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Response to Anonymous Reviewer #1 

 

We thank anonymous referee #1 for their helpful comments on this work. Below, original 

comments are in italics and our responses are in bold. 

 

General comments: 

 

Although the paper is generally well-structured, it does appear to jump around a bit when 

describing the various tests that were carried-out. For example, at the beginning of section 5 

(P5378), it would be helpful to include a list of the types of tests (in addition to Table 3), or at 

least just mention that there are also tests considering temporally varying errors in the prior 

parameters. Another point that I found confusing was whether or not transport (and 

measurement) errors were added to the pseudo-observations, as the impact of these is 

mentioned later in section 5.2 (P5383). 

We have added some text at the beginning of Section 5 to mention that a temporally-

varying bias is considered for some of the tests. We have also added a sentence 

indicating which tests can be found in which subsection of Section 5. We did not add 

random noise to the pseudo observations in most of these tests, but did perform a subset 

of tests with noise added that yielded the same results as the tests with no noise. We have 

added some text to mention this. 

 

Specific comments: 

 

P5370, L20: please change this to: “Agricultural activities such as fertilizer application and 

animal waste management increase the substrate available for nitrification and denitrification 

pathways leading to enhanced…” as by writing that the reactions are enhanced suggests 

increased rates of reaction. 

We have made this change. 

 

P5371, L5-8: suggest that the authors also include reactive nitrogen substrate in this list, as it 

is one of the most important determinants of N2O emissions 

We have made the addition to the list. 

 

P5374, L8: by “loss frequencies” do the authors mean photolysis cross-sections or other, 

please clarify. 

By loss frequencies we mean the loss due to both photolysis and reaction with O(
1
D). We 

have added some text to clarify this. 
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P5375, L23: by enforcing a minimum value of the posterior scaling parameters of zero 

implies that the fluxes cannot change sign in the inversion, i.e., a negative flux cannot become 

positive and vice-versa. Is this what the authors mean? In which case it is not quite correct 

that regions with a prior negative flux (e.g. over the ocean) cannot become more negative, but 

rather that they cannot become sources? 

Correct—we thank the reviewer for catching that. We have updated the text to note that 

the assumption implies that the sign of the a priori N2O flux is correct (i.e. net sinks will 

remain net sinks and vice versa). 

 

P5375, L19: does the size of the state vector apply to the two-year inversion period? Given 

that the number of elements for the stratospheric loss parameters is 192, I would be presume 

so, but it would be helpful to state this here. 

Yes. We have added some text to note that the state vector corresponds to the two-year 

inversion. 

 

P5376, L6: could you please give the order of magnitude of the transport errors calculated? 

This would be interesting to know, especially in connection to the influence of the transport 

errors on the ability for the inversion to simultaneously optimize the emission and loss 

parameters. 

The transport errors are quite small at the surface (0.2 ppb on average), but can be 

much larger aloft when calculated with respect to an aircraft’s location (2-8 ppb on 

average). We have added some text to include this information. 

 

P5378, L23: do you add any random noise to the pseudo-observations, and if so, was this 

consistent with the error characteristics of the observation error covariance matrix? 

The tests presented here do not have random noise added to the pseudo observations, 

but we did do a subset of tests in which we added random noise (consistent with the 

observation error, which is the sum of measurement and model transport error) and got 

the same results as the tests with no random noise. We have added some text to note this 

at the beginning of Section 5. 

 

P5378, section 5:  by adding a spatially uniform error to the prior values of the scaling 

parameters, you are testing the ability of the inversion to correct a uniform bias, which 

effectively means one degree of freedom. However, it would be also a useful test to see how 

well random spatially distributed errors can be corrected. 

We did perform a test in which we assimilated surface pseudo observations and applied 

a spatially-random emission bias of up to ±50%. The correction to the random bias was 

slight, and occurred mainly in the vicinity of sites with continuous observations. We 

opted not to include this test as the error reduction calculations give the same 

information. We have added a sentence to Section 5.4 mentioning this. 
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P5380, L1-5: did the authors examine how the correction to the biased a priori scaling factor 

varied from season to season? I would expect that there would be some dependency on season 

as well due to the seasonal variation stratosphere-to-troposphere (STT) mixing on the 

tropospheric mixing ratios of N2O. This would be useful information to include. 

For the case of a uniform bias in emissions, the correction to the scaling factor has very 

little variation month-to-month. The only variability appears to be due to the temporal 

variability of emissions in the a priori database for ocean emissions.   

 

P5382, L5-10: I think here it is important that the authors make a distinction between the 

lower and upper stratosphere. The vast majority of the loss of N2O occurs in the upper 

stratosphere, therefore, the influence of a bias in the loss will only be seen in the troposphere 

(where the nearly all the observations are made) after the time delay for transport from the 

upper stratosphere to the troposphere, which is long, i.e. 1-2 years. However, mixing from the 

lower stratosphere to the troposphere can occur on shorter timescales of weeks to months. 

This is a good point. We have added some text to make the distinction that the timescale 

of mixing from the upper stratosphere to the troposphere is what drives the ability to 

correct the biased a priori values. 

 

P5394, L1: although in the future, satellite retrievals of N2O may reach the precision and 

accuracy needed to help constrain N2O emissions, current retrievals and instruments are not 

at this level: the error on N2O retrieved from AIRS is about 7 ppb in the troposphere (for 

comparison, this is more than 3 times the inter-hemispheric gradient in N2O). At present, the 

AIRS satellite retrieved may be helpful in addition to ground-based observations for, e.g., 

establishing the vertical profile of N2O for the initial conditions but not in solving for surface 

emissions of N2O. 

We agree with this statement and have expanded this point in the Conclusions. 

 

Technical comments: 

 

P5369, L8: replace “aboard” with “on-board”, i.e., the adjective 

We have made this change. 

 

P5370, L13: 100-year 

We have made this change. 

 

P5370, L15: “those of any other ozone depleting substance” 

We have made this change. 
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P5370, L16: replace “reactions” with “pathways” as nitrification and denitrification each 

involve a series of reactions 

We have deleted “reactions”. 

 

P5375, L23: “…ocean regions with a net N2O uptake are not stronger sinks than in the 

prior…” 

We have altered the text here to address the specific comment above. 

 

P5377, L25: please put the phrase in brackets “(in general…)” after “lowermost 

stratosphere” to make the sentence easier to understand 

We have made this change. 

 

 

 

Response to Anonymous Reviewer #2 

 

We thank anonymous referee #2 for their helpful comments on this work. Below, original 

comments are in italics and our responses are in bold. 

 

P5370, lines 2-4: the sentence about averaging kernels seems a bit technical and out of place 

in the abstract, I think it would be beneficial for the reader to change this description to say 

something about the inversion sensitivity to the emissions.  

We have added a definition of the averaging kernel in the abstract as well as in Section 

5.4. 

 

P5370, lines 12:15: I think the first two sentences would read better if merged into a single 

sentence 

We prefer to keep this as two sentences, but have included the word “also” in the second 

sentence to improve the flow. 

 

P5371, line 28: suggest changing “scale on which” to “scale over which” 

We have made this change. 

 

P5372, line 25: it would be useful to have a brief description of CARIBIC, including a 

definition of the acronym, on the previous page as is done for HIPPO. Would it also be useful 

to reference any previous studies of the CARIBIC N2O? 
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We have added a definition of the acronym here. Previous studies by Schuck et al. and 

Assonov et al. are cited later in Section 4. 

 

P 5373, line 11: suggest moving GEOS-5 to go after the definition. 

We have made this change. 

 

P5373, line 12: clarify longitude and latitude for horizontal resolution? 

We have made this change. 

 

P5373, line 16: suggest using “anthropogenic” rather than “anthropogenic sources” 

We have made this change. 

 

P5374, line 9: define what MERRA means.  

We have made this change. 

 

P5374, Section 4: it might be useful to include a short paragraph on satellite observations of 

N2O either at the end of this section or in the introduction, especially as this is very briefly 

touched on at the end of the summary section. 

Because we do not include any satellite-based observations of tropospheric N2O in this 

study, we prefer not to include a paragraph describing them in the methods section. 

While there has been recent work developing tropospheric N2O retrievals from satellite-

based infrared sounders (such as the AIRS retrieval mentioned in the summary), these 

are currently not validated or publicly available.  

 

P5379, line 7: suggest changing “based on” to “using” 

We have made this change. 

 

P5381, lines 1-7: it would be useful if the authors could comment on the sensitivity of the 

inversion to the vertical profile of the measurements here – it looks to me as though the 

HIPPO observations provide a stronger constraint because they extend throughout the 

troposphere to the surface, therefore, do the authors have any sense as to the altitude range at 

which the constraint breaks down? This would be especially useful in the context of Section 

5.5 and would maybe make a strong statement on the importance of in situ profiles from 

aircraft as part of the global observing system.  

This is a good point. We have added some text to mention that the HIPPO observations 

include profiling from the boundary layer to the upper troposphere, which is likely the 

major reason why it provides a stronger constraint than CARIBIC. Additionally, we 

point the reviewer to the error reduction results in Figure 9, which show that significant 
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error reduction is achieved with CARIBIC only in the vicinity of Frankfurt where 

flights in the lower troposphere occurred. 

 

P5381, line 23: should “sources as well as sinks” be “sinks as well as sources”? the previous 

subsection has dealt with sources and this one talks more about the sink. 

We have made this change. 

 

P5382, line 7: stating that the second year is the final year seems a bit unnecessary, also the 

statement that “the inversion does not significantly affect the observations” seems to be the 

wrong way around to me – isn’t it the impact of the observations on the inversion which is 

being assessed? 

We choose to keep the statement that the second year is the final year as a reminder to 

readers. We have reworded the latter statement as we agree it was confusing as is. We 

have changed the text to say “Stratospheric loss of N2O in the second (i.e. final) year of 

the inversion does not significantly affect the N2O mixing ratios at the observation 

locations” meaning that biased stratospheric loss will not have a measurable signal in 

the troposphere during the second year of a two-year simulation. Because of this the 

(pseudo) observed mixing ratio and model mixing ratios are very similar, and there is 

insufficient forcing to correct a prior bias.  

 

P5383, line 1: it’s hard to tell from the Figure that there is any significant change in the a 

posteriori compared to the a priori.  

The changes between a priori and a posteriori in the right-hand panels of the figure are 

indeed very subtle. We have zoomed in the y-axis range to try to address this (from 0 to 

1.5 instead of 0 to 2) and also added some text to note that the deviation from the a priori 

is very slight. 

 

P5383, lines 24-26: it would be useful if the authors could comment here on any vertical 

correlations that might help to address this, or which limit the impact of aircraft observations 

measured at cruise altitude 

We have made this addition. 

 

P5385, lines 1-2: it might be useful if the authors could comment briefly on how the box 

model results relate to transport across the tropopause on different timescales (e.g. tropical 

vertical mixing vs. isentropic mixing in the extratropics) 

The disclaimer on P5384, lines 5-7 indicates that the box model results do not capture 

seasonal effects or spatial gradients within the stratosphere/troposphere. It would also 

not capture stratosphere-troposphere transport mechanisms that occur on different 

timescales. We have added this to the text. 
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P5386, line 2 and P5387, line 2: please check the consistent use or a priori or prior and a 

posteriori and posterior. 

We have modified the text to include the use of a priori and a posteriori throughout. 

 

P5391, line 25: clarify that the surface observations are both in situ and flask measurements. 

We have made this change. 

 

P5392, line 19: is this statement on model transport specific to GEOS-5? It might be useful to 

add a comment on model transport issues based on other studies using relatively long-lived 

constituents (e.g. CO2 or CO) 

Model transport issues are not specific to GEOS-5. In a TransCom model 

intercomparison, Thompson et al. (2014, ACP) found the N2O gradient across the 

tropopause to vary significantly among eight different chemical transport models, 

presumably due to differences in modeled vertical transport and rates of strat-trop 

exchange. We added a citation of that paper at this point in the text. 

 

P5393, lines 5-15: I think that it would be of benefit to the reader if the authors could 

rephrase the description of the averaging kernels to what it means in terms of the sensitivity of 

the inversion to the emissions (similar to my comment for the abstract) – by all means this 

should then reference the averaging kernel values but would be easier to understand the 

broader significance.  

We have added some text to Section 5.4 defining the averaging kernel as the sensitivity 

of the inversion to emissions in each grid square. However, we feel we have already 

highlighted the broader significance of the averaging kernel, which is that it tells us 

about the observational constraints on emissions achieved in a particular location. In 

instances where the averaging kernel for a location is close to 1.0 at that location and 

close to 0 everywhere else, the local emissions are well-resolved by the observations in 

our inversion framework. Conversely, highly smeared averaging kernels indicate that 

emissions in a particular location are likely to be conflated with those in other parts of 

the world. This has important implications for how we interpret the inversion results. 

 

P5393, line 13: is it an underconstraint or no constraint in the tropics? 

We feel underconstraint is more appropriate than no constraint, because we have only 

shown rows of the averaging kernel for one tropical location, which does not necessarily 

mean there is zero constraint throughout the tropics.  

 

P5393, line 21-23: could this also be linked to requirements for similar targeted 

measurements for other atmospheric constituents, and greenhouse gases in particular? How 

do the findings here compare to similar studies for CO2 and CH4? 
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Targeted aircraft measurements in the tropics would likely also be useful for any species 

that has a significant tropical source. N2O is somewhat unique in that elevated 

concentrations have been measured aloft in the tropics (e.g. Kort et al., 2011, GRL), 

indicating the presence of a large, episodic emission source in the vicinity of tropical 

convection. So, aircraft observation in this region may be particularly useful for N2O, 

and would complement the use of surface observations. We have added some text to 

Section 5.5 to note this. 

 

P5394, line 1: it would be useful to have a brief sentence on satellite observations in the 

introduction. 

As in our response to the similar comment above, we choose not to include any 

additional information in the introduction since satellite observations are not used in this 

study. 

 

P5409: clarify that HIPPO or CARIBIC are aircraft measurements. 

We have made this change. 

 

Figures 6 and 7 would benefit from some clearer labelling of the plots and reference in the 

captions. 

We have edited the captions for both figures to be more explicit about where the labels 

are located and which lines refer to which label.   
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 1 

Abstract 2 

We describe a new 4D-Var inversion framework for N2O based on the GEOS-Chem chemical 3 

transport model and its adjoint, and apply this frameworkit in a series of observing system 4 

simulation experiments to assess how well N2O sources and sinks can be constrained by the 5 

current global observing network. The employed measurement ensemble includes 6 

approximately weekly and quasi-continuous N2O measurements (hourly averages used) from 7 

several long-term monitoring networks, N2O measurements collected from discrete air 8 

samples onaboard a commercial aircraft (CARIBIC), and quasi-continuous measurements 9 

from an airborne pole-to-pole sampling campaign (HIPPO). For a two-year inversion, we find 10 

that the surface and HIPPO observations can accurately resolve a uniform bias in emissions 11 

during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission 12 

errors are much more difficult to resolve given the long lifetime of N2O, and major parts of 13 

the world lack significant constraints on the seasonal cycle of fluxes. Current observations can 14 

largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do 15 

not provide information on the temporal and spatial distribution of the sink. However, for the 16 

more realistic scenario where source and sink are both uncertain, we find that simultaneously 17 

optimizing both would require unrealistically small errors in model transport. Regardless, a 18 

bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the 19 

two-year timescale used here, given realistic initial conditions, due to the timescale required 20 

for stratosphere-troposphere exchange (STE). The same does not apply to model errors in the 21 

rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O 22 

than does the chemical loss rate over short (< 3 year) timescales. We use a stochastic estimate 23 

of the inverse Hessian for the inversion to evaluate the spatial resolution of emission 24 

constraints provided by the observations, and find that significant, spatially explicit 25 

constraints can be achieved in locations near and immediately upwind of surface 26 

measurements and the HIPPO flight tracks; however, these are mostly confined to North 27 

America, Europe, and Australia. None of the current observing networks are able to provide 28 

significant spatial information on tropical N2O emissions. There, inversion averaging kernels 29 

(describingwhich measure the sensitivity of the inversion in a particular location to emissions 30 

in each grid square)  are highly smeared spatially and extend even to the midlatitudes, so that 31 
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tropical emissions risk being conflated with those elsewhere. For global inversions, therefore, 1 

the current lack of constraints on the tropics also places an important limit on our ability to 2 

understand extratropical emissions. Based on the error reduction statistics from the inverse 3 

Hessian, we characterize the atmospheric distribution of unconstrained N2O, and identify 4 

regions in and downwind of South America, Central Africa, and Southeast Asia where new 5 

surface or profile measurements would have the most value for reducing present uncertainty 6 

in the global N2O budget.  7 

 8 

1 Introduction 9 

Nitrous oxide (N2O) is a long-lived greenhouse gas with a global warming potential 10 

approximately 300 times that of CO2 on a 100-year timescale (Forster et al., 2007). It is also a 11 

key player in stratospheric chemistry; N2O emissions weighted by their ozone depletion 12 

potential currently outrank those of any other ozone depleting substance (Ravishankara et al., 13 

2009). N2O is produced via microbial nitrification and denitrification reactions pathways in 14 

soils (Firestone and Davidson, 1989) and ocean waters (Elkins et al., 1978; Cohen and 15 

Gordon, 1979; Law and Owens, 1990), with soils contributing the majority of the global flux 16 

(Mosier et al., 1998). Agricultural activities such as fertilizer application and animal waste 17 

management enhance these nitrification and denitrification reactions increase the substrate 18 

available for nitrification and denitrification pathways (Maggiotto et al., 2000), leading to 19 

enhanced direct on-site emissions as well as indirect emissions downstream due to leaching 20 

and runoff (IPCC, 2006). Energy production and transportation (Denman et al., 2007) and 21 

biomass burning emissions (van der Werf et al., 2010) also contribute to the global N2O 22 

source. N2O is lost in the stratosphere via photolysis and reaction with O(
1
D), leading to a 23 

global lifetime currently estimated at ~122-131 years (Volk et al., 1997; Prather et al., 2012). 24 

Atmospheric N2O is currently increasing at ~0.8 ppb yr
-1

 25 

(http://ds.data.jma.go.jp/gmd/wdcgg/pub/global/globalmean.html), driven by accelerating 26 

human perturbation of the nitrogen cycle: in particular, rising application of nitrogen 27 

fertilizers (Galloway et al., 2008; Davidson, 2009; Park et al., 2012) and the nonlinear 28 

response of soil N2O emissions to N fertilizer inputs in excess of crop demands (Shcherbak et 29 

al., 2014).  30 
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Rates of microbial nitrification and denitrification in soils depend strongly on environmental 1 

characteristics such as temperature (Potter et al., 1996), moisture (Bouwman, 1998; Bouwman 2 

et al., 2013), availability of reactive nitrogen substrate, and the make-up of the soil microbial 3 

community (Butterbach-Bahl et al., 2013), and as a result large uncertainties exist in the 4 

spatial and temporal distribution of global N2O emissions. Long-term flask-based and in-situ 5 

observations of atmospheric N2O are available from a number of monitoring networks around 6 

the world, along with routine and intensive aircraft observations, and there have been several 7 

recent studies employing these data to generate top-down estimates of global N2O emissions. 8 

Huang et al. (2008) derived a global N2O flux of 14.1-17.1 Tg N yr
-1 

for 2002-2005 using 9 

surface observations from four different surface monitoring networks. Based on aircraft 10 

observations from the first two HIAPER Pole-to-Pole Observations (HIPPO) campaigns, Kort 11 

et al. (2011) found evidence for large and episodic tropical fluxes. Saikawa et al. (2014) 12 

combined surface observations with aircraft- and ship-based measurements to derive regional 13 

N2O emission estimates for five source sectors, and inferred a global flux of 18.1 ± 0.6 Tg N 14 

yr
-1

 for 2002-2005. Thompson et al. (2014a) used ground- and ship-based observations to 15 

estimate regional N2O emissions and their interannual variability. Their study yielded global 16 

fluxes for 1999-2009 that ranged from 17.5 to 20.1 Tg N yr
-1

, with interannual variability 17 

driven largely by fluctuations in tropical and subtropical soil fluxes. A recent intercomparison 18 

of top-down inversion results using different transport models gave a comparable range of 19 

global fluxes: 16.1-18.7 Tg N yr
-1

 for 2006-2009 (Thompson et al., 2014c).  20 

Some previous work has found that uncertainties in stratosphere-troposphere exchange (STE) 21 

and the associated influx of N2O-depleted air can give rise to significant uncertainties in N2O 22 

source inversions, depending on the time range and scale on over which the emissions are 23 

optimized (Nevison et al., 2005; Hirsch et al., 2006; Huang et al., 2008). On the other hand, 24 

Thompson et al. (2011) found their a posteriori surface fluxes to be quite insensitive to biases 25 

in the N2O stratospheric loss rate during the first year of a multi-year simulation. They also 26 

found that combining surface and aircraft observations could provide some constraint on the 27 

magnitude of the stratospheric N2O sink in a simultaneous source-sink inversion, without 28 

increasing errors in the a posteriori N2O emissions. However, biases in the model STE itself 29 

did give rise to regional uncertainties of up to 25% in the optimized source. 30 
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The global observing network for atmospheric N2O includes flask-based measurements and 1 

quasi-continuous in-situ instruments, as well as both surface- and airborne sampling 2 

platforms. However, a full quantification of the relative utility of these different datasets has 3 

not yet been performed. Such information is needed in order to determine: i) the degree to 4 

which current observations can be used to constrain N2O emissions and stratospheric loss, and 5 

the comparative value of different observing strategies for doing so; ii) the spatial and 6 

temporal resolution at which N2O sources and sinks can be constrained by these different 7 

datasets; and iii) where additional measurements are most needed to advance present 8 

understanding of the atmospheric N2O budget.  9 

In this paper, we introduce a new simulation and inversion framework for atmospheric N2O 10 

using the GEOS-Chem chemical transport model (CTM) and its adjoint. The adjoint-based 11 

variational method is advantageous as it allows us to solve for N2O fluxes at the spatial 12 

resolution of the CTM and at any desired time step, thus minimizing any impact from 13 

aggregation errors. Here, we apply the model in a simulation environment (i.e., in observing 14 

system simulation experiments, or OSSEs) to quantify the N2O source and sink constraints 15 

provided by: i) flask and quasi-continuous surface observations from a number of long-term 16 

monitoring networks; ii) routine flask observations from an instrument platform deployed 17 

onaboard a commercial aircraft (Civil Aircraft for the Regular Investigation of the atmosphere 18 

Based on an Instrument Container; CARIBIC); and iii) in situ airborne observations made 19 

during a series of intensive pole-to-pole field campaigns (HIAPER Pole-to-Pole Observations; 20 

HIPPO). This is the first study to quantify the individual constraints provided by these 21 

different observation ensembles. We determine the potential for model errors in the 22 

stratospheric loss rate of N2O to bias the inferred emission estimates, and assess how well 23 

N2O emissions and stratospheric loss can be simultaneously constrained by the above 24 

observations. We evaluate the temporal and spatial resolution of emission constraints afforded 25 

by the different N2O observations, and explore the impact of uncertainties in the a priori error 26 

estimates on the inferred fluxes. Finally, we apply the above information to identify regions 27 

that are underconstrained by the current N2O observing network, and the downwind locations 28 

where new measurements would be most valuable for reducing current uncertainty in the N2O 29 

budget. 30 

 31 
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2 N2O simulation in the GEOS-Chem CTM 1 

In this work we implement an N2O simulation in the GEOS-Chem (http://www.geos-2 

chem.org) global 3-D model of atmospheric chemistry. Analyses presented here use GEOS-5 3 

assimilated meteorological data from the NASA Goddard Earth Observing System (GEOS-5), 4 

degraded to a horizontal resolution of 4° latitude × 5° longitude and to a vertical grid 5 

containing 47 levels from the surface to 0.01 hPa. Transport is calculated on a 30 minute time 6 

step; a 60 minute time step is used for emissions and chemistry. Our simulation period runs 7 

from April 2010 to April 2012. 8 

A priori N2O emissions are grouped into four categories: anthropogenic sources (including 9 

industrial processes, transportation, residential/waste management, and agricultural activities), 10 

natural soil fluxes, biomass burning, and oceanic exchange. Annual emissions for 11 

anthropogenic activities are obtained from the Emission Database for Global Atmospheric 12 

Research (EDGARv4.2, http://edgar.jrc.ec.europa.eu). Within this database there are 12 13 

emission sectors as defined by the IPCC (IPCC, 2006). These sectors are listed in Table 1, 14 

along with the corresponding total emissions for 2008. The overall anthropogenic N2O flux 15 

from EDGARv4.2 is 6.9 Tg N yr
-1

, with 2.4 Tg N yr
-1

 from industrial and residential sources 16 

and 4.5 Tg N yr
-1

 from direct and indirect agricultural emissions. Natural soil emissions of 17 

N2O are computed based on the EDGARv2 database, which provides an annual flux at 1° × 1° 18 

resolution for the year 1990 totaling 3.2 Tg N yr
-1

. Biomass burning emissions of N2O are 19 

prescribed monthly based on the Global Fire Emissions Database version 3 (GFEDv3, van der 20 

Werf et al., 2010) and total 0.6 Tg N yr
-1

 for 2010-2011. Thermal and biogeochemical oceanic 21 

fluxes of N2O are calculated monthly at 4.5° × 3.75° following Jin and Gruber (2003), leading 22 

to a net annual global source of 3.5 Tg N yr
-1

. Figure 1 maps the resulting annual flux from 23 

soils, anthropogenic activities, biomass burning, and air-sea exchange, with a cumulative 24 

annual global source of 14.2 Tg N yr
-1

. We note that this is below the range of current top-25 

down flux estimates (~16 to 20 Tg N yr
-1

) discussed previously. 26 

Stratospheric destruction of N2O by photolysis and reaction with O(
1
D) is calculated using 27 

archived monthly 3-D loss frequencies from Global Modeling Initiative (GMI) simulations 28 

driven by Modern Era Retrospective-Analysis for Research and Applications (MERRA) 29 

meteorological fields (MERRA is also based on GEOS-5). The resulting stratospheric loss 30 

gives rise to a 127.5 year lifetime, which is in the range of current estimates (122-131 years, 31 
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Volk et al., 1997; Prather et al., 2012). This lifetime depends upon the initial mass distribution 1 

assumed for N2O, which we describe below. 2 

Because of the long atmospheric lifetime of N2O, generating realistic initial conditions is of 3 

critical importance for top-down analyses of its sources and sinks. Some previous studies have 4 

included initial conditions as part of the state vector for optimization, or prescribed N2O mass 5 

fields from simulations that have reached a pseudo-steady state. We instead construct an 6 

initial 3-D N2O field using global observations for March 2010 (Fig. 2), one month prior to 7 

the start of our optimization window. This timing is chosen to accommodate a brief model 8 

spin-up that smooths any artificial horizontal gradients prescribed in the initial conditions. 9 

Initial tropospheric concentrations are computed from NOAA Carbon Cycle and Greenhouse 10 

Gases (CCGG) flask observations (described below) averaged monthly and zonally at 4° 11 

resolution. These mixing ratios are then assumed uniform from the surface to the tropopause. 12 

Above 100 hPa, our initial conditions are based on monthly mean (March 2010) N2O profiles 13 

measured by the Microwave Limb Sounder (MLS) onboard the EOS Aura satellite (Lambert 14 

et al., 2007) interpolated onto the GEOS-Chem horizontal and vertical grid. Where needed, 15 

we then perform a linear interpolation between the tropopause and 100 hPa. 16 

 17 

3 Inversion set-up and verification 18 

We use a 4D-Var inversion framework to solve for spatially resolved, monthly N2O fluxes 19 

based on the atmospheric measurements described next (Section 4). Optimal fluxes are 20 

derived by minimizing the cost function, J(p), which contains contributions from the error 21 

weighted model-measurement differences and a penalty term: 22 

𝐽(𝒑) =
1

2
∑ (𝒄 − 𝒚)𝑇𝐒𝑦

−1(𝒄 − 𝒚)𝒄∈𝛀 +
1

2
𝛾(𝒑 − 𝒑𝑎)𝑇𝐒𝑎

−1(𝒑 − 𝒑𝑎)   (1) 23 

Here, 𝒑 is the vector of parameters to be optimized, 𝒑𝑎 is the initial (a priori) value of those 24 

parameters, 𝒚 is a set of observations, 𝒄 is a vector containing the model-simulated 25 

concentrations, 𝐒𝑦 and 𝐒𝑎 are the observational and a priori emissions error covariance 26 

matrices, respectively, Ω is the time and space domain of the observations, and γ is a 27 

regularization parameter (set here to 1.0).  28 
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In this study, 𝒑 contains monthly scaling factors for the terrestrial and oceanic emissions of 1 

N2O and for stratospheric loss frequencies. The adjoint model calculates the gradient of the 2 

cost function with respect to this state vector, p 𝐽(𝒑), and employs a quasi-Newton 3 

minimization routine to iteratively minimize 𝐽(𝒑) (Zhu et al., 1994; Byrd et al., 1995). Scale 4 

factors for emissions are optimized on the 4° × 5° GEOS-Chem grid, while those for the 5 

stratospheric loss frequencies are aggregated over the vertical extent of the stratosphere and 6 

into eight latitude bands of 22.5°. For the two-year inversion, tThis results in a state vector 7 

with 79,488 elements for emissions and 192 elements for stratospheric loss. We use a lower 8 

bound of zero in the optimization routine to avoid a solution containing negative scaling 9 

factors and an upper bound of 10 that was found to improve optimization performance. Use of 10 

the lower bound corresponds to an implicit assumption that the sign of the a priori N2O flux in 11 

each location is correct (i.e. ocean regions with net N2O uptake will remain net sinks) are no 12 

stronger of a sink than in the prior, while the upper bound corresponds to an 13 

assumptionassumes that the a priori emissions are not biased low by more than a factor of 10. 14 

These Such assumptions bounds are not problematic for the synthetic experiments presented 15 

here, but could be when performingwould affect real inversions if those assumptions were 16 

violated . 17 

We assume 100% uncertainty in the a priori emissions (for any given grid square and month) 18 

and in the stratospheric loss frequencies, and impose horizontal correlation length scales for 19 

emissions of 500 km over land and 1000 km over ocean, following Thompson et al. (2011;  20 

2014a). The observational error covariance matrix contains contributions from the 21 

measurement uncertainty (typically 0.4 ppb, see next section for details) and from model 22 

transport errors. We estimate the latter from the variance in modeled N2O mixing ratios across 23 

all grid boxes adjacent to that containing a given observation. At the surface, tThis results in a 24 

mean errors of 0.2 ppb at the surface and; however, it results in a mean error of 2-8 ppb at 25 

aircraft cruising altitudes. 26 

The adjoint modules for optimizing N2O emissions and stratospheric loss were verified by 27 

comparing adjoint and finite difference sensitivities calculated for each atmospheric column 28 

with no horizontal transport. We find good agreement between adjoint and finite difference 29 

sensitivities for both emissions and stratospheric loss scaling factors (Fig. S1), demonstrating 30 

the accuracy of the N2O adjoint code. Propagation of adjoint sensitivities through horizontal 31 
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transport in the GEOS-Chem adjoint has been verified previously (Henze et al., 2007). The 1 

GEOS-Chem adjoint has been used for a wide range of research applications such as 2 

constraining sources of aerosols (Henze et al., 2007; Henze et al., 2009; Kopacz et al., 2011; 3 

Wang et al., 2012; Xu et al., 2013), CO (Kopacz et al., 2009; Kopacz et al., 2010), NH3 (Zhu 4 

et al., 2013), O3 (Zhang et al., 2009; Parrington et al., 2012), and methanol (Wells et al., 5 

2014), and to assess the impact of different types of observations on CO source inversions 6 

(Jiang et al., 2011; Jiang et al., 2013). 7 

  8 

4 Global observations of atmospheric N2O 9 

Below, we apply GEOS-Chem and its adjoint to assess the N2O source and sink constraints 10 

provided by the current suite of global observations. We include in this assessment several 11 

long-term surface monitoring networks and two aircraft platforms. A full list of the surface 12 

observation sites can be found in Table 2, and their locations are mapped in Fig. 3. The 13 

majority of the surface observations are from discrete air samples collected approximately 14 

weekly in flasks at 77 sites in the NOAA CCGG program (Dlugokencky et al., 1994), which 15 

are analyzed using a gas chromatograph with an electron capture detector and reported on the 16 

NOAA 2006A calibration scale. We also use flask measurements from six sites in the 17 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) network (also on 18 

the NOAA 2006A scale; Francey et al, 1996; Cooper et al., 1999), five sites in the 19 

Environment Canada (EC) network (NOAA 2006 scale), and one National Institute of Water 20 

and Atmospheric research (NIWA) site (NOAA 2006A scale). We assume a measurement 21 

uncertainty of 0.4 ppb for all of the above flask measurements, based on recommendations 22 

from the data providers. Hourly averages of quasi-continuous measurements are employed 23 

from six sites in the NOAA Chromatograph for Atmospheric Trace Species (CATS) network, 24 

six sites in the Advanced Global Atmospheric Gases Experiment (AGAGE) network (Prinn et 25 

al., 2000), and the University of Minnesota tall tower Trace Gas Observatory (KCMP tall 26 

tower) site (Griffis et al., 2013). Measurements from the AGAGE network are reported on the 27 

SIO-98 scale, and have a reported uncertainty of 0.2% (0.6 ppb). Measurements at the KCMP 28 

tall tower and those in the CATS network (both on the NOAA 2006A scale) have 29 

uncertainties of about 1.0 and 0.3 ppb, respectively.  30 
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Extensive airborne measurements of N2O are available from the Civil Aircraft for the Regular 1 

Investigation of the atmosphere Based on an Instrument Container (CARIBIC) observatory 2 

(Brenninkmeijer et al., 2007). CARIBIC provides flask measurements from a commercial 3 

Lufthansa aircraft, with data available for 79 flights between Frankfurt, Germany and a 4 

number of other cities around the world (Fig. 3) during the time period of our optimization. 5 

These observations have an uncertainty of about 0.35 ppb and are reported on the NOAA 6 

2006 scale (Schuck et al., 2009). Since the CARIBIC observatory is operated on a passenger 7 

aircraft, the majority of measurements are taken at a cruising altitude of 9-12 km: about 50% 8 

are in the lowermost stratosphere (in general those at higher latitudes, depending on synoptic 9 

conditions) are in the lowermost stratosphere, with the remainder sampling the upper 10 

troposphere (Assonov et al., 2013; Umezawa et al., 2014).  11 

High-frequency airborne N2O measurements were made by quantum cascade laser 12 

spectroscopy (QCLS) during the HIAPER Pole-to-Pole Observations (HIPPO) campaigns 13 

(Wofsy, 2011; flight tracks mapped in Fig. 3). Three of the five HIPPO deployments took 14 

place during our optimization window: HIPPO III (24 March – 16 April 2010), HIPPO IV (14 15 

June – 11 July 2011), and HIPPO V (9 August – 9 September 2011), totaling 33 flights over 16 

the April 2010 – April 2012 time frame. Measurements are reported on the NOAA 2006 scale 17 

(Kort et al., 2011). The HIPPO flights range from pole-to-pole while profiling the atmosphere 18 

from the surface to the tropopause at regular intervals. Unlike the other available datasets, 19 

which provide recurrent measurements at discrete locations or along specific flight paths, the 20 

HIPPO datasets provide ~1-month global cross-sections of atmospheric concentration.  21 

The use of different calibration scales results in offsets between different networks measuring 22 

N2O, which may also vary with time. Because variability in atmospheric N2O is low, these 23 

offsets can have a significant impact on the a posteriori solution. As the results presented here 24 

involve synthetic observations at the time and location of the real observations, we do not 25 

consider the impact of these offsets on inferred N2O emissions and stratospheric loss. 26 

However, for inversions employing real N2O measurements, we calculate offsets at collocated 27 

sites to adjust those measurements that are not reported on the NOAA 2006A scale. 28 

 29 
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5 Evaluating constraints on N2O emissions and stratospheric loss using 1 

pseudo observations 2 

In this section we perform a range of pseudo observation tests to determine how well N2O 3 

sources (and sinks) can be quantified, and at what space-time resolution, based on the 4 

observing network described above. In these tests, we sample the model at the time and 5 

location of each observation to generate pseudo observations. A subset of Most tests were 6 

carried out withdo not include observational (measurement + transport) noise added to the 7 

synthetic observations, and these m, but a subset of tests including noise yielded the same 8 

results as the tests with no noise. We then perform a two-year inversion in which we 9 

assimilate pseudo observations generated for the surface network, CARIBIC flights, or 10 

HIPPO flights, or for a combination of those datasets. Our state vector contains monthly 11 

scaling factors for emissions, stratospheric loss frequencies, or both. We start with a spatially-12 

uniform incorrect a priori value for these scaling factors; this bias is temporally -uniform in 13 

most tests, though later we also test the impact of a seasonally- varying emission bias on the 14 

emissions. Tthe degree to which the optimization converges to the true value of 1.0 for each 15 

grid cell and month gives a measure of the ability of the observations to correct for model 16 

biases in these processes. Section 5.1 presents the tests in which we optimize emissions using 17 

the three observational datasets, Section 5.2 contains the tests in which we optimize 18 

stratospheric loss frequencies alone or jointly with emissions, and Section 5.3 describes tests 19 

in which we optimize emissions with a seasonal a priori bias imposed. A full list of all pseudo 20 

observation tests performed is given in Table 3. 21 

5.1 Constraints on N2O emissions 22 

Figure 4 shows the results of synthetic inversions in which we optimize emissions usingbased 23 

on surface-based pseudo observations as described above. Here we impose a time invariant a 24 

priori emission bias of ±50% across all land and ocean grid cells, while keeping the 25 

stratospheric loss rates fixed at their true model values. We see that for the first ~20 months of 26 

the optimization window, the surface-based inversion is able to correct the imposed bias over 27 

most land and ocean regions that have a significant flux. However we will show later that this 28 

does not mean current observations can fully constrain the spatial distribution of N2O 29 

emissions at the 4° × 5° resolution shown in Fig. 4. 30 
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Overall, the solution is of comparable quality whether we start with a high or low a priori bias, 1 

with some minor distinctions: the test with the positive initial bias performs slightly better 2 

over oceans and in later months of the simulation, and also converges more quickly (5 3 

iterations versus 10 for the test with a low initial bias). However, the situation is very different 4 

when no upper bound is imposed on the solution. In this case, when given a low initial bias 5 

the optimization tends to overshoot the truth in high-flux regions while underestimating the 6 

truth in low-flux regions. Imposing both lower and upper bounds on the inverse solution (in 7 

this case, 0 and 10) is thus important to ensure a consistent solution across high and low initial 8 

bias scenarios. Jiang et al. (2014) concluded that construction of the a priori constraint was the 9 

most important factor affecting the consistency of solutions for divergent initial assumptions 10 

in the case of CO; we find here that the prior bounds placed on the solution can have a 11 

comparable impact for N2O. 12 

Figure 4 also indicates that during the last several months of the optimization window there is 13 

inadequate forcing for the inversion to completely correct for the initial emission biases, 14 

particularly over the Southern Hemisphere. This is largely due to the timescale required to 15 

transport N2O between source regions and receptor locations—in the Southern Hemisphere 16 

observing stations are sparse and distant from major N2O sources. As a result, there are 17 

relatively few subsequent observations that are influenced by biases imposed towards the end 18 

of the optimization window.  19 

Figure 5 shows zonally integrated, annual a posteriori emissions from synthetic inversions 20 

using surface, CARIBIC, or HIPPO pseudo observations. In each case the state vector for 21 

optimization includes monthly emission scale factors on the model grid (but not stratospheric 22 

loss rates), and an initial bias of ±50% is applied to emissions in all grid boxes. Results are 23 

shown only for the first year of the optimization period since (as shown) the inversion has less 24 

ability to retrieve the true emissions in the succeeding months; there are also no HIPPO 25 

observations during the last six months of the simulation. As discussed, the surface data 26 

provide a good correction to the imposed a priori error in N2O emissions when starting with 27 

both high and low initial biases, and can accurately retrieve zonally integrated emissions in 28 

the Northern and Southern Hemispheres.  29 

We see in Fig. 5 that inversions based on the HIPPO data are also able to capture the zonal 30 

distribution of N2O emissions. For the high-bias test (a priori emissions scaling factor of 1.5), 31 
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the inversion results are very similar to those obtained using the surface data. For the low-bias 1 

test, the a posteriori emissions retain a low bias over the Southern Ocean, and overshoot 2 

slightly where emissions peak in both hemispheres. On the other hand, the CARIBIC 3 

measurements lead to substantially different a posteriori fluxes between the high- and low-4 

bias tests: the inversion with the high initial bias returns the true zonal distribution of 5 

emissions quite well, whereas the test with the low initial bias leads to an overestimate of 6 

emissions from 20° - 30° N and an underestimate elsewhere. We find through these tests that 7 

each dataset can independently resolve the global annual flux to within 5% of the true value 8 

(Table 3).  9 

Based on these experiments, we conclude that relatively sparse observations in the upper 10 

troposphere and lowermost stratosphere such as those from CARIBIC are sufficient to correct 11 

a prior bias in the global annual N2O emissions, but do not provide as robust a constraint on 12 

the zonal distribution of those emissions. The pole-to-pole HIPPO observations, whichwith 13 

their extensive vertical  contain profilinges from the upper troposphere to the boundary layer, 14 

provide a stronger constraint on the zonal distribution of annual emissions despite the fact that 15 

they do not cover the full time period of our optimization. This is because the long lifetime of 16 

N2O allows emissions perturbations to impact concentrations far from source regions 2-6 17 

months after the perturbation (Thompson et al., 2014a). Of the three networks examined here 18 

(surface, CARIBIC, and HIPPO) in isolation, the regular surface measurements provide the 19 

best correction of annual emission biases. 20 

The above OSSEs were performed based on an initial fractional emission bias that is uniform 21 

in space and time (i.e., a priori emissions set everywhere to 0.5× or 1.5× the true model 22 

values). As we will see later, emission biases that vary in space or time are much more 23 

difficult to resolve, due to the sparse observing network combined with the long atmospheric 24 

lifetime of N2O.    25 

5.2 Stratospheric loss of N2O: Constraints from the observing network and 26 

impact on source inversions 27 

An important finding from previous work is that N2O emission estimates derived from surface 28 

concentration measurements can be biased by model errors in the stratospheric sink of N2O 29 

(Thompson et al., 2011). Here, we explore the potential for the airborne observations provided 30 
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by CARIBIC and HIPPO, in conjunction with the surface network, to simultaneously 1 

constrain N2O sinks as well as sourcessources as well as sinks. To this end, we perform a 2 

series of synthetic inversions with a prior bias imposed on the stratospheric loss frequencies 3 

for N2O (aggregated to eight equal latitude bands), and assess the degree to which we can 4 

correct for errors in the N2O sink (given a fixed N2O source) or both the source and sink of 5 

N2O (simultaneously). As previously, a priori scaling factors of either 0.5 or 1.5 areis applied 6 

toin each location and month, and we attempt to retrieve the true value of 1.0 in each case.  7 

Figure 6 shows the resulting a posteriori scaling factors for stratospheric loss frequencies 8 

when N2O emissions are held fixed (and equal to their ‘true’ values). We can see that each 9 

observational dataset provides some information to correct for biases in the loss frequencies in 10 

the first year of the simulation. Stratospheric loss of N2O in the second (i.e. final) year of the 11 

inversion does not significantly affect the N2O mixing ratios at the observation locations of 12 

the observations, given asthata  the characteristic timescale for stratosphere-to-troposphere 13 

mixing from the upper stratosphere (, where most of the N2O loss occurs), to the troposphere 14 

isof 1-2 years (Salstein, 1995).; Aas a result, the corresponding a posteriori scale factors do 15 

not diverge significantly from their a priori values.  16 

For the inversion using surface data, the optimized annual global sink in the first year of the 17 

simulation is very close to the true value (Table 3), but the loss frequencies are only adjusted 18 

throughout the first year in the tropics. In the extratropics, they adjust primarily during the 19 

summer months. The extratropical timing corresponds to the observed seasonal minimum of 20 

N2O at these latitudes (Nevison et al., 2011). At their peaks, retrieved values in the Southern 21 

Hemisphere approach the truth, whereas in the Northern Hemisphere they slightly overshoot 22 

the true sink. A posteriori values near the poles remain close to the a priori in both 23 

hemispheres. Solutions achieved using HIPPO or CARIBIC data are spatially similar to those 24 

obtained with the surface observations, although the optimized global sink for both is biased 25 

low (by 13-17%, Table 3) due to weaker forcing (fewer total observations, higher observation 26 

uncertainty). Therefore, while all the observations provide some correction of biases in the 27 

global stratospheric sink of N2O given known surface fluxes (with the surface data providing 28 

the strongest constraint), they provide limited information on the spatial and temporal 29 

distribution of that sink.  30 
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Also shown in Fig. 6 are the a posteriori scaling factors for stratospheric loss frequencies of 1 

N2O when both the source and sink are optimized simultaneously, and given an initial 50% 2 

low bias for each. In these tests, the sink does not return to the true value (Table 3); for the 3 

inversions using CARIBIC and HIPPO it actually moves slightly in the opposite direction (i.e. 4 

further from the truth than the a priori) due to the forcing imposed by the source bias. In other 5 

words, the inversion is not able to resolve a bias in N2O emissions from a bias in the sink. 6 

Despite this behavior, the spatial distribution of the derived scaling factors for N2O emissions 7 

(not shown) closely matches that obtained with a fixed (‘true’) stratospheric sink, and the 8 

annual a posteriori emission flux is within 5% of the truth (Table 3) for all tests except the 9 

high-bias test using CARIBIC pseudo-data. Therefore, on the 1-2 year timescale of our 10 

optimization, and given accurate initial conditions (in our case, based on interpolated 11 

measurements), the forcing provided by the surface and aircraft data used here is dominated 12 

by N2O emissions. As a result, a model bias of up to 50% in the stratospheric loss frequencies 13 

for N2O will have minimal impact on the inferred emissions given the inversion framework 14 

employed here.  15 

Thompson et al. (2011) also examined the feasibility of constraining stratospheric loss rates of 16 

N2O using aircraft observations, but assumed zero model transport error in the observational 17 

error covariance matrix. We find that proper treatment of this error has a dramatic effect on 18 

the ability of the inversion framework to simultaneously retrieve emissions and stratospheric 19 

loss rates of N2O. In the tests above, the model transport error was estimated based on the 20 

variance in N2O mixing ratios in the grid boxes adjacent to an observation; for aircraft 21 

observations near the tropopause, this variability can be an order of magnitude larger than it is 22 

near the surface. We find that when we omit the model transport error, the inversion is able to 23 

reduce an imposed prior bias in both emissions and stratospheric loss simultaneously, even 24 

when those biases have opposing effects on the N2O burden. As observed above, the same is 25 

not true when transport error is accounted for. Our ability to quantify both the emissions and 26 

chemistry of N2O based on aircraft data therefore depends critically on the accuracy of 27 

vertical transport in the model, and on the associated transport error assigned in the inversion. 28 

Tracer measurements and correlations from platforms such as The CARIBIC data may 29 

provecan be useful infor evaluating model transport in the upper-troposphere/lower 30 

stratosphere; Sawa et al. (2015) recently found a seasonal signal in the gradient of N2O 31 Formatted: Subscript



 

 

24 

between flight level and the tropopause which reflected the seasonal variability in transport 1 

between the stratosphere and tropospherethis.   2 

Along with the rate of N2O destruction in the stratosphere, another factor that can affect N2O 3 

source inversions is model uncertainty in the mass flux of air between the stratosphere and 4 

troposphere (e.g., Thompson et al., 2014b). Our model framework, employing assimilated 5 

meteorology, is not equipped to include this process directly as part of the state vector for 6 

optimization. However, we can explore the relative influence of chemistry versus 7 

stratosphere-troposphere mixing on the tropospheric N2O burden (and hence on N2O source 8 

inversions) with the aid of a simple two-box model representing stratospheric and 9 

tropospheric reservoirs of N2O. Such an analysis does not capture seasonal effects, 10 

transportdistinct STE mechanisms that occuroperating on different timescales, or spatial 11 

gradients within the troposphere and stratosphere, but nonetheless does illustrate some key 12 

features of the system.  13 

Figure 7 shows the fractional perturbations to the stratospheric and tropospheric burdens of 14 

N2O in the box model that result from: i) a 20% increase in the global N2O emission source 15 

(E); ii) a 20% decrease in the photochemical loss rate of N2O (kchem); and iii) a 20% decrease 16 

in the stratosphere-troposphere exchange rates (kST and kTS). For the latter, mass fluxes in both 17 

directions are increased proportionately since the (annual, global) kST/kTS ratio is known from 18 

the relative sizes of the troposphere and stratosphere.  19 

The top panel of Fig. 7 shows that on long timescales a perturbation to kST and kTS has a 20 

negligible effect on the tropospheric N2O burden compared to a perturbation to kchem or E. A 21 

given change in kchem or E leads to a similar relative change in the steady-state burden, with an 22 

adjustment timescale dictated by the N2O lifetime (~127 years). In comparison, the effect of a 23 

change to kTS and kST is small in the troposphere. For stratospheric N2O, the effect of kTS and 24 

kST is somewhat larger and of opposite sign: decreasing kTS and kST reduces stratospheric N2O 25 

while increasing tropospheric N2O. 26 

However, on short timescales (as is used for our inversions), the importance of stratosphere-27 

troposphere exchange versus chemistry for tropospheric N2O is reversed, as the former 28 

manifests more quickly. The bottom panel of Fig. 7 indicates that for the first 2 years 29 

following a perturbation, the effect of kTS and kST on the tropospheric N2O burden is 1.3-29× 30 

larger (mean: 5.1×) than the effect of kchem. Over this same time period, Fig. 7 also shows that 31 
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the effect of a perturbation to kTS and kST is significant (mean: 0.8×) relative to a change in E. 1 

However, the importance of kTS and kST versus E will be overstated by the box model as it 2 

does not resolve spatial gradients within the troposphere or the location of observations 3 

relative to emissions. 4 

Overall, we can see that N2O source inversions based on the framework employed here will 5 

be unaffected by even relatively large model biases in the chemical loss rate of N2O. The 6 

same does not apply to model biases in STE, and these need to be accounted for when 7 

evaluating a posteriori source estimates for N2O (Thompson et al., 2014b) and other long-8 

lived species such as CO2 (Deng et al, 2015).  9 

5.3 Temporal resolution of N2O source inversions 10 

The OSSEs in Sections 5.1 and 5.2 demonstrate that the inversion (and N2O observing 11 

network) has a strong ability to remove model emission biases that are uniform in space and 12 

time. However, actual model emission errors are likely to be spatially and temporally 13 

dependent. For example, while the a priori natural soil and anthropogenic emissions used here 14 

are aseasonal, observations over an agricultural field in Ontario, Canada indicate that 30-90% 15 

of the annual flux occurs in the non-growing season, mostly as strong pulses driven by soil 16 

thawing (Wagner-Riddle et al., 2007). Likewise, analysis of tall tower observations suggest a 17 

strong seasonal cycle of soil N2O emissions associated with the timing of fertilizer application 18 

(Miller et al., 2012; Griffis et al., 2013). A key question, therefore, is the following: At what 19 

spatial and temporal resolution can global N2O emissions be quantified based on the current 20 

observing network? 21 

To explore the temporal aspect of this question, we performed a test in which we assimilate 22 

pseudo observations generated with aseasonal (model truth) emissions while imposing a 23 

simple seasonal bias in the a priori emissions from natural and agricultural soils (50% higher 24 

than model truth from March – August; 50% lower from September – February). As before, 25 

we assimilate surface, CARIBIC, or HIPPO observations, and retrieve monthly scaling factors 26 

for terrestrial and oceanic N2O emissions. 27 

Results of this test indicate that a seasonal, global, emission bias is much more difficult to 28 

resolve than is a constant bias based on the current network of surface observations. Zonally-29 
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integrated emissions (Fig. S2) begin to approach the aseasonal model truth in the Northern 1 

Hemisphere during the beginning of the simulation (when the a priori emissions are biased 2 

high), but there is almost no correction of the seasonal bias in the latter half of the simulation 3 

(when a priori emissions are biased low). Due to the long lifetime of N2O, any residual high 4 

emission bias from the first portion of the simulation leads to positive model-measurement 5 

residuals even after the emission bias changes sign. Globally, the result is an annual flux that 6 

is biased slightly low (~5%; Table 3) and with incorrect seasonality.  7 

In areas near measurement sites, however, some seasonal constraints are afforded in the 8 

inversion. For example, Fig. 8 shows monthly fluxes at four locations: a site with continuous 9 

observations (KCMP Tall Tower), a site with flask observations (Hegyhátsál, Hungary), a 10 

location in eastern China that is upwind of surface flask observations, and a remote site in the 11 

Democratic Republic of Congo (DR Congo). At the beginning of the simulation there is a 12 

substantial correction of the emission bias at the in situ (KCMP), flask (Hungary), and upwind 13 

(East China) sites. During the latter half of the year, when the a priori emissions are biased 14 

low, those errors are reduced as a result of the inversion at all three sites, but for the sites with 15 

measurements there is a time lag and subsequent overcorrection afterward. There is no 16 

significant correction to the biased DR Congo emissions during any point of the year. 17 

Based on the above test, we can conclude that flask and in situ observations provide valuable 18 

corrections to seasonal emission biases upwind and in the vicinity of the measurements, 19 

though not necessarily on a monthly timescale. However, any seasonal biases arising from 20 

errors in model STE may be difficult to separate from such seasonal emission errors. 21 

Furthermore, large parts of the world (illustrated by the DR Congo site in Fig. 8) lack any 22 

meaningful seasonal constraints on emissions.  23 

5.4 Spatial resolution of N2O source inversions 24 

The spatial resolution at which current measurements constrain global N2O emissions in this 25 

inversion framework can be inferred from the reduction in emission errors that results from 26 

the inversionassimilation. Here, we calculate this relative error reduction from a stochastic 27 

estimate of the inverse Hessian of the cost function (Eq. 1). For a reasonably linear model, the 28 

inverse Hessian approximates the a posteriori error covariance matrix of the emissions, and 29 

can be written: 30 
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(∇2𝐽(𝒙))−1 = (𝐒𝑎
−1 + 𝐇𝑇𝐒𝑦

−1𝐇)−1 ≈ 𝐒𝑝𝑜𝑠𝑡       (2) 1 

where H is the tangent linear of the forward model, 𝐒𝑝𝑜𝑠𝑡 is the a posteriori error covariance 2 

matrix, and 𝐒𝑎 and 𝐒𝑦 are the a priori and observational error covariance matrices, 3 

respectively, as in Eq. 1. Following Bousserez et al. (2015), we estimate ∇2𝐽(𝒙) using an 4 

ensemble (500 members here) of stochastic cost function gradients, each generated by adding 5 

Gaussian random noise to the pseudo observations according to the reported uncertainty of 6 

each dataset. The reduction in Spost(i,j) relative to Sa(i,j) for any model grid cell (i,j) then 7 

represents the ability of our observing system to remove a random emission error in that 8 

location, in the absence of any large-scale source bias.  9 

Figure 9 shows the resulting percent error reduction achieved in each model grid cell using 10 

surface, CARIBIC, or HIPPO observations for a given month of our two-year simulation. 11 

Results using surface observations are shown for month 1 (April 2010), but are comparable 12 

for all subsequent months. We see appreciable error reduction near sites with continuous 13 

observations in North America and Europe, and more modest error reductions in surrounding 14 

grid cells, at sites with flask observations, and in the northern Atlantic upwind of Europe. 15 

There is little (< 5%) error reduction achieved throughout the tropics, Southern Hemisphere, 16 

and high latitudes, except near Cape Grim, Australia where continuous observations are 17 

available. The spatial distribution of the error reduction results is similar to the spatial 18 

distribution of scaling factor adjustments in a pseudo observation inversion in which a 19 

spatially-random bias has been applied (not shown). 20 

Figure 9 also shows that the sparse, high altitude CARIBIC observations provide limited 21 

information on the spatial distribution of N2O emissions. Significant error reduction is 22 

achieved over Western Europe during April 2010, the only month in which measurements 23 

were taken in the lower troposphere during special flights dedicated to volcano observation 24 

(Rauthe-Schöch, 2012). In all other months, measurements occur primarily in the upper 25 

troposphere and lower stratosphere and consequently the spatial error reduction is minor 26 

(typically < 1 %). 27 

The spatial information provided by HIPPO observations varies by month according to the 28 

flight tracks, and is complementary to that achieved with surface data. For example, during 29 

August 2011, we see large error reductions over the central US, as well as some improvement 30 
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for grid cells in East Asia that are upwind of the HIPPO flight track. Some error reduction is 1 

also achieved in these locations for May 2011, despite the fact that no HIPPO flights occurred 2 

during this month (the next flights occurred in June). Given the long lifetime of N2O, 3 

measurements in a given month thus provide some location-specific constraints on emissions 4 

in prior months. As is the case with the surface observations, however, the HIPPO data 5 

provides very little error reduction for emissions throughout the tropics, Southern Hemisphere 6 

and high latitudes. While the OSSE tests above showed that our observation and adjoint 7 

framework has significant skill in removing uniform model emission biases, we see in Fig. 9 8 

that our current ability to allocate those N2O emissions spatially around the globe is in fact 9 

severely limited relative to the 4° × 5° model resolution used here – and this is true for the 10 

airborne as well as the ground-based datasets.  11 

Based on the same stochastic approach used above to calculate the inverse Hessian, we can 12 

also calculate the averaging kernel of the inversion. Because tThe averaging kernel is a 13 

measures of the sensitivity of the inversion results in a particular location to emissions in 14 

eachany given grid square; , we can thus use it to determine how well emissions in a given 15 

location can be independently resolved from emissions in other locationselsewhere. If 16 

emissions in one location are completely resolved from those in other grid boxes, the 17 

averaging kernel value will be 1.0 in that location and 0 everywhere else. Here, we calculate 18 

the averaging kernel rows (based on the surface observations only) for a selected group of 19 

locations in key emission regions that vary in their proximity to N2O measurement sites.  20 

Figure 10 shows the results for four locations: the KCMP Tall Tower (MN, USA; 44.68° N, 21 

93.07 W), Hegyhátsál (Hungary; 46.95° N, 16.65° E), East China (30.0° N, 115.0° E), and the 22 

Democratic Republic of Congo (2.0° N, 30.0° E). KCMP features continuous observations, 23 

and we see that emissions in this model grid cell can be constrained independently (averaging 24 

kernel value near 1.0, and near 0.0 elsewhere) from those in other places. Significant 25 

constraints are achieved at Hegyhátsál (averaging kernel value ~0.3), where weekly flask 26 

observations are available, though some spatial smearing is apparent. Weaker constraints 27 

(averaging kernel values up to ~0.03) are achieved in the vicinity of the East China grid box, 28 

likely provided by downwind observations in Korea and the western Pacific. 29 

Averaging kernel values for the Central Africa location are very low (~10
-3

), indicating little 30 

to no constraint on the source flux, and are also highly smeared spatially, showing that the 31 



 

 

29 

current surface observations of N2O do not allow emissions in that region to be independently 1 

resolved from emissions elsewhere across the globe. We see in Fig. 10 that this spatial 2 

smearing even extends to the midlatitudes in both hemispheres. Emissions in the 3 

underconstrained tropics thus risk being conflated with those in other, distant source regions 4 

in global inversion analyses.  5 

The implications of this current lack of constraints on tropical N2O emissions can be seen in a 6 

sample global inversion based on real atmospheric data. Figure 11 shows a posteriori emission 7 

scaling factors for global inversions based on two different assumptions: the first uses our 8 

previous construction of the a priori error covariance matrix (100% uncertainty with 9 

horizontal correlation length scales of 500 km over land and 1000 km over ocean); the other 10 

does not include any penalty term (measuring the departure from a priori conditions) in the 11 

cost function. When a priori constraints are included, the solution is relatively spatially 12 

smooth. To correct for a low bias in our a priori emissions inventory, emissions increase 13 

throughout those terrestrial and oceanic regions where emissions occur, with a slightly higher 14 

inferred flux over South America. Conversely, when we eliminate the a priori constraint, 15 

emissions increase strongly in the tropics and Southern Hemisphere, reaching a factor of 10 16 

(the upper bound placed on the scaling factors) in South America near the beginning of the 17 

two-year simulation. To compensate for this, the inferred emissions throughout the Northern 18 

Hemisphere decrease dramatically.  19 

This severe sensitivity of the solution to the a priori error assumption reflects the ill-posed 20 

nature of the problem. It also highlights the fact that, because the global N2O flux is 21 

constrained (as the N2O lifetime and atmospheric burden are reasonably well-known), the lack 22 

of constraint on tropical emissions has important implications for understanding emissions 23 

elsewhere in the world.  24 

5.5 Identifying priority locations for future N2O measurements  25 

In this section, we apply the error reduction statistics derived above to identify priority regions 26 

where new observations are likely to have high value for improving present understanding of 27 

global N2O sources. To that end, we carry out forward model simulations in which N2O 28 

emissions in the first month are scaled by (1 - x), where x is the spatial map of relative error 29 

reductions achieved in the inversion on the basis of the surface observations (e.g., Fig. 9). The 30 
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initial atmospheric burden of N2O is set to zero, as are the emissions in subsequent months.  1 

The resulting atmospheric N2O then reflects unconstrained emissions, and the distribution of 2 

that ‘unconstrained N2O’ in space and time shows where new observations are needed to 3 

quantify those emissions in a spatially explicit way. 4 

Figure 12 shows the distribution of unconstrained N2O mapped in the first and the second 5 

month following its emission. Results are shown for simulations starting in August 2010 and 6 

February 2011; these months were chosen to illustrate how seasonal differences in horizontal 7 

and vertical transport affect the atmospheric dispersion of underconstrained N2O emissions. In 8 

August, unconstrained mixing ratios above 1 ppb can be found throughout Southeast Asia, 9 

Central Africa, and South America, with the highest concentrations occurring over Brazil and 10 

off the western coasts of Africa and South America. Somewhat elevated concentrations (0.5-1 11 

ppb) persist in these locations for the second month of the simulation, but these become well-12 

dispersed in the following months (not shown). Unconstrained N2O emitted in August is 13 

initially concentrated in the lower troposphere in the tropics and northern midlatitudes, but is 14 

lofted through the tropical troposphere by September. In contrast, unconstrained N2O emitted 15 

in February is more strongly confined to the lower troposphere and the Northern Hemisphere, 16 

even a month after emission. 17 

The maps in Fig. 12 rely by necessity on a particular a priori estimate of N2O emissions and 18 

their distribution in space and time. However, they nonetheless provide an assessment of 19 

where additional measurements would have the best leverage for improving N2O emission 20 

estimates, based on our existing bottom-up understanding of when and where those emissions 21 

occur. We see in the maps that areas over or downwind of the tropics and East Asia should 22 

receive the highest measurement priority to reduce uncertainty in the overall N2O budget. As 23 

shown earlier, downwind surface observations can provide some spatially explicit emission 24 

constraints for regions with high fluxes; these may be the only feasible option for places 25 

where access, infrastructure, or political issues prevent sustained local measurements. We 26 

note that additional N2O measurements are now available in and around Japan (Saikawa et al., 27 

2013) that may provide additional constraints on East Asian emissions not achieved using the 28 

measurements presented here. In addition, aircraft measurements during the July-September 29 

timeframe should have strong value for constraining fluxes in the tropics, given the lofting 30 

and dispersal of those emissions that is apparent in the August 2010 simulation. The value of 31 
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Ssuch measurements was also pointed out by Kort et al. (2011), who reported may be 1 

particularly useful for N2O given the observational evidence for lofting of large, episodic 2 

tropical emissions in the tropics (Kort et al., 2011). On the other hand, Fig. 12 also reveals 3 

large areas of the world’s oceans where additional surface measurements are not likely to 4 

provide appreciable new insights into the global N2O budget, given the lack of unconstrained 5 

N2O that is less than 1-2 months from emission.  6 

 7 

6 Summary and conclusions 8 

We developed a new inversion framework based on the GEOS-Chem model and its adjoint 9 

for estimating global N2O emissions and stratospheric loss rates using surface (combined 10 

flask; and in-situ) as well as airborne (CARIBIC; HIPPO) measurements. We used this 11 

framework to: i) quantify the ability of the current observing network to constrain the global 12 

distribution of N2O sources and sinks; ii) assess the relative utility of the various observing 13 

platforms for doing so; and iii) identify priority locations where measurements are most 14 

needed to improve present understanding of the N2O budget. Our simulation period runs from 15 

April 2010 to April 2012, with initial conditions constructed using surface flask observations 16 

and vertical profile measurements from the MLS satellite sensor.  17 

Observing system simulation experiments (OSSEs) showed that the surface and HIPPO 18 

observations can accurately resolve a uniform bias in N2O emissions for the first year of a 19 

two-year simulation; in comparison, the sparser (and mostly high altitude) CARIBIC 20 

observations provide a weaker constraint. All three datasets are able to independently resolve 21 

the global surface flux to within 5% of the truth. On the other hand, a seasonal emission bias 22 

is much more difficult to resolve given the long lifetime of N2O, particularly in regions with 23 

sparse observations. The surface observations do provide a reduction of seasonal emission 24 

errors in the vicinity of measurement sites and in large source regions upwind. 25 

The surface and airborne datasets are all able to resolve a global bias in the stratospheric loss 26 

rate of N2O given known emissions, but do not give information on the spatial and temporal 27 

distribution of that sink. For the more realistic scenario with uncertain N2O sources and sink, 28 

we find that resolving the two in a joint source-sink inversion would require greater 29 

confidence in modeled transport than is currently warranted. Nevertheless, because of the 30 
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timescale for stratosphere-troposphere mixing, N2O source inversions are insensitive to 1 

uncertainties in the chemical sink of N2O on the 2 year analysis time frame used here (and 2 

assuming an accurate initial state; e.g. from interpolated data). However, a simple box model 3 

analysis shows that tropospheric N2O is more sensitive to uncertainties in the rate of 4 

stratosphere-troposphere exchange (STE) than to those in the chemical loss rates for analysis 5 

timescales up to ~3-4 years. Incomplete knowledge of STE rates will thus be a key source of 6 

uncertainty to address for N2O source inversions on these timescales.  7 

We employed a stochastic estimate of the inverse Hessian to quantify the spatial resolution of 8 

N2O emission constraints afforded by the current global network of observations, and the 9 

degree to which emissions in a particular location can be distinguished from those elsewhere. 10 

Significant location-specific constraints are achieved in grid boxes near and immediately 11 

upwind of surface observation locations; however, these are mainly confined to North 12 

America, Europe and Australia. For sites with continuous surface observations, local 13 

emissions can be unambiguously resolved from those in surrounding locations, as indicated 14 

by large error reductions and averaging kernel (AK) values close to 1.0. Flask observations 15 

also provide significant local-to-regional constraints (e.g., AK values of ~0.3 at a site with 16 

weekly measurements). HIPPO observations primarily provide emission constraints for the 17 

Central US and East Asia. Critically, little to no spatial information on tropical emissions is 18 

provided by either set of observations: the corresponding AKs are highly smeared spatially 19 

and show that emissions in many parts of the tropics cannot even be resolved from those in 20 

the midlatitudes. For global inversions, this underconstraint in the tropics can thus lead to 21 

large errors in the inferred N2O fluxes for the extratropics as well as the tropics themselves.  22 

From the atmospheric distribution of ‘unconstrained N2O’ simulated based on the error 23 

reduction statistics achieved in the inversion and our a priori source estimates, we identify 24 

areas in the tropics and East Asia as the highest priorities for new N2O measurements to 25 

advance understanding of the global budget. In situ or flask observations downwind of major 26 

sources in South America, Central Africa, and East Asia can provide some spatial information 27 

on N2O fluxes in cases where local, long-term measurements are impractical. Targeted aircraft 28 

measurements in the troposphere could also provide much-needed constraints on tropical 29 

emission fluxes, particularly during July-September when emissions are well-lofted vertically. 30 
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From our analysis it is clear that additional measurements are crucial to obtaining a more 1 

complete picture of global N2O sources, particularly in the key areas mentioned above.  In this 2 

context, we will further investigate the use of efficient randomization techniques to estimate 3 

the spatiotemporal constraints provided by new and existing N2O measurements, and design 4 

optimal dimension approaches for N2O source inversions. Such work could also include an 5 

evaluation of information provided by new N2O retrievals from AIRS (Xiong et al., 2014) and 6 

other space-based infrared sounders. While the vertical sensitivity of such instruments may be 7 

insufficient to derive useful direct information on surface emissions, such data could be useful 8 

for constraining the N2O profile and its stratosphere-troposphere exchange (thus indirectly 9 

improving our ability to diagnose sources). The fact that the current observing system yields 10 

little information on the space-time distribution of N2O fluxes over large parts of the world 11 

also speaks to the need for process-based emission models that can provide a priori source 12 

estimates that faithfully capture the key modes of variability. Such models are also needed to 13 

project how soil N2O fluxes will respond to future changes in climate, hydrology, and 14 

nitrogen deposition and runoff.  15 
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The N2O version of the GEOS-Chem adjoint code is available via the GEOS-Chem adjoint 1 

repository. Instructions for obtaining access to the code can be found at 2 

wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint. 3 
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 1 

Table 1. N2O emissions in the a priori database and their global annual totals. 2 

Sector IPCC code Global annual source (Tg N yr
-1

) 

Agricultural soil
a
 4C+4D 3.97 

Indirect emissions from agriculture
a
 4D3 0.57 

Energy manufacturing 

transformation
a
 

1A1+1A2+1B1b 0.21 

Non-road transportation
a
 1A3a+c+d+e 5.0E-2 

Road transportation
a
 1A3b 0.14 

Oil production and refineries
a
 1B2a 4.2E-3 

Industrial process and product use
a
 2 0.85 

Fossil fuel fires
a
 7A 4.8E-4 

Manure management
a
 4B 0.21 

Residential
a
 1A4 0.18 

Waste solid and waste water
a
 6 0.24 

Indirect N2O from NOx and NH3
a
 7B+7C 0.45 

Total anthropogenic
a
  6.9 

Total natural soil
b
  3.2 

Total biomass burning
c
  0.6 

Total net ocean
d
  3.5 

a
 From EDGARv4.2 for 2008 3 

b
 From EDGARv2 for 1990 4 

c
 From GFEDv3 (van der Werf et al., 2010) 5 

d
 From Jin and Gruber (2003) 6 

7 
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Table 2. Sites of surface flask and in situ N2O observations used in this study 1 

Location Latitude Longitude Network
a
 Measurement 

type 

Measurement 

scale 

Arrival Heights, 

Antarctica 

-77.80 166.67 NIWA     Flask NOAA 

2006A 

Alert, Nunavut, 

Canada 

82.45 -62.51 CCGG Flask NOAA 

2006A 

Argyle, Maine, USA 45.04 -68.68 CCGG Flask NOAA 

2006A 

Ascension Island -7.97 -14.40 CCGG      Flask NOAA 

2006A 

Assekrem, Algeria 23.26 5.63 CCGG Flask NOAA 

2006A 

Tereceira Island, 

Azores 

38.77 -27.38 CCGG Flask NOAA 

2006A 

Baltic Sea, Poland 55.35 17.22 CCGG Flask NOAA 

2006A 

Boulder Atmospheric 

Observatory, 

Colorado, USA 

40.05 -105.00 CCGG Flask NOAA 

2006A 

Baring Head, New 

Zealand 

-41.41 174.87 CCGG Flask NOAA 

2006A 

Bukit Kototabang, 

Indonesia 

-0.20 100.32 CCGG Flask NOAA 

2006A 

St. David’s Head, 

Bermuda 

32.37 -64.65 CCGG Flask NOAA 

2006A 

Tudor Hill, Bermuda 32.27 -64.88 CCGG Flask NOAA 
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2006A 

Barrow, Alaska, USA 71.32 -156.61 CCGG, CATS Flask, in situ NOAA 

2006A 

Black Sea, Constanta, 

Romania 

44.18 28.67 CCGG Flask NOAA 

2006A 

Cold Bay, Alaska, 

USA 

55.21 -162.72 CCGG Flask NOAA 

2006A 

Cape Ferguson, 

Australia 

-19.28 147.05 CSIRO Flask NOAA 

2006A 

Cape Grim, 

Tasmania, Australia 

-40.68 144.69 CCGG, 

AGAGE 

Flask, in situ NOAA 

2006A, SIO-

98 

Churchill, Manitoba, 

Canada 

58.75 -94.07 EC Flask NOAA 2006 

Christmas Island 1.70 -157.15 CCGG Flask NOAA 

2006A 

Cape Rama, India 15.08 73.83 CSIRO Flask NOAA 

2006A 

Crozet Island -46.43 51.85 CCGG Flask NOAA 

2006A 

Casey Station, 

Antarctica 

-66.28 110.53 CSIRO Flask NOAA 

2006A 

Drake Passage -59.00 -64.69 CCGG Flask NOAA 

2006A 

Easter Island -27.16 -109.43 CCGG Flask NOAA 

2006A 

Estevan Point, British 

Columbia, Canada 

49.38 -126.55 EC Flask NOAA 2006 
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East Trout Lake, 

Saskatchewan, 

Canada 

54.33 -104.98 EC Flask NOAA 2006 

Fraserdale, Ontario, 

Canada 

49.88 -81.57 EC Flask NOAA 2006 

Mariana Islands, 

Guam 

13.39 144.66 CCGG Flask NOAA 

2006A 

Gunn Point, Australia -12.25 131.05 CSIRO Flask NOAA 

2006A 

Halley Station, 

Antarctica 

-75.61 -26.21 CCGG Flask NOAA 

2006A 

Hohenpeissenberg, 

Germany 

47.80 11.02 CCGG Flask NOAA 

2006A 

Hegyhátsál, Hungary 46.95 16.65 CCGG Flask NOAA 

2006A 

Stórhofdi, 

Vestmannaeyjar, 

Iceland 

63.40 -20.29 CCGG Flask NOAA 

2006A 

Izaña, Tenerife, 

Canary Islands 

28.31 -16.50 CCGG Flask NOAA 

2006A 

Jungfraujoch, 

Switzerland 

46.55 7.99 AGAGE In situ SIO-98 

Key Biscayne, 

Florida, USA 

25.67 -80.16 CCGG Flask NOAA 

2006A 

Cape Kumukahi, 

Hawaii, USA 

19.52 -154.82 CCGG Flask NOAA 

2006A 

Park Falls, 

Wisconsin, USA 

45.95 -90.27 CCGG Flask NOAA 

2006A 
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Lac La Biche, 

Alberta, Canada 

54.95 -112.45 CCGG Flask NOAA 

2006A 

Lulin, Taiwan 23.47 120.87 CCGG Flask NOAA 

2006A 

Lampedusa, Italy 35.52 12.62 CCGG Flask NOAA 

2006A 

Mawson Station, 

Antarctica 

-67.62 62.87 CSIRO Flask NOAA 

2006A 

Mace Head, Ireland 53.33 -9.90 CCGG, 

AGAGE 

Flask, in situ NOAA 

2006A, SIO-

98 

Sand Island, Midway 

Islands 

28.21 -177.38 CCGG Flask NOAA 

2006A 

Mt. Kenya, Kenya -0.06 37.30 CCGG Flask NOAA 

2006A 

Mauna Loa, Hawaii, 

USA 

19.54 -155.58 CCGG, CATS Flask, in situ NOAA 

2006A, 

NOAA 

2006A 

Macquarie Island, 

Australia 

-54.48 158.97 CSIRO Flask NOAA 

2006A 

Gobabeb, Namibia -23.58 15.03 CCGG Flask NOAA 

2006A 

Niwot Ridge, 

Colorado, USA 

40.05 -105.55 CCGG, CATS Flask, in situ NOAA 

2006A, 

NOAA 

2006A 

Ochsenkopf, 50.03 11.81 CCGG Flask NOAA 
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Germany 2006A 

Pallas-

Sammaltunturi, 

Finland 

67.97 24.12 CCGG Flask NOAA 

2006A 

Pacific Ocean, 

Equator 

0.00 -155.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 5 N 5.00 -151.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 10 N 10.00 -149.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 15 N 15.00 -145.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 20 N 20.00 -141.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 25 N 25.00 -139.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 30 N 30.00 -135.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 5 S -5.00 -159.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 10 S -10.00 -161.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 15 S -15.00 -171.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 20 S -20.00 -174.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 25 S -25.00 -171.00 CCGG Flask NOAA 

2006A 
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Pacific Ocean, 30 S -30.00 -176.00 CCGG Flask NOAA 

2006A 

Pacific Ocean, 35 S -35.00 180.00 CCGG Flask NOAA 

2006A 

Palmer Station, 

Antarctica 

-64.92 -64.00 CCGG Flask NOAA 

2006A 

Point Arena, 

California, USA 

38.96 -123.74 CCGG Flask NOAA 

2006A 

Ragged Point, 

Barbados 

13.17 -59.43 CCGG, 

AGAGE 

Flask, in situ NOAA 

2006A, SIO-

98 

Beech Island, South 

Carolina, USA 

33.41 -81.83 CCGG Flask NOAA 

2006A 

Mahe Island, 

Seychelles 

-4.68 55.53 CCGG Flask NOAA 

2006A 

Sable Island, Nova 

Scotia, Canada 

43.93 -60.02 EC Flask NOAA 2006 

Southern Great 

Plains, Oklahoma, 

USA 

36.61 -97.49 CCGG Flask NOAA 

2006A 

Shemya Island, 

Alaska, USA 

52.71 174.13 CCGG Flask NOAA 

2006A 

Tutuila, American 

Samoa 

-14.25 -170.56 CCGG, CATS Flask, in situ NOAA 

2006A, 

NOAA 

2006A 

South Pole, 

Antarctica 

-89.98 -24.80 CCGG, CATS Flask, in situ NOAA 

2006A, 
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NOAA 

2006A 

Schauinsland, 

Germany 

47.92 7.92 AGAGE In situ SIO-98 

Sutro Tower, 

California, USA 

37.76 -122.45 CCGG Flask NOAA 

2006A 

Summit, Greenland 72.60 -38.42 CCGG, CATS Flask, in situ NOAA 

2006A, 

NOAA 

2006A 

Syowa Station, 

Antarctica 

-69.01 39.59 CCGG Flask NOAA 

2006A 

Tae-ahn Peninsula, 

Korea 

36.74 126.13 CCGG Flask NOAA 

2006A 

Tierra Del Fuego, 

Argentina 

-54.85 -68.31 CCGG Flask NOAA 

2006A 

KCMP Tall Tower, 

Minnesota, USA 

44.68 -93.07  In situ NOAA 

2006A 

Trinidad Head, 

California, USA 

41.05 -124.15 CCGG, 

AGAGE 

Flask, in situ NOAA 

2006A, SIO-

98 

Wendover, Utah, 

USA 

39.90 -113.72 CCGG Flask NOAA 

2006A 

Ulaan Uul, Mongolia 44.45 111.10 CCGG Flask NOAA 

2006A 

West Branch, Iowa, 

USA 

41.73 -91.35 CCGG Flask NOAA 

2006A 

Walnut Grove, 38.27 -121.49 CCGG Flask NOAA 
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California, USA 2006A 

WIS Station, Negev, 

Desert, Israel 

30.86 34.78 CCGG Flask NOAA 

2006A 

Moody, Texas, USA 31.32 -97.33 CCGG Flask NOAA 

2006A 

Mt. Waliguan, China 36.29 100.90 CCGG Flask NOAA 

2006A 

Western Pacific 

Cruise 

-30.00 to 

30.00  

136.80 to 

168.00 

CCGG Flask NOAA 

2006A 

Ny-Ǻlesund, 

Svalbard, Norway 

78.91 11.89 CCGG Flask NOAA 

2006A 

a 
CCGG: NOAA Carbon Cycle and Greenhouse Gases program; EC: Environment Canada; 1 

NIWA: National Institute of Water and Atmospheric research; CATS: NOAA Chromatograph 2 

for Atmospheric Trace Species; AGAGE: Advanced Global Atmospheric Gases Experiment.  3 
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Table 3. Global annual N2O a posteriori source for all pseudo observation tests 1 

Observations State vector Initial bias A posteriori flux (Tg 

N yr
-1

)
a
 

A posteriori sink 

(Tg N yr
-1

)
b
 

Surface Emissions 0.5, 1.5 14.16, 14.25 -- 

CARIBIC Emissions 0.5, 1.5 13.82, 14.72 -- 

HIPPO Emissions 0.5, 1.5 14.12, 14.27 -- 

Surface Emissions + Strat 

loss frequencies 

0.5, 1.5 14.04, 14.84 7.73, 24.91 

CARIBIC Emissions + Strat 

loss frequencies 

0.5, 1.5 13.63, 15.40 6.13, 19.72 

HIPPO Emissions + Strat 

loss frequencies 

0.5, 1.5 14.00, 14.74 7.65, 22.60 

Surface Strat loss 

frequencies 

0.5, 1.5  12.02, 12.93 

CARIBIC Strat loss 

frequencies 

0.5, 1.5  10.09, 14.66 

HIPPO Strat loss 

frequencies 

0.5, 1.5  10.60, 13.99 

CARIBIC (no 

transport error) 

Emissions + strat 

loss frequencies 

0.5 14.16 9.94 

HIPPO (no 

transport error) 

Emissions + strat 

loss frequencies 

0.5 14.14 11.39 

CARIBIC (no 

transport error) 

Strat loss 

frequencies 

0.5  11.57 

HIPPO (no 

transport error) 

Strat loss 

frequencies 

0.5  12.03 

Surface Emissions Seasonal 13.63  
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CARIBIC Emissions Seasonal 13.59  

HIPPO Emissions Seasonal 13.44  

a
 True model flux is 14.16 Tg N yr

-1
 1 

b
 True model stratospheric sink is 12.1 Tg N yr

-1 
2 

 
3 

 4 

 5 

Figure 1. Mean annual N2O fluxes from soils, industrial activities, biomass burning, and ocean 6 

exchange in the GEOS-Chem a priori simulation. 7 

 8 

 9 
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 1 

Figure 2. Initial model N2O field for March 2010. Shown are the (A) tropospheric N2O mixing 2 

ratios, and (B) zonal mixing ratio cross-section. 3 

 4 

 5 
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 1 

Figure 3. Global observing network for atmospheric N2O. Shown are the locations of (A) 2 

surface observations, (B) CARIBIC aircraft observations, and (C) HIPPO aircraft 3 

observations. The CARIBIC and HIPPO flights are shaded by the pressure at which the 4 

observations were made. Color scales differ between panels (B) and (C) to show the range of 5 

vertical levels samplinged in each case. 6 

 7 
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 1 

Figure 4. Pseudo observation test optimizing N2O emissions on the basis of surface 2 

observations. Shown are a posteriori emission scaling factors using an a priori guess of either 3 

(A) 0.5 or (B) 1.5, where the true value is 1.0. Results are shown for April 2010 (month 1 of 4 

the inversion window), November 2010 (month 8), July 2011 (month 16), and March 2012 5 

(month 24). 6 

 7 

 8 
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 1 

Figure 5. Pseudo observation tests optimizing N2O emissions. Shown are zonally-integrated 2 

annual emissions for the first year of the simulation (April 2010 – March 2011) starting with 3 

an a priori scaling factor of (A) 0.5 and (B) 1.5, where the true value is 1.0. Actual model 4 

emissions are shown in black, model emissions scaled by the a priori guess are shown in red, 5 

and a posteriori emissions obtained using surface data, CARIBIC data, and HIPPO data are 6 

shown in green, blue, and yellow, respectively. 7 
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 1 

Figure 6. Pseudo observation tests optimizing N2O stratospheric loss frequencies. Shown are a 2 

posteriori scaling factors (SF) for stratospheric loss frequencies in each of eight equal latitude 3 

bands for pseudo observation tests in which we optimize solely the stratospheric loss 4 

frequencies (left panels) or the emissions and stratospheric loss frequencies jointly (right 5 

panels). The latitude range of each band is indicated in the upper right hand corner of each 6 

panel. The true model value (1.0) is indicated by the black dashed line; each test started with a 7 

priori SF of 0.5 for each latitude band. Results obtained using surface data, CARIBIC data, 8 

and HIPPO data are shown in green, blue, and yellow, respectively.  9 

 10 

 11 
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 1 

Figure 7. Results from a 2-box model illustrating the sensitivity of the tropospheric N2O 2 

burden (and hence source inversions) to the N2O stratospheric loss rate and to the rate of 3 

stratosphere-troposphere exchange. Shown are the relative perturbations to the tropospheric 4 

(black lines) and stratospheric (red lines) N2O burdens resulting from: a 20% change in the 5 

N2O stratospheric loss frequency (Perturb kchem, solid lines); a 20% change in the rate of 6 

stratosphere-troposphere exchange (Perturb kST, and kTS, dashed lines); and a 20% change in 7 

emissions (Perturb emissions, dotted lines). The top panel shows results over a 400-year 8 

timescale, while the bottom panel shows  the initial 4 years. 9 
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 1 

Figure 8. Resolving seasonal emission biases. The panels show the results from an OSSE in 2 

which a seasonally-dependent a priori emission bias is applied and we test the ability of the 3 

inversion to recover the true model fluxes. Results are shown for a site with continuous 4 

observations (KCMP Tall Tower), a site with ~weekly flask observations (Hegyhátsál, 5 

Hungary), a site with routine flask measurements ~1000 km downwind (East China), and a 6 

remote site in the Democratic Republic of Congo (DR Congo). The a priori (red), a posteriori 7 

(green) and true model fluxes (black) are plotted for the first year of the simulation (April 8 

2010 – March 2011), with the a priori guess for soil emissions biased high in the first half of 9 

the inversion period (1.5×; March – August) and biased low in the second half (0.5×; 10 

September – February).  11 

 12 
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 1 

Figure 9. Error reduction (%) in N2O emissions achievable in selected months using surface 2 

(A), CARIBIC (B), and HIPPO (C and D) measurements. An inset shows regional detail for 3 

the CARIBIC results. The relative error reduction is calculated based on a stochastic estimate 4 

of the inverse Hessian of the cost function for the inversion, and represents the ability of the 5 

observing system to remove a random emission error for each given location in the absence of 6 

any large-scale source bias.  7 

 8 
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 1 

Figure 10. Rows of the averaging kernel for the inversion of N2O emissions based on surface 2 

observations. The results indicate how well emissions in a particular location can be resolved 3 

from emissions elsewhere, and are shown for four example sites: (A) KCMP tall tower, (B) 4 

Hegyhátsál, Hungary, (C) a grid cell in East China, and (D) a grid cell in the Democratic 5 

Republic of Congo. Insets show regional detail for the first two sites. KCMP is a site with 6 

continuous observations, Hegyhátsál is a site with ~weekly flask observations, the East China 7 

site is a location with flask observations ~1000 km downwind, and the Congo site is a remote 8 

location. 9 

 10 

 11 

 12 
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 1 

Figure 11. Inversion of N2O emissions based on real surface observations. A posteriori 2 

emission scaling factors are shown for two different prior error assumptions: (A) 100% a 3 

priori error and horizontal covariance length scales of 500 and 1000 km for land and ocean 4 

emissions, respectively; and (B) no penalty term in the cost function.  5 
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 1 

Figure 12. Distribution of unconstrained N2O simulated by GEOS-Chem during the month of 2 

emission (August 2010 and February 2011) and the subsequent month. Unconstrained 3 

concentrations are calculated by scaling emissions for a particular month by (1 - x), where x is 4 

the map of emission error reductions achieved using surface observations of N2O. The initial 5 

atmospheric burden of N2O and the emissions in the ensuing months are set to zero in order to 6 

highlight the spatial dispersal of unconstrained N2O. Note nonlinear color scales.   7 


