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Abstract 22 

To improve short-term particulate matter (PM) forecasts in South Korea, the initial 23 

distribution of PM composition, particularly over the upwind regions, is primarily important. 24 

To prepare the initial PM composition, the aerosol optical depth (AOD) data retrieved from a 25 

geostationary equatorial orbit (GEO) satellite sensor, GOCI (Geostationary Ocean Color 26 

Imager) which covers Northeast Asia (113°E–146°E; 25°N–47°N), were used. Although 27 

GOCI can provide a higher number of AOD data in a semi-continuous manner than low Earth 28 

orbit (LEO) satellite sensors, it still has a serious limitation in that the AOD data are not 29 

available at cloud pixels and over high-reflectance areas, such as desert and snow-covered 30 

regions. To overcome this limitation, a spatio-temporal (ST) kriging method was used to 31 

better prepare the initial AOD distributions that were converted into the PM composition over 32 

Northeast Asia. One of the largest advantages in using the ST-kriging method in this study is 33 

that more observed AOD data can be used to prepare the best initial AOD fields compared 34 

with other methods that use single frame of observation data around the time of initialization. 35 

It is demonstrated in this study that the short-term PM forecast system developed with the 36 

application of the ST-kriging method can greatly improve PM10 predictions in Seoul 37 

Metropolitan Area (SMA), when evaluated with ground-based observations. For example, 38 

errors and biases of PM10 predictions decreased by ~60% and ~70%, respectively, during the 39 

first 6 h of short-term PM forecasting, compared with those without the initial PM 40 

composition. In addition, the influences of several factors on the performances of the short-41 

term PM forecast were explored in this study. The influences of the choices of the control 42 

variables on the PM chemical composition were also investigated with the composition data 43 

measured via PILS-IC and low air-volume sample instruments at a site near Seoul. To 44 
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improve the overall performances of the short-term PM forecast system, several future 45 

research directions were also discussed and suggested. 46 

Keywords: aerosol optical depth (AOD), short-term PM forecast, CMAQ model simulations, 47 

geostationary satellite, spatio-temporal kriging. 48 

 49 

1 Introduction 50 

It has been reported that there is a strong relationship between exposure to atmospheric 51 

particulate matter (PM) and human health (Brook et al., 2010; Brunekreef and Holgate, 2002; 52 

Pope and Dockery, 2006). PM has become a primary concern around the world, particularly 53 

in East Asia, where high PM pollution episodes have occurred frequently, mainly due to the 54 

large amounts of pollutant emissions from energetic economic activities. In an effort to 55 

understand the behaviors and characteristics of PM in East Asia, chemistry-transport models 56 

(CTMs) have played an important role in overcoming the spatial and temporal limitations of 57 

observations, and also enable policy makers to establish scientific implementation plans via 58 

making atmospheric regulations and policies. To improve the performance of the PM 59 

simulations, integrated air quality modeling systems that consist of CTMs, meteorological 60 

models, emissions, and data assimilation using ground- and satellite-borne measurements 61 

have been introduced (Al-Saadi et al., 2005; Park et al., 2011; Song et al., 2008). However, 62 

accurate simulations of PM distributions with CTMs have been challenging, because of many 63 

uncertainties from emission fluxes, meteorological fields, and chemical and physical 64 

parameterizations in the CTMs. For example, the Korean Ministry of Environment (MoE) has 65 

recently started to implement air quality forecasts for PM10, PM2.5 and ozone over the Seoul 66 

metropolitan area (SMA), the largest metropolitan area in South Korea. However, the 67 
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forecasting accuracy for high PM10 alert (81 to 120 μg m-3) in the current system has been low 68 

(< 60%) since 2013. Thus, urgent improvements in the PM10 predictions are necessary. 69 

In this context, an improved short-term PM forecast system was developed and introduced, 70 

based on an analogy to the system of numerical weather prediction (NWP). Figure 1(a) 71 

presents a flow diagram of an NWP in which regional meteorological modeling is conducted 72 

using two important inputs: (i) boundary conditions (BCs) from global meteorological models 73 

and (ii) initial conditions (ICs) prepared via data assimilation using ground-measured data and 74 

balloon-, ship-, aircraft-, and/or satellite-borne measurements. In contrast, conventional 75 

chemical weather forecast (CWF) (e.g., forecasts for ozone and PM) has been carried out only 76 

using meteorological fields and pollutant emissions (Fig. 1(b)). In the short-term PM forecast 77 

system proposed here (Fig. 1(c)), one more input is added to the conventional CWF system: 78 

the initial distribution of PM composition. To prepare the initial PM composition, a scheme 79 

that uses geostationary satellite-derived aerosol optical depths (AODs), is developed in this 80 

study. Similarly, the BCs for the CTM runs are obtained from global CTM simulations. 81 

In the improved CWF system, AOD data retrieved from low Earth orbit (LEO) satellite 82 

sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle 83 

Imaging SpectroRadiometer (MISR) can be used to set up the ICs for the short-term PM 84 

forecast (Benedetti et al., 2009; Liu et al., 2011; Saide et al., 2013). While these AOD data 85 

have an advantage in spatial coverage compared with those obtained from point stations, the 86 

use of the LEO satellite-derived AODs has another limitation in acquiring continuous 87 

observations over a certain area due to the capabilities of the LEO sensors in their orbital 88 

periods and viewing swath widths.  89 

Such limitations in using LEO satellite observations can be overcome with the help of 90 

geostationary (GEO) satellite sensors providing semi-continuous observations over a specific 91 
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part of the Earth during the day (Fishman et al., 2012; Lahoz et al., 2011; Zoogman et al., 92 

2014). Recently, aerosol optical properties (AOPs) from the Geostationary Ocean Color 93 

Imager (GOCI) have become available. GOCI is the first multi-spectral ocean color sensor 94 

onboard the Communication, Ocean, and Meteorological Satellite (COMS), launched over 95 

Northeast Asia in 2010, providing semi-continuous AOD, single scattering albedo (SSA), and 96 

fine mode fraction (FMF) over a domain of Northeast Asia (Lee et al., 2010). With GOCI 97 

AOD data, a novel approach was developed to investigate transboundary PM pollution over 98 

Northeast Asia (Park et al., 2014a). 99 

In this study, we carried out hindcast studies (forecast studies with past data) to find the 100 

“best” method to improve the performance of the short-term PM forecasting using the GOCI 101 

AODs. To do this, we developed a model, Geostatistical Interpolation of Spatio-Temporal 102 

data for PM forecasting over Northeast Asia (GIST-PM-Asia) v1 that includes: (i) a spatio-103 

temporal kriging (ST-kriging) method to spatio-temporally combine the GOCI-derived AODs, 104 

(ii) “observation operators” to convert the CTM-simulated PM composition into AODs and 105 

vice versa, and (iii) selection of “control variables” (CVs) through which the distribution of 106 

AODs can be converted back into the distributions of the PM composition to be used as the 107 

ICs. The uses of the ST-kriging method, observation operators, and CVs are illustrated in Fig. 108 

1. The main advantages of using the ST-kriging method are discussed in detail in the main 109 

text. Several sensitivity studies were also conducted to improve the understanding of 110 

forecasting errors and biases in the short-term PM forecasting system developed. 111 

With these research objectives and methodology, this paper is organized as follows: the 112 

hindcast framework is first described in detail in Sect. 2. In Sect. 3, the hindcast results with 113 

various configurations are evaluated with ground-based observations during the high PM 114 
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episodes in SMA to find the “best” configuration for future short-term PM forecast. After that, 115 

a summary and conclusions are provided in Sect. 4. 116 

 117 

2 Methodology 118 

The initial aerosol composition was prepared using AOD data from both the GOCI sensor and 119 

CTM model simulations. For the CTM simulations, the Community Multi-scale Air Quality 120 

(CMAQ; ver. 5.0.1) model (Byun and Ching, 1999; Byun and Schere, 2006) together with the 121 

Weather Research and Forecast (WRF; ver. 3.5.1) (Skamarock and Klemp, 2008) were used. 122 

The ST-kriging method and 12 different combinations of observation operators and CVs were 123 

also used for preparing the distributions of the 3-D PM composition over the GOCI-covered 124 

domain. The CMAQ model simulations with the 12 different configurations were carried out 125 

and the performances were then tested against ground-measured AOD, PM10, and PM2.5 126 

composition. The details of these components are described in the following sections. 127 

2.1 Meteorological and chemistry-transport modeling 128 

The WRF model provided meteorological data with 15 km × 15 km horizontal grid spacing 129 

and 26 vertical layers extending up to 50 hPa. To obtain highly-resolved terrestrial input data, 130 

the topography height from NASA Shuttle Radar Topography Mission (SRTM) 3 arc-second 131 

database (http://dds.cr.usgs.gov/srtm/version2_1/SRTM3) and the land use information 132 

provided by Environmental Geographic Information Service (EGIS; http://egis.me.go.kr) 133 

were used. Initial and boundary meteorological conditions for the WRF simulation were 134 

provided by the National Centers for Environmental Protection (NCEP) final operational 135 

global tropospheric analyses (http://rda.ucar.edu/datasets/ds083.2). To improve 3-D 136 

temperature, winds and water vapor mixing, objective analysis was employed by 137 



7 

incorporating the NCEP ADP Global surface and upper air observation data. The 138 

meteorological fields were provided with 1-h temporal resolution, and were then converted 139 

into the input fields for the CMAQ model simulations by the Meteorology-Chemistry 140 

Interface Processor (MCIP; ver. 4.1) (Otte and Pleim, 2010). 141 

The CMAQ model is a chemistry-transport model that simulates the chemical fates and 142 

transport of gaseous and particulate pollutants. In this study, the CMAQ modeling covered 143 

Northeast Asia, from 92° to 149° E and 17° to 48° N, using 15 km × 15 km horizontal grid 144 

spacing (Fig. 2) with 14 terrain following σ-coordinates, from 1000 to 94 hPa. The 145 

configurations of the WRF model and CMAQ simulation used in this study are described in 146 

Table 1. 147 

Anthropogenic emission inputs were processed by Sparse Matrix Operator Kernel Emissions 148 

in Asia (SMOKE-Asia; ver. 1.2.1), which has been developed for processing anthropogenic 149 

emissions for Asia. Details of SMOKE-Asia were described in Woo et al. (2012). Biogenic 150 

emissions were prepared using the Model of Emission of Gases and Aerosol from Nature 151 

(MEGAN; ver. 2.0.4) (Guenther et al., 2006) with the MODIS-derived leaf area index 152 

(Myneni et al., 2002), MODIS land-cover data sets (Friedl et al., 2002), and the 153 

meteorological input data described above. For the consideration of biomass burning 154 

emissions, daily fire estimates provided by Fire Inventory from NCAR (FINN) were used 155 

(Wiedinmyer et al., 2011). Asian mineral dust emissions were not considered in this study. 156 

Thus, the periods for model evaluation were selected during periods when mineral dust events 157 

did not take place. 158 

To take full advantage of the AOD data sets intensively measured during the Distributed 159 

Regional Aerosol Gridded Observation Network in Asia (DRAGON-Asia) campaign, 160 

modeling episodes were chosen for the campaign period from 1 March to 31 May 2012. First, 161 
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background CMAQ model simulations were conducted for the 3-month DRAGON period 162 

with 10-day spin-up modeling. After this, initial conditions were prepared using the ST-163 

kriging method, observation operators and CVs via the combination of GOCI AODs with the 164 

background modeling AOD. Analysis was carried out for 12-h from 12:00 in local time (LT) 165 

on 10 selected high PM pollution days. Each hindcast hour is referred to be H+0 to H+12.  In 166 

this study we paid more attention to the performance of the first 12-h PM10 hindcast results, 167 

and the analysis of the hindcast results after 13 h is also discussed briefly in Sect. 3.3.  168 

In the hindcast analysis, different hindcast runs with 12 combinations of different observation 169 

operators and CVs were conducted, as discussed in Sect. 2.4 and 2.5. We selected 1 episode 170 

from March (28 March), 5 episodes from April (8, 9, 14, 17, and 23 April), and 4 episodes 171 

from May (6, 13, 15, and 16 May), 2012 for the analysis associated with three criteria of: (i) 172 

on the selected days the average PM10 from 12:00 to 18:00 LT was above 70 µg m-3 over 173 

SMA, (ii) on the selected days, the daily coverage of the GOCI AOD data was at least 20 % 174 

over the GOCI domain, and (iii) on the selected days, dust events were not recorded over 175 

South Korea according to the Korea Meteorological Administration (KMA). Additional 176 

hindcast runs were also conducted from 7 March 12:00 to 19 March 11:00 for evaluating the 177 

performances of the hindcast runs for less polluted episodes. In this study, we focused on 178 

SMA, because we were particularly interested in this area. However, the system introduced 179 

here can be applied to other areas inside the GOCI domain where surface PM observation 180 

data are available. 181 
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2.2 Observation data 182 

2.2.1 GOCI AOD 183 

As mentioned previously, GEO satellite sensors have important advantages compared with 184 

LEO satellite sensors, such as semi-continuously (with 1-h intervals) producing AOP data 185 

over a specific domain of interest. Despite this temporal advantage, it has been difficult for 186 

most GEO satellite sensors to produce accurate AOPs, because they have only one or two 187 

visible channels. In contrast, the GOCI instrument has six visible and two near-infrared 188 

channels, and can produce multi-spectral images eight times per day with a spatial resolution 189 

of approximately 500 m × 500 m with coverage of 2,500 km × 2,500 km, including part of 190 

Northeast China, the Korean peninsula, and Japan (Fig. 2). Using the 1-h resolved multi-191 

spectral radiance data from GOCI, the uncertainties of AOP retrievals can be dramatically 192 

reduced (Park et al., 2014a). The GOCI AOPs were retrieved with multi-channel algorithms 193 

that can provide hourly AOP data including AOD, FMF, and SSA at 550 nm (Choi et al., 194 

2015). Compared with the algorithms from two previous studies (Lee et al., 2010, 2012), the 195 

GloA2 algorithm uses an improved lookup table for retrieving the AOPs, using extensive 196 

observations from Aerosol Robotic Network (AERONET) and monthly surface reflectance 197 

observed from GOCI, and provides 1-h resolved AOP data at eight fixed times per day (from 198 

09:30 to 16:30 LT) with 6 km × 6 km spatial resolution. In this study, the AOD data from the 199 

GOCI AOPs were used (because the SSA and FMF data need further improvements) and also 200 

compared with collection-5.1 10 km MODIS aerosol products from the Aqua and Terra 201 

satellites (Levy et al., 2007; Remer et al., 2005) and collection-6 3 km MODIS aerosol 202 

products from the Aqua and Terra satellites (Munchak et al., 2013) to present the relative 203 

performances of GOCI AOD. The AERONET AOD data were also used for assessing the 204 

relative accuracy of the GOCI AODs. Figures 3(a), 3(b), and 3(c) show the scatter plot 205 
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analyses of three satellite-retrieved 10 km MODIS AODs, 3 km MODIS AODs, and GOCI 206 

AODs vs. AERONET level 2 AODs over the GOCI domain during the DRAGON-Asia 207 

campaign. All the satellite data were sampled within spatial and temporal differences of 3 km 208 

and 10 min from the AERONET observations. It should also be noted that the GOCI and 209 

MODIS data were compared with the AERONET data without the applications of kriging 210 

method. First, it was found that GOCI provided more frequent AOD data (N = 2276) than 211 

3km MODIS (N = 629) and that GOCI AODs data show comparable regression coefficient (R 212 

= 0.85), root mean square error (RMSE = 0.25), and mean bias (MB = -0.19), compared with 213 

3km MODIS data (R = 0.89; RMSE= 0.16; MB = 0.06). This indicates that the GOCI AOD 214 

data not only have comparable quality to the MODIS AOD data, but also provide a higher 215 

number of data over the GOCI domain. In Fig. 3(d), the daily spatial AOD percent coverages 216 

of the Aqua/Terra MODIS and GOCI sensors are compared. It was found that there are a large 217 

number of daily missing pixels in the observations of both satellite sensors (the average 218 

percent coverages of Aqua MODIS, Terra MODIS and GOCI AODs during the period were 219 

about 9%, 10%, and 29%, respectively). 220 

 221 

2.2.2 Ground-based observations 222 

AERONET is a global ground-based sunphotometer network managed by the NASA Goddard 223 

Space Flight Center, providing spectral AOPs including AOD, SSA, and particle size 224 

distributions, available at http://aeronet.gsfc.nasa.gov (Holben et al., 1998). To match the 225 

wavelength of GOCI AOD with AERONET AOD, the AOD data at 550 nm were calculated 226 

via interpolation, using AODs and Ångström exponent data between 440 and 870 nm from 227 

the DRAGON-Asia level 2.0 data. AOD data from 29 AERONET sites inside the GOCI 228 
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domain were used for validating GOCI and ST-kriging AOD products, and those from six 229 

AERONET sites in SMA were selected for evaluating the performance of hindcast AODs. 230 

To analyze hindcast surface aerosol concentrations, the PM10 observations provided by the 231 

National Ambient Air Monitoring System (NAMIS) network in South Korea were used. The 232 

NAMIS network, operated by the MoE has collected air pollutant concentrations of PM10 233 

measured by an automatic β-ray absorption method with a detection limit of 2 µg m-3 at 5-min 234 

intervals. We selected 58 NAMIS sites in SMA, the locations of which are shown in Fig. 2, 235 

and used 1-h averaged data for the analysis during the selected episodes. 236 

Ion concentrations of PM2.5 were also measured using a particle-into-liquid sampler coupled 237 

with ion chromatography (PILS-IC) and a low air-volume sampler with a Teflon filter in 238 

Yongin City, located downwind of Seoul (Fig. 2). Details on the measurement methods are 239 

described in Lee et al. (2015) and are not repeated here. One-hour averaged sulfate (SO4
2-), 240 

nitrate (NO3
-), and ammonium (NH4

+) concentrations, measured by the PILS-IC, and 24-h 241 

averaged SO4
2-, NO3

-, NH4
+, organic carbon (OC), and elementary carbon (EC), measured by 242 

the low air-volume sampler, were used for further comparison during the selected episodes 243 

(Sect. 3.4). The observed OC concentrations were multiplied by a factor of 1.5, to estimate 244 

organic aerosols (OAs) concentrations (He et al., 2011; Huang et al., 2010). 245 

 246 

2.3 Spatio-temporal kriging 247 

Kriging is a geostatistical interpolation method to estimate unmeasured variables and their 248 

uncertainties, using correlation structure of measured variables. An atmospheric application 249 

study of the kriging method to estimating PM10 exceedance days over Europe reported that 250 
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ST-kriging showed comparable performances to those of the EnKF approach (Denby et al., 251 

2008). 252 

In this study, the ST-kriging method was used to fill out the missing pixels (Fig. 3(d)) with 253 

the spatial and temporal GOCI AOD data. The AOD fields produced by ST-kriging can be 254 

prepared with a horizontal resolution of 15 km × 15 km from 10:00 LT to 16:00 LT over the 255 

GOCI domain. In this study, the AOD data at 12:00 LT (H+0) during the selected episode 256 

days were used for preparing the initial conditions. The details and general application of the 257 

ST-kriging method are presented in Appendix A. One advantage of using ST-kriging in this 258 

study framework is to use large numbers of observational data (GOCI AODs), compared with 259 

other methods. In fact, the GOCI AOD data are densely available temporally (with 1-h 260 

intervals) and spatially (compared with MODIS AODs; see Figs. 3(a) and 3(b)). This was the 261 

primary reason for using the ST-kriging method in this study. For example, when initial AOD 262 

fields were prepared at a certain time (e.g., at noon, 12:00 LT: H+0), the ST-kriging method 263 

uses not only GOCI AOD data at 11:30 LT or 12:30 LT, but also GOCI AOD data at 09:30, 264 

10:30, and 13:30, unlike other methods. In the case of 4 April, 2012 (a high PM pollution 265 

episode during the DRAGON-Asia campaign), other interpolation methods (e.g., Cressman, 266 

bilinear, and nearest-neighbor methods) could use only the GOCI AOD data of ~88,000 for 267 

the preparation of the initial AOD field at 12:00 LT, whereas the ST-kriging method used the 268 

GOCI AOD data of ~280,000 (3 times more AOD data). Sequential data assimilation (DA) 269 

methods such as OI and 3DVAR can use the same number of observations as the ST-kriging 270 

method. However, they required four data assimilation step (i.e. 4-hour time window for DA) 271 

(Tang et al., 2015) to include observations from 09:30 to 13:30, thus greatly increasing the 272 

computational cost for daily assimilation. 273 
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If the observation data are densely available and the differences between the observations and 274 

model-simulated data are large (i.e., the model simulations include relatively large errors and 275 

biases), there is less “practical need” to use the CTM-simulated data in the process of data 276 

assimilation. That is, it would be more desirable if the values of the unobserved (missing) 277 

pixels could be filled in based on “more reliable” observation data (here, GOCI AODs). This 278 

would be particularly true, when the CTM-predicted AODs are systematically underestimated 279 

compared with GOCI or AERONET AODs (as will be shown in Fig. 5(a)). Additionally, 280 

computation costs of the ST-kriging method are so low that the ST-kriging AOD can be 281 

calculated rapidly. For example, the 1-day process for preparing the AOD fields over the 282 

GOCI domain takes only ~20 min with two 3.47 GHz Xeon X5690 6-core processors and 32 283 

gigabytes memory in the current application of the ST-kriging method. Thus, it can be applied 284 

directly to the daily CWF due to the relatively cheap computation cost. Again, computation 285 

time (rapid calculation) is a central issue in daily (short-term) chemical weather forecasts. The 286 

calculation of daily three-dimensional semivariogram takes most of the computation time 287 

(regarding the details of calculation of the daily three-dimensional semivariogram, refer to 288 

Appendix A and Fig. A1). 289 

Connected with these discussions, in the application of the ST-kriging method to the GOCI 290 

AODs, the “optimal number” of observation data is necessary to balance the accuracy of the 291 

data and the computational speed. From many sensitivity tests (not shown here), the optimal 292 

number of observations for most missing (white) pixels is approximately 100. That is, the use 293 

of more observation data above this optimum number does not meaningfully enhance the 294 

accuracy of AODs of the missing pixels, but simply takes more computation time. This 295 

number of observation data is usually available for the most of the missing (white) pixels of 296 

the GOCI scenes from nearby grids both/either at the concurrent scene spatially within ~100 297 
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km and/or at the temporally-close snapshots within 3-h. Based on these reasons, the 298 

ST-kriging method was chosen for this study. 299 

 300 

2.4 Observation operator  301 

An observation operator (or forward operator) describes the relation between observation data 302 

and model parameters. For example, the observation operator in this study converts the 303 

aerosol composition into AODs (and vice versa). Based on the aerosol composition and the 304 

relative humidity (RH) from the model simulations, simulated AODs at a wavelength of 550 305 

nm (τCMAQ) were calculated with the following observation operator: 306 


 


N

s

M

l
llslsdrysCMAQ HCRHf

1 1
,, ])[(          (1) 307 

where N and M denote the number of aerosol species (s) and model layer (l), respectively, 308 

αs,dry the mass extinction efficiency (MEE) of the species, (s) at 550 nm under the dry 309 

condition, fs(RHl) the hygroscopic enhancement factor for the species, (s) as a function of RH 310 

at the layer of l, [C]s,l the mass concentration of the species, (s) at the layer of l, and Hl the 311 

height of layer l. Here, [C]s,l is selected as the control variable (refer to Sect. 2.5). 312 

In this study, three observation operators were used for calculating AODs and updating initial 313 

PM composition for the hindcast studies. The differences in the observation operators are 314 

caused mainly by the differences in αs,dry and fs(RHl) of Eq. (1). The first observation operator 315 

was selected from Goddard Chemistry Aerosol Radiation and Transport (GOCART) model 316 

(Chin et al., 2002; hereafter GOCART operator). Hygroscopic growth rates for SO4
2-, OC, BC, 317 

and sea-salt aerosols were considered separately in this operator. The second observation 318 

operator was from the GEOS-Chem model (the GEOS-Chem operator). The detailed aerosol 319 
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speciation and MEE values were described in Martin et al. (2003). Final observation operator 320 

is based on the study of Malm and Hand (2007) (the IMPROVE operator). This observation 321 

operator was based on the reconstruction method with the MEEs and hygroscopic 322 

enhancement factors at 550 nm for different types of aerosol species. Table 2 summarizes the 323 

characteristics of the three observation operators chosen in this study. To consistently 324 

consider the characteristics of the three observation operators, aerosol types (s in Eq. (1)) 325 

were classified into seven groups: SO4
2-, NO3

-, NH4
+, OAs, BC, sea-salt, and others, which 326 

mainly consist of PM2.5 trace elements (Reff et al., 2009). In the classification, internal mixing 327 

states of SO4
2-, NO3

-, and NH4
+ were assumed. It should also be noted that the consideration 328 

of NO3
- is important to correctly estimate AOD and aerosol mass loading in East Asia (Park et 329 

al., 2011, 2014b; Song et al., 2008). Figure 4 shows the wet MEE values (αs,wet; product of 330 

αs,dry and fs(RHl) in  Eq. (1)) calculated for SO4
2-, NO3

-, and NH4
+, OAs, BC and sea-salt at a 331 

wavelength of 550 nm as a function of RH, indicating that the three different operators can 332 

create large differences in the wet MEE values. 333 

 334 

2.5 Selection of control variables 335 

To prepare the distributions of the aerosol composition, the ST-kriging AOD fields should be 336 

converted into the 3-D aerosol composition. To do this, the differences between the ST-337 

kriging AODs and background AODs (often called “observational increments”: ∆AODk = 338 

AODST-kriging, k – AODbg,k, k = grid cell) should be added to the background model-derived 339 

aerosol composition at each grid cell, in connection with the observation operators (Eq. (1)). 340 

Which aerosol species is/are selected for allocating ∆AODk? We selected four types of control 341 

variables (CVs) of particulate species. First, all the particulate species were selected as CVs. 342 

In this case, ∆AODk was distributed to all the particulate species, with the particulate fractions 343 
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calculated from the background CMAQ model simulations. The second CV was the selection 344 

of SO4
2- concentration. Despite the large contribution of SO4

2- to both AOD and PM 345 

concentration in East Asia, model-estimated SO4
2- have shown large systematic 346 

underestimations, compared with observed SO4
2- concentrations (Park et al., 2011, 2014b). 347 

This can be related to either (or both) the uncertainty in SO2 emissions in East Asia or (and) 348 

the uncertainty in the parameterizations of SO4
2- production in the CTM models (Kim et al., 349 

2013; Lu et al., 2010; Smith et al., 2011; Park et al., 2014). In addition, there is also large 350 

uncertainty in the levels of hydroxyl radicals (OH) due to uncertain daytime HONO chemistry, 351 

OH reactivation, in-plume process and others (Archibald et al., 2010; Han et al., 2015; 352 

Karamchandani et al., 2000; Kim et al., 2009; Kubistin et al., 2010; Lelieveld et al., 2008; 353 

Song et al., 2003, 2010; Sörgel et al., 2011; Stemmler et al., 2006; Zhou et al., 2011). 354 

Obviously, these uncertainties can influence the levels of H2SO4 and thus particulate sulfate 355 

concentrations in the atmosphere. In this case, aerosol mass concentrations (except for SO4
2-) 356 

were the same as those of the background aerosol concentrations. Third, SO4
2- and OAs were 357 

chosen to be changed. Although OAs are one of the major particulate species, it is well-358 

known that OAs concentrations are also systematically underestimated due to two reasons: (i) 359 

the uncertainty in the parameterizations of the secondary OA formation (Donahue et al., 2006, 360 

2011; Dzepina et al., 2009; Hodzic et al., 2010; Matsui et al., 2014; Slowik et al., 2010), and 361 

(ii) the uncertainty in emission inventories for anthropogenic and biogenic OA precursors 362 

(Guenther et al., 1999; Han et al., 2013; Sakulyanontvittaya et al., 2008; Tsimpidi et al., 2010; 363 

Wyat Appel et al., 2008). In this case, the mass concentration of surface OAs is assumed to be 364 

equal to the mass concentration of surface SO4
2-, based on the ground-based measurement 365 

studies over East Asia (Lee et al., 2009; Zhang et al., 2007, 2012). Thus, ∆AODk is accounted 366 

for the increments of concentrations from OAs and SO4
2- which are changed independently 367 

from the background concentrations. Finally, SO4
2-, NO3

-, NH4
+, and OAs were selected to be 368 
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changed. In this case, ∆AODk was distributed to the selected four species, with the fractions 369 

of SO4
2-, NO3

-, NH4
+ calculated from background simulations. The method to change the OA 370 

concentration in the fourth selection of CVs was the same as the method in the third selection 371 

of CVs. The fourth selection of CVs was also made to consider thermodynamic balance 372 

among SO4
2-, NO3

-, and NH4
+ concentrations (Bassett and Seinfeld, 1983; Saxena et al., 1986; 373 

Seinfeld and Pandis, 2012; Song and Carmichael, 1999; Stelson et al., 1984). It should be 374 

noted that background modeling-derived vertical profiles and the size distributions of aerosol 375 

species were used for converting 2-D AOD to 3-D PM composition in all the STK cases. 376 

With the combinations of the three different observation operators and four choices of CVs 377 

(Table 3), 12 hindcast runs were made for high PM episodes during the DRAGON-Asia 378 

campaign. 379 

 380 

3 Results and Discussion 381 

In Sect. 3, the performances of ST-kriging method are evaluated via comparisons with the 382 

AERONET AOD in the GOCI domain (Sect. 3.1). Sensitivity analyses were then conducted 383 

to examine the impacts of the observation operators and CVs on the accuracy of the hindcast 384 

runs (Sect. 3.2). After that, the overall performances of the hindcasts were evaluated with 385 

ground-based observations during the high PM10 episodes over SMA (Sect. 3.3). A 386 

comparative analysis of the PM composition between hindcast results and observations was 387 

also conducted to further investigate/analyze the performance of the hindcast system (Sect. 388 

3.4). In addition, hindcast results for the periods of less polluted episodes are also shown with 389 

the best configuration (Sect. 3.5). 390 
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3.1 Evaluation of ST-kriging AODs  391 

Figure 5(a)-(c) show scatter plot analyses of background CMAQ-simulated AODs, spatial 392 

kriging AODs (i.e., kriging only with the GOCI AODs from one scene) and ST-kriging AODs 393 

vs. AERONET level 2 AODs over the GOCI domain during the DRAGON-Asia campaign. 394 

First, it can be found that the CMAQ-predicted AODs are underestimated significantly 395 

compared with the AERONET AODs. As discussed in Sect. 2.3, this was the main reason that 396 

we used the ST-kriging method in this study. More weight should be given to observations, 397 

because the CTM modelling produces significant biases. Second, ST-kriging AODs show 398 

improved correlations, compared with the AODs estimated via the spatial kriging method. 399 

Also, the ST-kriging AOD data show equivalent levels of errors and biases, compared with 400 

GOCI AOD data. If one compares Fig. 3(b) with Fig. 5(c), it can be seen that the ST-kriging 401 

can effectively produce the AOD fields (also note the increase in N). 402 

Figures 5(d) and (e) show the scatter plot analysis of the ST-kriging AOD products versus the 403 

AERONET AOD data with kriging variances (KVs). It is found that the ST-kriging AOD data 404 

with KV ≤ 0.04 show similar scattering pattern and accuracy to those of GOCI AOD. In 405 

contrast, some overestimated outliers from the ST-kriging AOD data in Fig. 5(e) (e.g., 1.0-2.0 406 

in the x-axis and 2.0-4.0 in the y-axis) show different patterns than those from the GOCI 407 

AOD data. This may be explained by the relatively large KVs (> 0.04) of such overestimated 408 

outliers. The KV generally increases when the observations near a certain prediction point are 409 

not available or when nearby observations have relatively large errors. Thus, when the GOCI 410 

observations are contaminated by optically thin clouds and they are not removed perfectly, 411 

this can increase the local variances due to their high cloud optical depth (COD). These 412 

factors can affect the quality of the ST-kriging AOD products. In this study, only the ST-413 

kriging AOD products having small KVs (less than 0.04) were used for preparing the initial 414 
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condition of each data processing step. Therefore, the initial PM concentrations did not 415 

changed where the ST-kriging AOD having large KVs (larger than 0.04). Collectively, it 416 

appears that the ST-kriging method is a reasonable tool for obtaining realistic AOD values at 417 

locations where the GOCI observations are not available. 418 

 419 

3.2 Sensitivity of observation operators and control variables to AOD and 420 

PM10 predictions 421 

To investigate the best combination of the observation operators and CVs, the AOD and PM10 422 

hindcast runs and sensitivity analyses with the 12 different configurations (Table 3) were 423 

performed. For this, the hindcast AOD and PM10 from 13:00 LT to 19:00 LT (H+1 to H+6) on 424 

10 selected episode days were compared with the ground-measured AOD and surface PM10. 425 

The observations from the six AERONET sites and nearest NAMIS PM10 stations within 10 426 

km from the AERONET locations were selected for this comparison study (Fig. 2). The AOD 427 

values for the background CMAQ model simulations without the application of the ST-428 

kriging method (noSTK) were also calculated with the GEOS-Chem observation operator. 429 

Figure 6 shows the soccer plot analysis of the 13 hindcast AODs (left panel) and PM10 (right 430 

panel) during the first 6-h of the short-term PM hindcasting on the 10 selected episode days. 431 

In the soccer plot, mean fractional bias (MFB) and mean fractional error (MFE) (described in 432 

Appendix B) are plotted on the x- and y-axes, respectively. Using this plot, the relative 433 

discrepancy can be presented by the distances from the origin of the plot, and particular 434 

characteristic, such as systematic bias, can also be shown as a group of scatter points. Detailed 435 

statistical metric values are shown in Table 4. All the AODs and PM10 with the application of 436 

the ST-kriging method (STK) are much better than those from the noSTK simulation, with 437 

reduced errors and biases. Percentage decreases in MFE with the STK hindcasts were found 438 
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to be 60-67% for AOD and are 50-63% for PM10. The MFB also decreased by 67-82% for 439 

AOD and by 56-84% for PM10. The noSTK case showed a strong negative bias (i.e., 440 

underprediction) and the 12 STK cases also showed less, yet still negative, biases. These 441 

negative biases are considered to be systematic, because of the negative bias of the GOCI 442 

AOD data (Fig. 6). Additionally, the negative biases are due to underestimation of CMAQ-443 

simulated SO4
2- and OAs concentrations (Carlton et al., 2008, 2010; Park et al., 2011, 2014b). 444 

This issue has been discussed in Sect. 2.5 and is investigated further in Sect. 3.4. 445 

On the other hand, there are relatively small differences in errors and biases among the 446 

12 STK cases (Fig. 6). Several differences among the 12 sensitivity cases were investigated 447 

further. First, the error and bias patterns for the AOD values were different from those for the 448 

PM10 predictions, being associated with the different observation operators. For example, the 449 

STK cases with the IMPROVE observation operator (cases C1, C2, C3, and C4) exhibited a 450 

relatively small bias for PM10 predictions, although they did not in the AOD predictions. This 451 

was likely caused by small wet MEE values of SO4
2-, NO3

-, and NH4
+ in the IMPROVE 452 

observation operator (represented by the green line in Fig. 4). By Eq. (1), the concentrations 453 

of converted aerosol species are inversely proportional to the MEEs of aerosol species. In the 454 

CV cases, the selections of SO4
2- and OAs (i.e., A3, B3, and C3) and SO4

2-, NO3
-, NH4

+, and 455 

OAs (i.e., A4, B4, and C4) showed better performances for both the AOD and PM10 456 

predictions. 457 

To show the degree of enhanced performances via using the ST-kriging GOCI data, we also 458 

carried out some hindcast simulations, using the initial conditions prepared with single-frame 459 

GOCI data at 11:30 LT. The grids that did not have AOD observations were not filled out in 460 

this runs. In Fig. 6, the MFBs and MFEs of the bilinear interpolation method (denoted as BL) 461 

were -45.05 and 59.52 for AOD and -46.13 and 53.30 for PM10, respectively. It is shown in 462 
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Fig. 6 that the use of the single-frame GOCI data without filling any gap cannot sufficiently 463 

improve the performance, compared with the cases of the STK simulations. 464 

Figure 7 shows the performances of the short-term hindcast system with the 13 different 465 

configurations via comparisons between the hourly-averaged PM10 observations and model 466 

PM10 predictions at the six NAMIS sites, on 9 April, 6 May and 16 May, 2012, respectively. 467 

Only 3-day and six-site results were selected and presented here, and more comprehensive 468 

performance evaluations are presented in Sect. 3.3. While noSTK failed to reproduce the high 469 

PM pollutions, all the STK cases showed significant improvements in the surface PM10 470 

predictions. However, there was a tendency that the hourly peaks of PM10 were not well 471 

captured by the STK cases.  472 

Consequently, it can be concluded that the combination of GOCART observation operator 473 

and CVs of SO4
2- and OAs (represented by A3) leads to the best results in the current hindcast 474 

system (Table 4). The use of the GOCART observation operator and CVs of SO4
2-, NO3

-, 475 

NH4
+, and OAs (represented by A4) could also provide comparable performance to A3. 476 

However, it appears that the differences among the 12 STK cases were relatively small. 477 

3.3 Overall performance evaluation of PM10 hindcast over SMA 478 

In this section, PM10 from the hindcast experiments were compared with the PM10 479 

observations from “58 NAMIS sites” to evaluate the overall performance of the current 480 

hindcast system in SMA. Table 5 provides the statistical metrics that were calculated 481 

separately from the first and the second 6-h hindcast results. The main characteristics of the 482 

statistical analysis in Table 5 are similar to those at the six sites discussed in the previous 483 

section. First, both errors and biases of PM10 distributions were significantly reduced after the 484 

application of the ST-kriging method. The MFEs and MFBs in the 12-h STK simulations 485 

decreased by ~40% and ~80%, respectively. 486 
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A distinctive difference was also found in the model performances for the first and the second 487 

6-h runs. During the first 6-h, all the hindcast results showed negative biases, with the MFB 488 

of ~ -100% for the noSTK cases and ~ -40% for the STK cases. The performances of the A3 489 

and A4 cases are somewhat better than those of the other STK cases (Table 5). Collectively, 490 

the MFEs and MFBs of the STK cases are a factor of 2-4 smaller than those of the noSTK 491 

cases during the first 6-h. 492 

Figure 8 shows a comparison between the noSTK case and the A3 case, in terms of the PM10 493 

predictions, during the first and the next 6 h in SMA with the 6-h averaged NAMIS PM10 494 

observations. As shown, the A3 case produced better PM10 predictions during the first and the 495 

next 6 h. In addition, the A4 case (not shown) also provided similar results to the A3 case, as 496 

discussed in Sect. 3.2. It can be confirmed again that the A3 and A4 cases are able to produce 497 

better PM10 predictions against the PM10 observations in SMA. 498 

Hindcast performances from H+13 to H+24 were also evaluated with the ground-measured 499 

NAMIS PM10 data. In short, the differences between all the STK and noSTK cases became 500 

smaller than those during the first 12 h (approximate difference of 10% was found at H+24, 501 

i.e., 24 h after the hindcast actually began). Based on this, it appears that the effects of using 502 

the initial PM composition on the hindcast performances may effectively last during the first 503 

12 h. After 12 h, the effects started to diminish. This is due to several facts: (i) the regions for 504 

applying the initial PM composition in this study were limited only within the GOCI domain 505 

(relatively small region); (ii) although the initial PM composition was used, its effects can be 506 

offset by uncertainties and errors in emissions as time progressed; and (iii) the large 507 

uncertainties associated with the formation of SO4
2- and OAs in the CTMs can also limit the 508 

effects of the initial PM composition. The second and the third are the reasons that there is 509 
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strong necessity for both emissions and CTMs to be improved continuously, even though the 510 

initial PM composition is applied in the short-term forecast activities. 511 

3.4 Evaluation of hindcast performance with observed PM composition 512 

In the previous section, PM10 mass concentrations were simply predicted by the short-term 513 

hindcast system with 12 different combinations of observation operators and CVs. Although 514 

the purpose of this study is to develop a better PM forecast system for accurately predicting 515 

“PM10 mass” concentrations, it is still necessary to more carefully scrutinize the changes in 516 

the “PM composition” in accordance with the different selections of the CVs. 517 

During the DRAGON-Asia campaign, the PM2.5 composition was measured for SO4
2-, NO3

-, 518 

and NH4
+ with 30-min intervals and for SO4

2-, NO3
-, NH4

+, OC and BC with 24-h intervals 519 

using PILS-IC instrument (semi-continuous measurements) and low air-volume sampler with 520 

a Teflon filter (off-line measurements), respectively, in Yongin City near SMA (Fig. 2). Thus, 521 

in this section, the selection of the CVs is further discussed with the observed PM2.5 522 

composition. 523 

Figure 9 shows the comparison between 1-h averaged SO4
2-, NO3

-, and NH4
+ concentrations 524 

measured via the PILS-IC instrument and model-predicted concentrations during the selected 525 

days at the Yongin observation site. Only the STK cases with the GOCART observation 526 

operator (i.e., A1, A2, A3, and A4) were selected here. The STK cases showed significant 527 

changes in the PM composition with the selection of CVs. For example, the A2 and A3 cases 528 

tended to overestimate the SO4
2- concentrations but underestimated the NO3

-, and NH4
+ 529 

concentrations, whereas the A1 and A4 cases tended to relatively well capture the trend of the 530 

concentrations of the three particulate species. This phenomenon was driven by intra-531 

particulate thermodynamics. That is, if larger amounts of SO4
2- are allocated into particles 532 

(like the cases of A2 and A3), then NO3
- tends to be evaporated, because SO4

2- is more 533 
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strongly associated with NH4
+ (Song and Carmichael, 1999). As shown in Fig. 9 (a) and (b), 534 

when the SO4
2- concentrations increases (as in case A2), the NO3

- concentrations decrease 535 

accordingly, because NO3
- is evaporated out of the particulate phase as a form of HNO3 (Song 536 

and Carmichael, 1999, 2001). Collectively, the “best” results were produced from the case A4, 537 

as shown in Figs. 9(a) - (c).  538 

The 24-h averaged PM2.5 compositions measured from the PILS-IC instrument and the low 539 

air-volume sampler with a Teflon filter during the campaign period are also compared in Fig. 540 

9(d). Again, the observations of the SO4
2-, NO3

-, and NH4
+ concentrations were obtained from 541 

both the PILS-IC instrument and the low volume sampler, whereas the concentrations of OAs 542 

(≅ [OC] × 1.5) and EC were only measured via the low air-volume sampler. As shown in Fig. 543 

9(d), the SO4
2-, NO3

-, and NH4
+ concentrations from both samplers showed good agreements 544 

(see circles and crosses in Fig. 9(d)). The A4 case (the red bars in Fig. 9(d)) again showed the 545 

best results in the comparison between the observed and predicted particulate composition, 546 

particularly in SO4
2- and OAs. In the previous discussion (see Sect. 3.2 and 3.3), the A3 and 547 

A4 cases showed the best performances for predicting “PM10 mass concentrations” over SMA. 548 

This is somewhat consistent with our analysis in this section. However, in case of the A3, it 549 

can capture the PM mass behaviors (Sect. 3.3) but does not capture the changes in the PM 550 

composition well (this section). Based on this, it is concluded that the A4 case would be the 551 

best configuration for accurately predicting the PM composition as well as the PM mass. 552 

However, this PM composition analysis was conducted with only one site observations 553 

(Yongin City) in this study. Thus, to reach a firmer conclusion, more intensive analyses with 554 

multiple site observations are required in future.  555 
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3.5 Evaluation of short-term hindcast performances 556 

To further evaluate the performance of the short-term hindcast runs, 48-hour hindcast 557 

simulations with the configuration of A4 were carried out from 7 March to 19 March. The 558 

observations from the 6 AERONET sites and the nearest NAMIS stations were analyzed in 559 

this study. 560 

The time-series of the first and the second 24-hour averaged PM10 at the six sites on 8, 10, and 561 

11 March, 2012 are presented in Fig. 10. Again, reduced errors and biases were shown in the 562 

A4 STK simulations, compare with the noSTK simulation for polluted episodes ((a) and (b) in 563 

Fig. 10) and for less polluted episode ((c) in Fig. 10). Percent decreases with MFEs of the first 564 

24-hour A4 STK hindcast were ~40% for AOD and ~10% for PM10, and those with MFBs 565 

were ~40% for AOD and ~100% for PM10. In addition, slight improvements in the horizontal 566 

distributions of AOD and PM10 were also found. This was indicated by the increases of 567 

correlation coefficients (refer to Table S1). The second 24-hour STK hindcasts also reduced 568 

the errors and biases for AOD and PM10, although the improvements in the spatial 569 

distributions were not shown clearly. A more detailed statistical metrics is presented in the 570 

supplement (Table S1). 571 

 572 

4 Summary and Conclusions 573 

For the purpose of improving the performance of short-term PM forecast in Korea, an 574 

integrated air quality modeling system was developed with the application of the ST-kriging 575 

method using the geostationary satellite-derived AOD data over Northeast Asia. The errors 576 

and biases of the ST-kriging AOD showed relatively good agreement, compared with the 577 

AERONET observations. With the combinations of the ST-kriging method along with various 578 

observation operators and control variables (CVs), the errors and biases of AOD and PM10 579 
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predictions can be reduced significantly. It was shown that the selection of the observation 580 

operators greatly influence the performances of the STK hindcast systems. On the other hand, 581 

the choice of CVs tends to affect PM composition. The combination of the GOCART 582 

observation operator and the selection of CVs of SO4
2- and OAs (case A3) was found to be 583 

the best one for the PM10 mass prediction. All the hindcast runs with the application of the 584 

ST-kriging, however, generally showed negative biases (i.e. under-predictions). This was 585 

primarily due to the underestimation of the GOCI AOD. 586 

Reducing errors and biases in the current system is important for further development of the 587 

PM forecast system. One of the potential methods for reducing the errors and biases is to 588 

introduce the MODIS AOD data into the ST-kriging stage, together with the GOCI data. It is 589 

expected that this will be able to further reduce the systematic biases, due to the relatively 590 

smaller biases of MODIS AOD (as shown Fig. 3). In addition, the combination of the 591 

GOCART observation operator and the selection of CVs of SO4
2-, NO3

-, NH4
+, and OAs 592 

(Case A4) was found to give the “best” results for the prediction of particulate composition at 593 

one observation site. However, more intensive measurements of the PM composition are 594 

needed for reaching a more solid conclusion. 595 

The ST-kriging AODs used in the current study are expected to be used in other data 596 

assimilation methods. For example, in the 3DVAR method, the observation error covariance 597 

matrix, which presents the degree of errors of the observations, has been usually assumed by 598 

linear equations or single constant value (Liu et al., 2011; Schwartz et al., 2012; Shi et al., 599 

2011). However, as discussed with KVs in Sect. 3.1, the error covariance of the AOD 600 

observations can be improved, and the use of the improved observation error covariance 601 

matrix can help to prepare more accurate AOD fields, for example, via a 3DVAR method. 602 

This study is now underway. 603 
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In future, planned GEO satellite sensors will give other opportunities to use semi-continuous 604 

AOD observations at high spatial and temporal resolutions. Upcoming GEO satellite sensors 605 

scheduled for launch between 2018 and 2020 include NASA’s Tropospheric Emissions: 606 

Monitoring of Pollution (TEMPO) over North America, ESA’s Sentinel-4 over Europe, and 607 

Korea Aerospace Research Institute (KARI)’s Geostationary Environment Monitoring 608 

Spectrometer (GEMS) over Asia. In the case of the GEMS instrument, it is being designed to 609 

provide backscattered UV/Vis radiances between 300 and 500 nm with a spatial resolution of 610 

5 km × 5 km over a large part of Asia. Using advanced observations from the GEMS sensor, 611 

it is anticipated that the system developed here will be able to make significant contributions 612 

to further improvements in the performances of the PM forecasting system in Asia. This 613 

improved PM predictions and modeling framework can also be a core part for entire air 614 

quality forecasting system, a more comprehensive health impact assessments, and radiative 615 

forcing estimation over (East) Asia in future. 616 

 617 

Appendix A: Spatio-temporal kriging method 618 

The ST-kriging methods assume that measured variables in space and time (τ(s, t)) can be 619 

regarded as a random function, consisting of a trend component (m) and residual component 620 

(ϵ) of which the mean is zero: 621 

),(),(),( tstsmts   .          (A1) 622 

The unobserved value τ*(s, t) can be averaged with weight using measured values from the 623 

surrounding: 624 
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where n is the number of observations in local neighborhood and wi(s, t) is the kriging weight 626 

assigned to τ(si, ti). The kriging weight is determined by a theoretical semivariogram. 627 

In case of spatial kriging (τ(s)), the semivariogram (γ) is the best fit to the semivariance (γ*) as 628 

a function of spatial lag (h). Assuming the trend component m(s) in τ(s) is constant over the 629 

local domain (i.e., the ordinary kriging method), the semivariance is defined as: 630 
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where N(h) is the number of paired observations at a spatial distance of h, and τi(si + h) is the 632 

ith observation (in this study, AOD) separated by h from the observation located at si. The 633 

semivariogram is then depicted by a theoretical model which is the best-fitting curve to the 634 

semivariance by minimizing the least square error. For example, a spherical semivariogram 635 

(γ), which is commonly used in the theoretical models of the atmospheric studies, is estimated 636 

by finding optimal three parameters: (i) nugget (cn); (ii) range (a); and (iii) partial sill (σ0
2): 637 
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The range parameter indicates the maximum lag in which the variation of semivariogram is 639 

meaningful (Cressie, 1992).  640 

To combine the spatial and temporal data for preparing the spatio-temporal semivariograms, 641 

the temporal information can be converted into the spatial information (Gräler et al. (2012). 642 

First, the spatial and temporal semivariograms are estimated independently using the spherical 643 

model from the daily GOCI AOD data. Second, the ratio of spatial range parameter (as) of the 644 

spatial semivariogram to temporal range parameter (at) of the temporal semivariogram (i.e., 645 
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spatio-temporal scale factor, km h-1) is used to convert the unit of temporal lag into the unit of 646 

spatial distance. Consequentially, the 3D spatio-temporal AOD data are converted into the 2-647 

D spatial AOD fields. After that, the spatio-temporal semivariogram is provided to predict the 648 

AOD fields with 15 km × 15 km spatial resolution from 10:00 LT to 16:00 LT over the GOCI 649 

domain. For the ST-kriging method, the “gstat” (Pebesma, 2004) and the “spacetime” 650 

(Pebesma, 2012) software packages in the “R” environment for statistical computing were 651 

used (R Development Core Team, 2011). Figure A1 presents an example of the 3D 652 

semivariograms from the fitted model (left) and sample from the GOCI data on 8 April. The 653 

mean nugget (cn), range (a), partial sill (σ0
2) of the spatio-temporal model semivariogram 654 

were 0.025, 583km, and 0.227, respectively, during the entire DRAGON-Asia campaign. The 655 

average spatio-temporal scale factor of ~34 km h-1 was calculated indicating that the AODs 656 

observed before or after 1 h at certain location show a similar correlation pattern to those 657 

measured simultaneously at ~34 km apart in the ST-kriging model. Figure A2 shows an 658 

example of spatial distributions of GOCI AOD from 10:30 to 13:30 LT and ST-kriging AOD 659 

at 12:00 LT with a criteria of kriging variances (KVs) less than 0.04. 660 

 661 

Appendix B: Statistical metrics 662 

In this study, eight statistical metrics were used for validating the hindcast results (Chai and 663 

Draxler, 2014; Savage et al., 2013; Willmott, 1981; Willmott et al., 2009; Willmott and 664 

Matsuura, 2005). 665 

Index of agreement (IOA) =  
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Mean fractional bias (MFB) = 
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Regression coefficient (R) = 
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Root mean square error (RMSE) =  
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Mean bias (MB) =  
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Mean Normalized bias (MNB) = 
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where N is the number of data and Mi and Oi are the model value and observation, 674 

respectively. The value highlighted by overbar means the arithmetic mean of the data. 675 

 676 

Code Availability 677 

WRF and CMAQ source codes and R and NCL computer languages are available to the 678 

public. The source codes and computer languages may be downloaded by following 679 

instructions found at: 680 

http://www2.mmm.ucar.edu/wrf/users/downloads.html for WRF,  681 
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https://www.cmascenter.org/cmaq for CMAQ, 682 

http://cran.r-project.org for R, and 683 

https://www.ncl.ucar.edu/Download for NCL. 684 

ST-kriging module code used in this study was based on the instruction of Pebesma (2012) 685 

available at http://www.jstatsoft.org/v51/i07, and can be obtained by contacting S. Lee 686 

(noitul5@gist.ac.kr).  687 
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Table 1. WRF and CMAQ model configurations. 

 WRF (ver. 3.5.1)  CMAQ (ver. 5.0.1) 

Microphysics scheme WRF single-moment 3 class  Chemical mechanism SAPRC-99 

Long- and short-wave radiation 
Rapid Radiation Transfer 
Model for GCMs (RRTMG) 

 Aerosol module AERO-6 

Planetary boundary layer Yonsei University scheme  Chemistry solver Euler backward iterative (EBI) solver 

Land-surface model Noah-MP  Photolysis module In-line photolysis calculations 
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Table 2. Values used in observation operators for estimating aerosol optical properties (AOPs). 

 

Dry mass extinction efficiencies (m2 g-1) at 550nm of 1 OC, 2 BC, 3 sea-salt in accumulation mode and 4 sea-salt in coarse mode 

Note: In cases of Chin et al. (2002) and Martin et al. (2003), the AOPs for sulfate were used for calculating AOPs for NH4NO3 and (NH4)2SO4. 

Method for estimating 
aerosol optical properties 

Aerosol speciation Hygroscopic aerosols αOC
1

 α BC
2 αSSAM

3 αSSCM
4 

Chin et al. (2002) 
(NH4)2SO4, OC, BC,  

dust (7 size bins), sea-salt (2 modes) 
(NH4)2SO4, OC, BC, sea-salt 2.67 9.28 1.15 0.13 

Martin et al. (2003) 
(NH4)2SO4, OC, BC, 

 dust (7 size bins), sea-salt (2 modes) 
(NH4)2SO4, OC, BC, sea-salt 2.82 8.05 2.37 0.94 

Malm and Hand (2007) 
NH4NO3, (NH4)2SO4, organic matter, 

 soil, coarse mass, sea-salt 
NH4NO3, (NH4)2SO4, 

sea-salt 
4.00 10.00 1.37 1.37 
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Table 3. Definition of model configurations. 

Configuration  Observation operator Control variable  

A1 

Chin et al. (2002) 

Total aerosol mass concentration 

A2 SO4
2- mass concentration 

A3 SO4
2- and OAs mass concentration 

A4 SO4
2-, NO3

-, NH4
+ and OAs mass concentration

B1 

Martin et al. (2003) 

Total aerosol mass concentration 

B2 SO4
2- mass concentration 

B3 SO4
2- and OAs mass concentration 

B4 SO4
2-, NO3

-, NH4
+ and OAs mass concentration

C1 

Malm and Hand (2007) 

Total aerosol mass concentration 

C2 SO4
2- mass concentration 

C3 SO4
2- and OAs mass concentration 

C4 SO4
2-, NO3

-, NH4
+ and OAs mass concentration
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Table 4. Performance metrics for AOD and PM10 hindcasts on the ten selected episodes at six AERONET sites and nearby NAMIS PM10 
stations in SMA. 

Configuration
AOD (N1 = 277) PM10 (N =340) 

IOA2 MFE3 MFB4 R5 RMSE6 MB7 MNE8 MNB9 IOA MFE MFB R RMSE10 MB10 MNE MNB 

noSTK 0.48 113.2 -113.2 0.61 0.60 -0.53 70.0 -70.0 0.47 89.0 -88.5 0.54 55.15 -48.40 58.9 -58.4 

A1 0.62 37.4 -22.1 0.46 0.36 -0.16 32.5 -13.7 0.60 35.4 -22.7 0.44 36.07 -15.80 31.1 -14.7 

A2 0.60 39.8 -20.9 0.41 0.37 -0.15 35.8 -11.3 0.58 39.4 -34.7 0.50 37.13 -24.65 31.6 -25.8 

A3 0.63 38.7 -22.5 0.46 0.36 -0.16 34.0 -13.5 0.64 33.0 -23.1 0.52 33.15 -17.07 28.4 -16.2 

A4 0.63 37.4 -22.0 0.47 0.35 -0.16 32.6 -13.5 0.64 36.2 -28.3 0.53 34.58 -19.79 30.3 -20.4 

B1 0.54 43.1 -27.1 0.33 0.40 -0.18 36.4 -16.2 0.53 41.1 -30.0 0.31 40.01 -20.90 33.9 -20.0 

B2 0.51 44.7 -25.2 0.27 0.41 -0.17 39.5 -13.3 0.53 43.8 -39.2 0.37 40.94 -27.50 34.1 -28.5 

B3 0.56 42.3 -25.8 0.35 0.39 -0.18 36.6 -15.2 0.56 38.0 -29.6 0.39 37.43 -21.65 31.2 -21.0 

B4 0.55 41.9 -24.7 0.34 0.39 -0.17 36.3 -14.2 0.56 40.7 -33.9 0.42 38.30 -23.84 32.8 -24.4 

C1 0.50 44.4 -37.5 0.28 0.43 -0.26 34.3 -26.3 0.55 35.8 -14.5 0.32 38.41 -9.82 33.4 -5.4 

C2 0.47 45.7 -34.2 0.20 0.43 -0.24 36.7 -22.7 0.55 36.3 -26.0 0.37 36.86 -19.43 30.3 -17.6 

C3 0.53 41.7 -30.5 0.34 0.40 -0.22 34.1 -20.5 0.60 32.9 -19.6 0.44 34.07 -14.92 29.1 -12.5 

C4 0.53 41.7 -32.4 0.35 0.41 -0.23 32.4 -22.6 0.61 34.8 -21.8 0.44 34.78 -15.68 30.4 -14.0 

1 the number of paired data, 2 index of agreement, 3 mean fractional error, 4 mean fractional bias, 5 Pearson product-moment correlation 
coefficient, 6 root mean square error, 7 mean bias,  8 mean normalized error, and 9 mean normalized bias. The units of all of metrics are 

dimensionless except 10 for ㎍ m-3. 
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Table 5. Performance metrics for PM10 hindcasting on the ten selected episodes at 58 NAMIS PM10 stations in SMA. Abbreviations are the 
same as those in Table 3. 

Configuration
H+1 to H+6 (N = 4823) H+7 to H+12 (N = 4921) 

IOA MFE MFB R RMSE MB MNE MNB IOA MFE MFB R RMSE MB MNE MNB 

noSTK 0.45 99.6 -98.7 0.44 62.98 -54.59 63.9 -62.6 0.55 64.7 -36.9 0.30 56.76 -17.77 56.5 -12.9 

A1 0.62 42.2 -30.9 0.47 40.64 -21.41 35.6 -19.7 0.62 43.9 1.5 0.37 49.17 5.27 51.2 19.1 

A2 0.57 49.1 -43.4 0.48 43.81 -30.49 38.5 -30.4 0.60 45.1 -4.0 0.34 49.81 0.60 49.9 13.1 

A3 0.64 40.5 -30.4 0.50 39.46 -21.83 34.2 -20.1 0.63 43.5 5.8 0.39 50.51 9.17 52.7 23.9 

A4 0.63 44.6 -36.3 0.52 40.70 -24.99 36.3 -24.7 0.62 43.6 1.2 0.38 49.44 5.10 50.6 18.5 

B1 0.54 48.8 -39.6 0.35 45.12 -27.64 38.8 -26.1 0.58 46.0 -3.6 0.31 49.18 0.71 50.8 14.1 

B2 0.51 53.9 -48.9 0.36 47.76 -34.14 41.0 -33.9 0.59 46.3 -7.4 0.33 48.73 -2.37 49.1 9.3 

B3 0.56 45.9 -37.9 0.40 43.36 -27.48 36.9 -25.8 0.61 44.6 0.7 0.35 48.81 4.07 51.0 17.9 

A4 0.56 49.7 -43.0 0.43 44.46 -30.05 38.9 -29.6 0.60 45.2 -3.1 0.34 48.87 1.07 50.0 14.0 

C1 0.60 40.4 -22.7 0.39 40.82 -15.98 35.9 -11.7 0.58 45.9 6.6 0.32 51.68 9.84 56.0 26.5 

C2 0.56 43.7 -34.3 0.40 42.22 -25.43 35.6 -22.9 0.58 45.9 2.0 0.31 51.37 5.63 53.6 20.7 

C3 0.63 39.0 -27.3 0.47 39.00 -20.13 33.3 -17.5 0.61 44.1 7.3 0.37 51.46 10.64 54.3 26.3 

C4 0.63 41.2 -29.9 0.48 39.45 -21.30 34.5 -19.4 0.61 44.2 4.7 0.36 50.69 8.29 53.2 23.2 
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Table S1. Performance metrics for AOD and PM10 hindcasts from 7 March 12:00 to 19 March 11:00 at six AERONET sites and nearby 
NAMIS PM10 stations in SMA. 

Configuration 
AOD (N = 219) PM10 (N =1664) 

IOA MFE MFB R RMSE MB MNE MNB IOA MFE MFB R RMSE MB MNE MNB 

noSTK 0.68 99.21 -98.09 0.69 0.37 -0.29 63.77 -62.49 0.54 63.74 -37.91 0.28 31.26 -12.67 56.78 -13.71 

H+0 to H+23 0.73 60.65 -57.90 0.74 0.30 -0.22 43.95 -40.68 0.59 50.49 3.45 0.36 31.68 5.36 69.27 34.03 

H+24 to H+47 0.69 81.76 -76.44 0.68 0.34 -0.25 55.16 -48.89 0.57 53.28 -14.36 0.31 30.32 -3.50 58.50 9.36 
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Figure 1. General structure of a) numerical weather prediction (NWP), b) conventional chemical whether forecast CWF), and c) advanced 
chemical weather forecast system. 
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Figure 2. Domains of CMAQ model simulations (black), GOCI sensor coverage (blue), and 
Seoul Metropolitan area (red). Also shown are seven AERONET level-2 sites (circles), 58 
NAMIS PM10 sites (crosses), and a PM composition observation site (triangle) in greater 
Seoul area, respectively. 
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Figure 3. Scatter plots of (a) 10 km Aqua/Terra MODIS AODs vs. AERONET level-2 AODs , 
(b) 3 km Aqua/Terra MODIS AODs vs. AERONET level-2 AODs and (c) GOCI AODs vs. 
AERONET level-2 AODs at 550 nm during the DRAGON campaign over the GOCI domain. 
N, R, RMSE, and MB represent the number of observations, the regression coefficient, root 
mean square error, and mean bias, respectively. Hourly-resolved Aqua/Terra MODIS and 
GOCI spatial coverages (%) are also shown in the panel (d) from 1 March to 31 May, 2012. 
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Figure 4. Mass extinction efficiencies (MEEs) calculated for (a) SO4
2-, NO3

-, and NH4
+, (b) 

OAs, (c) BC and (d) sea-salt at a wavelength of 550 nm as a function of RH at a wavelength 
of 550 nm as a function of relative humidity (%) from three observation operators. In cases of 
GOCART operator and GEOS-Chem operator, 50% of OAs and 20% of BC are assumed to 
be hydrophilic. In sea-salt MEEs, accumulate mode and coarse mode are represented as solid 
lines and dash lines, respectively. 
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Figure 5. Scatter plots of (a) background CMAQ model AODs, (b) spatial kriging AODs, and 
c) ST-kriging AODs vs. AERONET level-2 AODs at 550 nm. Plots of ST-kriging with 
kriging variances (KVs) less equal 0.04 (d) and larger than 0.04 (e) are also shown. The color 
scale shown in Fig. 5 (e) presents the KVs of ST-kriging AODs. The number of AOD in (b) is 
smaller than those of (a) and (c) due to the missing hourly AOD fields by the anomaly in 
GOCI. 
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Figure 6. Soccer plot analysis for AOD (left panel) and PM10 (right panel) data from the first 
6-h observations and the modeld data at six selected sites. BL (denoted by black diamond) 
represents the case of bilinear interpolation method discussed in Sect. 3. 2. 
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Figure 7. Time series of hourly PM10 for the six sites over SMA for 9 April (a), for 6 May (b), 
and for 16 May (c) in 2012. Observed concentrations are shown as the black circle and the 
model outputs as the colored line with their own markers explained in the legend. 
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Figure 8. Averaged PM10 of noSTK case from H+1 to H+6 (a) and from H+7 to H+13 (b), 
and the averaged concentrations of case A3 at the same time series ((c) and (d)) for the 
selected ten days. Averaged NAMIS PM10 observations are shown with colored circles. 
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Figure 9. Time-series comparison of 1-hr averaged (a) SO4
2-, (b) NO3

-, and (c) NH4
+ 

concentrations measured from PILS-IC instrument and model-predicted concentrations. In 
panel (d), 24-h averaged aerosol concentration in PM2.5 from observations (PILS-IC 
instrument and low air volume sampler with Teflon filter) are compared with hindcast 
concentrations at the Yongin City site for ten selected episodes. 
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Figure 10. Time series of hourly PM10 at six sites in SMA for 8 March (a), for 10 March (b), 
and for 11 March (c) in 2012. Observed concentrations are denoted as black circles and the 
modelled concentrations are as colored lines. 
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Figure A1. Daily three-dimensional semivariogram from fitted by the spherical model (a), and 

a sample semivariogram from the GOCI AOD data (b) on 8 April, 2012. 
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Figure A2. Spatial distributions of GOCI AOD from 10:30 to 13:30 LT ((a) to (d)) and ST-
kriging AOD at 12:00 LT (e) on 7 April, 2012. The ST-kriging AOD at 12:00 LT with a 
criteria of kriging variances (KVs) less than 0.04 is also shown in (f). 


