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Abstract 11 

Modelling marine ecosystems requires insight and judgement when it comes to deciding upon 12 

appropriate model structure, equations and parameterisation. Many processes are relatively 13 

poorly understood and tough decisions must be made as to how to mathematically simplify 14 

the real world. Here, we present an efficient plankton modelling testbed, EMPOWER-1.0, 15 

coded in the freely available language R. The testbed uses simple two-layer “slab” physics 16 

whereby a seasonally varying mixed layer which contains the planktonic marine ecosystem is 17 

positioned above a deep layer that contains only nutrient. As such, EMPOWER-1.0 provides a 18 

readily available and easy to use tool for evaluating model structure, formulations and 19 

parameterisation. The code is transparent and modular such that modifications and changes to 20 

model formulation are easily implemented allowing users to investigate and familiarise 21 

themselves with the inner workings of their models. It can be used either for preliminary 22 

model testing to set the stage for further work, e.g., coupling the ecosystem model to 1-D or 23 

3-D physics, or for undertaking front line research in its own right. EMPOWER-1.0 also 24 

serves as an ideal teaching tool. In order to demonstrate the utility of EMPOWER-1.0, we 25 

implemented a simple nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model 26 

and carried out both a parameter tuning exercise and structural sensitivity analysis. Parameter 27 

tuning was demonstrated for four contrasting ocean sites, focusing on Station BIOTRANS in 28 

the North Atlantic (47ºN 20ºW), highlighting both the utility of undertaking a planned 29 
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sensitivity analysis for this purpose, yet also the subjectivity which nevertheless surrounds the 1 

choice of which parameters to tune. Structural sensitivity tests were then performed 2 

comparing different equations for calculating daily depth-integrated photosynthesis, as well as 3 

mortality terms for both phytoplankton and zooplankton. Regarding the calculation of daily 4 

photosynthesis, for example, results indicated that the model was relatively insensitive to the 5 

choice of photosynthesis-irradiance curve, but markedly sensitive to the method of calculating 6 

light attenuation in the water column. The work highlights the utility of EMPOWER-1.0 as a 7 

means of comprehending, diagnosing and formulating equations for the dynamics of marine 8 

ecosystems. 9 

 10 

1 Introduction 11 

Ecosystem models are ubiquitous in marine science today, used to study a range of 12 

compelling topics including ocean biogeochemistry and its response to changing climate, end-13 

to-end links from physics to fish and associated trophic cascades, the impact of pollution on 14 

the formation of harmful algal blooms, etc. (e.g., Steele, 2012; Gilbert et al., 2014; Holt et al., 15 

2014; Kwiatkowski et al., 2014). Models have become progressively elaborated in recent 16 

years, a consequence of both superior computing power and an expanding knowledge base 17 

from field studies and laboratory experiments. All manner of models have appeared in the 18 

published literature varying in terms of structure, equations and parameterisation. Anderson et 19 

al. (2014), for example, commented on the “enormous” diversity seen in chosen formulations 20 

for dissolved organic matter (DOM) in the current generation of marine ecosystem models 21 

and asked whether reliable simulations can be expected given this diversity. This question 22 

applies not just to modelling DOM, but also to most processes and components considered in 23 

modern marine ecosystem modelling (Fulton et al., 2003a; Anderson et al., 2010, 2013).  24 

A certain amount of variability among models is to be expected because of differing 25 

objectives among modelling studies. A distinction can, for example, be made between models 26 

designed primarily for improving understanding of system dynamics, as opposed to those for 27 

out-and-out prediction (Anderson, 2010). Ultimately, however, much of the variability seen in 28 

model structure and equations is an outcome of personal choice on the part of the practitioner. 29 

Indeed, the art of modelling is in making decisions regarding model structure, parameters, 30 

design of simulations, types of output analysis, etc. The underlying root of this diversity and 31 

seeming subjectivity is that, despite a wealth of available data, many processes in marine 32 
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ecosystems are not easy to characterise mathematically. Modellers therefore need to consider 1 

how this uncertainty affects their results and use it to inform how best to construct and 2 

parameterise their models for chosen applications. Sensitivity analysis and model validation 3 

are the obvious means to address model uncertainty, as well as model intercomparison 4 

studies. There is however an additional problem, namely that ocean biology is inextricably 5 

linked to physics and both incur modelling error. An appropriate physical framework must be 6 

selected that adequately represents mixing, advection and the seasonal changes in the depth of 7 

the upper mixed layer. Understandably, 1- or 3-dimensional physical frameworks are the 8 

usual choice, given the realism thus provided. But this increased dimensionality (or spatial 9 

resolution) comes at a price. They require expertise and time to set up, sufficient 10 

computational resources for running and storage of output and, last but not least, analysis of 11 

the frequently copious output into coherent results. These constraints serve to limit the extent 12 

to which modellers can and do carry out extensive diagnosis and testing of their models 13 

including sensitivity analysis and validation. 14 

In the early days of marine ecosystem modelling, it was necessary to resort to simple 15 

empirical approaches to deal with physics given the limited power of computers at the time. 16 

The so-called zero-dimensional “slab” models that came to the fore were the cornerstone of 17 

their discipline in the mid 20th century. Slab models have a simple physical structure 18 

consisting of two vertical layers. The depth of the upper (mixed) layer, which can vary 19 

seasonally, was determined empirically from observations of vertical profiles of temperature 20 

or density. Containing the pelagic marine ecosystem, the upper layer was positioned above an 21 

essentially implicit (in that it is unchanging) bottom layer that contains a (typically fixed) 22 

nutrient concentration. Such slab models can be run quickly and straightforwardly, enabling 23 

both a multitude of runs and ease of analysing results.  24 

Despite the simplicity of the two-layer slab physics, these models are sufficiently well 25 

formulated to permit realistic and insightful simulations of marine ecosystems (e.g., Evans 26 

and Parslow, 1985; Fasham et al., 1990). Indeed, looking back at the history of marine 27 

ecosystem modelling, it is remarkable how simple models allowed so much progress to be 28 

made, notably by pioneers such as Gordon Riley, John Steele and Mike Fasham (Gentleman, 29 

2002; Anderson and Gentleman, 2012). We admire these individuals when it came to 30 

encapsulating the complexity of the real world with mathematical equations. They necessarily 31 

had to think deeply about their models because they had to build them from scratch as, in 32 
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most instances, established relationships for processes such as photosynthesis, grazing and 1 

mortality could not be borrowed from elsewhere. A key aspect of their success, we submit, is 2 

that they experimented extensively with their models, trying out different formulations and 3 

parameterisations in order to see the effect on model predictions (e.g., Anderson and 4 

Gentleman, 2012). It is this preparation that served them so well, allowing them to set up 5 

meaningful simulations from which they could so effectively draw conclusions and make 6 

progress in their field of study.  7 

The need for preparation in terms of exploring sensitivity to ecosystem model formulations 8 

and parameterisation is no less in the modern era, indeed it is arguably greater given our 9 

deeper knowledge of the marine biota and a correspondingly larger multitude of mathematical 10 

formulations to choose from. We propose that modellers can benefit from extensively 11 

“playing with” and testing their models and that the use of simple slab physics is an obvious 12 

choice in this regard, at least for ocean locations where the bulk of the biological activity 13 

occurs in the surface mixed layer. Experimentation of this kind may then be used to set the 14 

stage for the “serious” model runs that may follow, e.g. in 1-D or 3-D, although it is also 15 

entirely possible to undertake successful studies using only slab physics models. In addition, 16 

because they are straightforward to understand and do not require powerful computing 17 

resources to run, models that incorporate simple slab physics are ideal for use in teaching 18 

future generations of marine scientists about ecological structure and function. 19 

Here, we present a slab a.k.a. zero-dimensional, and hence computationally efficient, plankton 20 

ecosystem testbed, coded in the freely available R environment, EMPOWER-1.0 : Efficient 21 

Model of Planktonic ecOsystems WrittEn in R. Our aim is to provide EMPOWER-1.0 for 22 

general use and to demonstrate how it can readily and easily be used both to study ecosystem 23 

dynamics at a range of ocean sites and to assess the pros and cons of different model choices 24 

for best representing and analysing the ecosystems in question. EMPOWER's code is 25 

structured in a modular way to ensure maximum ease of adjusting parameters and 26 

formulations and, indeed, the inclusion of entirely new marine ecosystem compartments, 27 

processes and associated outputs as required. Here, we demonstrate the use of EMPOWER-28 

1.0 in combination with a simple illustrative nutrient-phytoplankton-zooplankton-detritus 29 

(NPZD) model. It should be noted, however, that EMPOWER-1.0 can be used to test and 30 

examine the performance of simple and complex models alike. Our choice of a simple 31 

ecosystem model is motivated by the fact that simple models are conceptually straightforward 32 
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as well as being easy to set up and analyse. This study is structured as follows. First, a brief 1 

history of slab models in marine science is presented to illustrate the origin and utility of these 2 

models as research tools in marine science. The NPZD model is then described and 3 

implemented within EMPOWER. The utility of EMPOWER as a testbed for undertaking 4 

model parameterisation is next demonstrated by a parameter adjustment exercise, specifically 5 

the fitting of the NPZD model to observed seasonal cycles of chlorophyll and nutrients at 6 

each of four stations in diverse regions of the world ocean. The sensitivity analysis is then 7 

extended to model equations with a comparison of the performance of different equations for 8 

calculating, first, daily depth-integrated photosynthesis and, second, phytoplankton and 9 

zooplankton mortality. Finally, the utility of slab models is discussed in context of ongoing 10 

contemporary marine ecosystem modelling research. 11 

 12 

2 Slab models: from pioneering studies to the present day 13 

In this section, we provide a history of slab modelling which serves as an introduction to how 14 

these models are constructed, as well as to demonstrate that, despite their simplicity, the 15 

simulations these models generate can be meaningful and realistic. Models provide the 16 

theoretical basis for our understanding of the dynamics of marine ecosystems. One of the first 17 

applications of theory in biological oceanography occurred around 80 years ago when 18 

scientists were interested in the mechanisms driving the spring phytoplankton bloom that is 19 

characteristic of many marine systems. The basic theory as we know it today, whereby bloom 20 

initiation occurs as the water column stratifies, was proposed in the early 1930s by Haaken H. 21 

Gran, a Norwegian botanist (Gran 1932; Gran and Braarud, 1935). Mathematical testing of 22 

this proposal was essential in order to establish quantitative merit, given the dynamic 23 

interplay between bottom-up controls on phytoplankton via light and nutrients versus top-24 

down control by grazing. Following on from initial work by Fleming (1939), it was Gordon 25 

Riley, a biological oceanographer based at the Bingham Oceanographic Laboratory in the 26 

northeastern USA, who constructed a model of seasonal phytoplankton dynamics for Georges 27 

Bank, a raised plateau off the coast of New England, northeast U.S.A. (Riley, 1946), a 28 

remarkable achievement at the time (Anderson and Gentleman, 2012). The model had a single 29 

differential equation for the rate of change of phytoplankton biomass, expressed with terms 30 

for photosynthesis, respiration and grazing. Using a photosynthesis-irradiance (P-I) curve 31 

based on his own ship-board experiments, Riley developed a formula for daily depth-32 
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averaged photosynthesis in the mixed-layer that was derived from observed seasonal 1 

irradiance at the ocean surface as calculated by atmospheric transmission by Kimball (1928), 2 

measured light attenuation coefficients and a nutrient limitation term. The seasonal cycle of 3 

mixed layer depth was imposed empirically, with calculated photosynthesis in the euphotic 4 

zone being diminished accordingly when mixed layer depth (MLD) exceeded that of the 5 

euphotic zone (Figure 1). Temperature was considered to affect net primary production via 6 

regulation of respiration. Despite its simplicity, in both biology and physics, Riley's model 7 

successfully reproduced the spring plankton bloom at Georges Bank, highlighting the subtle 8 

interplay between growth and grazing in controlling plankton stocks. 9 

Although Riley’s model considered depth-averaged photosynthesis over the mixed layer, it 10 

could not be described as a slab model per se because it did not account for fluxes of material 11 

across the pycnocline. It was John Steele, a mathematical marine biologist from Scotland, 12 

who took the next step by experimenting with a dynamic ecosystem embedded within multi-13 

layer models (e.g., Steele, 1956), arguably a coarser version of what is done today in the more 14 

complex 1-D models. Steele's experience with this model led him to realise that much of the 15 

net effect of vertical gradients could be captured with just a few layers, and he further 16 

simplified the physics to a two-layer sea in his study of the plankton in the North Sea (Steele, 17 

1958). The resulting NPZ ecosystem was confined to the upper layer with a lower layer that 18 

contained only nutrient, in fixed concentration. Inputs of nutrients to the surface layer 19 

occurred due to mixing, balanced by export via phytoplankton sinking and mixing (Figure 2). 20 

Steele had thus constructed the first slab model of its kind although with this, as well as his 21 

later models including those in his seminal work The Structure of Marine Ecosystems (Steele, 22 

1974), he used a fixed, rather than seasonally-varying, mixed layer depth. Applying the model 23 

to study the plankton of Fladen Ground and other regions in the northern North Sea, Steele 24 

demonstrated good agreement between the model and estimates of production from 25 

observations. Through work such as this, Steele emphasised that it is simplification that 26 

allows us to most easily address the controlling factors in marine ecosystems. One of Steele’s 27 

best-remembered findings, demonstrated again using simple models, is that the form of the 28 

zooplankton closure term has important consequences for ecosystem dynamics and export 29 

flux (Steele and Henderson, 1992). This finding remains relevant to modellers today and, 30 

indeed, we will examine model sensitivity to zooplankton mortality in section 4.4. 31 
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It was Geoff Evans and John Parslow who would make the next major advance in the 1 

development of slab models with their “model of annual plankton cycles” (Evans and 2 

Parslow, 1985). Following Steele, they opted for an NPZ ecosystem embedded within the 3 

same two-layer framework with the marine ecosystem restricted to the upper layer and a fixed 4 

nutrient concentration in the lower. Evans and Parslow provided a more complete 5 

representation of the interaction of the marine ecosystem with its physical environment by 6 

allowing the depth of the mixed layer to vary seasonally with direct impacts on the model 7 

state variables. As the mixed layer deepens, nutrients are entrained from below while 8 

phytoplankton density is diluted because their surface layer biomass is spread over a greater 9 

depth. Conversely, as the mixed layer shallows, the concentrations of nutrients and 10 

phytoplankton are unchanged although losses occur on a per unit area (m-2) basis. As many 11 

zooplankton can swim, Evans and Parslow assumed that they are able to avoid detrainment in 12 

a similar manner to the assumptions of prior models (e.g. Steele, 1958; Riley et al., 1949) in 13 

which case their concentration increases as MLD decreases.  14 

Evans and Parslow (1985) also took seasonal and daily irradiance forcing into consideration, 15 

in combination with depth integration of a non-linear P-I curve. As opposed to previous 16 

studies that had used observations, variation in light at the ocean surface was calculated from 17 

standard trigonometric/astronomical formulae (Brock, 1981), with transmission losses in the 18 

atmosphere as 70% of cloud cover and photosynthetically active radiation (PAR) as 3/8 of 19 

total irradiance. Variation in light with time of day was assumed to be triangular (Steele, 20 

1962), permitting analytic integration in time. A notable contribution of Evans and Parslow’s 21 

(1985) paper is the appendix which provides the equations required to construct a model 22 

subroutine to calculate daily depth-integrated photosynthesis in a model layer as a function of 23 

noon irradiance (PAR entering the layer from above), day length, phytoplankton 24 

concentration, rate of light extinction (Beer’s law) and parameters for maximum 25 

photosynthesis and initial slope that define the P-I curve.  26 

In common with their predecessors, Evans and Parslow were interested in the factors 27 

controlling the initiation of the spring phytoplankton bloom, focussing on the role of vertical 28 

mixing. Bloom initiation, they concluded, required a low rate of primary production over 29 

winter, which is to be expected in the North Atlantic due to deep mixed layers at that time, 30 

and is also linked to coupling between phytoplankton and grazers. The simplicity of the slab 31 

model was key to their conclusions as articulated in their own words: “It is worth emphasising 32 
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the advantages of analysing simple models, and simplifying models until they can be 1 

analysed”. The controls on phytoplankton dynamics in high-nutrient low-chlorophyll (HNLC) 2 

areas such as the Subarctic Pacific has remained a topical issue ever since, in large part 3 

because limitation by iron is also indicated (Martin et al., 1994; Coale et al., 1996), but the 4 

role of grazing and the link between phytoplankton-zooplankton coupling and mixed layer 5 

depth remains firmly established as a key mechanism in these systems (Frost, 1987; Fasham, 6 

1995; Chai et al., 2000; Smith and Lancelot, 2004).  7 

Perhaps the most famous slab modelling paper, published five years after Evans and Parslow 8 

(1985), is the study of nitrogen cycling in the Sargasso Sea by Fasham et al. (1990; henceforth 9 

FDM90). It is by far the most highly cited marine ecosystem model (Arhonditsis et al. (2006) 10 

noted that it had accumulated 405 ISI cites by November 2005; this number has increased to 11 

758 as of May 2015). In terms of physical structure, Fasham’s model used the same basic slab 12 

construct as in Evans and Parslow (1985), with seasonally varying mixed layer depth and 13 

irradiance forcing. The novel aspects of FDM90 were instead related to additional complexity 14 

of the ecosystem, expanding from a simple NPZ to explicitly separate new and regenerated 15 

production by including state variables for nitrate and ammonium (critical for calculating the 16 

f-ratio; Eppley and Peterson, 1979), as well as having a simple microbial loop of dissolved 17 

organic nitrogen and bacteria. Sinking detritus was also added as a state variable, facilitating 18 

the prediction of export flux. The success of this model was due to it being the first attempt to 19 

fully elucidate the processes involved in the recycling of nitrogen in the euphotic zone, as 20 

well as the complimentary roles of zooplankton and bacteria. The simplified physics of the 21 

model allowed it to be run on PCs of that era and Fasham purportedly distributed the code on 22 

floppy disks, allowing other researchers to run the model on their PCs.  23 

The description of the marine ecosystem provided by FDM90 has largely served as the 24 

foundation for marine ecosystem modelling ever since. With the advent of increasing 25 

computer power, as well as increasing interest in the spatio-temporal behaviour of plankton 26 

systems, most modelling studies are now undertaken in 1-D or 3-D physical frameworks. 27 

Nevertheless, many slab modelling studies have been published since FDM90 which follow 28 

the basic design described above, or slight modifications thereof (Table 1). A range of 29 

ecosystem models of varying complexity have been incorporated within slab physics and 30 

applied to contrasting sites throughout the world ocean. The basic physical construction is 31 

similar in most cases consisting of a classic slab structure with a seasonal cycle of mixed layer 32 
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depth specified from data and seasonal irradiance from standard trigonometric equations. 1 

Remarkably, Evans and Parslow’s (1985) equations for calculating daily depth-integrated 2 

photosynthesis have prevailed and been used in most studies. A more sophisticated 3 

calculation method was developed by Morel (1988, 1991) and a simplified form of this 4 

(Anderson, 1993) is examined in section 4.3. The models in Table 1 have been used for a 5 

diverse range of applications including studies of parameter optimisation (Spitz et al., 1998; 6 

Fennel et al., 2001; Schartau et al., 2001; Hemmings et al., 2004), parameter sensitivity 7 

analysis (Mitra, 2009; Mitra et al., 2007, 2014), phytoplankton bloom dynamics (Findlay et 8 

al., 2006), nutrient cycling via organic and inorganic pathways (Llebot et al., 2010), primary 9 

production in HNLC systems (Kidston et al., 2013) and primary production and export flux in 10 

contrasting regions (Fasham, 1995; Onitsuka and Yanagi, 2005). 11 

 12 

3 Model description 13 

We demonstrate the use of EMPOWER-1.0 using a simple NPZD ecosystem model and 14 

forcing for four time series stations in the ocean. The code is readily adapted to incorporate 15 

other ecosystem models, including the relatively complex models of the modern era, and/or 16 

forcing for other ocean sites. 17 

 18 

3.1 Slab setup and forcing 19 

The model uses slab physics as per Evans and Parslow (1985), namely a seasonally varying 20 

surface mixed layer that contains the ecosystem positioned above a deep homogeneous layer 21 

containing unchanging nutrient and no plankton (Fig 2). We have also included temperature 22 

dependencies for the physiological rates in the ecosystem model (see below). Our model was 23 

set up for four stations, two in the North Atlantic (stations BIOTRANS, 47ºN 20ºW and India, 24 

60ºN 20ºW) and two HNLC systems (stations Papa in the north Pacific, 50ºN 145ºW and 25 

KERFIX in the Southern Ocean, 50º 40’S 68º 25’E). These stations were chosen because of 26 

their contrasting environments, as illustrated by the differences in forcing variables: 27 

seasonally varying mixed layer depth (MLD), irradiance (I) and sea surface temperature (T) 28 

(Figure 3), as well as deep nitrate (N0; see below). Mixed layer depths were taken from World 29 

Ocean Atlas 2009 (Antonov et al., 2010; Locarnini et al., 2010). In common with most 30 

previous slab modelling studies, noon (peak daily) irradiance at the ocean surface is 31 
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calculated, for a given latitude as a function of time of year, using standard 1 

trigonometric/astronomical equations. The effect of clouds on atmospheric transmission was 2 

calculated using the model of Reed (1977). The equations for irradiance forcing are not 3 

usually provided as part of published model descriptions but, for completeness, they are listed 4 

here in Appendix A. 5 

The bottom layer in most slab models is assumed to have a fixed concentration of nutrient, 6 

N0. There is in reality a gradient of nutrient with depth and this can be represented empirically 7 

in slab models using simple functions of nutrients versus depth (Frost, 1987, Steele and 8 

Henderson, 1993; Fasham, 1995). We adopted this approach here for stations BIOTRANS 9 

and India, using simple linear relationships with depth (z): 10 

NN bzazN +=)(0            (1) 11 

The regression coefficients were fitted from World Ocean Atlas 2009 (WOA) data (Garcia et 12 

al., 2010) for subthermocline NO3 (z >100 m). Resulting values for aN and bN were 0.0174 13 

and 3.91 for station BIOTRANS and 0.0074 and 10.85 for station India. There were no 14 

obvious relationships between N0 and depth for the two HNLC stations and so mean (fixed) 15 

values of 26.1 and 14.6 mmol N m-3 were used for N0 for KERFIX and Papa respectively. 16 

 17 

3.2 Ecosystem model description 18 

The NPZD ecosystem model we have implemented in EMPOWER is presented in Figure 4 19 

with dissolved inorganic nitrogen (N; the sum of nitrate and ammonium), phytoplankton (P), 20 

zooplankton (Z) and detritus (D) as state variables. It is a simplification of the marine 21 

ecosystem inspired by that of FDM90 with improved formulations for multiple-prey grazing, 22 

plankton mortality, nutrient regeneration and other detrital loss terms, as well as alterations to 23 

the parameterisation. The equations are described below; model parameterisation is described 24 

in section 4.1). The phytoplankton equation is: 25 

)(
))('(2

2 tH
PtHw

PmPmGP
dt
dP mix

PPPP
+

−−−−= m      (2) 26 

where the terms are growth, grazing and non-grazing mortality (linear and quadratic), 27 

physical losses due to mixing across the bottom of the mixed layer, and dilution effects of 28 

entrainment. H(t) is mixed layer depth (m) at time t and H’(t) denotes the rate of change of H  29 
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when dH/dt is positive (dilution). As explained above, when dH/dt is negative the change in 1 

phytoplankton density due to detrainment of mass from the mixed layer is exactly balanced by 2 

the increasing phytoplankton density due to decreases in volume, and therefore detrainment 3 

does not alter the concentration of remaining biomass. Variable mP is the vertically-averaged 4 

temperature-dependent daily growth rate, defined as the product of a temperature-dependent 5 

maximum growth rate, , and non-dimensional limitation terms for nutrients and light, 6 

LN(N) and LI(I(t,z)): 7 

)),(()()(max ztILNLT INPP mm =        (3) 8 

Note that mP is calculated on a daily basis averaging over the time of day (t) and depth (z). 9 

Temperature and nutrients are assumed to be uniformly distributed throughout the mixed 10 

layer, in which case mP is: 11 

∫ ∫=
h H

I
NP

P dzdtztIL
H

NLT 24

0 0

max

)),((
24

)()(m
m       (4) 12 

With the assumption of balanced growth, )(max TPm  is equal to the equivalent maximum 13 

photosynthetic rate, )(max TVP . The temperature dependence of photosynthesis is from Eppley 14 

(1972):  15 

T
PP VTV 066.1)0()( maxmax =         (5) 16 

where )0(max
PV  is photosynthesis at 0ºC. Note that this exponential relationship is equivalent 17 

to a Q10 of 1.895.  18 

The usual way NPZD-type models characterise nutrient limitation of phytoplankton growth 19 

rate by nutrients, LN(N), is calculated as a Michaelis-Menten (or Monod) relationship: 20 

         (6) 21 

where kN is the half saturation constant.  22 

The calculation of LI is the most mathematically complicated aspect of characterising 23 

phytoplankton growth in this model as it takes into consideration both seasonal and diurnal 24 

patterns of irradiance arriving at the ocean surface (I0), attenuation of irradiance with depth 25 

and photosynthesis as a function of light intensity. Light is assumed to vary with depth 26 
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according to Beer's law (I = I0 exp(-kPARz)), where kPAR is the attenuation coefficient, and 1 

photosynthesis calculated using a P-I curve. The daily depth-average photosynthetic rate is 2 

calculated over the course of the day using an assumed daily variation of light, from which 3 

the daily average is derived. The user of EMPOWER is provided with a choice between two 4 

P-I curves, a Smith function (Eq. 7) and an exponential function (Eq. 8) (Fig. 5):  5 

222max

max

)( IV

IVV
P

P
P

a

a

+
=         (7) 6 

))/exp(1( maxmax
PPP VIVV a−−=        (8) 7 

Integration with depth (inner integral of Eq. 4) can be calculated analytically for either of the 8 

two P-I curves; equations are provided in Appendix B. The default method of handling the 9 

diurnal variation in irradiance at the ocean surface (outer integral of Eq. 4) is to do a numeric 10 

integration. The user may choose between assuming either a sinusoidal (Platt et al., 1990) or 11 

triangular (Steele, 1962; Evans and Parlsow, 1985) pattern of irradiance throughout each day, 12 

from sunrise to sunset and peaking at noon (Figure 6).  13 

Analytic depth integrals require a Beer’s law attenuation of light within the water column 14 

characterised by a single attenuation coefficient, kPAR. The simplest assumption, provided as 15 

the first of two options in EMPOWER, is that kPAR is the sum of attenuation due to water and 16 

phytoplankton, parameters kw and kC respectively: 17 

Pkkk cwPAR +=          (9) 18 

Parameters kw and kc are often assigned values of 0.04 m-1 and 0.03 m2 (mmol N)-1 19 

respectively (e.g., FDM90); these values are used here. 20 

The assumption of a single mixed layer value of kPAR is questionable because in reality the 21 

value of kPAR varies with depth as a result of the changing spectral properties of the irradiance 22 

field. Red light is mostly absorbed by water in the upper few meters while blue penetrates 23 

deepest, with relatively efficient absorption by chlorophyll at both wavelengths. Based on a 24 

complex treatment of submarine light (Morel, 1988), a piecewise approach to light attenuation 25 

was developed by Anderson (1993) with different values, kPAR,i, with i = 1 for depth range 0-5 26 

m, i = 2 for depth range 5-23 m and i = 3 for depths >23 m, in each case kPAR(i) is related to 27 

pigment (chlorophyll) concentration, C: 28 

2/5
,5

2
,4

2/3
,3,2

2/1
,1,0, CbCbCbCbCbbk iiiiiiiPAR +++++=     (10) 29 
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This approach to light attenuation is provided as the default option for use in EMPOWER. 1 

The values of the polynomial coefficients (b0,i – b5,i) are listed in Table 2. 2 

The diurnal variation in light at the ocean surface over the course of a day may be reasonably 3 

approximated by a sinusoidal function that is symmetric about noon irradiance (Platt, 1980). 4 

Further simplification is possible by use of a linear model, i.e., triangular centred at noon (e.g. 5 

Steele, 1962; Evans and Parlsow, 1985) because this simplifies the time integration. It should 6 

be noted here that despite Evans and Parslow’s (1985) claim that differences between the 7 

triangular and sinusoidal approximations are minimal if the area under the curve is the same, 8 

they did not make the "equivalent area" adjustment to their formula, nor is their statement 9 

generically true (i.e. it depends on the peak light intensity, the attenuation of light with depth 10 

and the nonlinear P-I relationship).  11 

In EMPOWER, the default method of handling the diurnal variation in irradiance at the ocean 12 

surface is to do a numeric integration. Undertaking a numerical time integral involves 13 

computational cost and two empirical methods (Evans and Parslow, 1985; Anderson, 1993) 14 

have been published that provide analytic calculations (i.e pre-determined formulae) for daily 15 

depth-integrated photosynthesis in a water column. Both are provided as options for use in 16 

EMPOWER and have the advantage of faster run time. The first of the two EMPOWER 17 

options is the depth-averaged light-dependent calculation of growth of Evans and Parslow 18 

(1985) which assumes a triangular pattern of daily irradiance, Beer’s law for light attenuation 19 

(Eq. 9) and a Smith function as the P-I curve (Eq. 7). It has been a popular choice in previous 20 

slab modelling studies (Table 1). The second option is from Anderson (1993), which was 21 

developed as an empirical approximation to the spectrally resolved model of light attenuation 22 

and photosynthesis of Morel (1988) used in combination with the polynomial method of 23 

integrating daily photosynthesis of Platt et al. (1990). It assumes a sinusoidal pattern of 24 

irradiance through the day, a piecewise Beer’s law light attenuation (Eq. 10) and an 25 

exponential function as the P-I curve (Eq. 8). Parameter a, the initial slope of the P-I curve, is 26 

also spectrally dependent. The method of Anderson (1993) calculates the variation of a with 27 

depth as a function of chlorophyll in the water column. Daily photosynthesis is then 28 

calculated using a polynomial approximation. The methods for calculating daily depth-29 

integrated photosynthesis of Evans and Parslow (1985) and Anderson (1993) are non-trivial 30 

and, for completeness, the equations are supplied in Appendix C.  31 
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Grazing by zooplankton is assumed to be on both phytoplankton and detritus. This choice was 1 

made in part to illustrate how to implement ingestion on multiple prey types, as such 2 

functions are used for more complex models (e.g. when there are multiple phytoplankton size 3 

classes or functional types and/or omnivory by zooplankton). Many multiple-grazing 4 

formulations, however, comprise questionable assumptions about zooplantkon feeding 5 

behavior (Gentleman et al., 2003). For example, the multiple-prey grazing formula used in 6 

FDM90 is classified as an active switching response (Gentleman et al., 2003) which can 7 

display anomalous behaviour such as sub-optimal feeding (i.e. ingestion rates decreasing 8 

when prey availability increases). We have therefore opted to improve upon Fasham’s choice 9 

by using a different multiple-prey response, but one that is nevertheless commonplace in the 10 

literature. Specifically, we have adopted a passive switching response where density 11 

dependence of the prey preferences arises due to inherent differences in the single-prey 12 

responses (see Gentleman et al., 2003). This Sigmoidal (or Holling Type 3) response is 13 

characterised as (Figure 7): 14 
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where the terms in parentheses are the zooplankton specific ingestion rates IP and ID 17 

respecitively. This formulation implies that the single-prey responses for both phytoplankton 18 

and detritus are each sigmoidal (Type 3). Parameter Imax is the maximum specific grazing rate, 19 

which is the same for both phytoplankton and detritus and equates to their single prey 20 

maximum ingestion rates. Although parameters φP and φD are often called preferences in the 21 

literature, the actual prey preferences associated with this response (i.e. relative amount in the 22 

diet as compared to the environment) are density-dependent, with the relative preference for 23 

phytoplankton to detritus is determined by 
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relate to the half-saturation constants associated with the single prey functional responses. 25 

Specifically, 2
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=φ , where kP is the half saturation value for the Type 3 single-prey 26 

response for ingestion of phytopalnkton, and φD is defined similarly. Parameter kZ, which is 27 
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often referred to as the half-saturation value in the literature, is actually an arbitrary parameter 1 

(i.e. this formulation is over-parameterised, see Gentleman et al., 2003) whose value 2 

determines the assumed single-prey half saturation constants based on choices for the φ 3 

parameters.  4 

The Sigmoidal response assumes an interference effect of alternative prey in that as detritus 5 

increases, ingestion of phytoplankton decreases (with the same interaction for phytoplankton 6 

and ingestion of detritus). This interference effect is not so great as losing the benefit of 7 

generalism, i.e. total ingestion always increases for an increase in total prey density. The non-8 

equal preferences reduce the interference effect for phytoplankton, i.e. the contours in the first 9 

panel of Fig. 7 are more vertical than for equal preferences. The corrollary effect is that the 10 

increased ingestion by consuming both phytoplankton and detritus versus just phytoplankton  11 

is reduced as compared to when prey have equal preferences.  12 

Regarding phytoplankton non-grazing mortality, FDM90 has the usual choice of a linear term 13 

although non-linear approaches are also possible, e.g. the use of a  Michaelis-Menten 14 

saturating function by Fasham (1993). We opted for the more flexible approach of using both 15 

linear and nonlinear terms (Yool et al., 2011; 2013a). The former may account for metabolic 16 

losses or natural mortality. The use of an additional nonlinear term represents density-17 

dependent loss processes, notably mortality due to infection by viruses. The abundance of 18 

viruses is highly dependent on the density of potential host cells (e.g., Weinbauer, 2004) and, 19 

as reviewed by Danovaro et al. (2011), there is “compelling” evidence that, at least in some 20 

instances, viruses are responsible for the demise of phytoplankton blooms based on 21 

observations of high proportions (10-50%) of infected cells (e.g., Bratbak et al., 1993; 1996). 22 

A quadratic form was used for the nonlinear mortality term (e.g., Kawamiya et al., 1995; 23 

Oschlies and Schartau, 2005) and all phytoplankton non-grazing mortality losses were 24 

allocated to detritus.  25 

The equation for rate of change of zooplankton density is: 26 
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where the terms are growth, mortality (linear and quadratic) and losses due to mixing and 28 

changing MLD. Zooplankton growth can be described as the product of gross growth 29 

efficiency (GGE) and intake, where GGEs are typically between 0.2 and 0.3 (Straile, 1997). 30 
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Gross growth efficiency is itself the product of absorption efficiency, β (more commonly, but 1 

incorrectly, known as assimilation efficiency; e.g. see Mayor et al., 2011) and net production 2 

efficiency, kNZ. Splitting into these separate parameters (Table 3) permits three-way 3 

fractionation of intake between egestion (i.e. faecal pellet production, 1-β), growth (β.kNZ = 4 

GGE; first term in Eq. 13) and excretion (β(1-kNZ)). 5 

A variety of formulations exist in ecosystem models to describe zooplankton mortality and 6 

the appropriate functional form has been and continues to be a hotly debated topic (Steele and 7 

Henderson, 1992; Edwards and Yool, 2000; Mitra et al, 2014).  Most common are the linear 8 

and quadratic terms, although some authors have chosen to employ other non-linear functions 9 

(e.g. Fasham, 1993 used a Michaelis-Menten relationship). As with phytoplankton, we used 10 

both linear and quadratic non-linear terms (Yool et al., 2011). The linear term represents 11 

density-independent natural mortality, whereas the quadratic term is considered to be due to 12 

predation by carnivores (whose population tracks that of the zooplankton). The different 13 

sources of mortality result in different fates for these terms. Loss from natural mortality is 14 

allocated to modelled detritus, which implies a broader size-class of modeled particulates (and 15 

therefore higher sinking rates) than when just phytoplankton death contributes to this variable.  16 

The fate of the predation-related mortality is less obvious because the metabolic activity of 17 

higher predators results in ingested material being converted into dissolved nutrients as well 18 

as larger particulates (e.g. fecal pellets and death). Moreover, the higher predators may export 19 

material from the local region with migration. FDM90, along with a suite of follow-on 20 

models, therefore chose to allocate predation-related zooplankton mortality between nutrients 21 

(ammonium and DON, attributed to excretion by higher predators) and material that is 22 

immediately exported from the system (e.g. attributed to fast-sinking detritus generated by 23 

higher predators). Similarly, Steele and Henderson (1992) also allocated zooplankton 24 

mortality to export. Nevertheless, many past and recent published marine ecosystem 25 

modelling studies allocate all of zooplankton mortality to detritus (Oschlies and Schartau, 26 

2005; Salihoglu et al., 2008; Hinckley et al., 2009; Ye et al., 2012). We argue, however, that 27 

this is not necessarily realistic given that detrital particles related to higher-predators are 28 

larger and therefore even faster-sinking than that produced by the modelled plankton. We 29 

have therefore here adopted to follow the sage approach of the model pioneers and assume 30 

that the predation-related mortality represented by our quadratic term is instantly exported and 31 
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thereby entirely lost from the surface mixed layer of the model. As with phytoplankton, 1 

zooplankton are subject to changes in concentration via mixing and changes in MLD. 2 

The equation for  the rate of change of dissolved inorganic nitrogen (DIN) density is: 3 
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DIN is taken up by phytoplankton (first term) and, via the food web, regenerated with terms 2 5 

and 3 in Eq. 14 representing excretion by zooplankton and remineralisation of detritus 6 

respectively. The fourth term represents the net transport due to mixing (i.e. supply by the 7 

deep water and loss from the surface layer). The last term represents the net effect of volume 8 

changes, i.e. increases in DIN density due to supply of deep water nutrients through 9 

entrainment and decreases in DIN density due to volume increases associated with 10 

entrainment. 11 

Finally, the detritus equation is: 12 
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Detritus is produced by phytoplankton mortality, zooplankton natural mortality (linear term) 14 

and as zooplankton egestion (faecal pellet production). It is lost by zooplankton grazing and is 15 

also remineralised at a constant rate, mD. Detritus is mixed and subject to changes via the 16 

seasonal cycle of MLD in the same manner as phytoplankton and zooplankton (terms 6 & 7), 17 

and also experiences losses due to gravitational sinking (last term). This occurs at rate vD (m 18 

d-1) and provides direct export of particulate organic matter to the layer below (where it is 19 

implicitly remineralised back to DIN). 20 

The first results sections (4.1, 4.2) are devoted to parameterising the model, in the first 21 

instance, for station BIOTRANS and a detailed description of values assigned to model 22 

parameters is provided therein.  23 

 24 

3.3 Setup in R 25 

We have chosen to code our model in the R programming language which can be readily 26 

downloaded for free over the internet. Input and output files are in ASCII text (.txt) format, 27 

avoiding the use of proprietary software. The structure of the code is designed to be 28 
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transparent, where possible using conventional syntax common to different programming 1 

languages such as the use of loops, block IF statements, etc. Where possible, we have 2 

followed what we consider to be best practice in developing the code which includes: 3 

(i) Creation of a fixed segment of core code that handles the numerical integration, as well as 4 

writing to output files. Being fixed, this segment does not require alteration in the event of 5 

changes to the ecosystem model formulation, nor indeed if an entirely new ecosystem model 6 

is implemented. 7 

(ii) The ecosystem model formulation, i.e., the specification of the terms in the differential 8 

equations and calculation of their rates of change, is handled by a function (FNget_flux) that 9 

is external to the core code. 10 

(iii) The specification of parameter values and run characteristics (e.g., time step, run 11 

duration, as well as flags for choices between different formats for export to output files, 12 

choice of ocean location and for different parameterisations of key processes) is via text files 13 

that are read in at the onset of each simulation. Thus, there is no need to enter or alter the 14 

model code when changing parameter values or other model settings. 15 

(iv) When a model run finishes, the summed annual fluxes associated with each term in the 16 

differential equations is displayed on the computer screen along with a report as to whether 17 

mass balance is achieved for each state variable (over the last year of simulation). Basic 18 

checking of mass balance is useful for ensuring that the model equations are error-free. 19 

(v) Regimented layout for clarity with extensive commenting throughout. 20 

The R programming language is supported by various libraries that can be accessed via the 21 

internet. One such library is for solving ordinary differential equations (Soetaert et al., 2010). 22 

Using this library has the advantage of minimising the length of the code and offers flexibility 23 

in terms of a range of numerical methods. On the other hand, its implementation requires that 24 

various conventions are adhered to and these can be restrictive when it comes to producing 25 

ancillary code, e.g., the formatting and export of output files. As such, we opted to code the 26 

numerical solution of the ODEs manually within the core code of the model for several 27 

reasons: 28 

(i) It offers full transparency for the interested user who wishes to see the method of 29 

integration. 30 
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(ii) The use of manual code makes it considerably easier to export chosen variables and fluxes 1 

to output files in desired formats and frequencies. 2 

(iii) In our case, the user is given the choice between two integration methods, Euler and 3 

fourth order Runge Kutta (RK4). These methods, particularly the latter, are entirely sufficient 4 

for the numerical task at hand and the coding of them is straightforward. 5 

(iv) By using elementary syntax, the code can be easily altered or converted to other 6 

programming languages. 7 

(v) The code is stand alone and not subject to reformulation in the event of future changes in 8 

subroutine libraries. 9 

The structure of the code is shown in Figure 8. The functions come first, appearing prior to 10 

the core code in R. The key function call is FNget_flux which contains the ecosystem model 11 

specification (section 3.2). The rate of change is calculated for each term in the differential 12 

equations and allocated to a 2-D array (flux no., state variable no.) which is then passed back 13 

to the core (permanent) code for processing. Other functions are: FNdaylcalc (calculates 14 

length of day; Eq. A7), FNnoonparcalc (noon irradiance, PAR; Eq. A5), FNLIcalcNum 15 

(undertakes numerical (over time) calculation of daily depth-integrated photosynthesis), 16 

FNLIcalcEP85 (calculates LI using the equations of Evans and Parslow, 1985; Appendix C1), 17 

FNaphy (calculates chlorophyll absorption, effectively parameter a, in the water column after 18 

Anderson, 1993; Eq. C14) and FNLIcalcA93 (calculates LI using the equations of Anderson, 19 

1993; Appendix C2). 20 

Model setup comes next. Parameter values are read in from file NPZD_parms.txt. 21 

Simulation characteristics are then read in from file NPZDextra.txt. These include:  22 

(i) Initial values for state variables (N, P, Z, D). 23 

(ii) Run duration (years) and time step. 24 

(iii) Choice of station: BIOTRANS, India, Papa, KERFIX 25 

(iv) Choice of photosynthesis calculation: numeric (default), Evans and Parslow (1985) or 26 

Anderson (1993). 27 

(v) Choice of integration method: Euler or RK4. 28 

(vi) Choice of output characteristics: none, last year only or whole simulation, and a 29 

frequency of once per day or every time step. 30 

Model forcing for the chosen station of interest is then assigned. Monthly values of MLD and 31 

SST are read in and subject to linear interpolation in order to derive daily forcing. Other 32 
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forcing variables are also set: latitude, deep nitrate (N0; Eq. 1) and cloud fraction. At the end 1 

of the setup section there are a few lines of code that need to be altered if the ecosystem 2 

model is changed. These lines tell the computer how many state variables the model has, the 3 

maximum number of flux terms associated with any one state variable and the maximum 4 

number of auxiliary variables to be stored for writing to output files. 5 

An advantage of this structure is that an initial section of customisable code is followed by a 6 

section of permanent code that does not require adjustment in the event of changes to the 7 

equations that describe the ecosystem model, or indeed if a completely new ecosystem model 8 

is to be used. This code sets up a series of matrices to store fluxes and outputs and then 9 

integrates the model equations over time. State variables are updated and results exported to 10 

three output files: out_statevars.txt (state variables), out_aux.txt (chosen auxiliary variables) 11 

and out_fluxes.txt (all the terms in the differential equations). These text files are readily 12 

imported to, for example, Microsoft Excel.  13 

Results are plotted graphically on the computer screen at the completion of each simulation 14 

run. The graph plotting code is necessarily model specific and needs to be updated by the user 15 

as required. R is a user friendly programming language in this regard and the code provided 16 

should be sufficient for the user to incorporate extra variables with ease. 17 

Finally, a user guide is provided in Appendix D, outlining how to set up R, run the code, a 18 

summary of input and output files, and guidance on considerations when altering the 19 

ecosystem code and/or forcing. 20 

 21 

4 Results 22 

Model results are presented in four sections. First, a simulation is shown for station 23 

BIOTRANS using parameters taken from the literature (section 4.1). This station is chosen as 24 

our primary focus, inspired by the North Atlantic Bloom Experiment in 1989 as part of 25 

JGOFS (the Joint Global Ocean Flux Study; e.g., Ducklow and Harris, 1993; Lochte et al., 26 

1993). It exhibits the characteristic spring blooming of phytoplankton of temperate latitudes, 27 

followed by relatively oligotrophic conditions over summer, and has been the subject of 28 

previous work using slab models (Fasham and Evans, 1995). Parameter tuning is then 29 

undertaken to fit all four ocean time series stations, BIOTRANS, India, Papa and KERFIX, to 30 

data for chlorophyll and nitrate at each site (section 4.2). Moving on from the calibration of 31 
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parameters, structural sensitivity analysis is then carried out by examining model sensitivity 1 

to equations for the calculation of daily depth-integrated photosynthesis (section 4.3) and 2 

mortality terms for phytoplankton and zooplankton (section 4.4). 3 

The model is compared to seasonal data for chlorophyll and nitrate within the mixed layer, for 4 

each station. Nitrate data are climatological, from World Ocean Atlas 2009 (Garcia et al., 5 

2010), as is the model forcing in terms of mixed layer dephs and irradiance. Regarding 6 

chlorophyll, data are SeaWiFS 8-day averages (O’Reilly et al., 1998), for which we had 7 

access to years 1998 to 2013. Averaging data across years to provide a climatological 8 

seasonal cycle of chlorophyll is not meaningful as key features, such as the spring 9 

phytoplankton bloom, are smoothed out because the bloom timing is variable between years. 10 

A characteristic year was therefore chosen for each station by firstly converting the data to 11 

log(chlorophyll), then calculating mean log(chlorophyll) for each year and finally selecting 12 

the median year (an odd number of years is required, so we used 1998 to 2012). The resulting 13 

year selections were 2002, 1998, 2007 and 2006 for stations BIOTRANS, India, Papa and 14 

KERFIX respectively. The entire data sets are shown with the multiple years overlaid in 15 

Figure 9, with data for the selected median year highlighted.  16 

It is not our objective here to provide thorough quantitative assessment of different model 17 

simulations in terms of objective quantification of model-data misfit but, rather, to 18 

demonstrate the utility of EMPOWER as a testbed for model evaluation. Different ecosystem 19 

models and associated data sets will necessarily require different skill metrics and so a 20 

lengthy description and use of quantitative metrics is not appropriate here. Very often 21 

anyway, as is the case here, visual inspection of model-data misfit is sufficient to determine 22 

the best options for model formulation/parameterisation. If quantitative methods are required, 23 

these are readily accessed from the literature (e.g., Lewis and Allen; 2009; Lewis et al., 2006). 24 

 25 

4.1 Parameter initialisation: station BIOTRANS 26 

Adjustment of parameters is a perennial problem for modellers. Parameters can be set from 27 

the literature, sometimes directly on the basis of observation and experiment, but the usual 28 

starting point is to take values from previously published modelling studies. Almost 29 

inevitably, however, the resulting simulations will show mismatch with data and parameters 30 

are usually selected for adjustment (tuning) to improve the agreement with data. One option is 31 



 22 

to use objective tuning methods, such as the genetic algorithm or adjoint method in which 1 

many or all of the model parameters are varied simultaneously in order to try and find a best 2 

fit solution to data (e.g., Friedrichs et al., 2007; Record et al., 2010; Ward et al., 2010; Xiao 3 

and Friedrichs, 2014). The advantage is objectivity, but difficulties include sloppy parameter 4 

sensitivities (parameters compensate for each other), different values of model parameters 5 

may be similarly consistent with the data (the problem of identifiability), exploration of a 6 

huge parameter space may be required and local minima in misfit parameter space can make it 7 

difficult to find the true global minimum (Slezak et al., 2010). It is usually the case that 8 

models are underdetermined by data anyway (Ward et al., 2010), i.e., there are insufficient 9 

data (in terms of absolute amount and/or different types of data) to adequately constrain 10 

parameter values. And of course, objective methods require expertise, time and computing 11 

resources. 12 

Modellers more often than not carry out parameter adjustment by varying values of chosen 13 

parameters one at a time until satisfactory convergence with data is achieved. The skill is in 14 

deciding which parameters to vary. In principle, sensitivity analysis can be of help in this 15 

regard in that sensitive parameters can be identified and selected for adjustment if they can be 16 

justifiably altered (i.e., there is uncertainty regarding their value). Here, we will demonstrate 17 

the use of EMPOWER for model calibration. Parameter sets will be derived for the four 18 

stations, BIOTRANS and India in the North Atlantic and the HNLC stations Papa (subarctic 19 

North Pacific) and KERFIX (Southern Ocean). The ecosystem model we have presented uses 20 

the NPZD structure in combination with up-to-date formulations for key processes such as 21 

photosynthesis, grazing and mortality. As such, it has not been previously published and so 22 

there is no readily available complete set of parameter values to draw upon. Using our 23 

experience, we chose appropriate parameter values from the literature and adjusted others to 24 

give a good fit with the data for station BIOTRANS. This result is presented below along with 25 

a discussion of how we went about achieving this parameter set. Working from this parameter 26 

set, tuning of parameters is then undertaken to fit the other stations to the data.  27 

Station BIOTRANS was previously modelled by Fasham and Evans (1995) and we used this 28 

publication as a starting point for the assignment of some of the parameter values (note that 29 

we opted for the second of two optimisation solutions in this reference). Other parameters 30 

were otherwise assigned values from the literature where possible and/or selected as a best 31 
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guess.  The resulting parameter set, along with adjusted (tuned) values (see below), is shown 1 

in Table 3. 2 

Photosynthetic parameters, max
PV  (maximum rate) and a (initial slope of the P-I curve) are 3 

geographically variable, in part due to temperature (Harrison and Platt, 1986; Cullen, 1990; 4 

Platt et al., 1990; Rey, 1991; Marañón and Holligan, 1999; Bouman et al., 2000; Huot et al., 5 

2013). We based parameters )0(max
PV  (the maximum rate of photosynthesis at 0ºC) and a 6 

(initial slope of the P-I curve) on the mean of values for polar waters provided in Table 2 of 7 

Rey (1991), giving )0(max
PV  = 2.5 g C (g chl)-1 h-1 and a = 0.034 g C (g chl)-1 h-1 (mE m-2 s-1)-8 

1. Similar values were recorded more recently in the Beaufort Sea by Huot et al. (2013). 9 

Converting units, parameter a is 0.15 g C (g chl)-1 h-1 (W m-2)-1 (1 W m-2 = 4.55 mE m-2 s-1, 10 

based on the spectral distribution of white light given in Anderson, 1993). Note that 11 

photosynthetic parameters are specified per unit phytoplankton biomass expressed as 12 

chlorophyll, requiring unit conversion. The Redfield C:N molar ratio of 6.625 is the obvious 13 

choice to convert between C and N. Carbon to chlorophyll ratios are more variable and a 14 

value of 50 g C (g chl)-1 has previously been used in modelling studies (e.g., Fasham et al., 15 

1990). However, C:Chl ratios are known to vary widely in response to ambient conditions. 16 

The recent study of Sathyendranath et al. (2009) found that, in the North Atlantic, the ratio 17 

typically vary between 50 and 100 g C (g Chl)-1 and so here we use an intermediate value of 18 

75 g C (g Chl)-1 (parameter θchl).  Remaining phytoplankton parameters are kN, 0.85 mmol N 19 

m-3 (Fasham and Evans, 1995), mP, 0.02 d-1 (Yool et al., 2011; 2013a), and mP2, 0.025 (mmol 20 

N m-3)-1 d-1 (Oschlies and Garçon, 2005). 21 

Zooplankton parameters Imax and kZ were assigned directly from Fasham and Evans (1995) 22 

with values of 1.0 d-1 and 0.86 mmol N m-3, respectively. When it comes to calculating 23 

growth, the assimilation efficiency used by Fasham and Evans (1995) is in fact a growth 24 

efficiency whereas our use of absorption efficiency (parameter β) is more in keeping with 25 

contemporary zooplankton modelling (e.g., see Anderson et al., 2013) and refers to the 26 

fraction of material absorbed across the gut. It is multiplied by net production efficiency 27 

(parameter kNZ) to give growth efficiency. Values of 0.69 and 0.75 were assigned to 28 

parameters β and kNZ respectively (Anderson, 1994; Anderson and Hessen, 1995). 29 

Zooplankton ought to have a strong grazing preference for phytoplankton and so the 30 

preference value (parameter φP) of 0.12 used by Fasham and Evans (1995) seems 31 
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unreasonably low. We instead assigned values of 0.67 and 0.33 for parameters φP and φD, the 1 

same ratio of the equivalent preferences used in Fasham (1993). Thus if kZ = 1 mmol N m-3, 2 

this implies that the phytoplankton single-prey half-saturation is 1.22 mmol N m-3 and the 3 

detritus single-prey half-saturation constant is 1.75 mmol N m-3. The implied single-prey half-4 

saturation constants change to 1.05 and 1.50 mmol N m-3 respectively when kZ = 0.86 mmol N 5 

m-3. Mortality parameters mZ and mZ2 were assigned values of 0.02 d-1 (Yool et al., 2011, 6 

2013a) and 0.34 (mmol N m-3)-1 d-1 (Oschlies and Schartau, 2005), respectively.  7 

Detritus is composed of a range of sinking material including faecal pellets and marine snow 8 

with sinking speeds of between 5 and 100s m d-1 (Wilson et al., 2008), as well as slow-sinking 9 

material that is likely to be remineralised in the upper water column (Riley et al., 2012). A 10 

typical sinking rate used in ecosystem models is between 5 and 10 m d-1 (e.g, Fasham et al, 11 

1990; Oschlies et al., 1999; Anderson and Pondaven, 2003; Llebot et al., 2010; Kidson et al., 12 

2013). We used a value for VD of 6.43 m d-1 (Fasham and Evans, 1995). Note also that the 13 

detritus produced by quadratic zooplankton mortality is assumed to be very fast sinking and is 14 

instantly exported from the upper mixed layer. The remineralisation rate of detritus 15 

(parameter mD) was set to 0.06 d-1 (Fasham and Evans, 1995). Finally, parameter wmix was set 16 

to 0.13 m d-1 (Fasham and Evans, 1995). 17 

Choices have to be made regarding the settings for calculating daily depth-integrated 18 

photosynthesis. A sinusoidal pattern of daily irradiance was set as default for this purpose, 19 

with a numeric integration over time of day. A Smith function was chosen as the P-I curve 20 

(Eq. 7) as this permits a straightforward analytic depth integral for photosynthesis (Appendix 21 

B). Photosynthesis at depth can be vertically integrated analytically when light extinction in 22 

the water column is described by Beer's law with a constant coefficient. As default, we use the 23 

piecewise Beer’s law treatment of Anderson (1993) in which the water column is divided into 24 

three depth zones (0-5, 5-23 and >23 m) and a separate extinction coefficient calculated for 25 

each as a function of chlorophyll (Eq. 10). Although this approach is more complicated than 26 

using a single extinction coefficient, it is easily justified a priori given the improved 27 

representation of light attenuation and its impact on predicted primary production (Anderson, 28 

1993). Model sensitivity to these various assumptions regarding the calculation of light 29 

attenuation and photosynthesis will be examined in section 4.3, including an assessment of 30 

the performance of the algorithms of Evans and Parslow (1985) and Anderson (1993).  31 
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The model was run for five years, by which time it generates a repeating annual cycle of 1 

plankton dynamics. The last year of simulation for station BIOTRANS, with initial parameter 2 

settings as described above, is compared to data for chlorophyll and nitrate in Fig. 10. Nitrate 3 

(model DIN) is predicted remarkably well using these default parameter settings, whereas the 4 

predicted seasonal cycle of chlorophyll shows a less good match with data. The peak of the 5 

spring bloom is more than double that observed and post-bloom chlorophyll is also 6 

consistently elevated (by approx 0.2 mg m-3) relative to observations (Fig. 10). Parameter 7 

adjustment is therefore desirable in order to improve the fit with data.  8 

 9 

4.2 Model calibration 10 

Many modelers go about parameter adjustment on a trial-and-error basis, making ad hoc 11 

changes to parameters and observing the outcome.  A more structured way of going about this 12 

is to undertake a systematic sensitivity analysis of parameters and then, informed by this 13 

analysis, choose which parameters to vary. We use EMPOWER to demonstrate this practice 14 

here. Three variables were selected as simple measures of model mismatch with data: 15 

minimum DIN encountered during the seasonal cycle, Nmin, which is a logical choice because 16 

it is desirable to correctly predict DIN drawdown during the spring period, maximum 17 

chlorophyll at the peak of the spring bloom, chlmax and the average summer chlorophyll 18 

between days 150 and 300, chlav. Values of these three quantities, as outputs from the run 19 

shown in Fig. 10, were 0.093  mmol N m-3 for Nmin and 2.30 and 0.58 mg chl m-3 for chlmax 20 

and chlav respectively. Model parameters were varied ±10% and the change in these variables 21 

quantified in terms of normalised sensitivity:  22 

SS

SS

)/pp-(p
)/WW-W(p)(

)( =pS         (16) 23 

where WS is the value of a given variable (in this case Nmin, chlmax or chlav) for the standard 24 

parameter set with parameter value pS, and W(p) is the value when the parameter is given 25 

value p. Results are shown in Table 4, ordered high to low for sensitivity of chlmax. 26 

The requirement for improving the model fit is to decrease chlmax and, to a lesser extent, 27 

decrease chlav also. Looking at Table 4, chlmax and chlav are together sensitive to zooplankton 28 

parameters, notably kZ, Imax and βZ. In contrast, chlmax is sensitive to phytoplankton mortality, 29 

mP, whereas chlav is not. The initial guess for kZ of 1.0 mmol N m-3 may be somewhat high, 30 
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e.g., separate values of 0.8 and 0.3 mmol N m-3 were used for micro and mesozooplankton in 1 

the model of Yool et al. (2011, 2013a). Values for kZ lower than 1.0 mmol N m-3 have also 2 

been used in other models, e.g., values of 0.75 and 0.8 mmol N m-3 were used by Anderson 3 

and Pondaven (2003) and Llebot et al. (2010) respectively. Mortality parameters such as mP 4 

are poorly known and an easy choice for modellers when it comes to parameter adjustment. 5 

We varied parameters kZ and mP and were able to achieve a good fit to the data with kZ = 0.6 6 

mmol N m-3 and mP = 0.015 d-1 (Figure 11). The predicted overwinter chlorophyll is 7 

somewhat too low but this is a common feature of slab-type models. The mismatch can be 8 

improved by removing the linear phytoplankton mortality term (i.e., setting mP=0; see section 9 

4.4 and discussion therein). A further consideration is that phytoplankton may adjust their 10 

C:chl ratio in winter to mitigate the effect of the low light intensities that they experience. We 11 

consider removing this mortality term unrealistic. It is no good getting the right result for the 12 

wrong reasons and so chose to keep phytoplankton mortality unchanged.  13 

The associated seasonal cycles of P, Z and D, along with primary production, phytoplankton 14 

grazing and mortality are shown in Fig. 12. Phytoplankton escape grazing in control in April 15 

and early May with the peak of the bloom occurring on day 137. Zooplankton catch up a 16 

week later. Primary production remains relatively high over summer, but tightly coupled to 17 

grazing which is sufficient to keep phytoplankton biomass in check. Nutrient drawdown 18 

continues after the peak of the bloom with maximum depletion occurring in July. 19 

It might be expected that Station India is simulated accurately with the same parameter values 20 

as those of Station BIOTRANS because of their relatively close proximity in the northern 21 

North Atlantic Ocean. In fact, the predicted spring bloom is rather high, approximately double 22 

the maximum in the observations for year 1998 (Fig. 13), although not outwith what is seen in 23 

the multi-year data (Fig. 9). An improved fit is easily achieved by setting mZ = 0, i.e. 24 

removing the linear zoopolankton mortality term (Fig. 13). Other models, e.g. Fasham (1993), 25 

have similarly not included a linear zooplankton loss term. 26 

The two HNLC stations can be expected to require alternative parameterisations to the two 27 

North Atlantic stations because of their different food web structure. In contrast to the diatom 28 

spring bloom in the northern North Atlantic, iron-limited HNLC systems favour small 29 

phytoplankton which are tightly coupled to microzooplankton grazers (Landry et al., 1997, 30 

2011), “grazer controlled phytoplankton populations in an iron-limited ecosystem” (Price et 31 

al., 1994). Low growth rate of phytoplankton may be expected relative to the North Atlantic 32 
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because of iron limitation. Parameters )0(max
PV  and a may typically decrease by 50% relative 1 

to iron-replete conditions (Alderkamp et al., 2012). For stations Papa and KERFIX, we 2 

therefore assigned )0(max
PV  = 1.25 g C (g Chl)-1 h-1 and a = 0.075 g C (g Chl)-1 h-1 (W m-2)-1. 3 

In addition, high maximum grazing rates may be expected because of the small size structure 4 

of the plankton assemblage. If grazing is dominated by microzooplankton, maximum grazing 5 

rate (parameter Imax) may be as high as 2.0 d-1 (Mongin et al., 2006). We achieved a good fit 6 

to data with Imax = 1.25 d-1 (Fig. 14). A similar exercise was carried out for station KERFIX. 7 

Using the same parameter set as for station Papa, predicted chlorophyll was too high (by 8 

approximaely 0.05 mg m-3) during the austral summer (Fig. 15). If Imax is further increased to 9 

2.0 d-1, a reasonable fit to the chlorophyll data is achieved (Fig. 15). The predicted end of year 10 

increase in chlorophyll arrives a month or two too early, but this may be a consequence of the 11 

imposed climatological cycle of mixed layer depth. Predicted nitrate is somewhat too low (by 12 

about 4 mmol m-3) if the BIOTRANS parameters are used but is markedly improved with the 13 

adjusted parameters.  14 

 15 

4.3 Sensitivity to photosynthesis algorithm 16 

Structural sensitivity analysis is performed to assess model sensitivity to the different 17 

assumptions for calculating daily depth-integrated photosynthesis. The best-fit simulation for 18 

Station BIOTRANS presented above (Fig. 11) is used as the baseline for comparison, 19 

although we will comment on sensitivity for other stations also. Default settings in the 20 

baseline simulation were a numerical time integration (over the day), a Smith function for the 21 

P-I curve, and a sinusoidal pattern of daily irradiance with the piecewise application of Beer’s 22 

law (Eq. 10; Anderson, 1993) for light attenuation in the water column. 23 

The first sensitivity test involved changing the P-I curve from a Smith function (Eq. 7) to an 24 

exponential function (Eq. 8). Predicted seasonal cycles for chlorophyll and nitrate at station 25 

BIOTRANS are shown in Fig. 16. Results changed little with respect to the baseline 26 

simulation, the only noticeable difference being the magnitude of the spring bloom which was 27 

about 0.2 mg m-3 greater when using the exponential P-I curve.  Similar insensitivity was seen 28 

when using the exponential P-I curve for simulating stations India, Papa and KERFIX (results 29 

not shown). It is perhaps unsurprising that the model shows minimal sensitivity to choice of 30 

P-I curve as the shapes of the two curves are similar.  31 
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Reverting to the Smith function as the chosen P-I curve, model predictions were next 1 

compared for simulations using sinusoidal versus triangular irradiance (Fig. 17). Once again, 2 

the difference between the two simulations is relatively minor. A larger spring bloom (approx. 3 

0.5 mg m-3) is seen when using the triangular assumption. Irradiance is underestimated 4 

relative to the sinusoidal pattern (Fig. 6) leading to lower primary production over winter, 5 

decoupling from zooplankton and a larger spring bloom. It is worth noting that the sensitivity 6 

shown to choice of irradiance pattern is at least as great as that for the choice of P-I curve, but 7 

has generally received much less attention in the literature. 8 

Model sensitivity of predicted primary production to the equations describing light 9 

attenuation in the water column was previously highlighted by Anderson (1993), although 10 

without extending to analysis using full ecosystem models. Model predictions for the two 11 

choices for light attenuation (simple Beer’s law, Eq. 9, versus piecewise Beer’s, Eq. 10) are 12 

shown in Figure 18, for all four stations. Whereas chlorophyll shows little change when 13 

switching between the two routines, predicted NO3 exhibits markedly greater drawdown when 14 

using the simple Beer’s law, especially for station India where concentrations reached near 15 

zero by the end of June. The difference between the simulations can be understood by 16 

comparing kPAR as a function of phytoplankton concentration for the two algorithms (Fig. 19). 17 

The single Beer’s law of Eq. 9 predicts a modest increase in kPAR from 0.04 m-1 at zero 18 

phytoplankton to 0.1 m-1 at P = 1 mmol N m-3. The main difference with the piecewise Beer’s 19 

law is the much greater light extinction in the upper 5 m of the water column, with kPAR of 20 

0.13 m-1 at P = 0 mmol N m-3, increasing to 0.23 m-1 at P = 1 mmol N m-3. A lesser rate of 21 

light attenuation using the simple Beer’s law leads to greater penetration of light into the 22 

water column, higher photosynthesis and greater predicted drawdown of NO3.  23 

Finally, there is the option to use the routines of Evans and Parslow (1985) and Anderson 24 

(1993) to calculate daily-depth integrated photosynthesis, without recourse to using numerical 25 

integration over time. Evans and Parslow used a Smith function for photosynthesis in 26 

combination with a triangular pattern of daily irradiance. This corresponds exactly to the 27 

simulation in Fig. 17 above for triangular irradiance. Thus, running the model using the Evans 28 

and Parslow equations (Appendix C) produces a result indistinguishable from the numerical 29 

simulation. Matters are not so simple when using the Anderson (1993) equations to calculate 30 

daily depth-integrated photosynthesis. The assumptions here are an exponential P-I curve and 31 

sinusoidal light, corresponding to the exponential P-I curve simulation in Fig. 16. But there is 32 
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the additional assumption that parameter a, in addition to kPAR, is spectrally dependent and 1 

varies in the water column. Thus, running the model with both light attenuation and 2 

photosynthesis calculated as in Anderson (1993) gives rise to different simulations for the 3 

four stations, especially India where there is no bloom (Fig. 20). It is noticeable that, when 4 

using the method of Anderson (1993), primary production is higher over winter, a result of 5 

elevated a, giving rise to an earlier spring chlorophyll bloom and greater drawdown of nitrate.  6 

 7 

4.4 Mortality terms 8 

The model includes two mortality terms, linear and quadratic, for each of phytoplankton and 9 

zooplankton. This approach has previously been used in other models (e.g., Yool et al., 2011; 10 

2013a), giving maximum flexibility. The obvious question is whether all four terms are 11 

actually needed. As a simple structural sensitivity analysis, we removed each of the four 12 

mortality terms in turn and show the impact on the predicted seasonal cycles of chlorophyll 13 

and nitrate, for all four stations. The model is relatively insensitive to the phytoplankton 14 

mortality terms although setting mP=0 (i.e., removal of the linear term) promoted net 15 

phytoplankton growth over winter, increasing coupling to zooplankton grazers and giving rise 16 

to smaller phytoplankton blooms at stations BIOTRANS and India in spring (Fig. 21). 17 

Predicted seasonality in NO3 drawdown was barely affected by phytoplankton mortality 18 

parameters. It seems hard to justify that loss rates should go to near zero at low population 19 

densities (the consequence of using a quadratic term only) because all organisms have 20 

metabolic requirements. Nearly all marine ecosystem models do, therefore, include a linear 21 

term for density-independent phytoplankton mortality and, for our baseline simulation 22 

(section 4.2), we chose to keep this term on a purely conceptual basis. Given deep mixing, it 23 

is surprising that phytoplankton biomass, as seen in the data, is maintained over winter in high 24 

latitude waters. The reasons why this is so remain a matter of conjecture with candidate 25 

theories including cyclic motion associated with convective mixing (Huisman et al., 2002; 26 

Backhaus et al., 2003), and phytoplankton motility or buoyancy to remain near the ocean 27 

surface (see Ward and Waniek, 2007, and references therein). The slab model has difficulty 28 

dealing with this issue but there is no evidence that this seriously compromises results when it 29 

comes to the predicted timing and magnitude of the spring bloom and associated ecosystem 30 

dynamics later in the year. In contrast to the representation of linear mortality, many models 31 
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do not include a non-linear phytoplankton mortality term. Removing it only caused minor 1 

changes to model predictions (Fig. 21) and so it may not be necessary.  2 

In contrast to the phytoplankton results, removing the linear zooplankton mortality term had 3 

relatively little impact on model predictions, whereas removal of the quadratic term did, for 4 

all four stations (Fig. 22). Removal of quadratic mortality resulted in phytoplankton levels 5 

decreasing by as much as 50% which is unsurprising since more zooplankton means more 6 

grazing. Perhaps less obvious is the result that removal of quadratic closure resulted in 7 

similarly large changes in predicted post-bloom nitrate levels. Predation-related losses, the 8 

quadratic term, were assumed to be instantly exported and thereby lost from the surface 9 

mixed layer of the model. Thus, when these losses are set to zero (parameter mz2=0), nitrate 10 

drawdown is significantly diminished because, instead of being instantly exported, 11 

zooplankton quadratic mortality is allocated to sinking detritus, part of which is remineralised 12 

in the mixed layer. As was noted by Fulton et al. (2003b), quadratic closure of the upper 13 

trophic level in the trophic web tends to be a successful way of closing the web. Overall, the 14 

work highlights the need for careful consideration of the parameterisation of closure in 15 

models, including the fate of material thereof.  16 

 17 

5 Discussion 18 

Marine ecosystem modelling is somewhat of a black art regarding decisions about what state 19 

variables to include and how to mathematically represent key processes such as 20 

photosynthesis, grazing and mortality, as well as allocating suitable parameter values. The 21 

proliferation of complexity in models has only served to increase the plethora of formulations 22 

and parameterisations available to choose from. Complex ecosystem models have come to the 23 

fore in recent years that, for example, include any number of plankton functional types, 24 

multiple nutrients, dissolved organic matter and bacteria, etc. (e.g., Blackford et al.,2004; 25 

Moore et al., 2004; Le Quéré et al., 2005). Simulations are often carried out within 26 

computationally demanding 3-D general circulation models (GCMs) and, of course, the 27 

realism in ocean physics thus gained is to be welcomed. The caveat is, however, that 28 

improvements in prediction can only be achieved if the biological processes of interest can be 29 

realistically characterised (Anderson, 2005). The key is, as described above, to undertake 30 

extensive analysis of ecosystem model performance and we propose that the use of a simple 31 

slab physical framework of the type used in EMPOWER is ideal in this regard. The pioneers 32 
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of the field such as Riley, Steele and Fasham employed slab physics to test their models, 1 

trying out different formulations and parameterisations, just to see what would happen 2 

(Anderson and Gentleman, 2012). The simplicity afforded by using a zero-dimensional slab 3 

physics framework provides an ideal playground for familiarisation with ecosystem models, 4 

allowing for a multiplicity of runs and ease of analysis. It is by following this approach that 5 

the user develops an intuitive understanding of the complex nonlinear interdependencies of 6 

the model equations, a precursor to making predictions with confidence. 7 

Here, we have presented an efficient plankton modelling testbed, EMPOWER-1.0, coded in 8 

the freely available language R. It provides a readily available and easy to use tool for 9 

thoroughly evaluating ecosystem model structure, formulations and parameterisations by 10 

coupling the ecosystem dynamics to a simplified representation of the physical environment. 11 

EMPOWER has several advantages in that it is fast, easy to run, results are straightforward to 12 

analyse and, last but by no means least, the code is transparent and easily adapted to 13 

incorporate new formulations and parameterisations. As such, the main purpose of 14 

EMPOWER is to provide an ecosystem model testbed that allows users to fully familiarise 15 

themselves with their models, allowing them to subsequently be incorporated with greater 16 

confidence into 1-D or 3-D models, as required. It may be that some amount of 17 

reparameterisation is required when transferring the model ecosystem between physical codes 18 

(from slab to 1-D or 3-D), but this ought usually to be minimal in extent and will itself be 19 

greatly informed by the previous slab modelling work. Much better this approach, than 20 

starting out from scratch using computationally expensive and time-consuming 1-D or 3-D 21 

codes to undertake ecosystem model parameterisation.  22 

Bearing in mind Steele’s two-layer sea, the first slab model of its kind (section 2), it is worth 23 

noting that simple ocean box models are akin to slab models in terms of physical structure 24 

but, whereas slab models usually are usually set up for point locations in the ocean, box 25 

models represent spatial areas (e.g., ocean basins or the global ocean). A mixed layer or 26 

euphotic zone is positioned above a deep ocean layer, with mixing between the two but 27 

usually without a seasonally changing mixed layer depth. Tyrrell (1999), for example, used a 28 

global ocean box model to study the relative influences of nitrogen and phosphorus on 29 

oceanic primary production. Box models were likewise used by Chuck et al. (2005) to study 30 

the ocean response to atmospheric carbon emissions over the 21st century. Slab models, 31 

including EMPOWER, effectively convert to simple box models if the seasonality of mixed 32 
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layer depth is switched off. Without a seasonally varying MLD, box models have limited 1 

capacity to capture seasonal plankton dynamics because of the role played by MLD in 2 

mediating the light and nutrient environment experienced by phytoplankton. Our results (Figs 3 

18 to 20) demonstrate sensitivity to accurate representation of the submarine light field (i.e., 4 

equations describing light attenuation in the water column). 5 

In order to demonstrate the utility of EMPOWER, we carried out both a parameter tuning 6 

exercise and a structural sensitivity analysis, the latter examining the equations for calculating 7 

daily depth-integrated photosynthesis, and mortality terms for both phytoplankton and 8 

zooplankton. In the parameter tuning exercise, a simple NPZD model, broadly based on the 9 

ecosystem model of Fasham and Evans (1995), was fitted to data (seasonal cycles) for 10 

chlorophyll and nitrate at four stations: BIOTRANS (47ºN 20ºW), India (60ºN 20ºW), Papa 11 

(50ºN 145ºW) and KERFIX (50º 40’S 68º 25’E). Formal parameter sensitivity analysis was 12 

carried out, highlighting which parameters phytoplankton stocks and nitrate drawdown are 13 

sensitive to. The model was successfully tuned to all four stations, the two HNLC stations 14 

(Papa and KERFIX) requiring different parameterisations, notably a halving of photosynthetic 15 

parameters (acting as a proxy for iron limitation) relative to the North Atlantic sites.  16 

Our parameterisation of the different stations highlighted the somewhat ad hoc process that 17 

most modellers go through when assigning parameter values. Some parameters were set 18 

directly from the results of observation and experiment. More often than not, however, we 19 

followed the “path of least resistance” when assigning parameters, namely to simply select 20 

values from previously published modelling studies. Equations for processes such as 21 

photosynthesis, grazing and mortality were likewise selected “on-the-shelf” from the 22 

published literature. Previous publication does not, of course, guarantee that equations or 23 

parameter values are necessarily best suited for a particular modelling application. Moreover, 24 

it is all too easy for less than ideal, even dysfunctional, formulations to become entrenched 25 

within the discipline and used in common practice (Anderson and Mitra, 2010). Parameter 26 

tuning is almost inevitable in order to ensure satisfactory agreement with data and we have 27 

shown how rigorous sensitivity analysis can help in this regard. Of course, even with a table 28 

of parameter sensitivities, there is still a considerable subjective element to choosing which 29 

parameters to adjust. The most sensitive parameters should be selected, but the degree of 30 

uncertainty in parameter values is an additional consideration. It is no good tuning a sensitive 31 

parameter if its value is already well known from observation and experiment. 32 
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A necessary complement when ensuring that models show acceptable agreement with data is 1 

to remember that it is important that the theories and assumptions underlying the conceptual 2 

description of models are correct, or at least not incorrect (Rykiel, 1996). Indeed, it is the 3 

conceptual realisation of models that in many ways poses the greatest challenge, requiring 4 

expertise and practice to overcome observational or experimental lacunae (Tsang, 1991). 5 

Subsequent to the parameter tuning exercise, we studied the sensitivity of simulation results to 6 

chosen formulations for depth-integrated photosynthesis and both phytoplankton and 7 

zooplankton mortality. In the case of the photosynthesis calculation, some aspects showed 8 

relatively low sensitivity, namely the choice of P-I curve and whether to assume a triangular 9 

or sinusoidal pattern of irradiance throughout the day. In contrast, the way in which light 10 

attenuation in the water column is calculated showed marked sensitivity. Using a simple 11 

Beer’s Law (Eq. 9) attenuation coefficient throughout the water column is clearly 12 

oversimplified because the spectral properties of irradiance vary with depth. Moving to a 13 

piecewise Beer’s Law (Eq. 10), with separate attenuation coefficients for depth ranges 0-5, 5-14 

23 and >23 m (Anderson, 1993), led to more rapid light attenuation near the ocean surface. 15 

Depth-integrated photosynthesis declined accordingly, delaying the onset of the spring bloom 16 

and reducing its magnitude, along with drawdown of nutrient. The difference is in part due to 17 

parameter values, rather than the inherent difference in the equations. Additional sensitivity 18 

analysis and parameter tuning could be used to investigate this further but in fact such an 19 

analysis was undertaken by Anderson (1993) who showed that no amount of parameter tuning 20 

can adequately account for the fact that attenuation will vary with depth, and cannot be 21 

assumed to be constant, because of the spectral properties of the irradiance field. Given the 22 

above, we conclude that the use of Evans and Parslow’s (1985) algorithm to calculate daily 23 

depth-integrated photosynthesis, as has been the choice of many previous studies (Table 1), is 24 

easily justified, at least for the stations we examined, given the relative insensitivity to choice 25 

of P-I curve and choice of triangular versus sinusoidal irradiance. Superior predictions are 26 

likely, however, if this algorithm is used in conjunction with the piecewise parameterisation 27 

of light attenuation (Anderson, 1993; Eq. 10), rather than a simple Beer’s law with fixed 28 

attenuation throughout the mixed layer (Eq. 9).  29 

When it comes to biogeochemical modelling studies in GCMs, it is possible that all manner of 30 

different methods are used to calculate light attenuation in the water column and resulting 31 

photosynthesis. Methodologies are often not reported in full within published texts, the 32 

assumption being that they are in some way routine and straightforward and that, perhaps, the 33 
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models are insensitive to this choice. Consider, for example, the MEDUSA-2.0 model (Yool 1 

et al., 2013a), published within Geoscientific Model Development and afforded a detailed 2 

description of equations and chosen parameter values. Despite this level of detail, the model’s 3 

calculation of light attenuation is largely overlooked and the reader is instead summarily 4 

directed to the LOBSTER model (Levy et al., 2001). This divides light into two wavebands, 5 

“red” and “green-blue” that are attenuated separately by seawater, and a Smith function (Eq. 6 

7) is used to calculate photosynthesis. The published description omits a number of key 7 

details (although the model code was supplied), for instance that there is a 50:50 division of 8 

light between the two wavebands at the ocean surface, that the photosynthetically active 9 

fraction is 0.43 of total irradiance, that extinction coefficients for the two wavebands are a 10 

function of chlorophyll and that photosynthesis is calculated within each model layer (the 11 

model uses fixed layer depths, with 13 layers in the upper 100 m) as a function of average 12 

light within the layer.  13 

As a point of interest, we ran our model for all four stations again, this time using the 14 

MEDUSA-2.0 method of light attenuation and a Smith function for the P-I curve (see 15 

Appendix E for details of the parameterisation of light attenuation). The calculation included 16 

replication the layer structure within the GCM in order to achieve a fair comparison. Results 17 

(not shown) were remarkably close to the baseline fitted simulations for each station. In the 18 

case of station BIOTRANS, the peak of the spring phytoplankton bloom using the MEDUSA 19 

light parameterisation was only 0.7 mg chl m-3, 0.2 mg m-3 less than that in the standard run, 20 

but otherwise predicted seasonal cycles of chlorophyll and nitrate were almost identical for 21 

the two simulations. Likewise predicted chlorophyll and nitrate were little changed at stations 22 

India and Papa, whereas at KERFIX nitrate drawdown was slightly greater, approximately 0.5 23 

mmol N m-3, when using the MEDUSA light parameterisation. The similarity between 24 

simulations using the two different approaches to light attenuation is because, remarkably, 25 

calculated light attenuation using the two red and green wavebands (MEDUSA) differs little 26 

from that using the Anderson (1993) piecewise Beer’s law. Here, in a nutshell, is a classic 27 

example of the utility of EMPOWER. This result should alert GCM modellers to the fact that 28 

near identical results can be generated for light attenuation in the water column using these 29 

two contrasting sets of equations and a choice can be made as to which is most suitable for 30 

implementation based on computational efficiency. From a theoretical point of view, the 31 

result is also interesting. The equations of Anderson (1993) are an empirical approximation of 32 

the full spectral model of Morel (1988) which divided PAR into 61 wavebands. It would 33 
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appear that this model can be stripped down to just two wavebands, red and green, without 1 

serious degradation in accuracy when it comes to predicting light attenuation. 2 

We also used EMPOWER to undertake an analysis of model sensitivity to the 3 

presence/absence of linear and nonlinear mortality terms for phytoplankton and zooplankton. 4 

Whereas the use of linear phytoplankton mortality terms is commonplace in models (e.g., 5 

Anderson and Williams, 1998; Oschlies and Schartau, 2005; Salihoglu et al., 2008; Llebot et 6 

al., 2010), we investigated the performance of an additional quadratic phytoplankton mortality 7 

term. This term is intended to represent loss processes that scale with phytoplankton biomass 8 

that are not already accounted for in the model. Given that both self-shading and grazing are 9 

explicitly modelled, we considered the quadratic term to represent mortality due to viruses. 10 

Model results were however relatively insensitive to this parameterisation, although the 11 

potential importance of viruses in marine systems should not be underestimated (Bratbak, 12 

1993, 1996; Danovaro et al., 2011).  13 

It has long been recognized that the parameterisation and functional form of zooplankton 14 

mortality, the model closure term, can have a pronounced effect on modeled ecosystem 15 

dynamics (e.g. Steele & Henderson, 1981, 1992, 1995; Murray and Parslow, 1999; Edwards 16 

and Yool, 2000; Fulton et al., 2003a,b; Neubert et al., 2004). Quadratic closure is a common 17 

choice, although other non-linear functional forms are also in use. While it is commonly 18 

stated that quadratic closure is dynamically stabilising, i.e., it prevents both blooms and 19 

extinction of prey, there is a limit to this influence (Edwards and  Yool, 2000) since other 20 

processes can come into play. In our case, it is obvious that quadratic closure had a stabilising 21 

effect on the model. Its removal caused the bloom peak to be higher and also post-bloom 22 

phytoplankton levels to decline to near-zero.  23 

In contrast to the community's broad recognition of the potential sensitivity to choice of 24 

closure scheme, far less attention has been paid to model sensitivity regarding the fate of 25 

zooplankton mortality. In reality, there are likely various types of zooplankton mortality 26 

including grazing by higher predators, starvation and disease. As a mathematical closure term, 27 

one can consider the grazing loss to be partitioned between an infinite series of higher 28 

predators (e.g., Fasham et al., 1990), with partitioning between detritus and dissolved 29 

nutrients in both organic and inorganic form. The fate of these losses will occur with time 30 

delays and potentially also with spatial separation due to migration of predators. Moreover, 31 

any detrital production by higher predators would comprise significantly larger "particles" 32 
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than those due to plankton death and would therefore be associated with much higher sinking 1 

rates. Non-grazing mortality might lead to production of detritus in situ. There is no 2 

consensus on best practice, despite the fact that different approaches to partitioning of 3 

zooplankton losses between detritus, nutrient and DOM differs markedly between models and 4 

can have a significant effect on modelled ecosystem function (Anderson et al., 2013). Future 5 

structural sensitivity studies should be conducted to explore how the f-ratio (the fraction of 6 

primary production fuelled by external nutrient) and e-ratio (i.e. relative export to total 7 

primary production) are affected by the various assumptions relating to zooplankton mortality 8 

and model closure. 9 

Model sensitivity to choice of functional forms and parameterisation, often manifested as 10 

suprising and unforseen emergent predictions, is classic complexity science (Bar-Yam, 1997). 11 

Understanding emergence and the consequences for accuracy of prediction is a key 12 

component of modelling complex systems (Anderson, 2005). Results here, as discussed 13 

above, showed varying sensitivities to different formulations and assumptions and 14 

demonstrated the utility of EMPOWER in tackling this important topic. High senstitivites 15 

have previously been documented in marine ecosystem models, e.g. to the exact form of the 16 

zooplankton functional response (Anderson, 2010; Wollrab and Diehl, 2015) and choice of 17 

zooplankton trophic transfer formulation (Anderson et al., 2013). Other studies have also 18 

shown “alarming” sensitivity to apparently small changes in the specification of biological 19 

models (e.g. Wood and Thomas, 1999; Fussmann and Blasius, 2005). Anderson (2005) 20 

described this insidious problem, namely sensitivity of emergent outcomes to interacting 21 

nonlinear differential equations, as “all in the interactions”. Dealing with it poses an ongoing 22 

challenge for the modelling community. 23 

EMPOWER-1.0 is provided as a testbed which is suitable for examining the performance of 24 

any chosen marine ecosystem model, simple or complex. We chose to demonstrate its use by 25 

incorporating a simple NPZD ecosystem model. Simple marine ecosystem models are, 26 

however, all too often brushed aside in marine science today. While our objective here is not 27 

to delve deeply into the ongoing debate about complexity in models (e.g., Fulton et al., 2004; 28 

Anderson, 2005; Friedrichs et al., 2007; Ward et al., 2010), we would nevertheless like to 29 

comment on the worth of simple ecosystem models. Complex ecosystem models are often 30 

favoured today (e.g., Blackford et al.,2004; Moore et al., 2004; Le Quere et al., 2005) with a 31 

similar trend in ocean physics toward large, computationally demanding models. Many 32 
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publications in recent years have involved the use of 3D models (e.g., Le Quéré et al., 2005; 1 

Wiggert et al., 2006; Follows et al., 2007; Hashioka et al., 2013; Yool et al., 2013b; Vallina et 2 

al., 2014), although 1D models are also well represented (e.g., Vallina et al., 2008; Kearney et 3 

al., 2012; Ward et al., 2013). The caveat is that improvements in prediction can only be 4 

achieved if the processes of interest can be adequately parameterised (Anderson, 2005). That 5 

is a big caveat and one made harder to achieve because it is often difficult and/or time 6 

consuming to thoroughly test the formulations and parameterisations involved. Simple 7 

NPZD-type models have a useful role in this regard. Albeit with tuning (but the complex 8 

models are tuned also), our NPZD model was successfully used to describe the seasonal 9 

cycles of phytoplankton and nutrients at four contrasting sites in the world ocean. It was 10 

readily applied to test different parameterisations for photosynthesis and mortality. At least in 11 

terms of basic bulk properties, simple models produce realistic predictions and are easy to 12 

thoroughly investigate and assess. The whole issue of model complexity ought in any case to 13 

be question dependent (Anderson, 2010), e.g. simple models may be useful to address 14 

questions on biogeochemical cycles whereas more complex models may be necessary to 15 

answer more ecologically relevant questions such as the effect of biodiversity on ecosystem 16 

function. The use of the EMPOWER testbed allows the user to investigate and determine 17 

whether a particular ecosystem model is sufficiently complex, or indeed too complex, to 18 

address the question of interest. 19 

We have described the utility of slab models as a testbed underpinning marine ecosystem 20 

modelling research. This is however by no means their only use. Slab models are ideal for 21 

teaching ecological modelling. They embrace the complex interplay between primary 22 

production and the physical-chemical environment, combined with top-down control by 23 

zooplankton. Students often have difficulty grasping the relative significance of causal effects 24 

in ecosystems (Grotzer and Basca, 2003), e.g. the relative roles of bottom-up versus top-down 25 

processes in structuring food webs. A certain amount of lecture material is of course needed, 26 

but there is no substitute for hands-on modelling, providing an interactive approach whereby 27 

students can actively investigate ideas and interact between themselves and a teacher (Knapp 28 

and D’Avanzo, 2010). Insight can be gained by getting students to try simple things like 29 

switching grazing off, doubling phytoplankton growth rates, etc. The slab modelling 30 

framework provided herein is ideal for this purpose. The code is transparent, modular and 31 

readily adjusted to include alternate parameterisations, it is easily set up for alternate ocean 32 

sites, the model runs fast with graphs of results appearing on the screen on completion, results 33 
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are readily written to output files for more in depth analysis and, by coding in R, the models 1 

can be accessed and run without need for purchasing proprietary software. 2 

Finally, the great advances in marine ecology that the pioneers of plankton modelling 3 

achieved using slab models should not be forgotten. Riley, Steele and Fasham laid the 4 

foundations of today’s marine ecosystem modelling using plankton models embedded within 5 

simple physics. Even in the modern arena, this use of simple physics cannot be dismissed as 6 

being too simple for practical application and there is no reason why further scientific 7 

advances cannot be made using slab models. Models are, fundamentally, all about simplifying 8 

reality. 9 

 10 

Appendix A: Irradiance calculations 11 

Both the Evans and Parslow (1985) and Anderson (1993) subroutines for calculating daily 12 

photosynthesis require noon irradiance and day length as inputs. When there are data 13 

available, these data can be used as forcing for a model, akin to what is done for temperature. 14 

However, most typically light data is not available and so a light submodel must be used to 15 

prescribe the necessary forcing. A climatological approach is often used whereby these inputs 16 

are specified using trigonometric/astronomical equations. This task is not as straightforward 17 

as it might first appear. The basic equations are presented in texts such as Brock (1981) and 18 

Iqbal (1983). Some adjustments were provided by Shine (1984) and we use the equation for 19 

short-wave irradiance at the ocean surface on a clear day published therein: 20 

0455.01000/))cos(0.1()cos(2.1
/)(cos

0

22
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zez
RzI

I vSC
clear      (A1) 21 

ISC is the solar constant (e.g., 1368 W m-2: Thekaekara and Drummond, 1971), i.e., the 22 

incoming solar radiation that would be incident on a perpendicular plane, immediately outside 23 

the atmosphere. Iclear also depends on solar zenith angle (z), the Earth’s radius vector (RV: 24 

accounts for the eccentricity of the earth's orbit) and water vapour pressure (e0; the partial 25 

pressure of water vapour in the atmosphere). A typical value for e0 is 12 mb (e.g., Josey et al., 26 

2003); the calculation of Iclear is not sensitive to this parameter. The equation for RV is: 27 

2/1))365/2cos(033.01/(1 JRV π+=        (A2) 28 
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where J is day of year (Julian day; i.e. 1 = 1st January). Solar zenith angle depends on latitude 1 

(φ), solar declination angle (δ) and on time of day (γ, where the Earth moves 15° per hour and 2 

γ is difference from noon): 3 

)cos()cos()cos()sin()sin()cos( γδφδφ +=z      (A3) 4 

The cos(γ) term becomes irrelevant when considering noon irradiance. Solar declination angle 5 

is given by: 6 

)365/)284(2sin(45.23 J+= πδ        (A4) 7 

where h is hour angle which is the difference between the given time and noon (where 1 hour 8 

is 15°). Note that δ is expressed in degrees in the above equation (1 radian = 180/π degrees).  9 

The flux of photosynthetically active solar radiation just below the ocean surface at noon, 10 

Inoon, can now be calculated: 11 

clearPARFACnoon IfCI )1( ϕ−=         (A5) 12 

where fPAR is the fraction of solar radiation that is PAR (λ between 400 and 700 nm), ϕ is 13 

ocean albedo and CFAC is the effect of clouds on atmospheric transmission. Parameters fPAR 14 

and ϕ are relatively invariant with typical values of 0.43 for fPAR and 0.04 for ϕ (e.g., Fasham 15 

et al., 1990). Dealing with the effects of clouds is a thorny issue for modellers. Simple 16 

empirical approaches have been developed, two of the most popular being those of Reed 17 

(1977) and Smith and Dobson (1984). We have opted for the former in which CFAC is a 18 

function of zenith angles (specified in degrees): 19 

)90(0019.08/62.01 zWCFAC −+−=       (A6) 20 

where W is cloud fraction in oktas. A value of W=6 was used for all four stations. 21 

The equation for calculating day length (DL, h) is (Brock, 1981): 22 

))tan()tan(arccos(
15
2 δφ−=LD        (A7)  23 

 24 

Appendix B: Analytic integrals for photosynthesis with depth 25 

The average photosynthesis within a layer of depth H is: 26 
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         (B1) 1 

where VP is photosynthesis as a function of light intensity (specified as the P-I curve). Two P-2 

I curves were investigated using EMPOWER, a Smith function (Eq. 7) and an exponential 3 

function (Eq. 8). Analytic solutions to Eq. (B1) are provided here for each of these two P-I 4 

curves. In both cases a Beer’s law attenuation with depth is assumed (parameter kPAR), i.e., 5 

I(z) = I(0)e-kPARz where I(0) is the irradiance entering the layer from above. 6 

 7 

B1 Smith P-I curve 8 

By performing a change of variables such that x = aI(z), the integral above becomes: 9 
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This integral is solved analytically using a trigonometric transformation and then integration 11 

by parts, giving: 12 
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where x0 is x(z=0) and xH is x(z=H). 14 

 15 

B2 Exponential P-I curve 16 

In order to integrate Equation B1 using an exponential P-I curve it is first useful to define 17 

(Platt et al., 1980): 18 

max*
P

zz

V
II a

=           (B4) 19 

The integration over depth is then (see Platt et al., 1990): 20 
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For practical purposes, we used a maximum value of n of 16. 22 

 23 
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Appendix C: Special formulations for calculating daily photosynthesis 1 

C1 Evans and Parslow (1985) photosynthesis calculation 2 

Evans and Parslow (1985) provide an algorithm for calculating daily depth-integrated 3 

photosynthesis with the assumptions of a Smith P-I curve (Eq. 3), a triangular pattern of 4 

irradiance from sunrise to sunset and light extinction calculated with a single Beer’s law 5 

coefficient (Eq. 9). The average daily rate of photosynthesis within the mixed layer is 6 

calculated as: 7 
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where t, measured in days, is 0 at sunrise and t at noon and H is layer depth. Assuming a 9 

triangular pattern of irradiance about noon, equation A3.1 can be recast as (Evans and 10 

Parslow, 1985): 11 
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Inoon is the photosynthetically active radiation (PAR) just below the ocean surface at noon. 14 

This integral solves as (Evans and Parslow, 1985): 15 
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 18 

C2 Anderson (1993) photosynthesis calculation 19 

The subroutine of Anderson (1993) was developed as an empirical approximation to the 20 

spectrally resolved model of light attenuation and photosynthesis of Morel (1988), used in 21 

combination with the polynomial method of integrating daily photosynthesis of Platt et al. 22 

(1990). It is based on an exponential P-I curve (Eq. 8), assumes a sinusoidal pattern of 23 
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irradiance throughout the day, with the calculation of light attenuation using a piecewise 1 

Beer’s law (Eq. 10). The irradiance leaving the base of each layer is: 2 

)](exp[ 1,,,1,, −− −−= ibaseibaseiPARibaseibase zzkII       (C6) 3 

where Ibase,0 is the irradiance immediately below the ocean surface and zbase,i is the depth of 4 

the base of the layer i (where zbase,0 = 0). 5 

The subroutine of Anderson (1993) also takes account of the fact that, in reality, a (the initial 6 

slope of the P-I curve) depends on the spectral properties of light and therefore varies with 7 

depth in the water column. This parameter is the product of photosynthetic absorption cross 8 

section ac(λ), which is spectrally dependent (λ denotes wavelength), and quantum yield φA 9 

(Platt and Jassby, 1976; Platt, 1986): 10 

Aca φλλa )()( =          (C7) 11 

Ordinarily (e.g., Table 2), a is presented as the initial slope of the P-I curve for white light 12 

(i.e., spectral distribution as for irradiance at the ocean surface). The corresponding value of a 13 

for the wavelength at which absorption is maximum, amax, is (Anderson, 1993): 14 

αα 602.2mαx =          (C8) 15 

The value of a for any given wavelength of PAR, a(λ), is then: 16 

)(*)( max λaλa a=          (C9) 17 

where a*(λ) is the dimensionless chlorophyll absorption cross section for wavelength λ. An 18 

additional complication, however, is that a*(λ) only applies when irradiance is specified as a 19 

scalar flux (Morel, 1991). Irradiance in the model is a downwelling flux and so Anderson 20 

(1993) converted between the two by defining a new version of the chlrophyll absorption 21 

cross section (which can be used in equation (C9) in place of a*(λ), in combination with 22 

downwelling irradiance): 23 

)(/)()(*)(# λλλλα cPAR αkα=        (C10) 24 

Again using the piecewise three-layer scheme described above for kPAR, an average value of 25 

a# can be calculated for each layer by deriving an empirical approximation of Morel’s (1988) 26 

full spectral model. As a first step, a# at the ocean surface is calculated as: 27 
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where the polynomial coefficients are given in Table C1. The a# at the base of each layer and 2 

the average a# in each layer are then calculated as: 3 
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,icalca  is a lengthy empirical calculation: 6 
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The coefficients, gx, are provided in Table C1. With irradiance assumed to vary sinusoidally 13 

through the day, the average rate of photosynthesis within a layer i is: 14 
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where D is daylength (hours) and Ωj are the polynomial coefficients (Platt et al., 1990; Table 18 

C1).  19 

 20 

Appendix D: EMPOWER1.0 User guide 21 

1. Installation and setup. The R programming language is freeware and is readily downloaded 22 

from the web for use on personal computers. For example, visit page: http://www.r-23 

http://www.r-project.org/
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project.org/. After installation, set up a directory to hold the model code and associated input 1 

and output files. We recommend also downloading an R editor, e.g, Tinn-R (also freeware). 2 

2. Running R. Open the R console. From the toolbar, select “File” and “Change dir ...” and 3 

select the directory in which the model code and input files have been placed. To run the 4 

model, type: source(“EMPOWER1.R”) 5 

3. Preparation of input files. The model reads in three input files, each as ASCII text files:  6 

(i) File NPZD_parms.txt. This file includes a single line header and then lists the value of 7 

each model parameter in turn, followed by a text string for the purpose of annotation. When 8 

changing the parameter list in the model, the corresponding section in the R code must be 9 

altered accordingly. 10 

(ii) File NPZD_extra.txt. This file holds initial values for state variables, additional 11 

parameters, and various flags: choice of station, choices for photosynthesis calculations (P-I 12 

curve, light attenuation, etc.) and grazing formulation. The user is at liberty to add to or 13 

remove from this list of flags as is desired. This file also contains flags for core model 14 

functions: run duration, time step, output type (none, last year, whole simulation), output 15 

frequency and integration method (Euler or Runge Kutta). These latter functions are required 16 

by the core code and should not be removed from this file. 17 

(iii) File stations_forcing.txt. This file has a header line for information, and then holds 18 

monthly values for forcing, in our case mixed layer depth and temperature, for each station. 19 

There are thirteen entries in each case, the first and last being the same and corresponding to 20 

the beginning and end of the year. A 366 unit array is set up in the model code for each 21 

forcing variable, with unit 1 corresponding to t=0, and linear interpolation carried out on the 22 

monthly values to fill each array. 23 

4. Output files. These are generated automatically by the model, on completion of each model 24 

simulation. The type of output generated is controlled by flags (above).  The output files are 25 

ASCII, comma separated and do not have headers. They are readily imported into various 26 

software packages, e.g. Microsoft Excel, for further analysis. The files are: 27 

(i) File out_statevars.txt. Outputs the state variables, ordered as they are in array X in the 28 

code. 29 

(ii) File out_fluxes.txt. Outputs the model fluxes, ordered as they are in matrix flux(i,j) in 30 

function FNget_flux. Thus each line (corresponding to a point in time for output) has 31 

http://www.r-project.org/
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Nsvar*nfluxmax entries where Nsvar is the number of state variables in the model and 1 

nfluxmax is the maximum number of fluxes per state variable.  2 

(iii) File out_aux.txt. This file stores the values of auxiliary variables, as defined by the user 3 

in array Y (final section of function FNget_flux). The maximum size of this array is set by 4 

variable nDvar. 5 

5. Altering the model structure. If the user wants to change the number of state variables, or 6 

nDvar or nfluxmax (above), adjustments should first be made to the short section of code 7 

“Variables specific to model: adjust accordingly”. Alter nSvar, the initialisation of array X 8 

(which holds the state variables) and the text arrays Svarname and Svarnames (which are used 9 

for output). Then go to function FNget_flux and rewrite the line of code unpacking the state 10 

variables. Finally, specify the terms associated with the new state variable(s) in matrix 11 

flux(i,j). 12 

6. Altering model equations. The model equations are handled in function FNget_flux and can 13 

be adjusted as desired by the user, calling additional functions as necessary. 14 

7. Graphical output. The model automatically generates graphical output on the computer 15 

screen on completion of each simulation. An advantage of R is that the syntax for generating 16 

plots is straightforward and the user should have no problem, working from the plots 17 

provided, in generating extra graphs, as desired. 18 

 19 

Appendix E: Light attenuation in MEDUSA 20 

Light attenuation in the water column in the MEDUSA model (Yool et al., 2011,2013) is 21 

calculated assuming that PAR at the ocean surface can be divided equally into two 22 

wavebands, nominally red and green. The attenuation of each is calculated through the water 23 

column using Beer’s law. The average light in a model layer can then be calculated on the 24 

basis of summing the two wavebands, and this average then used in combination with a P-I 25 

curve to calculate photosynthesis. The extinction coefficients for red and green light, xkr and 26 

xkg, are: 27 

))ln(.exp(.0 Cxlrxkrpxkrxkr +=        (E1) 28 

))ln(.lgexp(.0 Cxxkgpxkgxkg +=        (E2) 29 
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where C is chlorophyll (mg m-3).Values for the coefficients are: xkr0 = 0.225, xkrp = 0.037, 1 

xlr = 0.674, xkg0 = 0.0232, xkgp = 0.074, xlg = 0.629.  2 

 3 
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clim. 

clim. 

model 

1989-93 
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data 

astronomical 

astronomical 

astronomical 

 

data 

astronomical 

astronomical 

astronomical 

astronomical 

astronomical 

astronomical 

astronomical 

astronomical    

E&P85 

 

numeric 

E&P85 

numeric? 

E&P85 

 

E&P85 

E&P85 

E&P85 

A93 

E&P85 

E&P85 

E&P85 

E&P85 

E&P85 

Hemmings et al. 2004 North Atlantic NPZ clim. data E&P85 

Onitsuka & Yanagi 2005 Japan Sea NPZD, 

2N2P3Z{DOM} 

clim. 

 

data 

 

numeric 

 

Findlay et al. 2006 

Mitra et al. 2007 

Mitra 2009 

Llebot et al. 2010 

Kidston et al. 2013 

None (theoretical) 

North Atlantic 

North Atlantic 

Mediterranean Bay 

Southern Ocean 

NP 

2NPZDB{DOM} 

2NPZDB{DOM} 

2N2PD{DOM} 

NPZD 

hypothet 

clim. 

clim. 

f(R no.) 

model 

none 

astronomical 

astronomical 

astronomical 

model 

B&P05 

E&P85 

E&P85 

numeric 

E&P85 

MLD: clim. (climatological from data); hypothet. (hypothetical); f(R no.) (function of 2 

Richardson number) 3 

Photosynthesis calculation (photosyn.): E&P85 (Evans and Parslow, 1985); A93 (Anderson, 4 

1993); B&P05 (Baoushada and Pascual, 2005) 5 

6 
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Table 2. Coefficients for use in Anderson (1993) calculation of light attenuation 1 

(Eq. 10) 2 

first layer (0-5 m) second layer (5-23 m) third layer (>23 m) 

b0,1 = 0.13096 

b1,1 = 0.030969 

b0,2 = 0.041025 

b1,2 = 0.036211 

b0,3 = 0.021517 

b1,3 = 0.050150 

b2,1 = 0.042644 b2,2 = 0.062297 b2,3 = 0.058900 

b3,1 = -0.013738 b3,2 = -0.030098 b3,3 = -0.040539 

b4,1 = 0.0024617 

b5,1 = -0.00018059 

b4,2 = 0.0062597 

b5,2 = -0.00051944 

b4,3 = 0.0087586 

b5,3 = -0.00049476 

 3 

4 
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 Table 3. Model parameters. Fitted model solutions for stations BIOTRANS, India, Papa 1 

and KERFIX. The initial (unfitted) parameter guesses for BIOTRANS were as for the fitted 2 

solution, except that parameters mP and kZ were tuned from initial settings of 0.02 d-1 and 0.86 3 

mmol N m-3 respectively (see text and footnotes). 4 

 5 

param meaning unit BIOTRANS India Papa KERFIX 

)0(max
PV

a 

max. rate photosynthesis 0ºC 

initial slope of P-I curve 

g C (g Chl)-1 h-1 

g C (g Chl)-1 h-1 (W m-2)-1 

2.5a 

0.15a 

2.5 

0.15 

1.25b     

0.075b 

1.25b 

0.075b 

kN half sat. constant: N uptake mmol N m-3 0.85c 0.85 0.85 0.85 

mP 

mP2 

Imax 

kZ 

φP 

φD 

βZ 

kNZ 

mZ 

mZ2 

vD 

mD 

wmix 

θchl 

phyto. mortality (linear) 

phyto. mortality (quadratic) 

zoo. max ingestion rate 

zoo. half saturation for intake 

grazing preference: P 

grazing preference: D 

zoo. absorption efficiency 

zoo. net production efficiency 

zoo. mortality (linear) 

zoo. mortality (quadratic) 

detritus sinking rate 

detritus remineralisation rate 

cross-thermocline mixing 

C to chlorophyll ratio 

d-1 

(mmol N m-3)-1 d-1 

d-1 

mmol N m-3 

dimensionless 

dimensionless 

dimensionless 

dimensionless 

d-1 

(mmol N m-3)-1 d-1 

m d-1 

d-1 

m d-1 

g g-1 

0.015d 

0.025e 

1.0c 

0.6g 

0.67h 

0.33h 

0.69ij 

0.75j 

0.02k 

0.34m 

6.43c 

0.06c 

0.13c 

75n 

0.015 

0.025 

1.0 

0.6 

0.67 

0.33 

0.69 

0.75 

0.0l 

0.34 

6.43 

0.06 

0.13 

75 

0.015 

0.025 

1.25f 

0.6 

0.67 

0.33 

0.69 

0.75 

0.02 

0.34 

6.43 

0.06 

0.13 

75 

0.015 

0.025 

2.0f 

0.6 

0.67 

0.33 

0.69 

0.75 

0.02 

0.34 

6.43 

0.06 

0.13 

75 

            

 6 

Source: amean of values for polar waters provided in Table 2 of Rey (1991); bphotosynthetic 7 

parameters of HNLC stations halved with respect to Biotrans because of iron limitation (see 8 

text); cFasham and Evans (1995); dtuned for Biotrans; initial guess was 0.02 d-1 (Yool et al. 9 

(2011, 2013a); eOschlies and Schartau (2005); ftuned for HNLC stations (see text); gtuned for 10 

Biotrans: initial guess was 0.86 mmol N m-3 (Fasham and Evans, 1995); has for Fasham 11 

(1993) but adjusted for different model structure; iAnderson (1994); jAnderson and Hessen 12 

(1995); kYool et al. (2011, 2013a); ltuned for station India; mOschlies and Schartau (2005); 13 
nSathyendranath et al. (2009). 14 

15 
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Table 4. Model sensitivity analysis: station BIOTRANS. Variables are: chlav (average 1 

chlorophyll day 150-300), chlmax (peak bloom chlorophyll) and Nmin (minimum nitrate during 2 

seasonal drawdown). Parameters ranked according to sensitivity to chlmax. 3 

parameter chlav 

S(p) +10% 

chlav 

S(p) -10% 

chlmax 

S(p) +10% 

chlmax 

S(p) -10% 

Nmin 

S(p) +10% 

Nmin 

S(p) -10% 

Imax -0.55 -0.83 -1.10 -1.27 0.60 0.58 

kZ 0.92 0.90 1.04 1.20 -0.81 -1.09 

βZ -0.29 -0.50 -1.02 -1.18 0.29 0.32 

kNZ -0.53 -0.75 -1.02 -1.17 -0.11 -0.10 

mP 0.01 -0.03 0.62 0.72 0.07 0.07 

a -0.05 -0.16 -0.70 -0.60 -0.53 -0.68 

φP -0.40 -0.47 -0.51 -0.55 0.44 0.45 

mZ 0.07 0.06 0.49 0.49 -0.07 -0.06 

)0(max
PV  -0.08 -0.12 -0.20 -0.16 -0.63 -0.81 

kN 0.00 -0.01 0.09 0.10 1.06 1.05 

mZ2 0.27 0.28 0.09 0.09 -0.27 -0.32 

mP2 -0.02 -0.02 -0.07 -0.06 0.05 0.05 

mD 0.06 0.06 0.01 0.01 0.11 0.11 

wmix 0.07 0.07 0.01 0.01 0.65 0.67 

vD -0.04 -0.04 0.01 0.01 -0.13 -0.16 

 4 

5 
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Table D1. Coefficients for use in Anderson (1993) calculation of photosynthesis 1 

   

h0 = 0.36796 

h3 = 0.013528 

 

g1 = 0.048014 

g4 = 0.0031095 

g7 = 0.00085217 

g10 = -0.00061991 

 

Ω1 = 1.9004 

Ω4 = -0.0014729 

h1 = 0.17537 

h4 = 0.0011108 

 

g2 = 0.00023779 

g5 = -0.0090545 

g8 = -3.9804E-06 

 

 

Ω2 = -0.28333 

Ω5 = 0.000030841 

h2 = -0.065276 

 

 

g3 = -0.023074 

g6 = 0.0027974 

g9 = 0.0012398 

 

 

Ω3 = 0.028050 

   

2 
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Figure legends 1 

Figure 1. Forcing used by Riley (1946) in his model of George’s Bank: a) Depths of euphotic 2 

zone and mixed layer; b) Diminution in photosynthesis due to light limitation (LV). 3 

Figure 2. Two layer slab physics framework (adapted from Steele, 1974). 4 

Figure 3. Model forcing for stations India (60ºN 20ºW), BIOTRANS (47ºN 20ºW), Papa 5 

(50ºN 145ºW) and KERFIX (50º 40’S 68º 25’E): a) mixed layer depth (m), b) noon irradiance 6 

(W m-2), c) sea surface temperature (ºC). 7 

Figure 4. Structure of the NPZD model. 8 

Figure 5. Photosynthesis-irradiance curves with parameter settings max
PV = 2.5 g C (g chl)-1 h-1 9 

and  a = 0.15 g C (g chl)-1 h-1 (W m-2)-1: Smith function (Eq. 7) and exponential function (Eq. 10 

8). 11 

Figure 6. Triangular versus sinusoidal patterns of diel irradiance illustrated for a 12 hour day 12 

and noon irradiance of 200 W m-2. 13 

Figure 7. Contours of the zooplankton specific ingestion rates (IP, ID) versus densities of the 14 

two prey types (P = phytoplankton and D = detritus) as characterised by the sigmoidal grazing 15 

response (Eqs. 11, 12) using parameters Imax = 1 d-1, kZ = 0.52 mmol N m-3, φP = 0.67 and φD 16 

= 0.33.  Upper two panels illustrate assumed interference effect of one prey type over another, 17 

e.g. for a given P, increasing D reduces IP. The lower panel illustrates assumed optimal 18 

feeding (i.e. total ingestion, Itot, always increases with increase in P or D) and the benefit of 19 

generalism (i.e. increase in Itot due to consumption of P and D vs. just P). 20 

Figure 8. Structure of the model code. 21 

Figure 9. SeaWiFS chlorophyll data (mg m-3) for each of the four stations, years 1998 to 2013 22 

overlaid, with selected median year (see text) highlighted. 23 

Figure 10. Simulation for station BIOTRANS using first-guess parameters compared to data 24 

(year 2002) for a) chlorophyll and b) nitrate. 25 

Figure 11. Simulation for station BIOTRANS after parameter tuning (see text): a) 26 

chlorophyll, b) nitrate. 27 

Figure 12. Predicted state variables and fluxes for the station BIOTRANS simulation: a) P, Z 28 

and D and b) phytoplankton growth, grazing and non-grazing mortality. 29 
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Figure 13. Simulations for station India: a) chlorophyll, b) nitrate. Data are for year 1998. 1 

Figure 14. Simulations for station Papa before and after parameter tuning: a) chlorophyll, b) 2 

nitrate. Data are for year 2007. 3 

Figure 15. Simulations for station KERFIX before and after parameter tuning (see text for 4 

details): a) chlorophyll, b) nitrate. Data are for year 2006. 5 

Figure 16. Simulations for station BIOTRANS showing sensitivity to choice of P-I curve: a) 6 

Smith function (standard run) and b) exponential function. 7 

Figure 17. Simulations for station BIOTRANS showing sensitivity to choice of diel variation 8 

in irradiance: a) sinusoidal (standard run) and b) triangular. 9 

Figure 18. Model simulations for all four stations showing sensitivity to choice of method for 10 

calculating light attenuation in the water column: a) piecewise Beer’s Law (Eq. 10) and b) 11 

simple Beer’s law (Eq. 9). 12 

Figure 19. Figure 19. Light attenuation as predicted by Evans and Parslow (1985; EP85) and 13 

for the three layers (0-5, 5-23, >23m; 1,2,3 respectively) in Anderson (1993; A93), as a 14 

function of phytoplankton concentration. 15 

Figure 20. Simulations for all four stations comparing methods for calculating daily depth-16 

integrated photosynthesis, standard run (numeric integration) and the algorithm of Anderson 17 

(1993) which is an empirical approximation of a full spectral model: a) chlorophyll and b) 18 

nitrate. 19 

Figure 21. Simulations for all four stations showing model sensitivity to phytoplankton 20 

mortality. Parameters mP (linear mortality) and mP2 (quadratic moratlity) were set to zero in 21 

turn. a) chlorphyll, b) nitrate. 22 

Figure 22. Simulations for all four stations showing model sensitivity for zooplankton 23 

mortality. Parameters mZ (linear mortality) and mZ2 (quadratic moratlity) were set to zero in 24 

turn. a) chlorophyll, b) nitrate. 25 

 26 

27 
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Figure 1 Forcing used by Riley (1946) in his model of George’s Bank: a) Depths of euphotic 3 

zone and mixed layer; b) Diminution in photosynthesis due to light limitation (LV). 4 
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 1 

Figure 2. Two layer slab physics framework (adapted from Steele, 1974). 2 

3 
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Figure 3. Model forcing for stations India (60ºN 20ºW), BIOTRANS (47ºN 20ºW), Papa 3 

(50ºN 145ºW) and KERFIX (50º 40’S 68º 25’E): a) mixed layer depth (m), b) noon irradiance 4 

(W m-2), c) sea surface temperature (ºC).  5 

6 
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 1 

Figure 4. Structure of the NPZD model. 2 

3 
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Figure 5. Photosynthesis-irradiance curves with parameter settings max
PV = 2.5 g C (g chl)-1 h-1 3 

and  a = 0.15 g C (g chl)-1 h-1 (W m-2)-1: Smith function (Eq. 7) and exponential function (Eq. 4 

8). 5 

 6 
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Figure 6. Triangular versus sinusoidal patterns of diel irradiance illustrated for a 12 hour day 1 

and noon irradiance of 200 W m-2. 2 
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Figure 7. Contours of the zooplankton specific ingestion rates (IP, ID) versus densities of the 1 

two prey types (P = phytoplankton and D = detritus) as characterised by the sigmoidal grazing 2 

response (Eqs. 11, 12) using parameters Imax = 1 d-1, kZ = 0.52 mmol N m-3, φP = 0.67 and φD 3 

= 0.33.  Upper two panels illustrate assumed interference effect of one prey type over another, 4 

e.g. for a given P, increasing D reduces IP. The lower panel illustrates assumed optimal 5 

feeding (i.e. total ingestion, Itot, always increases with increase in P or D) and the benefit of 6 

generalism (i.e. increase in Itot due to consumption of P and D vs. just P). 7 

8 
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Figure 8. Structure of the model code. 1 

 2 

3 
Functions 

FNget_flux: calculates rates of change of terms in the differential equations, 
calling other functions to calculate irradiance, photosynthesis, etc.  

Other functions to calculate irradiance, photosynthesis, etc 

Setup 

Read in from files: 
1. NPZD_parms.txt: parameter values 
2. NPZD_extra.txt: initial conditions, location, run characteristics 

Set up forcing: MLD, deep nitrate, cloud fraction, etc. 

Set variables specific to model: no. of state variables, auxiliary variables, 
Etc. Set initial conditions 

Permanent code 

Basic settings: set up matrices to store fluxes and outputs, etc. 

Write initial values of state variables to file out_statevars.txt 

Time loop: years 

Time loop: days of year 

Time loop: time steps over day 

Calculate flux terms in differential equations: FNget_flux 

Update state variables 

Write to output files: out_statevars.txt, out_aux.txt, out_fluxes.txt 

End time loops 

Print summed annual fluxes to screen 

Plot graphs on screen 



 75 

India

month

ch
lo

ro
ph

ll,
 m

g 
m

-3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
all years
1998

J F M A M J J A S O N D

BIOTRANS

month

ch
lo

ro
ph

ll,
 m

g 
m

-3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
all years
2002

J F M A M J J A S O N D

Papa

month

ch
lo

ro
ph

ll,
 m

g 
m

-3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
all years
2007

J F M A M J J A S O N D

KERFIX

month

ch
lo

ro
ph

ll,
 m

g 
m

-3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
all years
2006

J F M A M J J A S O N D

 1 

Figure 9. SeaWiFS chlorophyll data for each of the four stations, years 1998 to 2013 overlaid, 2 

with selected median year (see text) highlighted. 3 

4 
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Figure 10. Simulation for station BIOTRANS using first-guess parameters compared to data 3 

(year 2002) for a) chlorophyll and b) nitrate. 4 
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Figure 11. Simulation for station BIOTRANS after parameter tuning (see text): a) 3 

chlorophyll, b) nitrate. 4 
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Figure 12. Predicted state variables and fluxes for the station BIOTRANS simulation: a) P, Z 3 

and D and b) phytoplankton growth, grazing and non-grazing mortality. 4 

5 



 79 

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

14

16

J F M A M J J A S O N D

a) chlorophyll b) nitrate

month month

chl: parameters station BIOTRANS
chl: parameters fitted

chl: parameters station BIOTRANS
chl: parameters fitted

 1 

 2 

Figure 13. Simulations for station India: a) chlorophyll, b) nitrate. Data are for year 1998. 3 

4 
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Figure 14. Simulations for station Papa before and after parameter tuning: a) chlorophyll, b) 3 

nitrate. Data are for year 2007. 4 

5 
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Figure 15. Simulations for station KERFIX before and after parameter tuning (see text for 3 

details): a) chlorophyll, b) nitrate. Data are for year 2006. 4 

5 



 82 

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

J F M A M J J A S O N D

a) chlorophyll b) nitrate

month month

P-I curve Smith function
P-I curve exponential fn

P-I curve Smith function
P-I curve exponential fn

 1 

 2 

Figure 16. Simulations for station BIOTRANS showing sensitivity to choice of P-I curve: a) 3 

Smith function (standard run) and b) exponential function. 4 

5 
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Figure 17. Simulations for station BIOTRANS showing sensitivity to choice of diel variation 3 

in irradiance: a) sinusoidal (standard run) and b) triangular. 4 

5 
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Fig. 18

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.5

1.0

1.5

2.0

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

14

16

J F M A M J J A S O N D

a) chlorophyll b) nitrate

piecewise Beer's law piecewise Beer's law

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.2

0.4

0.6

0.8

1.0

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

J F M A M J J A S O N D

India

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

14

16

J F M A M J J A S O N D

Papa

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.1

0.2

0.3

0.4

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

5

10

15

20

25

30

J F M A M J J A S O N D

month month

KERFIX

simple Beer's lawsimple Beer's law
BIOTRANS

 1 



 85 

 1 

Figure 18. Model simulations for all four stations showing sensitivity to choice of method for 2 

calculating light attenuation in the water column: a) piecewise Beer’s Law (Eq. 10) and b) 3 

simple Beer’s law (Eq. 9). 4 

5 
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Figure 19. Light attenuation as predicted by Evans and Parslow (1985; EP85) and for the 3 

three layers (0-5, 5-23, >23m; 1,2,3 respectively) in Anderson (1993; A93), as a function of 4 

phytoplankton concentration. 5 

6 
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Figure 20. Simulations for all four stations comparing methods for calculating daily depth-2 

integrated photosynthesis, standard run (numeric integration) and the algorithm of Anderson 3 

(1993) which is an empirical approximation of a full spectral model: a) chlorophyll and b) 4 

nitrate. 5 

6 
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Figure 21. Simulations all four stations showing model sensitivity to phytoplankton mortality. 2 

Parameters mP (linear mortality) and mP2 (quadratic moratlity) were set to zero in turn. a) 3 

chlorophyll, b) nitrate. 4 

5 



 91 

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.2

0.4

0.6

0.8

1.0

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

J F M A M J J A S O N D

BIOTRANS standard run

Fig. 22

mZ = 0
mZ2 = 0

standard run
mZ = 0
mZ2 = 0

a) chlorophyll b) nitrate

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

14

16

J F M A M J J A S O N D

India

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

2

4

6

8

10

12

14

16

J F M A M J J A S O N D

Papa

ch
lo

ro
ph

yl
l, 

m
g 

m
-3

0.0

0.1

0.2

0.3

0.4

J F M A M J J A S O N D

ni
tra

te
, m

m
ol

 m
-3

0

5

10

15

20

25

30

J F M A M J J A S O N D

KERFIX

month month

 1 



 92 

 1 

Figure 22. Simulations for all four stations showing model sensitivity for zooplankton 2 

mortality. Parameters mZ (linear mortality) and mZ2 (quadratic moratlity) were set to zero in 3 

turn. a) chlorophyll, b) nitrate. 4 

 5 
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