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Abstract 16 

The climate models are extremely complex pieces of software. They reflect the best 17 

knowledge on the physical components of the climate, nevertheless, they contain several 18 

parameters, which are too weakly constrained by observations, and can potentially lead to a 19 

crash of simulation. Recently a study by Lucas et al. has shown that machine learning 20 

methods can be used for predicting which combinations of parameters can lead to the crash of 21 

simulation, and hence which processes described by these parameters need refined analyses. 22 

In the current study we re-analyse the dataset used in this research using different 23 

methodology. We confirm the main conclusion of the original study concerning the suitability 24 

of machine learning for the prediction of crashes. We show that only three of the eight 25 

parameters indicated in the original study as relevant for prediction of the crash are indeed 26 

strongly relevant, three other are relevant but redundant, and two are not relevant at all. We 27 

also show that the variance due to the split of data between training and validation sets has 28 



 2 

a large influence both on the accuracy of predictions and relative importance of variables, 1 

hence only cross-validated approach can deliver a robust prediction of performance and 2 

relevance of variables.  3 

1 Introduction 4 

The development of realistic models of climate is one of the most important areas of research 5 

due to the dangers posed by global warming. It is by no means a trivial task since it involves 6 

the parameterisation of many processes that are not directly solved within the model. It has 7 

been shown by (Lucas et al., 2013) that certain combinations of these parameters, lead to 8 

failure of a model, despite each individual parameter having a reasonable value.  Authors of 9 

this study performed 540 simulations with randomly varied combinations of 18 parameters of 10 

the Parallel Ocean Program (POP2) (Smith et al., 2010) module in the Community Climate 11 

System Model Version 4 (CCSM4) (UCAR, 2010). About 10 percent of these simulations 12 

crashed due to numerical instabilities.  Then they have applied machine learning methods to 13 

attribute failures to the parameters of the model. To this end they had used the support vector 14 

machine (SVM) (Vapnik, 1995) classification to quantify and predict the probability of failure 15 

as a function of the values of 18 from POP2 parameters. The causes of the simulation failures 16 

were determined through a global sensitivity analysis. Combinations of 8 parameters related 17 

to ocean mixing and viscosity from three different POP2 parameterizations were then 18 

determined as the major sources of the failures. These 8 parameters were indicated as targets 19 

for more detailed research.  20 

These results are somewhat disappointing, since the number of parameters is still rather high. 21 

Hence we decided to check whether more elaborate method for analysis could decrease this 22 

number further. We have observed potential weak points of the analysis performed by Lucas 23 

and co-workers, namely, they have not fully taken into account that the apparent importance 24 

of a variable for classification may be in fact the result of a spurious fluctuation. The problem 25 

is most acute when a sample used for machine learning algorithm is small. In such a case 26 

random fluctuation may introduce spurious correlations within data, which can be utilized by 27 

the classification algorithm for model building. The appropriate procedure should be applied 28 

to minimize the influence of such random correlations on the final results. 29 

Lucas and co-workers have also analyzed the impact of the decision variable that is used for 30 

the classification on the quality of results. While the models were built as an ensemble of 31 

learners built on the bootstrap samples of the training set, the evaluation of the classification 32 
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performance was based on a single split of data between training set and test set. This setup 1 

was due to the construction of the study – simulations for the validation set were performed 2 

after the predictions have been made. While this is a very honest method for the verification 3 

of the predictions, however, it precludes the estimation of the statistical uncertainty of the 4 

result. In particular, it is impossible to say whether the observed differences between 5 

classification accuracy observed for different decision functions are significant or do they 6 

arise due to statistical fluctuations. 7 

The current study is devoted to the reanalysis of the data.  It aims at minimizing the influence 8 

of random fluctuations on the final results. Our aim was to establish all variables that truly 9 

contribute to the final result of the simulations, i.e. whether the simulation was finished 10 

successfully or it crashed. To this end we use contrast variables that carry no information on 11 

the decision variable, apply Boruta algorithm for all-relevant feature selection and extensive 12 

Monte Carlo sampling. We also compare the quality of classification for several subsets of 13 

variables used for prediction of simulation result, to perform a parallel check of relevance of 14 

variables. 15 

 16 

2 Methods 17 

Similarly to the original work, we rely on machine learning algorithms to identify parameters 18 

that critically influence the fate of the simulation. The fundamental idea is that when the 19 

classification algorithm can predict result of the simulation, i.e. the successful completion of 20 

simulation or the crash, using only the information on the values of certain combinations of 21 

selected parameters, then these parameters are indeed responsible for the result. In the original 22 

paper the authors performed true prediction and achieved a high degree of accuracy, therefore 23 

showing the true predictive power of this approach.  On the other hand, this setup precludes 24 

estimation of statistical uncertainty for some of their findings. In particular, the discussion of 25 

the prediction accuracy in sections 4.4 and 4.5 is based on a single split of data between 26 

training and test sets and ignores possibility that effects may depend on the particular split.   27 

In the current study we know all results beforehand, thus we are limited to virtual predictions 28 

only. In this approach we split the entire dataset into training and validation sets. We then 29 

build a model using the training set and check its quality by performing virtual prediction on 30 

the validation set and comparing the predicted results with the true ones. One can take 31 

advantage of virtualisation to obtain information about the probability distribution of results. 32 
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To this end one can perform multiple virtual experiments, with different splits between 1 

training and validation sets, and perform classification experiment on each of these splits. The 2 

results of individual trials will differ in most cases, allowing one to draw conclusions not only 3 

about mean values but also about variance and even shape of probability distribution. Lucas et 4 

al. have used this approach for the sensitivity analysis, utilising ensembles of SVM (Vapnik, 5 

1995) learners for classification. Each member of the ensemble was obtained using different 6 

subsample of the training set. The classifier was then used for prediction of the simulation 7 

result for the validation set.   8 

We have used a different classification algorithm, namely the Random Forest (Breiman, 9 

2001) and instead of the sensitivity analysis we have applied the all-relevant feature selection 10 

algorithm Boruta  (Kursa et al., 2010). All computations were performed in R environment 11 

for statistical modelling (R Development Core Team, 2008), using the randomForest package 12 

for classification (Liaw and Wiener, 2002) and the Boruta package for feature selection. 13 

(Kursa and Rudnicki, 2010).  Interestingly, some of the authors of Lucas et al. have recently 14 

used Random Forest in their analysis of the results of the CAM5 model applied for study of  15 

Madden Julian Oscillation. It was applied to analyse the influence of the model parameters on 16 

selected diagnostic variables.  17 

Random Forest is an ensemble algorithm based on decision trees. To ensure the low 18 

correlation between elementary learners, each tree is grown using a different random 19 

subsample of the original data set. Moreover, each split in the tree is built using only a 20 

random subset of the predictor variables. The number of variables in this subset influences the 21 

balance between bias and variance for the training set. The default value for classification 22 

tasks is a square root of the total number of variables and it is usually a very robust selection. 23 

Random Forest is a robust “of the shelf” algorithm that is easily applicable to various 24 

classification and regression tasks. It has only few control parameters and usually it does not 25 

need fine tuning for the particular problem under scrutiny. In many cases it has a performance 26 

comparable or even better than state of the art classifiers and it rarely fails. A big advantage of 27 

the algorithm is that it estimates both the estimate of the classification error and of the 28 

importance of variables by internal cross-validation. To estimate the latter it measures how 29 

much the accuracy of base learners is decreased when information about variable in question 30 

is removed from the system. 31 
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The Boruta algorithm for all-relevant feature selection uses the Random Forest importance 1 

measure to infer their relevance. To this end it extends the information system by variables 2 

that are non-informative by design – the so-called contrast variables. It then compares the 3 

apparent importance of the original variables with that of the non-informative ones. It 4 

performs this multiple times using different realizations of the non-informative variables and 5 

performs a statistical test.  The algorithm finds both strongly and weakly relevant variables. 6 

The notions of strong and weak relevance were introduced by (Kohavi and John, 1997) in the 7 

context of the ideal classification algorithm. The features are strongly relevant when 8 

removing them from the description always results in decreased classification accuracy. 9 

Features are weakly relevant, when their removal in some cases may decrease classification 10 

accuracy. For a more detailed discussion of relevance and the Boruta algorithm see (Kohavi 11 

and John, 1997; Rudnicki et al., 2015). Algorithm has been used in different fields, including 12 

bioinformatics, remote sensing, bacteriology and medicine (Aagaard et al., 2012; Ackerman 13 

et al., 2013; Buday et al., 2013; Duro et al., 2012; Herrera and Bazaga, 2013; Leutner et al., 14 

2012; Ma et al., 2014; Menikarachchi et al., 2012; Saulnier et al., 2011; Strempel et al., 2013). 15 

The climate simulations dataset is highly biased towards successful completion of simulation. 16 

Only 46 cases out of 540 are failures. Such unbalanced datasets are often difficult for 17 

classification, because the automatic selection of the majority class results in good, but 18 

useless, classification accuracy. In such a case no information is gained and hence one cannot 19 

perform feature selection. In the first test of the current study this problem was avoided by 20 

application of the following protocol, see Fig 1. Firstly eleven balanced subsamples of 21 

training set were constructed, each subsample consisted of all objects from minority class 22 

(failed simulations) and 1/11th of majority class (successful simulations). In order to check 23 

specificity of the feature selection each dataset was extended by contrast variables. To this 24 

end each original variable was duplicated and its values were randomly permuted between all 25 

objects. In this way a set of shadow variables that were non-informative by design was added 26 

to the original variables. Then the feature selection procedure was performed on each 27 

subsample with the help of the all-relevant feature selection algorithm, implemented in 28 

Boruta function of the Boruta package. The procedure was repeated 60 times.  Altogether all 29 

relevant feature selection was performed 660 times. The number of times when the artificially 30 

constructed shadow variables were selected as important gives an estimate of the expected 31 

level of false discovery. The variables that were selected as important significantly more often 32 

than random were examined further, using different test.   33 
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The second test probing the importance of variables was performed by analysing the influence 1 

of variables used for model building on the prediction quality. The first experiment revealed 2 

four variables that were classified as important by Boruta in all, or nearly all, of 660 trials. 3 

These variables were considered to form a core variable set, and the model built using these 4 

variables was used as a reference. We examined whether removing one of the core variables 5 

and whether adding another variable respectively decreases or increases the classification 6 

quality measured by AUC. The extension of the core test was examined for three variables 7 

that were classified in the first test as important significantly more often than the randomised 8 

variables. 9 

The test was performed similarly to the one reported in the original study, see Figure 2. The 10 

data set was randomly split into a training set containing 360 objects and a validation set 11 

containing 180 objects. The split was performed separately for the minority and majority 12 

class, so the number of minority class objects in each training set was 32 and in the validation 13 

set it was 14. The randomForest function from the identically named R package was used to 14 

perform classification and error estimate. The procedure was repeated 30 times and results of 15 

30 repetitions were analysed.  16 

The number of trees in the forest (parameter ntree both in randomForest and in Boruta 17 

functions) was set to 5000 both for feature selection with Boruta and classification with 18 

randomForest. In both cases the number of variables examined for each split was equal to the 19 

square root of the total number of variables.  In our experience these settings are fairly robust, 20 

we have examined them internally over multiple datasets (Rudnicki et al., 2015). Moreover, 21 

we have checked whether they influence results in the initial trials. The number of trees used 22 

was 10 times higher than default, to assure that importance estimate in Random Forest 23 

converge to their asymptotic values, the number of trees for classification was the same for 24 

consistency.  25 

 26 

3 Results and Discussion 27 

The summary of the results of the study is presented in the Table 1. The V1 and V2 variables 28 

were deemed important in all 660 cases. Variables V13 and V14 were deemed important in 29 

nearly all cases — 593 and 623 cases, respectively. All these variables were also indicated as 30 

most important by Lucas et al.  However, the results do not agree so well for other variables. 31 

Lucas et al. indicated variables V4, V5, V16 and V17 as important but their influence on the 32 
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final result was much weaker than that of the first group. In the current study the variables V4 1 

and V16 were deemed important by Boruta for 44 and 66 subsamples, respectively. In both 2 

cases the number is significantly higher than the average for the random variables, which was 3 

obtained as 25±9. On the other hand variables V5 and V17 were deemed important for 19 and 4 

17 subsamples respectively, and these numbers are lower than the average for random 5 

variables. Moreover, variable V9, which was not indicated as important by Lucas et al., was 6 

deemed important for 62 subsamples. 7 

Hence the first experiment confirmed the importance of variables V1 and V2, has shown that 8 

importance of V13 and V14 is nearly universal, it also confirmed the weak importance of 9 

variables V4 and V16. On the other hand the importance of variables V5 and V17 was not 10 

confirmed with our method, instead variable V9 was found to be weakly important.  The 11 

example result of the Boruta run for an interesting sample is presented in Figure 3.  In this 12 

sample the importance was confirmed for variables V9 and V16, whereas variable V13 was 13 

deemed irrelevant. The importance of V4 was higher than that of highest random variable, but 14 

only barely so, and hence the final decision of Boruta was “tentative”. One should note, that 15 

the importance returned by Boruta is the averaged importance obtained from the underlying 16 

Random Forest algorithm. It is not directly interpretable in terms of the fraction of variance 17 

explained by given variable.   18 

One should note, that Boruta is an all-relevant feature selection algorithm that aims at finding 19 

both strongly and weakly relevant variables, as defined by Kohavi and John. The second test 20 

aimed at discerning between strongly and weakly relevant variables. In the case of V1, V2 the 21 

removal of the variable from the core dataset resulted in a dramatic drop of AUC, confirming 22 

that these variables are truly informative, see Table 1 and Figure 2. In the case of V14 the 23 

difference in AUC –	 referenced	 further	 as	 Δ(AUC)	 –	 was smaller, but still statistically 24 

significant, whereas for the V13 the Δ(AUC) was much smaller than the standard deviation. 25 

Similarly, adding either of the three remaining variables, namely V4, V9 and V16, to the core 26 

set, lead to an increase of the AUC by insignificant amount, see Table 1 and Figure 4.  27 

Another auxiliary metric that can be used to evaluate the relevance of variables is the number 28 

of samples in which the AUC for the model containing the variable is higher than that for the 29 

model built without that variable.  The results of this metric are consistent with results for the 30 

Δ(AUC) – it is 30 for both V1 and V2 and 26 for V14 and these are the only results that are 31 

significantly different from random ones. Therefore one can conclude, that only three 32 
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variables, namely V1, V2 and V14 are strongly relevant, whereas the remaining variables are 1 

weakly relevant. 2 

One should note that the results of the second test were highly variable and largely dependent 3 

on the split of data between test and validation sets. It is illustrated in Figure 5 and examples 4 

of the results from several samples are given in Table 2. The highest AUC obtained in the 5 

experiment was 0.990 for model built using core variables and V16 in sample #12. In the 6 

same sample the AUC for model built from core-V2 was 0.888. On the other hand for sample 7 

#1 the highest AUC was obtained for the model built on core+V9 and it was 0.879. Also the 8 

relative importance of variables depends strongly on the test sample. For example adding 9 

variable V4 to the core set can improve AUC by as much as 0.032 (sample #22) or decrease it 10 

by 0.006 (sample #6). Similarly for V16 AUC can decrease by 0.016 (sample #6) or increase 11 

by 0.016 (sample #22). Most interestingly removing variable V13, which was deemed 12 

relevant by Boruta in nearly 90% of samples, can either decrease the AUC by 0.011 (sample 13 

#6) or increase it by 0.030 (sample #22). This results show that one cannot rely on a single 14 

split between the training set and test set for the estimate of influence of parameters, and that 15 

only the average over sufficiently large number of alternative splits can give robust estimates.  16 

The average of the cross-validated AUC obtained for three strongly important variables, 17 

namely V1, V2 and V13, was 0.924.  The highest average AUC was obtained for model built 18 

using five variables, namely {V1, V2, V9, V13, V14}, nevertheless the value AUC=0.931 19 

was not significantly higher than the value obtained for simpler model built using only three 20 

variables. The small differences in AUC arise due to small improvements for assigning the 21 

probability of failure of the simulation. Such improvement results in small shift in the ranking 22 

from least probable to most probable to fail, without actually improving the error rate at the 23 

cost of including two more variables in the model.  24 

A single run of the Boruta algorithm in the first test took 2 minutes on a server equipped with 25 

Intel Xeon E5620@2.4GHz CPU. The entire protocol took less than 24 hours of single CPU 26 

core. The second test is far less computationally demanding. A single run of the randomForest 27 

function takes less than 20 seconds on the same CPU, therefore, computations for the entire 28 

protocol take less than 10 minutes.  This effort is negligible in comparison with the time 29 

required to run 540 simulations of the climate model itself.  30 

The results of the study are mostly in good agreement with the results of Lucas et al., 31 

however, importance of the variables is not identical. The most important difference is the 32 
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importance of the variable V13 in both studies. This variable is more important than V14 in 1 

the SVM-based model by Lucas et al., whereas our analysis deems it relevant but redundant. 2 

However, one should note that in the first test V13 was deemed relevant in nearly 90% of 3 

cases, only slightly less than in the case of V14. Only the second test revealed that V13 4 

contains mostly redundant information and on average it does not improve quality of Random 5 

Forest predictions. The difference is most likely due to the underlying classifier used in each 6 

approach. The SVM is essentially a linear classifier, which can be applied to nonlinear 7 

problems using some nonlinear, continuous kernel transformation. On the other hand the 8 

Random Forest is based on nonlinear and discrete decision trees. Figure 2 in the Lucas et al. 9 

suggests that the decision space of the system under scrutiny is non-continuous. The Random 10 

Forest can treat such systems more efficiently using less variables, whereas SVM needs 11 

higher dimensional spaces to build hyper-plane separating two classes. We have observed 12 

such effects in other systems, for example in our earlier study of the recognition of musical 13 

instruments, (Kursa et al. 2009).  The other differences are less important, since they involve 14 

variables with marginal relevance.   15 

 16 

Conclusions 17 

Our reanalysis of the results of 540 simulations is in general qualitative agreement with the 18 

results of Lucas et al. The results of the simulation can be predicted with fairly good accuracy 19 

using the machine learning approach, and the two different methods give very close results. 20 

The cross-validated AUC reported by Lucas et al. by ensemble of SVM classifiers was 0.93. 21 

In the current study the average of the cross-validated AUC obtained for three strongly 22 

important variables, was 0.924.  23 

We have shown by cross-validation that the AUC reported for the prediction experiment 24 

performed by Lucas et al. falls within the range of values that can be expected in such a 25 

prediction, however, one should not assign any weight to the particular value obtained. If the 26 

split between the training set and test set was set differently the resulting AUC for prediction 27 

could be any number between 0.88 and 0.99.   28 

The three most important conclusions for the climate modelling community are following. 29 

Firstly, the efforts on improving the numerical stability of simulations should be concentrated 30 

on 3 parameters of the CCSM4 parallel ocean model, namely vconst_corr, vconst_2, and 31 

bckgrnd_vdc1, that were earlier reported as most important by Lucas et al. The remaining 32 
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0 

parameters indicated as important in that study are either redundant or not relevant. Secondly 1 

– the machine learning methods in general, and all-relevant feature selection in particular are 2 

useful tools for analysis of influence of simulation parameters on the final outcome. Finally, 3 

application of machine learning should involve cross-validation, and all important modelling 4 

steps should be included in the cross-validation loop.  5 
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 1 

Table 1. Summary of results.  2 

The variables indicated as important by Lucas et al. are marked with *, the variables that were 3 

indicated as important in the first test are highlighted in bold face. Δ(AUC) is given in 0.0001 4 

units.  5 

Three values are reported, the number of times the variable was deemed relevant, mean 6 

difference in AUC due to adding variable to set of variables and number of times AUC was 7 

improved by adding variable to set of variables. The first value is reported for all variables, 8 

two other are reported only for these variables that were deemed relevant significantly more 9 

often than randomised variables. The unit for Δ(AUC) is 0.0001. 10 

 11 

Variable V1* V2* V3 V4* V5* V6 Reference 

# relevant 660 660 0 44 19 33 25±9 

Mean Δ(AUC) 905 ± 80 749 ± 90 — 20 ± 70 — —  

# improved 30 30 — 16 — —  

Variable V7 V8 V9 V10 V11 V12 Reference 

# relevant 2 17 62 11 3 5 25±9 

Mean Δ(AUC) — — 60±70 — — —  

# improved — — 22 — — —  

Variable V13* V14* V15 V16* V17* V18 Reference 

# relevant 593 623 26 67 19 2 25±9 

Mean Δ(AUC) 11 ± 60 180 ± 80 — 6 ± 60 — —  

# improved 16 26 — 14 — —  

12 
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Table 2. Results of experiment 2.  2 

Average AUC obtained for all tested models, as well as examples for five interesting cases. 3 

#1 – the sample with lowest AUC from core model, #12 the sample with highest AUC 4 

obtained in the study, samples #6, #22 and #30 – samples with core model close to the mean 5 

that show variance of AUC for other models. 6 

 Sample 

Variable set #1 #6 #22 #30 #12 Average 

core 0.865 0.921 0.922 0.928 0.983 0.925 ± 0.006 

core+V4 0.879 0.915 0.954 0.930 0.982 0.927 ± 0.007 

core+V9 0.866 0.923 0.945 0.919 0.989 0.931 ± 0.006 

core+V16 0.848 0.906 0.938 0.927 0.990 0.926 ± 0.007 

core-V14 0.823 0.907 0.926 0.919 0.967 0.907 ± 0.007 

core-V13 0.877 0.910 0.952 0.921 0.968 0.924 ± 0.006 

core-V1 0.745 0.821 0.806 0.823 0.910 0.835 ± 0.007 

core-V2 0.808 0.808 0.825 0.840 0.888 0.850 ± 0.009 
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Figure 1. Protocol of the first test.  2 
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Figure 2. Protocol of the second test. 1 
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Figure 3. Summary of results of the Boruta run. Importance of the variables is shown. The 4 

variables are sorted by increasing importance. The variables coloured in green are these, 5 

which were classified as relevant. Variables coloured in red are these, which are irrelevant. 6 

The blue boxes correspond to respectively minimal (sMin), median (sMed) and maximal 7 

(sMax) importance achieved in each run by contrast variables. One can observe wide range of 8 

maximal importance values that can be achieved by random variables. In particular in many 9 

iterations it can be higher than importance of truly relevant variables. 10 
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Figure 4. AUC obtained in simulations study grouped by subset of variables used for model 2 

building. The labels are coded in the following way C – core set of variables {V1, V2, V13, 3 

V14}; C+X – the core set was extended by adding variable VX, where X is one of {4,9,16}; 4 

C-X – the variable VX was removed from the core set, with X = {1,2,13,14}. 5 

6 
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Figure 5. AUC obtained in simulations study grouped by split between training and validation 3 

set. 4 
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