Wrappers for feature subset selection, Artif. Intell., 97(1-2), 273–24 
324, doi:http://dx.doi.org/10.1016/S0004-3702(97)00043-X, 1997. 25 

Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., & Kubik-Komar, A. Musical 26 
instruments in random forest. In Foundations of Intelligent Systems, LNCS 5722, 281-290. 27 
Springer Berlin Heidelberg, 2009. 28 

Kursa, M. B., Jankowski, A. and Rudnicki, W. R.: Boruta - A system for feature selection, 29 
Fundam. Informaticae, 101(4), 271–285, 2010. 30 

Kursa, M. B. and Rudnicki, W. R.: Feature Selection with the Boruta Package, J. Stat. Softw., 31 
36(11), 1–13 [online] Available from: http://www.jstatsoft.org/v36/i11/paper, 2010. 32 

Leutner, B. F., Reineking, B., Müller, J., Bachmann, M., Beierkuhnlein, C., Dech, S. and 33 
Wegmann, M.: Modelling forest α-diversity and floristic composition - on the added value of 34 
LiDAR plus hyperspectral remote sensing, Remote Sens., 4(9), 2818–2845, 2012. 35 

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 3.12.15 16:19
Formatted: Normal, No widow/orphan
control, Don't adjust space between Latin
and Asian text, Don't adjust space
between Asian text and numbers



 1

2 

Liaw, A. and Wiener, M.: Classification and Regression by randomForest. R News 2(3), 18—1 
22, 2002.  2 

Lucas, D. D., Klein, R., Tannahill, J., Ivanova, D., Brandon, S., Domyancic, D. and Zhang, 3 
Y.: Failure analysis of parameter-induced simulation crashes in climate models, Geosci. 4 
Model Dev., 6(4), 1157–1171 [online] Available from: http://www.geosci-model-5 
dev.net/6/1157/2013/\npapers2://publication/doi/10.5194/gmd-6-1157-2013, 2013. 6 

Ma, J., Prince, A. L., Bader, D., Hu, M., Ganu, R., Baquero, K., Blundell, P., Alan Harris, R., 7 
Frias, A. E., Grove, K. L. and Aagaard, K. M.: High-fat maternal diet during pregnancy 8 
persistently alters the offspring microbiome in a primate model., Nat. Commun., 5(May), 9 
3889 [online] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24846660, 2014. 10 

Menikarachchi, L. C., Cawley, S., Hill, D. W., Hall, L. M., Hall, L., Lai, S., Wilder, J. and 11 
Grant, D. F.: MolFind: A Software Package Enabling HPLC/MS-Based Identification of 12 
Unknown Chemical Structures, Anal. Chem., 84(21), 9388–9394, doi:10.1021/ac302048x, 13 
2012. 14 

R Development Core Team:  R: A language and environment for   statistical computing. R 15 
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 16 
http://www.R-project.org, 2008. 17 

Rudnicki, W. R., Wrzesień, M. and Paja, W.: All Relevant Feature Selection Methods and 18 
Applications, in Feature Selection for Data and Pattern Recognition, edited by U. Stańczyk 19 
and C. J. Lakhmi, pp. 11–28, Springer-Verlag Berlin Heidelberg, Berlin., 2015. 20 

Saulnier, D. M., Riehle, K., Mistretta, T.-A., Diaz, M.-A., Mandal, D., Raza, S., Weidler, E. 21 
M., Qin, X., Coarfa, C., Milosavljevic, A., Petrosino, J. F., Highlander, S., Gibbs, R., Lynch, 22 
S. V, Shulman, R. J. and Versalovic, J.: Gastrointestinal microbiome signatures of pediatric 23 
patients with irritable bowel syndrome., Gastroenterology, 141(5), 1782–91, 24 
doi:10.1053/j.gastro.2011.06.072, 2011. 25 

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, 26 
C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., 27 
Maltrud, M., Norton, N., Peacock, S., Vertenstein, M. and Yeager, S.: The Parallel Ocean 28 
Program (POP) reference manual: Ocean component of the Community Climate System 29 
Model (CCSM), LAUR-10th–01 ed., Los Alamos National Laboratory. [online] Available 30 
from: http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-000-954, 2010. 31 

Strempel, S., Nendza, M., Scheringer, M. and Hungerbühler, K.: Using conditional inference 32 
trees and random forests to predict the bioaccumulation potential of organic chemicals, 33 
Environ. Toxicol. Chem., 32(5), 1187–1195, 2013. 34 

UCAR: The Community Climate System Model Version 4, [online] Available from: 35 
http://www.cesm.ucar.edu/models/ccsm4.0/ (Accessed 31 March 2015), 2010. 36 

Vapnik, V. N.: The Nature of Statistical Learning Theory., 1995. 37 



 1

3 

 1 

Table 1. Summary of results.  2 

The variables indicated as important by Lucas et al. are marked with *, the variables that were 3 

indicated as important in the first test are highlighted in bold face. Δ(AUC) is given in 0.0001 4 

units.  5 

Three values are reported, the number of times the variable was deemed relevant, mean 6 

difference in AUC due to adding variable to set of variables and number of times AUC was 7 

improved by adding variable to set of variables. The first value is reported for all variables, 8 

two other are reported only for these variables that were deemed relevant significantly more 9 

often than randomised variables. The unit for Δ(AUC) is 0.0001. 10 

 11 

Variable V1* V2* V3 V4* V5* V6 Reference 

# relevant 660 660 0 44 19 33 25±9 

Mean Δ(AUC) 905 ± 80 749 ± 90 — 20 ± 70 — —  

# improved 30 30 — 16 — —  

Variable V7 V8 V9 V10 V11 V12 Reference 

# relevant 2 17 62 11 3 5 25±9 

Mean Δ(AUC) — — 60±70 — — —  

# improved — — 22 — — —  

Variable V13* V14* V15 V16* V17* V18 Reference 

# relevant 593 623 26 67 19 2 25±9 

Mean Δ(AUC) 11 ± 60 180 ± 80 — 6 ± 60 — —  

# improved 16 26 — 14 — —  

12 
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 1 

Table 2. Results of experiment 2.  2 

Average AUC obtained for all tested models, as well as examples for five interesting cases. 3 

#1 – the sample with lowest AUC from core model, #12 the sample with highest AUC 4 

obtained in the study, samples #6, #22 and #30 – samples with core model close to the mean 5 

that show variance of AUC for other models. 6 

 Sample 

Variable set #1 #6 #22 #30 #12 Average 

core 0.865 0.921 0.922 0.928 0.983 0.925 ± 0.006 

core+V4 0.879 0.915 0.954 0.930 0.982 0.927 ± 0.007 

core+V9 0.866 0.923 0.945 0.919 0.989 0.931 ± 0.006 

core+V16 0.848 0.906 0.938 0.927 0.990 0.926 ± 0.007 

core-V14 0.823 0.907 0.926 0.919 0.967 0.907 ± 0.007 

core-V13 0.877 0.910 0.952 0.921 0.968 0.924 ± 0.006 

core-V1 0.745 0.821 0.806 0.823 0.910 0.835 ± 0.007 

core-V2 0.808 0.808 0.825 0.840 0.888 0.850 ± 0.009 

 7 
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Figure 1. Protocol of the first test.  2 

 3 
4 

 

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 2.12.15 13:02
Formatted: Left



 1

6 

Figure 2. Protocol of the second test. 1 
 2 

3 
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 2 

3 
Figure 3. Summary of results of the Boruta run. Importance of the variables is shown. The 4 

variables are sorted by increasing importance. The variables coloured in green are these, 5 

which were classified as relevant. Variables coloured in red are these, which are irrelevant. 6 

The blue boxes correspond to respectively minimal (sMin), median (sMed) and maximal 7 

(sMax) importance achieved in each run by contrast variables. One can observe wide range of 8 

maximal importance values that can be achieved by random variables. In particular in many 9 

iterations it can be higher than importance of truly relevant variables. 10 
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Figure 4. AUC obtained in simulations study grouped by subset of variables used for model 2 

building. The labels are coded in the following way C – core set of variables {V1, V2, V13, 3 

V14}; C+X – the core set was extended by adding variable VX, where X is one of {4,9,16}; 4 

C-X – the variable VX was removed from the core set, with X = {1,2,13,14}. 5 

6 

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Witold Rudnicki� 2.12.15 16:04

Witold Rudnicki� 3.12.15 21:24
Formatted: English (UK)

Deleted: 2



 1

9 

 1 

 2 

Figure 5. AUC obtained in simulations study grouped by split between training and validation 3 

set. 4 
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