
Response to anonymous Referee 1’s comments

We would like to thank this referee for their detailed and thoughtful com-
ments, which we answer in detail below. They have helped to significantly
improve this paper.

For the convenience of the referees modifications are indicated using
latexdiff in the revised manuscript.

1. Overview

The authors uses the Euler–Poincaré theory to introduce a new Brinkman
penalization for the rotating shallow water equations. An error anal-
ysis is performed in the linearized 1-D case and the choice of penal-
ization parameters is discussed. A numerical model based on this new
penalization and on an adaptive wavelet method is then used to sim-
ulation ocean currents with realistic coastlines and bathymetry. The
main input of the paper is the derivation of a penalized formulated
that guarantees both mass and energy conservation. In addition this
formulation does not modify (increase) the gravity wave speed in the
solid region and so is not prone to stability issues to this respect. This
formulation is valuable by itself and this paper could be accepted for a
GMD publication if the following comments are addressed in a revised
version.

2. Major comments

• Derivation of the new volume penalization

At several places in the paper, we don’t know if the equations are
written for flat or non flat bottom:

– Page 5268, Line 17: h is used instead of η in the case of a non
flat bottom.

– The momentum equation of page 5273 is clearly not consistent
with a non flat bottom (a bathymetry gradient is missing at the
right hand side) (same at bottom of page 5275). It seems that the
partial derivative of the Lagrangian density L (bottom of page
5272) does not take into account the varying bathymetry. States
at rest should correspond to constant η and not constant h.

– The bathymetry b is also missing in the expression of the total
energy page 5276.
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Response: As now indicated, Reckinger et al. consider a flat
bottom. Thanks for spotting the missing bottom terms in the
momentum and energy budgets for our penalized equations. We
have corrected them. Notice that the numerics use the vector-
invariant form, which is correct.

• Link between the penalization parameters α, ε.

From the beginning, the authors state that these two coefficients
are linked by ε = K/α, K being the permeability. This is men-
tioned as an important difference with Reckinger et al. (2012).
However at several other places this statement seems to be alle-
viated. In order to remove confusion, it would be preferable not
to assume any dependency between the two coefficients and to
mention where needed the advantage (or not) to have these two
coefficients linked.

Response: We have modified this comment to make it clear that
for penalization purposes these two parameter may be varied in-
dependently.

• Error analysis and choice of penalization parameters

– In order to make convergence comparison clear, it would be
really nice to have the same analysis for the Reckinger et al. (2012)
set of equations.

Response: Our analysis requires deriving jump conditions be-
tween the solid and fluid regions because porosity is discontinu-
ous. Unfortunately, since Reckinger et al. (2012)’s method is not
conservative we have not been able to derive jump conditions and
to obtain similar convergence results for their method. They do,
however, present results showing that the method is O(α) with ep-
silon fixed in figure 5 and show O(α) convergence over a variable
range for fixed ratio ε/α = 10−2.

– For clarity, a summary of main convergence results along with
main assumptions may be given at end of section 4.1.

Response: Done.

In addition, I am not sure that the (dimensional) scaling factor
c/L can be dropped from the convergence factor as it is done
in the following sections. The error estimates assume that ε �
L/c so that these numbers are not independent. It is essentially
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a question of clarity for readers. No doubt that is is clear in
authors’s mind. The confusion comes from the fact that the c/L
is dropped at the beginning of section 4.2 and is however required
for the conclusions of section 4.3: error is O(α) when a) ε ≈ ∆x/c
(for stability) and b) L ≈ ∆x for marginally resolved fronts (so
that ε = L/c). In this case the asymptotic expansion (26) is not
valid but the hypergeometric function is bounded.

Response: We have emphasized that L and c are fixed for the nu-

merical experiments and give the values, as well as the ratio
√
c/L.

As you note, expression (25) shows that in the case of minimally
resolved waves the asymptotic approximation of the hypergeomet-
ric function is not valid, but since it is bounded (actually constant)
the error is O(α) as we state in 4.3.

• Numerical 1-D experiments

– It may appear more natural to have section 4.3 before the numer-
ical experiments of section 4.2. This would allow to understand
and to comment the choices made in 4.2.

Response: We see 4.3 as an interpretation of the various conver-
gence results in 4.2. Seeing the convergence results first in 4.2 is
necessary to understand the particular choices we recommend in
4.3.

– Note that a number of important parameters are missing here:
what are the values of L,H,∆t and of the Courant number?

Response: These parameters have now been defined.

– The influence of the smoothing parameter ∆ (or of the ratio
∆/L) is not discussed.

Response: We have added a new figure and discussion about the
effects of smoothing at the end of 4.2. We also clarify the role of
smoothing and why it is needed at the beginning of the section.

• Realistic experiments

– As a general comment, I appreciate the work done by the authors
to apply their code to simulations with complex coastlines and
bathymetry. In particular, the choice of the indicator function is
well explained and makes sense. However, I have to say that, for
a first experiment, I would have prefer to see the code in action on
a much simpler application that still allows to evaluate the merits
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of the volume penalization technique and of the grid refinement
features. Shallow water numerical experiments on a rotated grid
(cf Adcroft (1998)) could have been a good application.

Response: Thank you for this reference: we were unaware of this
proposed test. We have added a new section 5.1 and new figure 7
that show the results of the Adcroft and Marshall (1998) test for
four rotation angles. We conclude that the effect of rotating the
physical domain with respect to the model domain is negligible.

– Could the authors detailed their remark on mass conservation ?
(lines 4-10 on page 5288)

Response: We have written a more detailed explanation of why
the mass of the mean sea level is not exactly conserved during grid
refinement, even though the mass of the perturbation to the mean
sea level is. Essentially, this is due to the fact that the bathymetry
values interpolated from the smoothed ETOPO data may modify
the mean value of the sea level over the refined cell. This mass
defect is very small, does not accumulate, and disappears if the
grid subsequently coarsens to its original resolution.

– Concerning the figures illustrating section 5.3, a plot of a well-
known region (e.g. Gulf Stream) would be of interest.

Response: We have added a final figure showing the grid and
vorticity for the Gulf Stream region.

3. Minor comments

• The title of the paper is not really reflecting its main content. May
be just adding “based on a new Brinkman volume penalization”
would be sufficient.

Response: Changed as suggested.

• The introductory section should be a bit longer with an introduc-
tion to other ways of dealing with complex coastlines in ocean
modeling (e.g. unstructured meshes, cut cells, other immersed
boundary methods. . . )

• Page 5277. Would it be possible to treat the velocity penalization
term implicitly to remove the stability constraint?

Response: It would be possible, but our goal is to provide a
technique that that can be used without modifying the underlying
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numerical scheme. Note also that accurate approximation of the
no-slip boundary condition still requires that that the numerical
boundary layer be properly resolved so the time step would be
constrained by accuracy rather than stability requirements. We
mention this in the revised paper.

• Page 5286, lines 19-21. I agree with this remark. However in a 3D
simulation, care would have to be taken in order to not remove
bathymetry barriers important for the overall circulation.

Response: Agreed. The actual smooth mask for coastlines will
require some manual adjustment of important small scale features.

• Page 5292, lines 19-24. Authors should recall here that the stabil-
ity is constrained by the smallest grid size in the computational
domain. All (fixed or adaptive) refinement methods that do not
include local time stepping share this limitation.

Response: We have added this comment.
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Response to anonymous Referee 2’s comments

We would like to thank this referee for their detailed and thoughtful com-
ments, which we answer in detail below. They have helped to significantly
improve this paper.

For the convenience of the referee changes to the revised manuscript have
been indicated using latexdiff.

• Overview

This article presents a detailed analysis of a penalization technique to
represent “vertical” coastlines in shallow-water models. The technique
is then applied to an exist- ing wavelet-adaptive finite-difference/finite-
volume discretization of the shallow-water equations and used to sim-
ulate tsunami and global oceanic barotropic circulation. I found the
manuscript clear and well-presented. The model derivation and error
analysis are thorough and useful in practice. I have two major reserva-
tions however:

1. The issue of representation of coastlines (or complex boundaries)
in ocean models (or more general PDE systems) discretized on
fixed grids (i.e. non-boundary con- forming grids) has been stud-
ied very extensively in the past. The authors do not give sufficient
credit and context for their own contribution. The introduction
should do a much better job of summarizing this field, besides
the few references already given for penalization techniques. One
could mention in particular [...]

Response: We agree that the introduction has a bias towards
penalization-based handling of coastlines, which is far from being
the mainstream approach. We thank the referee for providing a
broader sample of references, which are now referred to in the
introduction.

I also note that both Dupont, 2001 and Popinet and Rickard,
2007 both present (semi)-analytical test cases of the accuracy of
boundary representation which are more stringent than the prac-
tical examples used by the authors (as well as very relevant for the
type of applications envisaged). Moreover better than first-order
in space accuracy is obtained. This need at least to be mentioned
in the introduction.
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Response:

The issue of accuracy is now raised in the introduction. We also
include a new case proposed by Adcroft and Marshall (1998) that
tests the sensitivity of the penalization to rotations of the physical
coastline with respect to the computational grid in section 5.1.

2. The need for “vertical” coastlines (i.e. “side walls”) in ocean mod-
els is not obvious at all. As with most the Earth’s topography,
coastlines are usually not steep at all (aside from the very few
areas where sheer cliffs fall into the deep ocean). In most cases
assuming vertical coastlines is done to circumvent dealing with
“wetting/drying” at coastlines. In itself wetting and drying is
not a major theoretical difficulty for shallow-water models: fullly-
nonlinear shallow-water models have been shown to be theoreti-
cally well-posed in the limit where the water depth tends to zero.
Indeed for applications such as tsunamis, the non-linear shallow-
water system has been shown to describe very well the shoaling
and flooding properties of long waves on coastlines. Assuming
“side walls” for such applications (as is done here for the 2004
tsunami) will essentially mean giving up any results regarding the
extent of flooding on the coastline, which is of course one of the
main reason to do such tsunami simulations. This point needs to
be discussed by the authors both in the introduction and for the
tsunami example.

Response: The issue of vertical walls vs wetting and drying is
now highlighted in the introduction and in section 5.3. We would
like to stress however that our perspective is to progress towards
a three-dimensional global ocean model. As far as we are aware
such models do not handle wetting and drying at the shoreline.

Also, the authors need to credit previous adaptive simulations of
tsunamis, such as:

Response: Yes, we have included this reference this work and
another one (Harig et al., 2008)

• Some minor comments follow:

1. line 15: “Smaller-scale features, such as vortices and jet meander-
ing, are predominantly generated in the real ocean by baroclinic
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mechanisms which cannot be captured by a single-layer model.” I
find this comment too general. On the scales the author consider
(i.e. less than 1km) and close to coastlines (which is the point of
the article), barotropic flows are often the main cause of vortices
and jets.

Response:

We have narrowed this statement to make it more specific. We
now refer to mesoscale and sub-mesoscale ocean eddies which are,
as far as we are aware, always baroclinic except possibly in very
shallow waters (exciting the barotropic mode in the open ocean
requires a lot of energy).

2. line 10 p 5291: Giving clear indications of computational speed,
both relative and absolute, is important since the point of adap-
tivity is computational efficiency. Besides the approximate run-
times already mentioned, it would be good to give the absolute
speed of computation, for example using number of (degrees of
freedom/grid points) advanced / computation time / number of
cores.

Response:

We now give absolute computation speeds for the tsunami case
at the end of section 5.3. For the 475 m local resolution, the
average wall-clock time on 256 cores is 9.1 s for 1 s of physical
time. We note that since the code has 94 % strong parallel scaling
efficiency it should be possible to achieve operational forecasting
with several thousand cores (we didn’t have access to this number
of cores for our runs).
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Abstract. In order to easily enforce solid-wall boundary conditions in the presence of complex

coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating

shallow water equations. This penalization does not lead to higher wave speeds in the solid region.

The error estimates for the penalization are derived analytically and verified numerically for lin-

earized one dimensional equations. The penalization is implemented in a conservative dynamically5

adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry

and coastline data from NOAA’s ETOPO1 database. This code could form the dynamical core for a

future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by

using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.

1 Introduction10

The goal of this paper is to propose a new Brinkman volume penalization
:::::::
Properly

::::::::
handling

::::::::
coastlines

:
is
::::::
crucial

:::
for

:::::::
realistic

:::::::::::::
two-dimensional

::
or

:::::::::::::::
three-dimensional

:::::
ocean

:::::::
models.

:::::::::::::::
Two-dimensional,

::::::::
one-layer

::::::
models

::::
focus

:::
on

:::
the

::::::::::
propagation

::
of

::::::::
barotropic

::::::
waves

:::
and

::::::
coastal

::::::
effects.

:::::
When

:::::::::
modelling

:::::::::::::
tsunami-induced

:::::::
flooding

:::
the

:::::::
position

::
of

:::
the

:::::::
coastline

:::::
itself

::::
may

::
be

::
an

::::::::
unknown

::
to

:::
be

::::::::
predicted

::
by

:::
the

::::::
model.

::
In

::::
that

:::
case

:::::::
wetting

:::
and

::::::
drying

::
at

::
the

::::::::
shoreline

::::
must

:::
be

:::::::
properly

::::::
handled

::::::::::::::::::::::::::::::::::
(Audusse et al., 2004; Harig et al., 2008) .15

:::::::
Properly

:::::::::
predicting

:::::::::
inundation

:::
of

:::::
urban

:::::
areas

::::
also

:::::::
requires

:::::::::
extremely

:::::::
detailed

::::::::::
topography

:::::
data,

:::::::
typically

::
to

::::::::
O(10m)

::::::::
accuracy.

::::::::::::::::
Three-dimensional

:::::
global

::::::
ocean

::::::
models

:::::::
usually

::::
treat

::::::::
coastlines

:::
as

::::
fixed,

:::::
rigid

:::::::::
boundaries.

::::
This

::
is
::
a

::::::
simpler

::::::
setting

:::
for

:::::
which

::::::::
numerous

::::::::
methods

::::
have

::::
been

::::::::
designed

::
in

::
the

:::::::
broader

::::::
context

::
of

::::::::::::
computational

::::
fluid

::::::::
dynamics

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Almgren et al. (1997); Angot et al. (1999); Popinet and Rickard (2007) ).

:::
For

:::::::::
operational

::::::
ocean

::::::
models,

::::::::::::
improvements

::::
over

:::
the

:::::
crude

::::::::::::
representation

::
of
:::::::::

coastlines
::
as

:::::::
vertical20

::::
walls

:::::::
limiting

:::
the

::::::::
horizontal

:::::
extent

:::
of

::::
each

:::::
model

::::
layer

::::
have

:::::
been

::::::::
introduced

:::::::::::::::::::::::
(e.g.Adcroft et al. (1997) ).
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:::::
When

:::
the

:::::::::
horizontal

:::
grid

::
is
::::
not

::::
fitted

::
to
::::

the
:::::
shape

::
of

:::::::::
coastlines,

::::
care

::::
must

:::
be

:::::
taken

:::
that

:::::::::
boundary

::::::::
conditions

:::
are

::::::::
enforced

::::::::
accurately

::::::::::::::::::::::::::::::::::::::::::::::::
(Adcroft and Marshall, 1998; Popinet and Rickard, 2007) .

:::::
When

::
it

::
is

:::::::::
desireable

::
to

::::::
capture

:::::::::::::
non-stationary

::::::::::
small-scale

::::
flow

:::::::
features,

:::::
using

::
a
:::::::::::
dynamically

:::::::
adaptive

::::::::::::
computational

::::
mesh

::::
may

:::
be

::::::::::
considered.

:::::::
Whether

::::
this

::::::
strategy

::
is
::::::::::::
advantageous

::
is

:::::::
strongly25

::::::::::::::::
problem-dependent.

::::
For

:::::::
tsunami

::::::::::
simulations

:
a
::::::::

properly
:::::::::::
implemented

::::::::
adaptive

:::::::
strategy

:::
has

:::::
been

:::::
shown

::
to

:::::::
provide

:::::
strong

::::::::
efficiency

:::::
gains

:::::::::::::::::::::::::::::::::::::::
(Popinet and Rickard, 2007; Harig et al., 2008) .

:::
For

:::::::::
statistically

:::::::::::
homogeneous

::::::::::::
shallow-water

:::::::::
turbulence,

:::
we

::::
have

:::::::
obtained

::::::::::
encouraging

::::::
results

::
by

:::::::::
combining

::::::::::::
wavelet-based

::::::::
adaptivity

::::
with

::::
local

:::::::::
refinement

::::::
criteria

:::::
based

::
on

:::::::::::::
truncation-error

::::::::
estimates

::::::::::::::::::::::::::::::::::::::::::
(Dubos and Kevlahan, 2013; Aechtner et al., 2014) .

30

::::::::::::
Wavelet-based

:::::::
adaptive

::::::
solvers

:::
for

:::
the

::::::::::::
incompressible

::::::::::::
Navier-Stokes

:::::::::
equations

:::
can

::
be

:::::::::
combined

:::::
easily

::::
with

:
a
::::::::
treatment

::
of

:::::::
complex

:::::::::::::::
three-dimensional

::::
rigid

:::::::::
boundaries

:::::
based

:::
on

::::::::
Brinkman

::::::::::
penalization

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kevlahan et al., 2000; Schneider and Farge, 2002; Vasilyev and Kevlahan, 2002; Kevlahan and Vasilyev, 2005) .

::
In

:::
this

::::::
paper,

:
a
:::::::
similar

:::::::
approach

:::
for

::::::::
handling

:::::
fixed

::::::::
coastlines

:::::::
without

:::::::::::::
wetting/drying

::
is

::::::::
explored.

:
A
::::::

novel
::::::::
Brinkman

:::::::::::
penalization

:
of the rotating shallow water equations and implement them

::
is

::::::::::
implemented

:
in our dynamically adaptive wavelet model on the sphere (Dubos and Kevlahan, 2013;35

Aechtner et al., 2014) to simulate oceanic flows with realistic coastlines and bathymetry over scales

ranging from sub-kilometre to global.

Brinkman penalization methods for the numerical solution of the Navier–Stokes equations with

solid boundaries were originally introduced by Angot et al. (1999) following the pioneering work

of Arquis and Caltagirone (1984). Like all penalization methods, their goal was to avoid having to40

adapt the discretization scheme to account for complex solid boundaries by instead modifying the

dynamical equations such that as a control parameter tends to zero the solution of the modified equa-

tions with simple boundary conditions (e.g. periodic) tends to the solution of the original equations

with the desired boundary conditions. The physical analogy is that the regular fluid is replaced by

a porous medium where the porosity and permeability tend to zero in the solid portion of the com-45

putational domain and the porosity is one (i.e. a regular fluid) in the fluid part of the domain. Angot

et al. (1999) proved
:::
that

:
the method converges and gave (non-sharp) estimates of the error in terms

of the control parameter. Because it is a volume penalization, Brinkman penalization methods are

easy to implement because
::::
since the geometry of the boundary need not be known: it .

::
It is sufficient

to know the indicator function (or mask) defining points as being
::::::::
belonging

::
to either in the solid or50

fluid parts of the computational domain.
::::::
Notice

:::
that

:::::::::
Brinkman

::::::::::
penalization

:::::::
enforces

::::
the

::::::::
boundary

::::::::
conditions

::::
only

::::
with

:::::::::
first-order

:::::::
accuracy

:::::
while

::::
other

::::::::
methods

::::
reach

:::::::
second-

::
or

::::::::::
higher-order

::::::::
accuracy

::::::::::::::::::::::::
(Popinet and Rickard, 2007) .

::
A

::::::
family

::
of

:::::::::::
higher-order

:::::::::
Brinkman

::::::::::
penalization

::::::::
methods

:::
has

:::::
been

::::::
recently

::::::::
proposed

:::
by

:::::::::::::::::::::::
Shirokoff and Nave (2015) .

Since its introduction Brinkman penalization has been applied to a wide range of fluid flow prob-55

lems and numerical schemes, including spectral methods Kevlahan and Ghidaglia (2001), mov-

ing boundaries (Kevlahan and Wadsley, 2005; Kolomenskiy and Schneider, 2009), the wave equa-

tion (Paccou et al., 2005), the compressible Euler equations (Liu and Vasilyev, 2007) and the shallow
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water equations (Perret et al., 2003; Reckinger et al., 2012).
:::
The

::::::::::::
shallow-water

::::::::::
penalization

:::::::
method

::
we

:::::::
propose

::
is

:
a
:::::::::::
modification

::
of

:::
the

:::
one

::::::::
proposed

:::
by

:::::::::::::::::::::
Reckinger et al. (2012) to

:::::
ensure

::::
that

::::
mass

::::
and60

:::::
energy

::::
are

::::::::
conserved

::::
and

::::
that

:::
the

::::
wave

::::::
speed

::
is

:::
the

:::::
same

::
in

::::
both

:::
the

:::::
solid

:::
and

:::::
fluid

::::
parts

:::
of

:::
the

:::::::
domain.

::::
We

:::
also

:::::::
modify

::
the

:::::::
velocity

:::::::::::
penalization

:::
(i.e.

:::::::::::
permeability)

:::::
term

::
to

:::::
ensure

:::::
better

:::::::
control

::
of

::
the

::::::
overall

:::::
error

:::::
using

:::
the

:::::::
porosity

::::::::
parameter

:::::
alone.

:

Penalization methods are particularly well-suited to dynamically adaptive methods since these

methods automatically refine the computational grid in the boundary layers and can use very coarse65

grids in the solid part of the computational domain where the solution is irrelevant (Kevlahan et al.,

2000; Schneider and Farge, 2002; Vasilyev and Kevlahan, 2002; Kevlahan and Vasilyev, 2005).

In addition, because penalization methods enforce the boundary conditions to only first-order ac-

curacy adaptive methods can provide the required level of accuracy by local grid adaptation (i.e.

h−refinement).70

In this paper we propose a new volume penalization for the shallow water equations and then

implement it in the adaptive wavelet method for the rotating shallow water equations on the sphere

that we have recently developed (Dubos and Kevlahan, 2013; Aechtner et al., 2014) . Our method is

a modification of the one proposed by Reckinger et al. (2012) to ensure that mass and energy are

conserved and that the wave speed is the same in both the solid and fluid parts of the domain. We75

also modify the velocity penalization (i.e. permeability) term to ensure better control of the overall

error using the porosity parameter alone.

Previous volume penalization methods for the shallow water equations are reviewed in section 2.

The new penalization is derived from the porous shallow water equations in and section 3. The

new penalization is verified for the linearized one-dimensional equations in section 4 . Finally, we80

illustrate the potential of the new method by applying it to two global ocean flows: tsunami propa-

gation and wind driven gyres. These simulations have realistic bathymetry and coastlines from the

1 arc minute NOAA ETOPO1 global relief data base (Amante and Eakins, 2009). The two exam-

ples show how the Brinkman penalization of the shallow water equations works with a dynamically

adaptive wavelet method for both fast (tsunami) and slow (global ocean circulation) dynamics and85

in the inertia–gravity (tsunami) and quasi-geostrophic (global ocean circulation) regimes. We intend

to extend the methods presented here to build a full dynamically adaptive global ocean circulation

model.
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2 Previous penalization methods for the shallow water equations

In vector-invariant form, Reckinger et al. (2012) proposed the following set of penalized shallow90

water equations
::::
with

:
a
:::
flat

::::::
bottom,

∂h

∂t
+

1

φ(x)
div hu= 0, (1)

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gh+

1

2
|u|2

)
=−σ(x)u, (2)

where h is the height of the fluid column, u is the vertically averaged horizontal velocity and g is

gravity. In this section, as well as in sections 3 and 4 , the Coriolis force is omitted for simplicity.95

It will be reintroduced in the numerical experiments of section 5. The corresponding momentum

equation is

∂m

∂t
+ div(m⊗u) +φ grad

(
1

2
gh2

)
=−σ(x)u, (3)

where momentumm= hu coincides with the mass flux. φ(x) and σ(x) are respectively the variable

porosity and linear friction terms characterizing the porous medium. In order to model a fluid with100

solid boundaries these terms have the following discontinuous forms

(φ(x),σ(x)) =

 (α,1/ε) in the penalized region,

(1,0) in the fluid,
(4)

where the parameters α and ε control the accuracy of the boundary condition approximation. (For

stable numerical implementation of the penalization the discontinuities in φ and σ are smoothed

over a few grid points.) Physically, a large jump in porosity leads to a large jump in impedance that105

causes inertia–gravity waves to be almost perfectly reflected at the solid boundary, while a strong

linear friction term rapidly damps velocity fluctuations approximating a no-slip velocity boundary

condition.

Equations (1–3) are derived from Liu and Vasilyev (2007)’s similar penalized equations for the

compressible Euler equations. Both penalizations have the property that mass and momentum do not110

move at the same speed and so it is impossible to conserve mass or to define an energy equation.

The lack of mass conservation is easy to see from the mass equation (1), which can be rewritten

as

∂φ(x)h

∂t
+ divm= 0, (5)

wherem= hu is the height (i.e. mass) flux. In order to conserve mass, the mass flux should actually115

bem= φ(x)u to take into account the changing volume fraction of the fluid in the porous medium.

The penalized momentum equation (3) also uses a non-porous mass flux (i.e. hu instead of φhu).

Therefore, it is impossible to derive an energy budget from (1,3).
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Reckinger et al. (2012)’s penalization also has the property that inertia–gravity wave speeds are

1/
√
α times faster in the porous medium. This introduces a stiffness in time associated with the120

small porosity α that enforces an artificially small time step.

The earlier shallow water equation penalization used by Perret et al. (2003) is even simpler in

that only the velocity field is penalized using the friction term −σ(x)u. Therefore, only the no-slip

velocity boundary condition is approximated and not the perfect reflection of inertia–gravity waves

at the boundary. This penalization can therefore be approximately valid in the quasi-geostrophic125

regime where wave motion is insignificant compared to vortical motion.

In the following section we derive the shallow water equations for a porous medium using Euler-

Poincaré theory and then use these physical equations to propose a new Brinkman penalization for

the shallow water equations in complex geometries. The final equations differ only slightly from

those proposed by Reckinger et al. (2012), but they conserve both mass and energy and the wave130

speed is the same in both the fluid and penalized parts of the domain. Although our penalization is

better justified on physical grounds, it is not yet clear whether it has any computational advantages

apart from eliminating the stiffness constraint associated with the small porosity α.

3 New volume penalization for the shallow water equations

3.1 Derivation of porous shallow water equations135

Euler–Poincaré theory (Holm et al., 2002) states that Hamilton’s least action principle applied to the

action

L=

∫
L(h,u,x) dxdydt

generates momentum equations for a particular choice of Lagrangian densityL(h,(u),(x)) = T−V .

The Lagrangian density is the difference in kinetic and potential energy density and is assumed to140

depend on a scalar h, velocity vector field u(x) and position vector x ∈ R2. If the conservation

equation for the scalar h is

∂h

∂t
+ div(hu) = 0,

then locally conservative vector-invariant equation for momentumm is

∂m

∂t
+ div(m⊗u) + grad(p) =

∂L

∂x
, (6)145

and the vector-invariant equations of motion are

∂v

∂t
+
∇×v
h
×hu+∇B = 0, (7)

where

m=
∂L

∂u
= hv, B = u ·v− ∂L

∂h
, p= L−h∂L

∂h
, v = u.
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The total energy150

E =

∫∫
(m ·u−L) dxdy

is conserved.

We now use Euler–Poincaré theory to derive standard and modified shallow water equations. The

fluid has free surface perturbations η(x) from the mean free surface η = 0 and the depth of the fluid is

given by b(x)> 0 so the total depth is h(x) = η(x)+b(x) as shown in figure 1. (In ocean modelling155

b is called the bathymetry, and b= 0 corresponds to coastlines.) The shallow water approximation

assumes that η is small compared to depth b and that the wavelength of surface waves is much longer

than the depth b. Note that h is proportional to the total mass density of the fluid column.

The standard shallow water equations are obtained using the Lagrangian density for the shallow

water system160

L(h,u) =
1

2
h
(
|u|2− g(η− b)

)
,

from which one derives

m= hu,

B = gη+
1

2
|u|2, p=

1

2
gh2,

E =
1

2

∫∫
h
(
u2 + g(η− b)

)
dxdy.165

Thus, the shallow water equations of motion are the equations of motion

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gη+

1

2
|u|2

)
= 0. (8)

We now assume a porous medium with volume fluid fraction given by the variable porosity φ(x).

We define a new variable h̃= φh satisfying the conservation law

∂h̃

∂t
+ div

(
h̃u
)

= 0, (9)170

and the action

L=

∫∫∫
1

2
h
(
|u|2− g(h− 2b)

)
φdxdydt. (10)

The Lagrangian density for the new variable h̃ is then

L(h̃,u,x) =
h̃

2

|u|2− g h̃− 2b̃

φ

h̃

φ
+ 2gb

::::::

 , (11)

where b̃= φb, from which175

m= h̃u, v = u, B = gη+
1

2
u2,

p=
1

2
φgh2,

∂L

∂x
=

1

2
gh(h− 2b)2 grad(φ)+ghφ

::::
grad(b).

6



The momentum equation for the porous shallow water system is

∂m

∂t
+ div(m⊗u) +φ grad

(
1

2
gh2

)
−ghφ
::::

grad(b) = 0.

However, surprisingly, the vector-invariant form of the equations of motion for the shallow water180

system are identical to the usual shallow water equations (8); only the mass budget has changed

to (9). States of rest correspond to constant h and inertia-gravity waves travel at speed
√
gh if the

porosity φ is constant, independent of the actual value of φ.

The non-dissipative equations of motion derived above do not fully model flow in porous media

since they do not include the friction force per unit volume that resists flow through the medium.185

Including the friction force, the full vector-invariant equations of motion for the porous shallow

water system are

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gη+

1

2
|u|2

)
=− µφ(x)

K(u,h,x)
u, (12)

where µ is the fluid viscosity and K(u,h) is the effective permeability of the medium due to various

friction terms. However, for the purposes of this paper we will assume the simple linear friction term190

of the form

−φ(x)

K
u, (13)

with constant permeability K which, like ε, has the dimensions of a time.

If the porosity is not small, it is better to use an empirical nonlinear friction law that includes both

bottom and wall shear stresses (Guinot and Soares-Frazao, 2006). For example, the Strickler law195

approximates the friction term as

− gh̃|u|
k2h4/3

u, (14)

where k is the so-called Strickler coefficient that depends empirically on the bottom roughness ks,

e.g. Ramette’s formula gives k = 8.2
√
g/k

1/6
s (Hervouet, 2007). Strickler’s law is used by Guinot

and Soares-Frazao (2006) in their porous shallow water model for large-scale flooding of urban200

areas.

3.2 Volume penalization of the shallow water equations

Our goal in this paper is to derive a volume penalization for solid boundaries in the shallow water

model (e.g. coastlines or islands in an ocean model). As in all penalization methods, the idea is to

implement boundary conditions implicitly by modifying the equations in a suitable way. In the limit205

as certain control parameters tend to zero the solution of the modified equations tends to the solution

of the original equations with the desired boundary conditions. Such penalization techniques are

particularly well-suited to adaptive numerical methods since, although the solid region is technically

part of the computational domain, it can be resolved very coarsely except near the boundary.
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We propose modelling the solid parts (e.g. continents and islands) of the computational domain210

as a porous medium with vanishingly small porosity φ and permeability K. The fluid part of the

computational domain remains a regular fluid. The jump in porosity causes inertia-gravity waves to

be reflected physically at the coastline and the small permeability approximates a no-slip boundary

condition for velocity, i.e. u= 0.

The vector-invariant penalized shallow equations based on (12) are215

∂h̃

∂t
+ div h̃u= 0,

∂u

∂t
+

curl(u)

h̃
× h̃u+ grad

(
gη̃

φ(x)
+

1

2
|u|2

)
=−σ(x)u,

(15)

where η̃ = φ(x)η. The porosity φ(x) and porous friction coefficient σ(x) are discontinuous such that

the fluid portion of the domain is unaffected and the solid portion is penalized as a very impermeable

medium,

(φ(x),σ(x)) =

 (α,α/K) in the penalized region,

(1,0) in the fluid,
(16)220

with K� α� 1. The solid regions are defined by the indicator function χ(x),

χ(x) =

 1 in the solid,

0 in the fluid.
(17)

When implemented numerically the indicator function χ(x) is smoothed over a few grid points, as

discussed in Reckinger et al. (2012). The porosity φ(x) and friction coefficient σ(x) are then defined

based on χ(x) and the control parameters α� 1 and K� α� 1 as225

φ(x) = 1 +χ(x)(α− 1), (18)

σ(x) =
α

K
χ(x). (19)

Note that the prognostic variables for the penalized shallow water equations (15) are (h̃,u) and that

h̃= h in the non-penalized (i.e. non-porous) region.

Equation (19) shows that the velocity penalization friction term σ(x) depends explicitly on both230

the porosity α and the permeability K. In contrast, in Reckinger et al. (2012) the velocity friction

parameter ε is formally independent of porosity. Since ε=K/α
:::::::
Although

:
for a porous medium

this implies that they effectively modify the permeability as the porositychanges in order to keep
:::
the

::::::
velocity

:::::::
friction

::::::::
parameter

:::::::
depends

:::
on

:::::::
porosity,

:::::
when

::::
these

::::::::
equations

:::
are

::::
used

:::
for

::::::::::
penalization

:::::
there

:
is
:
ε constant

:::
and

:
α
::::
can

::
be

::::::
varied

:::::::::::
independently.235

The flux form of the equations is

∂h̃

∂t
+ div(m) = 0,

∂m

∂t
+ div

(
m⊗m
h̃

)
+φ grad

(
gh̃2

2φ2

)
−g
::
h̃ grad(b) =−σm,
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where the mass fluxm= φhu. This shows clearly that both mass and momentum move at the same

speed u.240

Although this penalization scheme is similar to that proposed by Reckinger et al. (2012), it does

have some important physical and numerical differences that could prove advantageous. In addition,

we fully characterize the error and convergence properties of penalization by deriving analytical

estimates for the exact solution of the linearized one-dimensional wave propagation problem.

3.3 Properties of the penalization245

We now summarize the main numerical properties of the volume penalization of the rotating shallow

water equations introduced in the previous section.

The impedance mis-match at the solid boundary means that inertia-gravity waves are reflected

with reflection coefficient

R=
α−1− 1

α−1 + 1
= 1− 2α+O(α2),250

whereas the exact behaviour at the boundary is perfect reflection, R= 1. Therefore, some height

amplitude will be lost since part of the wave is transmitted and the size of the error is O(α).

There are two main differences compared with the method proposed in Reckinger et al. (2012).

First, mass and energy both move at the same speed u and so energy is conserved. In particular, total

energy decreases as255

d
dt

1

2

∫∫
hh̃

(
g(η−b)

:::
+ |u|2

)
φ(x)dxdy =−

∫∫
σ(x)hh̃|u|2φ(x)dxdy,

which implies that the penalization is stable. Secondly, ignoring friction, the linear wave speed is the

same in both the fluid and porous regions,

c= u±

√
gh̃

φ(x)
= u±

√
gH,

where h̃= hφ(x) = (H+O(η))φ(x), with η� 1, independent ofα. This means that, unlike Reckinger260

et al. (2012)’s method, the height penalization does not affect the time step or stability properties of

the numerical method.

The velocity penalization term is stiff in time, and limits the time step to ∆t=O(ε) for explicit

methods. Note that the
:
It
::
is

:::::::::::::
straightforward

::
to

:::::
avoid

:::
the

:::::::
stiffness

:::
by

:::::::::::
implementing

:::
the

:::::::::::
penalization

::::
term

:::::::::
implicitly,

:::::::
however

::::
the

::::
time

::::
step

::::
still

:::::
needs

:::
to

::
be

::::::
small

::::::
enough

:::
to

:::::::::
accurately

::::::
resolve

::::
the265

::::::::
numerical

::::::::
boundary

:::::
layer

::
in

:::
the

:::::
solid

:::::::::
generated

::
by

:::
the

:::::::::::
penalization.

::::
The

:
height penalization pa-

rameter α does not place any additional constraints on the spatial resolution ∆x or the time step

∆tunless we choose to set ε=K/α.

Because height and velocity are governed by diffusion (and not wave) equations in the penalized

solid region a wave will not be emitted from the boundary if there is no incoming wave. Therefore,270
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the penalization is stable according to GKS stability theory for numerical stability of hyperbolic

problems (Gustafsson et al., 1972).

The error and convergence properties of this method are derived analytically and verified numeri-

cally for a simple linear one-dimensional example in following section.

4 Analysis of linearized 1-D equations and guidelines for use275

4.1 Exact solution and error analysis

We consider the one-dimensional penalized shallow water equations linearized about the state of rest

with depth H and speed u= 0,

∂h̃

∂t
=−H ∂

∂x
(φ(x)u) ,

∂u

∂t
=−g ∂

∂x

(
h̃

φ(x)

)
−σ(x)u,

(20)

where the penalization functions φ(x) and σ(x) are as given in (4). The geometry of the domain is280

defined by the indicator function χ(x) =H(x), where H(x) is the Heaviside function. This means

that x < 0 is fluid and x≥ 0 is solid. (Note that in a numerical implementation the indicator func-

tion is smoothed over a few grid points to avoid numerical oscillations.) The initial conditions are

u(x,0) = 0 and

h(x,0) =


Hw, x <−L− 1,

−HwL (x+ 1), −L− 1≤ x≤−1,

0, x >−1,

(21)285

i.e. a linear ramp wave front with (non-dimensional) width L and amplitude Hw.

Following Kevlahan and Ghidaglia (2001) we solve the problem by taking separate Laplace trans-

forms in time for the regions x < 0 and x≥ 0 and solving the resulting ordinary differential equa-

tions in x. The resulting four constants are determined by the requirement of finite solutions as

x→±∞ and from the jump conditions at x= 0,290

h̃(x−) = h̃(x+)/α, u(x−) = u(x+)α. (22)

These jump conditions are found by integrating equations (20) across the fluid–solid boundary x= 0.
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The exact Laplace transforms of penalized height and velocity in the fluid solid regions are

h̃fluid(x,s) = h̃1(x,s) +
cHw

2Ls2
esx/c

(
e−s/c− e−s(1+L)/c

) (1 +α2)εs+ 1− 2α
√
εs(εs+ 1)

(1−α2)εs+ 1
,

ufluid(x,s) = u1(x,s)− c2Hw

2HLs2
esx/c

(
e−s/c− e−s(1+L)/c

) (1 +α2)εs+ 1− 2α
√
εs(εs+ 1)

(1−α2)εs+ 1
,

h̃solid(x,s) =−αcHw

Ls2

εs+ 1−α
√
εs(εs+ 1)

(1−α2)εs+ 1
e
− x√

εc

√
s
√
εs+1

(
e−s/c− e−s/c(1+L)

)
,

usolid(x,s) =
gHw

Ls3/2

√
εs+ 1−α

√
εs

(1−α2)εs+ 1
e
− x√

εc

√
s
√
εs+1

(
e−s/c− e−s(1+L)/c

)
,

(23)

where the wave speed c=
√
gH , and h̃1(x,s) and u1(x,s) do not depend on the penalization. Now,295

taking the leading order series expansions in α� 1 we have the following approximate expressions

for the Laplace transforms of the penalized solutions,

h̃fluid(x,s) = h̃exact(x,s)−
αε1/2cHw

L

esx/c
(
e−s/c− e−s(1+L)/c

)
s3/2
√
εs+ 1

+O(α2),

ufluid(x,s) = uexact(x,s) +
αε1/2c2Hw

HL

esx/c
(
e−s/c− e−s(1+L)/c

)
s3/2
√
εs+ 1

+O(α2),

h̃solid(x,s) =
αcHw

Ls2
e
− x√

εc

√
s
√
εs+1

(
e−s/c− e−s(1+L)/c

)
+O(α2),

usolid(x,s) =
gHw

Ls3/2

e
− x√

εc

√
s
√
εs+1

√
εs+ 1

(
e−s/c− e−s(1+L)/c

)
+O(α),

(24)

where we recall that the exact solution in the solid region is zero.

Taking the inverse Laplace transform of (24) gives the following results for the penalizations300

errors in the fluid part of the domain,

h̃fluid(x,t)− h̃exact(x,t) =
αHw

L
[f1(x+ ct− (1 +L))− f1(x+ ct− 1)] ,

ufluid(x,t)−uexact(x,t) =− c

H
(h̃fluid(x,t)− h̃exact(x,t)),

(25)

where

f1(x) =H(x)xM

(
1

2
,2,− x

cε

)
,

and M(1/2,2,−z) is a hypergeometric function with leading order asymptotic expansion for large305

argument z

M(1/2,2,−z)∼ 2√
π
z−1/2.

Note that the error is exactly zero until the wave reflects from the boundary. After reflection the error

is zero at the leading edge of the wave x= 1− ct and maximal at the trailing edge x= 1 +L− ct.
The maximum relative penalization errors are therefore310

||h̃fluid− h̃exact||∞
Hw

= αM(
1

2
,2,−L

cε
)∼ 2

√
c

L
αε1/2,

||ufluid−uexact||∞
c

= α
Hw

H
M(

1

2
,2,−L

cε
)∼ 2

Hw

H

√
c

L
αε1/2,

(26)
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where we have assumed that ε� L/cand recall that ε=K/α.

The asymptotic estimates (26) show that the penalization converges as ε→ 0 and α→ 0 and that

the relative errors the penalized equations areO(αε1/2
√
c/L) for height andO(αε1/2

√
c/LHw/H)

for velocity. As expected, the error is exactly zero until the wave reaches the solid boundary at t= 1.315

Now, taking the inverse Laplace transform in the solid region we find that

h̃solid(x,t) =
αcHw

L

 t−1/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ2−

(x
c

)2
)
e−

t−1/c−τ
ε M

(
3

2
,1,

t− 1/c− τ
ε

)
dτ

−
t−(1+L)/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ2−

(x
c

)2
)
e−

t−(1+L)/c−τ
ε M

(
3

2
,1,

t− (1 +L)/c− τ
ε

)
dτ


usolid(x,t) =

gHw

L

t−1/c∫
t−(1+L)/c

e−τ/2εI0

(
1

2ε

√
τ2−

(x
c

)2
)

dτ.

(27)

If we now assume that ε� t−(L+1)/c to approximate I0(z)∼ ez/
√

2πz for z� 1, x� ct−(L+

1) to approximate
√
τ2− (x/c)2 = τ(1− 1/2(x/cτ)2) +O(x/cτ)4) and ε� x/c to approximate

M(3/2,1,−z)∼ 2z1/2/
√
π, the above Laplace transform integrals become320

h̃solid(x,t) =
2αcHw

πL

 t−1/c∫
x/c

(
t− 1/c

τ
− 1

)1/2

exp

(
− x2

4c2ετ

)
dτ

−
t−(1+L)/c∫
x/c

(
t− (1 +L)/c

τ
− 1

)1/2

exp

(
− x2

4c2ετ

)
dτ

 ,
ũsolid(x,t) =

gHw

L

√
ε

π

t−1/c∫
t−(1+L)/c

τ−1/2 exp

(
− x2

4c2ετ

)
dτ.

(28)

Again, assuming ε� x/c the integrand in the first equation decays exponentially as τ → x/c and

we can approximate the lower integration limit x/c by zero. Evaluating the integrals in (28) gives

the final results,

h̃solid(x,t)

Hw
∼ αc

L
[f2(x,t− 1/c)− f2(x,t− (L+ 1)/c)] ,

usolid(x,t)

c
∼ gHw

Lc
[f3(x,t− 1/c)− f3(x,t− (L+ 1)/c)] ,

(29)325

where

f2(x,t) =H(t)t

[(
1 +

x2

2c2εt

)
erfc

(
x

c
√
εt

)
− x

2c
√
πεt

exp

(
− x2

4c2εt

)]
,

f3(x,t) =H(t)

[
x

c
erf

(
x

2c
√
εt

)
+ 2

√
tε

π
exp

(
− x2

4c2εt

)]
.

(30)
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Assuming an interaction time t≈ L/c, the results (29,30) show that the penalized solution pene-

trates a distance O(
√
cLε) into the solid region. This numerical boundary layer must be resolved, so

we require a local grid size near the boundary ∆x≤
√
cLε/2

::
or,

::::::::::
equivalently,

::::::::::::
ε≥ 4∆x2/cL

:::
for

::
a330

::::
given

::::
grid

::::
size

:::
∆x. If the wavefront is well-resolved, i.e. L is much larger than the grid size ∆x, then

the penalization is first-order accurate in space with a relative height error O(α∆x/L). However, if

the wavefront is only marginally resolved, i.e. L≈∆x, then the relative error is O(α), independent

of the grid resolution. In this case a sufficiently small error can be achieved for any grid by choosing

α appropriately.335

::
In

::::::::
summary,

:::
we

::::
have

:::::
found

::::
that

:::
the

::::::::
penalized

:::::::
solution

::::::::
converges

::
to

:::
the

:::::
exact

:::::::
solution

::
in

:::
the

::::
fluid

::::::
domain

::::
with

::::
rate

:::::::::::::
O(
√
c/Lαε1/2)

:::
for

::::::
height

:::
and

:::::::::::::::::::
O(Hw/H

√
c/Lαε1/2)

:::
for

:::::::
velocity

:::::
where

::
c
::
is

:::
the

::::
wave

::::::
speed,

::
L

:
is
:::
the

::::::
length

::::
scale

::
of

:::
the

::::::
wave,

:::
and

::::::
Hw/H::

is
:::
the

::::
ratio

::
of

:::::
wave

:::::
height

::
to
:::::
mean

::::::
depth.

:::
The

:::::::::
numerical

::::::
solution

:::::::::
penetrates

:
a
:::::::
distance

:::::

√
cLε

::::
into

:::
the

::::
solid

::::::
region

:::
and

:::
this

:::::::::
numerical

::::::::
boundary

::::
layer

::::
must

:::
be

::::::::
resolved.340

4.2 Numerical verification on linearized 1-D wave propagation

The error estimate O(αε1/2) =O(
√
αK) for height and velocity derived in the previous section

is verified here for one-dimensional linear wave propagation with reflection. The computational

domain is x ∈ [0,Lx] with periodic numerical boundary conditions. The penalized (i.e. solid) region

is x≤ x1 and x≥ x2 defined by indicator functions,345

χ(x) =
1

2

tanh

x−x2

∆

x−x2

∆/4
:::::

− tanh

x−x1

∆

x−x1

∆/4
:::::

 ,
φ(x) = 1 +χ(x))(α− 1),

σ(x) =
1

ε
(H(−(x−x1)) +H(x−x2)).

A smoothed porosity is used since φ(x) must be differentiated. However, the permeability σ(x)

is not smoothed since otherwise the penalization error begins to grow for sufficiently small ε (de-350

pending inversely on α). (If ε=K/α, a smoothed σ(x) may be used.) When ε=K/α we choose

K = (4∆x)2. A good choice for the smoothing parameter is the smallest value that ensures stable

solutions and linear error convergence with α, i. e. ∆ = ∆x
:
.
:::::
Since

:::
we

::::
use

:
a
::::
low

:::::
order

:::::::
(second

:::::
order)

::::::
method

:::
in

:::::
space,

::
it

::
is

::::
often

::::::::
possible

:::::
obtain

:::::
stable

::::::::
solutions

::::
with

:::
no

:::::::::
smoothing.

:::::::::
However,

::
to

:::::
ensure

:::
the

:::::::
solution

::
is

::::::
always

:::::
stable

:::
we

::::::
choose

::::::::
∆ = 4∆x

:
which smooths the indicator function over355

about four grid points as shown in figure 2. We use these choices for the K and ∆ in the remainder

of this section.
:::::::::
Smoothing

::
is

::::
also

:::::
useful

::
to
:::::::
produce

:::::
more

:::::::
accurate

::::::::
coastline

::::::
profiles

:::::
from

:::::
masks

:::
as

::
in

:::
the

:::::::::
examples

::
in

:::
the

::::::::
following

::::::
section.

:
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The initial condition is a Gaussian wave for height and zero velocity,

h0(x) = exp

[
−
(
x−Lx/2

L

)2
]
,

u0(x) = 0.0,
:

(31)360

::::
with

::::
wave

:::::
width

::::::::::::::::::::::::
L= 1/24 = 4.1667× 10−2. The initial conditions and porosity are shown in fig-

ure 2. The computational domain is [0,0.6] (i.e.Lx = 0.6), with the fluid part of the domain [0.05,0.55]

(i.e. x1 = 0.05 and x2 = 0.55) of length 0.5 and the left and right solid boundaries are penalized re-

gions of width 0.05 each.

The exact solution with initial conditions (31) and solid boundary conditions u= 0 and ∂h/∂x=365

0 is

h(x,t) =
1

2
(hp0(x− t) +hp0(x+ t)) +

1

2
(up0(x− t)−up0(x+ t)),

u(x,t) =
1

2
(up0(x− t) +up0(x+ t)) +

1

2
(hp0(x− t)−hp0(x+ t)),

where hp0(x) and up0(x) are odd periodic extension of the initial conditions outside the fluid interval

[x1,x2].370

The linearized one-dimensional equations (20) are solved using a standard second-order finite

volume/finite difference scheme with third-order Runge–Kutta integration in time on a uniform grid

withN = 2400 grid points .
::::::
(except

:::::
where

::::::
noted).

::::
The

::::
time

::::
step,

:::::
based

::
on

:::::::
stability,

::
is
:::::::::::::::::::::
∆t= min(4ε,0.4∆x/c).

:::
The

:::::
wave

::::::
speed

::
is

:::::
c= 1,

:::::
wave

::::::
height

::::::::
Hw = 1,

:::::
water

::::::
depth

::::::
H = 1

:::
are

:::::
fixed.

::::
The

:::::
wave

::::::
width

::::::::
L= 1/24

:::
are

:::::
fixed

::::::
except

::
in

:::
the

:::::::::
smoothing

::::::
study.

:::
The

::::::
factor

:::::::::

√
c/L≈ 5

::
in
::::

the
::::::::::
expressions

::::
(26)375

::
for

::::
the

::::
error

:::::::::::
convergence

::::
and

:::
we

::::::
expect

:::::::::::::
ε� 4.1× 10−2

::
to

:::::::
observe

:::
the

::::::::::
asymptotic

:::::::::::
convergence

:::
rate.

:

A typical penalized solution is shown at time t= 0.22 in figure 3, when the wave is strongly

interacting with the walls. This figure confirms the expected behaviour of the penalized solution

near the walls: the velocity boundary condition has an error and internal boundary layer of size380

O(ε1/2), while the height perturbation does not penetrate into the solid.

In order to measure the effect of the penalization on the error of the global solution after reflection

we measure the L∞ error at t= 0.5 when the exact solution should precisely reproduce the initial

conditions. The prediction that the error should scale proportional to the porosity α if α and ε are

independent and like α1/2 if ε=K/α (as in a porous medium) is verified in figure 4. Note that385

the error at small α < 10−4 is effectively limited by the error of the underlying finite-volume/finite-

difference numerical scheme, which is about 6× 10−5 for the exact boundary conditions at this

resolution N = 2400.

Figure 5 (left) confirms that the error scales like K1/2 when ε=K/α. Finally, figure 5 (right)

confirms that the error for this penalization scheme, with permeability K = ∆x2, is first-order accu-390

rate. Since we implement this penalization in a dynamically adaptive simulation, sufficient accuracy
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is achieved by refining the grid at the boundary (i.e. by h−refinement) and choosing α appropriately

as explained in section 4.3.

As mentioned in section 3.2, Reckinger et al. (2012) assume that α and ε are formally independent.

However, in practice they advise that ε should be smaller than α, and choose ε/α= 10−2 for their395

simulations. This restriction is not necessary in our case since the error is O(αε1/2). This means

that α can be chosen smaller than ε, as shown in figure 4. In fact, to ensure scaling of the error like

O(ε1/2) when α is fixed it is necessary to choose εα=K (constant) when the indicator function

defining the solid region is smoothed. Although Reckinger et al. (2012) interpret figure 8 for α= ε

as showing a weaker error convergence O(α1/2), it actually appears to show the expected scaling400

O(α), but over a small range of α of about one decade.

::::::
Finally,

:::
we

:::::::
consider

:::
the

:::::
effect

::
of

:::::::::
smoothing

:::::
width

::
∆

:::
on

:::
the

:::::::
accuracy

:::
of

::
the

:::::::
results.

::
As

:::::::::
explained

:::::
above,

::
to
:::::::::

guarantee
:::::::
stability

::
of

:::
the

:::::::::
penalized

:::::::
solution

:
it
::

is
:::::

often
:::::::::
necessary

::
to

::::::
smooth

:::
the

::::::::
porosity

::::
φ(x)

::
at

:::
the

:::::::::
fluid–solid

::::::::
boundary

:::
in

::::
order

:::
to

::::::
ensure

:::::
stable

::::::
results.

:::::
Since

::::
this

::
is

:
a
::::::
purely

:::::::::
numerical

:::::::
problem

:
it
::
is
::::
best

::
to

::::::
choose

:::
the

::::::::
smallest

:::::
width

::::::::
sufficient

:::
for

:::::
stable

::::::::
solutions.

::::::
Figure

::
6

::::
(left)

::::::
shows405

::
the

:::::
error

::
as

:
a
::::::::

function
::
of

:::
the

::::::
number

:::
of

:::
grid

::::::
points

::
of

:::::::::
smoothing

:::
for

::::
four

:::::::
different

::::
grid

::::::::::
resolutions.

:::
The

::::::
results

:::
are

::::
only

::::::
weakly

:::::::::
dependent

::
on

:::
the

:::::::::
smoothing

:::::
width

::
∆

:::
for

::::::::
∆< 6∆x

::::
and

::::::::
∆ = 2∆x

::
is

:::
the

::::::::
minimum

:::::::::
smoothing

::
to

::::::
ensure

:::::::
stability.

::::::
Figure

::
6

:::::
(right)

::::::
shows

::::
how

:::
the

:::::
error

:::::::
depends

::
on

:::
the

:::::
ratio

::::
L/∆

::::::
(wave

:::::
width

::
to

:::::::::
smoothing

:::::::
width).

:::
As

::::::::
expected,

:::
the

:::::
error

::::::::
decreases

:::::::
roughly

::::::::::
proportional

:::
to

:::
this

:::::
ratio.

:::
We

:::
can

::::::::
therefore

:::::::
conclude

::::
that

:::
two

::
to

::::
four

:::::
points

:::
of

:::::::::
smoothing

:::::
should

:::
be

::::::
optimal

::::
and

:::
the410

::::::::::
penalization

::::
gives

:::::
good

::::::
results

::
for

::::::::::::
well-resolved

:::::
waves

::::::::::
L/∆x� 1.

:

4.3 Guidelines for choosing penalization parameters

The parameters ε, α and ∆ determining the penalization are chosen as follows.

The permeability parameter ε is set first, based on the spatial resolution of the simulation ∆x

near the coastlines. As explained in section 4.1, the smallest permissible value for ε is 4∆x2/cL.415

However, the velocity penalization term is stiff, restricting the time step to ∆t≤ C1ε (with C1 an

order one constant) for an explicit method. It is therefore often preferable to choose a larger ε so

the penalization does not enforce an artificially small time step. For example, set ε= ∆t= C2∆x/c

according to the Courant–Friedrichs–Lewy (CFL) stability condition for hyperbolic equations. Note

that this is also the smallest permissible ε when the smallest wavefronts are only marginally resolved420

so L∼∆x, where ε≥ 4∆x/c. Using this choice of ε, and in the least favourable case where the

smallest wavefronts are only marginally resolved, the relative error in height isO(α) and the relative

error in velocity is O(αHw/H) independent of ε and ∆x.

Now, since ε has been determined by the resolution of the simulation, the desired accuracy is

controlled by setting the porosity α. Recall that the choice of α does not affect the numerical stability425

of the simulation. Typically, α=O(10−3) is appropriate for a second-order accurate simulation. In a

dynamically adaptive method like the one used here, α should be set about ten times smaller than the
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tolerance ε. Recall that the parameter ε also enforces the no-slip (i.e. tangential) velocity condition

to a relative accuracy O(ε1/2
√
u/l), where u and l are the velocity and length scales of the flow

tangential to the boundary (Kevlahan and Ghidaglia, 2001).430

The smoothing scale ∆ of the indicator function χ(x) is set to smooth over a few grid points (e.g.

two to four). The smoothing scaling should be much smaller than the scale L of the smallest waves

and also smaller than
√
Lcε.

These choices ensure the penalization is well-resolved, produces sufficiently accurate results and

is consistent. When implemented in the adaptive wavelet method we must also ensure α is not too435

small, i.e. α > 7.5× 10−4, in order to avoid negative heights near the boundary due to the linear

interpolation used in the wavelet transform.

In the following section we verify the results of the penalization analysis numerically using a

dynamically adaptive second-order finite difference – finite volume scheme (Dubos and Kevlahan,

2013; Aechtner et al., 2014) on the sphere based on the TRiSK scheme (Ringler et al., 2010).440

5 Applications to ocean simulation

The Coriolis force, which is omitted in the previous sections, is now included by adding the Coriolis

parameter f to the relative vorticity curl(u) in the curl-form equations of motion (15).

5.1
::::::::
Sensitivity

:::
of

::::::::
penalized

::::::::
solutions

::
to

:::::::::::::::::
piecewise-constant

:::::::::
boundary

:::::::::::::
approximation

::
In

:::
our

::::::::
penalized

:::::
model

:::
of

::::::
no-slip

::::::::
boundary

::::::::
conditions

::::::::
coastline

::::::::
geometry

::
is

:::::::::::
approximated

::
as

:::::
piece-445

:::::::::::
wise-constant

::
on

:::
the

::::::::::::
hexagonal–tri

:
an

::
gu

:::
lar

:::::
C-grid

:::
via

:::
the

::::
mask

:::::
χ(x).

:::::::::::::::::::::::::::::::
Adcroft and Marshall (1998) proposed

:
a
:::
test

:::
to

:::::::
identify

:::
any

::::::::
spurious

::::::
effects

::::
due

::
to

::::::::::::::::
piecewise-constant

::::::::
boundary

::::::::::::::
approximations.

:::::
They

::::::::
calculated

:::::::::::
wind-driven

:::::::
β-plane

::::
flow

::
in

::
a
::::::
square

:::::::
domain

:::::
where

:::
the

::::::::
physical

:::::::
domain

:::
was

:::::::
rotated

:
at
:::::::

various
::::::
angles

::::
with

::::::
respect

::
to
::::

the
::::::::
Cartesian

::::::::::::
computational

::::
grid,

::::
with

:::::
both

::::::
no-slip

:::
and

::::::::
free-slip

::::::::
boundary

:::::::::
conditions.

::::
The

:::::::
solution

:::
has

::::
the

::::
form

::
of

:::
an

::::::
intense

:::::::
western

:::::::::
boundary

::::::
current,

::
a
::::::
strong450

:::::::
sub-gyre

::
in

::::
the

::::::::
northwest

::::::
corner

::::
and

:
a
::::::::

standing
:::::::
Rossby

::::
wave

::::::
along

:::
the

:::::::
northern

:::::::::
boundary

::::
(see

:::::
figure

::
7).

:

::::::::::::::::::::::::::::
Adcroft and Marshall (1998) found

::::
that

:::::::::::::::
piecewise-constant

::::::::
boundary

:::::::::::::
approximations

::::
exert

:
a
::::::::
spurious

::::
form

:::::
stress

::
on

:::
the

::::::::
boundary

::::::::
currents,

::::::
leading

::
to

:::::::::::
significantly

:::::::
different

::::::
results.

::::
The

:::::::::
differences

:::::
were

::::::
greatest

:::
for

::::::::
free-slip

::::::::
boundary

::::::::::
conditions,

:::
but

::::
still

:::::::
evident

:::
for

::::::
no-slip

::::::::
boundary

::::::::::
conditions

::::
(see455

::::
their

:::::
figure

:::
4).

::::
The

:::::
main

::::::::::
differences

::
at

:::::
large

::::::
angles

::
of

::::::::
rotation

::::::::
(θ = 45◦)

:::
are

::::
that

::::
the

:::::::
western

::::::::
boundary

::::::
current

::::::::
separates

:::::
earlier

:::::
from

:::
the

:::::::
western

::::::::
boundary

:::
and

:::
the

:::::::::::
recirculating

::::::::
sub-gyre

::
in

:::
the

::::::::::
northwestern

::::::
corner

::
of

:::
the

:::::::
domain

:
is
:::::
much

::::::::
stronger.

::
In

:::
our

::::
case,

::::::::
although

:::
the

::::::::
boundary

::
is

::::::
defined

:::
via

::
a
::::
mask

::::::::
function,

:::
the

:::::
actual

:::::::::
boundary

::::::::
condition

:
is
:::
not

::::::
strictly

::::::::::::::::
piecewise-constant

::::
since

:::
the

::::::::
boundary

::
is

::::::::
smoothed

:::::::
slightly

:::
due

::
to

::::
both

:::
the

::::::::::
exponential460

::::
form

::
of

:::
the

::::::::::
penalization

::::
and

:::
the

:::
fact

::::
that

:::
the

::::
mask

:::::
itself

::
is

::::::::
smoothed

::::
over

::
a

:::
few

::::::
points.

::
In

::::::::
addition,
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::
the

::::::::::::
hexagonal–tri

::
an

::
gu

::
lar

:::::
C-grid

::
is

:::::
more

::::::::
symmetric

::::
than

:::
the

::::::::
Cartesian

::::
grid

::::
used

::
in

::::::::::::::::::::::::
Adcroft and Marshall (1998) .

:::::::::::
Nevertheless,

:
it
::
is
:::::::::
interesting

::
to

:::
see

::::
how

:::::
large

:::
the

:::::
effect

::
of

:::
the

::::::::
boundary

::::
mask

::
is
:::
on

:::
the

:::::::
solution.

:

:::
We

:::::::::
implement

::::::
exactly

:::
the

:::
test

:::::
case

:::::::
proposed

:::
in

::::::::::::::::::::::::
Adcroft and Marshall (1998) :

:::::::::::
wind-driven

::::
flow

::
on

:
a
:::::::
β-plane

::
in

:
a
::::::
square

:::::::
domain.

:::
The

:::::
model

::::::::::
parameters

:::
are:

:::::
basin

:::
size

::::::::
L= 2000

::::
km,

:::::::::::::
f0 = 0.7× 10−4

::::
s−1,465

::::::::::::
β = 2× 10−11

::::
m−1

::::
s−1,

::::::::
kinematic

:::::::
viscosity

:::::::
ν = 500

:::
m2

::::
s−1,

:::::
linear

::::::
friction

:::::::::
coefficient

::::::::::::
r = 10−7s−1,

::::::
density

::::::::
ρ0 = 103

::
kg

:::::
m−3,

:::::::
reduced

::::::
gravity

:::::::::
g′ = 0.02

::
m

:::
s−2

::::
and

::::::::::
wind-stress

:::::::
τ0 = 0.2

::
N

:::::
m−2.

::::
The

:::::::::
equilibrium

:::::
layer

::::::::
thickness

:
is
::::::::
H = 500

:::
m.

:::
The

::::::::::
wind-stress

::::::::::::::::::::
τ(ỹ) =−τ0 cos(πỹ/L)̃i

:::
and

:::
the

:::::::
Coriolis

::::::::
parameter

::
is

:::::::::::::
f(ỹ) = f0 +βỹ

:::::
where

:::::
(x̃, ỹ)

:::
are

:::
the

:::::::
physical

::::::::::
coordinates

:::::
which

:::
are

::::::
rotated

:::
by

::
an

:::::
angle

:
θ
::::
with

::::::
respect

::
to

:::
the

::::::::::::
computational

:::::
model

::::::::::
coordinates

::::::
(x,y).

::::::
No-slip

::::
solid

::::::::::
boundaries

:::
are

::::::
located

::
at470

:::::::
x̃= 0,L

:::
and

::::::::
ỹ = 0,L.

:::
The

::::::::::
wind-driven

::::
flow

::
is

::::::::
computed

:::::
using

:::
the

:::::::
matlab

:::
code

::::::::
described

::
in

:::::::::::::::::::::::::::::
Dubos and Kevlahan (2013) which

:::::
solves

:::
the

:::::::
adaptive

:::::::
wavelet

:::::::
method

:::
on

:::
the

:::::
plane

:::
for

:::
the

::::::
TRiSK

:::::::::::
second-order

:::::
finite

::::::::::::
volume–finite

::::::::
difference

:::::::::::
discretization

::
of

:::
the

:::::::
shallow

::::
water

::::::::
equations

::::::::::::::::::
Ringler et al. (2010) .

:::
We

:::
set

:::
the

:::
grid

:::::::::
adaptation

:::::::
tolerance

:::::
ε= 0

:::
so

::
the

:::::::::::
computation

::
is

:::::::::::
non-adaptive

::::
with

:
a
:::::::
uniform

:::::::::
triangular

:::
grid

::::
size

::
of

:::::
25.14

::::
km.475

::
To

:::::
allow

:::
for

:::::::
rotation

::
of

:::
the

:::::::
physical

::::::
domain

:::
the

:::::::::::::
lozange-shaped

::::::::::::
computational

:::::::
domain

:::
has

::::
sides

:::
of

:::::
length

::::
3420

:::
km

:::::::::::::::::::::::::::
Dubos and Kevlahan (2013) .The

:::::::::
equations

::
are

::::::::::::::::::
non-dimensionalized

::::
with

::::::
respect

::
to

::
L,

::
ρ0::::

and
:::
the

::::::::
Sverdrup

:::::::
velocity

:::::::::::::::::::::::
USv = τ0/(ρ0βHL) = 0.01

::
m

::::
s−1.

::
In

:::
this

::::::::::::::::::::
non-dimensionalization

::
the

:::::::::::
penalization

:::::::::
parameters

::::::
chosen

:::
are

:::::::::
α= 10−2

:::
and

:::::::::
η = 10−4.

::::
The

:::::
mask

::::
χ(x)

::
is
:::::::::
smoothed

::::
over

:::
two

::::
grid

::::::
points.480

:::
The

::::::::
equations

:::
are

:::::::::
integrated

::::
from

::::
rest

::
for

:::
10

:::::
years

:::::
using

:
a
:::::::::
third-order

::::::
strong

:::::::
stability

:::::::::
preserving

:::::::::::
Runge–Kutta

::::::
method

::::
with

:
a
::::
CFL

:::::::
number

::
of

:::
0.8

::::::::::::::::::::::
(Spiteri and Ruuth, 2002) .

::::
Note

:::
that

::::::::::::::::::::::::::::::::::
Adcroft and Marshall (1998) deliberately

::::::
specify

:
a
::::
grid

::::::::
resolution

::::
such

:::
that

:::
the

:::::
Munk

:::::
layer

::
is

:::::
barely

:::::::
resolved

:::::
(only

::::::::::::
δM = 1.16∆x)

::
to

:::::::::
emphasize

:::
any

:::::::
spurious

::::::
effects

::
of

:::
the

::::::::
boundary

:::::::::
conditions.

:

:::::
Figure

::
7
::::::
shows

:::
the

::::::::::::
instantaneous

:::::
layer

::::::::
thickness

::::
after

:::
10

:::::
years

::::::
where

:::
the

::::::::
physical

::::
flow

::::
and485

::::::
domain

::
is

::
at

::
the

::::::
angles

::::::
θ = 0◦,

::::
10◦,

:::
30◦

:::
and

::::
45◦

::::::
degrees

::::
with

::::::
respect

::
to

:::
the

::::::::::::
computational

:::::::::::
hexagonal–tri-

::
an

::
gu

::
lar

::::::
C-grid.

:::
All

::::
four

::::::
figures

:::
are

::::
very

::::::
similar

::::::::::
qualitatively

:::
and

:::::::::::
qualitatively.

:::::
There

:::
are

:::::
some

:::::
slight

::::::::
qualitative

::::::::::
differences

:::::::::
discernible

:::
in

:::
the

:::::::
internal

:::::::
structure

:::
of

:::
the

:::::::
standing

:::::::
Rossby

:::::
wave

::::::::
southeast

::
of

:::
the

::::::
intense

:::::::::
sub-gyre.

:::::
There

::
is
::::
also

::::
very

::::::
small

:::::::
variation

:::
in

:::
the

:::::::::
maximum

::::::
height

::
of

:::
the

::::::
layer:

:::::::::::
hmax = 724.8

::
m

::
at

::::::
θ = 0◦,

::::::::::::
hmax = 723.4

::
m

::
at

:::::::
θ = 10◦,

:::::::::::
hmax = 722.1

::
m

::
at

:::::::
θ = 30◦,

::::::::::::
hmax = 728.7

::
m490

:
at
::::::::
θ = 45◦.

::::
The

::::::
biggest

::::::::
variation

::
in

::::::::
maximum

::::::
height

::
is

::::
1.7%

:::
of

:::
the

::::::::::
perturbation

::
in

:::::
layer

:::::
depth

:::
(or

:::::
0.78%

::
of

:::
the

::::
total

:::::
layer

::::::
depth),

:::::
which

::
is

::::::::
negligible

:::::
given

:::
the

::::
long

:::::::::
integration

::::
time

::::
and

:::::::::::
second-order

:::::::::::
discretization.

::::::
These

:::::::::
qualitative

:::
and

::::::::::
quantitative

::::::::::
differences

:::
are

::::::::::
insignificant

:::::::::
compared

::::
with

:::::
those

:::::::
observed

::
in

:::::::::::::::::::::::::
Adcroft and Marshall (1998) ,

:::::
where

:::
the

:::::::
sub-gyre

::::
was

::::::
clearly

::::::::
displaced

::
to

:::
the

::::::::
southeast

:::
and

:::
the

::::::::
maximum

::::::
height

::::
was

:
at
:::::
least

:::
160

::
m

::::::
higher

::
at

:::::::
θ = 45◦

::::
than

::
at

::::::
θ = 0◦.495

:::
We

:::::::
therefore

::::::::
conclude

::::
that

:::
our

:::::::::
Brinkman

::::::::::
penalization

:::::::
method

::
is

:::
not

:::::::
sensitive

::
to
:::
the

::::::::::
orientation

::
of

::::
solid

:::::::::
boundaries

::::
with

::::::
respect

::
to

:::
the

::::::::::::
computational

:::::::::::
hexagonal–tri

::
an

::
gu

::
lar

:::::::
C-grids

::
of

::::::
interest

:::
on

:::
the

::::::
sphere.
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5.2 Implementation of penalization in adaptive wavelet solver on the sphere

Penalization techniques are especially well-suited to dynamically adaptive numerical simulations,500

where the local resolution changes in time to resolve the solution. In particular, in ocean flows we ex-

pect the resolution to be finer near coastlines in order to resolve boundary currents (e.g. wind-driven

gyres in the quasi-geotrosphic regime) or wave interaction with the coast (e.g. tsunami propagation

in the inertia gravity wave regime). Ocean flow is well-suited to variable resolution adaptive numer-

ical methods since about 25% of the surface of the Earth is land (which thus requires no resolution)505

and the ocean flows are highly inhomogeneous and variable in both time and space.

An explicit definition of the coastline is difficult to implement in adaptive simulations because the

precise location of the coastline changes as the grid refines and coarsens. On the other hand, it is

computationally inefficient to resolve the coastline to the finest resolution at all locations and at all

times. Defining the coastline as a mask means the coastline is defined implicitly and automatically510

becomes more detailed as the grid refines to follow the local flow dynamics. In addition, smoothing

the profile of the coastline over a few grid points arguably produces a better physical model than a

sharp boundary (since coastlines are in fact porous). The multiscale and staggered structure of the

adaptive wavelet scheme also causes problems for an explicit definition of the coast line since the

hexagonal cells containing the height are shifted between adjacent scale of resolution (see Dubos515

and Kevlahan, 2013; Aechtner et al., 2014).

Finally, as mentioned in the previous section, grid refinement near the coastlines increases the

local accuracy of the penalization through h−refinement compensating for its relatively low order

of accuracy.

The penalization defined by the variable porosity (18) and friction (19) is easily integrated into520

the dynamically adaptive second-order finite difference – finite volume scheme on the sphere pre-

sented in (Dubos and Kevlahan, 2013; Aechtner et al., 2014) since it requires only straightforward

modifications of the shallow water equations. The bathymetry and topographic data are from the

1 arc minute NOAA ETOPO1 global relief data base (Amante and Eakins, 2009).

The raw bathymetry data from from the ETOPO1 database naturally tends to zero depth near the525

coast. Because we have not implemented wetting and drying in our shallow water model, we impose

a minimum depth Hmin near the coastlines,

b=


br br ≤−Hmin,

−Hmin −Hmin < br < 0,

0 otherwise.

(32)

In practice, Hmin > 2m is usually sufficient.
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The mask χ(x) defining the solid and fluid regions is found by setting locations with negative530

bathymetry to zero and regions with positive (or zero) bathymetry to one,

χ=

 0, br < 0,

1 otherwise.
(33)

This generates a mask on the regular 1 arc minute latitude–longitude ETOPO 1 grid, which does

not correspond to the non-uniform dual hexagonal–triangular grids used in the adaptive scheme. The

value of the mask at required points on the hexagonal–triangular grid are found by using a simple535

exponential radial basis function (RBF) , with weights f(x;a) = exp(−(ar)2) where r is the arc

distance between the ETOPO 1 mask and the location of the required grid point. The parameter a is

chosen to smooth over an area equivalent to two to four hexagonal cells. This RBF procedure both

interpolates from the latitude–longitude grid to the adaptive grid nodes and smooths the resulting

mask. The RBF procedure can also be used to smooth the bathymetry data in the fluid part of the do-540

main, although this is not usually necessary. Currently, all points are smoothed although the method

could be optimized by smoothing only those points in a small neighbourhood of a coastline.

During grid refinement the bathymetry is computed at the new grid-points using the RBF inter-

polation described above. This procedure means that total mass of water is no longer conserved

exactly. Instead, the total mass relative to the sea-level is conserved by the numerical scheme. This545

means that the mass defect introduced by the discrete model, which may accumulate over time, is

still controlled to the order of round-off errors
:::
The

:::::::
adaptive

:::::::
wavelet

:::::::
method

::::::
exactly

:::::::::
conserves

:::
the

::::
mass

::
of

:::
the

::::::::
perturbed

::::
free

::::::
surface

::::
with

:::::::
respect

::
to

:::
the

:::::
mean

:::
sea

:::::
level.

::::::::
However,

:::
the

::::
RBF

:::::::::
procedure

::
for

:::::::::::
interpolating

::::::::::
bathymetry

:::
on

::
a

::::::
locally

::::::
refined

::::
grid

:::::
does

:::
not

::::::::
conserve

:::
the

::::
total

:::::
mass

:::
of

:::::
mean

:::
sea

::::
level

:::::
since

:::
the

::::::
newly

:::::::::::
interpolated

:::::
points

::::::
could

::::::
modify

:::
the

::::::
mean

:::
sea

:::::
level

::::
over

:::
the

:::::::
refined550

:::
cell.

:::::::::
However,

:::
this

:::::
mass

::::::
defect

::
is

::::::::
extremely

:::::
small

:::::::::::::
(approximately

::::::::
roundoff

:::::
error). The mass de-

fect caused by changes in the bathymetry cannot accumulate and is bounded at all times.
:
If

:::
the

::::
grid

:::::::
coarsens

:::::
again

::
to

::
its

::::::
initial

:::::::::::
configuration

:::
the

:::::
mass

:::::
defect

::
is

::::::::
precisely

::::
zero.

::
If
:::::

exact
::::::::
cell-wise

:::::
mass

::::::::::
conservation

::
of
::::

the
:::::
mean

:::
sea

::::
level

::
is
:::::::::
necessary,

:::
the

::::::::::
bathymetry

::::
data

:::::
could

::
be

::::::
stored

::
as

::
a
:::::::
wavelet

::::::::
transform

::::
such

:::
that

:::
the

:::::
mean

::
is

:::::::::
conserved

::
at

::
all

:::::
levels

::
of

:::::::::
resolution.

:
555

In the following sections the adaptive wavelet method for the shallow water equations with penal-

ization is used to solve two characteristic ocean flows: tsunami propagation (i.e. the inertia gravity

wave regime with fast dynamics) and wind-driven gyre flow (i.e. the quasi-geostrophic regime with

slow dynamics). The goal of these simulations is to demonstrate the potential of this method for effi-

cient simulation of global flows with localized small scale features. It should be stressed that different560

degrees of physical accuracy are to be expected in each case due to the approximations inherent in

the shallow water model. On the one hand, the shallow water equations model tsunami propagation

quite accurately, so that a realistic tsunami simulation is expected. On the other hand, the shallow

water equations are quite insufficient to model the general circulation of the oceans. Only the mean

gyre circulation, driven by the wind stress and Sverdrup balance, which is acceptably represented565
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in a one-layer model, can be captured realistically. Smaller-scale features, such as vortices and jet

meandering, are predominantly generated in the real ocean by baroclinic mechanisms which can-

not be captured by a single-layer model. Their main characteristics are not expected to be realistic.

Rather, the capacity of the adaptive model to produce, say, boundary currents, should be analyzed as

a qualitative demonstration of the potential of the method, rather than evaluated quantitatively for its570

accuracy.

5.3 Tsunami propagation

Our first example illustrates how the penalization, combined with the dynamically adaptive wavelet

method (Aechtner et al., 2014), performs for global calculation of tsunami wave propagation.
::
In

::
the

:::::::
absence

:::
of

:
a
::::::::
treatment

::
of

:::::::
wetting

:::
and

::::::
drying

::
at

:::
the

::::::::
shoreline,

:::::::::
important

::::::
aspects

::
of

:::
the

::::::::
tsunami,575

::::::::
especially

::
in

:::::
terms

:::
of

::
its

::::::::
impacts,

::::::
cannot

::
be

:::::::::
simulated.

:::::::::::
Nevertheless

:::
the

::::::::::
propagation

:::
of

:::
the

:::::
wave

:::::
should

:::
be

:::::::
properly

::::::::
captured,

:::::::::
especially

:::::
wave

::::::::
refraction

:::
by

:::
the

::::::::::
bathymetry,

:::::
arrival

:::::
times

::::
and

:::::
wave

::::::::
amplitude

::::::
before

:::::::
breaking

:::
and

::::::::
flooding.

:

The flow is clearly in the inertia gravity wave regime and the dynamics are fast. Since the solution

is very localized, the dynamical adaptation is particularly effective, allowing local resolutions up to580

0.5 km on a global model. This inertia–gravity regime is a good test of the accuracy of the penal-

ized approximation of the reflecting boundary conditions for height since reflection off coastlines

and islands is an essential component of tsunami dynamics. Note that because of the sensitivity of

the results on the precise choice of initial condition, bathymetry and coastline geometry a precise

measure of the error is not possible although the results are qualitatively in good agreement with the585

observations and other simulations.

We simulate the 2004 tsunami generated by the Sumatra–Andaman Earthquake. The initial con-

dition is based on the seismic data calculated by Fujii and Satake (2007) from available tide gauge

and satellite altimetry data. This initial condition is given in the form of complete seismic data on 22

separate square geographic regions, as shown in figure 4 of Fujii and Satake (2007). These 22 sepa-590

rate sets of seismic data are used to find the perturbed surface height using the Okada (1985) method

with matlab software written by Beauducel (2012). (Note that each of the 22 regions provides a

separate sea surface height perturbation.) The initial velocity is taken to be zero.

The degree of mesh refinement is controlled by an overall non-dimensional tolerance ε (not to

be confused with the relaxation time ε of the penalization), from which thresholds for height and595

velocity are deduced (Dubos and Kevlahan, 2013). The simulation was run with an overall tolerance

of ε= 0.05, and the thresholds for height and velocity were εh =Hmaxε
3/2 and εu =Hmaxg/cε

3/2

where Hmax is the maximum height perturbation at any given time step. This allows the adaptation

to accurately track the waves even though after several hours their characteristic height Hmax is

only 10% of its initial value. This modification is important for cases where the flow field is not600

statistically stationary in time. Note that we have deliberately chosen a relatively high tolerance
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value to demonstrate that the code can provide qualitatively good results even for grid compression

ratios of O(103).

The coarsest level is J = 9 with 5 levels of refinement to give a maximum scale of J = 14 cor-

responding to a minimum average resolution of about 〈∆xmin〉= 475m. Note that a non-adaptive605

simulation at this resolution would require about 2.68× 109 height nodes (hexagonal cells), while

the initial condition requires only about 3.09× 106 height nodes in the adaptive simulation corre-

sponding to a grid compression ratio of 867.

The penalization parameters are α= 8× 10−3 and η = 5× 10−5 and the minimum bathymetry

depth is Hmin = 50 m. The adaptive wavelet code was run on 256 cores on the Scinet supercom-610

puter.

The first arrival time of a 5 cm wave and the maximum wave height over all times up to 16 hours

at all positions are shown in figure 8. The maximum wave height results show the focusing effect

of bathymetry features (particularly the Southwest Indian Ridge) and agree qualitatively with both

observations and simulations using the MOST model (Titov et al., 2005). Detailed quantitative veri-615

fication is not possible due to sensitive dependence of the results on details of the initial conditions,

bathymetry and coastline modelling (including run-up, not included in this model).

The ability of the code to track an evolving localized tsunami wave over long times and through

reflection and focusing events is illustrated in figures 9, 11 and 12. The actual tolerances are scaled

dynamically to take into account the decreasing maximum wave height over time. Note that the620

finest J = 14 (500
:::
475 m) resolution is only needed very locally along some parts of the coastline

and where the wavefront is very steep or focusing. Figure 10 uses a zoomed view to show precisely

where the finest resolution is required in the interior of a focusing wave packet. As mentioned above,

we have deliberately chosen a relatively large tolerance since we are interested in the propagation of

the wavefront (and to illustrate the extreme adaptivity potential of the method). If we were interested625

in accurate simulation of the entire wavefront (e.g. the residual wave motion shown in figure 12 at

16 hours) we could select a smaller tolerance.

This simulation has demonstrated the potential of the dynamically adaptive wavelet method with

penalization for high resolution simulation of tsunami propagation. Local resolutions of less than

500 m have been achieved on a global model with modest consumptions of computational resources:630

the simulation until the arrival at the African coast requires only two to three days on 256 cores of a

computing cluster. Because of the localization of the wavefronts, tsunami propagation is particularly

well-suited to adaptive simulation.

The plot of the grid compression ratio shown in figure 13 shows that the code achieves very high

grid compression ratios, ranging from 936 at 40 minutes to 400 at 16 hours when the wave has635

entered the Atlantic ocean.
:::
Note

::::
that

:::::::::::::::::::::::
Aechtner et al. (2014) found

::::
that

::::
cpu

::::
time

::
is

::::::::::
proportional

:::
to

::
the

:::::::
number

:::
of

:::::
active

::::
grid

::::::
points.

:
When all potential degrees of freedom are included (height and

velocity nodes) the grid compression ratio varies from 1240 to 455. Since Aechtner et al. (2014)
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found that the adaptive wavelet code is about three times slower per active height node than the

non-adaptive TRiSK code we expect the tsunami simulation to be between 130 and 300 times faster640

than the non-adaptive code for a J = 14 resolution. Compared to a similar spectral code the adaptive

simulation should be about 248 to 91 times faster.

::
In

:::::
terms

::
of

:::::
actual

::::
cpu

:::::
time,

:
it
:::::
takes

:::
on

::::::
average

::::
9.1

:
s
::
of

::::
wall

:::::
clock

::::
time

:::
for

::
1

:
s
::
of

:::::::
physical

:::::
time

::
for

:::
the

::::
475

::
m
:::

on
::::
256

:::::
cores.

:::::
Since

:::
the

:::::
code

:::
has

:::::
94%

:::::
strong

:::::::
parallel

::::::
scaling

:::::::::
efficiency

:::
for

::
at

::::
this

::::::
number

::
of

:::::
cores

::::::::::
operational

:::::::::
forecasting

::::::
should

:::
be

:::::::
possible

:::::
using

::
a

:::
few

::::::::
thousand

:::::
cores.

:::::
Note

::::
that645

::
the

:::::::::::::
computational

::::::::
efficiency

::::::
could

::
be

:::::::
further

::::::::
improved

:::
by

:::::
using

::
a

:::::
more

:::::::
efficient

:::::::::
technique

:::
for

::::::::
smoothing

:::
the

::::::::::
bathymetry

:::
and

::::::::::
topography

::::::
masks.

5.4 Wind-driven ocean circulation

The second simulation is of global wind-driven ocean circulation over several years. This tests the

adaptive wavelet model with Brinkman penalization in the quasi-geostrophic regime for slow dynam-650

ics. Our goal is to qualitatively predict the structure of the main ocean gyre flows, within the limits

of the rotating shallow water equation model. In this case large basin-scale circulation is driven by

the applied wind stress forcing via the Sverdrup relation. Intense boundary currents are expected to

form along western coastlines (e.g. the gulf stream). The shallow water equations are modified by

adding a wind-stress forcing term τ/(ρh) to the right hand side of the equation.655

As for the tsunami case, the bathymetry and topographic data are from the 1 arc minute NOAA

ETOPO1 global relief data base (Amante and Eakins, 2009). The wind-stresses τ (x,y) are stationary

in time and derived from the mean December wind stresses from the NCAR Hellerman and Rosen-

stein Global Wind Stress Data set (Hellerman and Rosenstein, 1980, 1983) shown in figure 14. This

data set consists of monthly averaged wind stress over the global ocean for the years 1870 through660

1976 on a two degree latitude–longitude grid. The wind stress data is evaluated on the adapted grid

using bilinear interpolation.

The numerical experiment is characterized by a few independent dimensional parameters : τ/ρ

with τ the mean wind stress and ρ the density of water, the planetary rotation rate Ω∼ f and radius

R, the basin scale L∼R, the mean ocean depthH , gravity g, the Reynolds numberRe, the width of665

the boundary layer δM , and the Froude number of the boundary layer FrBC . Once these are defined

a few other scales emerge following Sverdrup balance in the ocean interior and balance between

viscous friction and meridional transport of planetary vorticity in the western boundary current.

The kinematic viscosity is therefore ν = UBCδM/Re, and β = ν/δ3
M . The gyre velocity USv set by

Sverdrup balance is670

USv ∼
1

βHL

τ

ρ
. (34)

The gyre is characterized by its Rossby number Ro= USv/fL which should be small.
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The dimensional and non-dimensional parameters are fully summarized in table 1. Given the

limitations of the shallow-water model, we have sacrificed the realism of some of the dimensional

parameters, while preserving the main scales of the gyres and boundary currents. We retain realistic675

values of R, L, H , UBC and USv. On the other hand we choose unrealistic values for gravity g and

planetary rotation Ω, β. Indeed, a large gravity wave speed c imposes small explicit time steps which

make the simulation very costly without affecting the gyre and boundary current.
::::
Since

:::
we

:::
do

:::
not

:::::::
currently

:::
use

::
a

::::
local

:::::::::::
time-stepping

:::::::
scheme,

:::
the

:::::::
(global)

::::
time

::::
step

::
is

::
set

:::
by

:::
the

:::::::
smallest

:::
grid

::::
size

::::
over

::
the

::::::
whole

::::::::::::
computational

:::::::
domain.

:
Hence we sacrifice the realism of c and reduce it to a minimum,680

i.e. FrBC is set as large as possible without producing shocks. This defines c= UBC/FrBC and

g = c2/H . The Reynolds number is set moderately large to permit barotropic instability and the

generation of vortices.

The wavelet simulation uses a tolerance of ε= 1.0, and the thresholds for height and velocity are

εh = USvRoR/gε
3/2 and εu = USvRoε

3/2. The coarsest level is J = 12 with 3 levels of refinement685

to give a maximum level of J = 12 and a minimum average resolution of about ∆xmin = 1.9 km or

1/64◦. The penalization parameters are α= 10−2 and η = 10−4. The minimum bathymetry depth is

limited to Hmin = 50 m. The initial conditions are zero velocity and zero sea surface height pertur-

bation. The adaptive wavelet code was run on 256 cores on the Scinet supercomputer.

The mean ocean circulation consists of basin-scale gyres driven by the wind stress via Sverdrup690

balance. The rigid-wall boundary condition induces narrow and intense western boundary currents

dominated by advection of planetary velocity and friction. This case is therefore a good test for the

penalized velocity boundary conditions. We stress again, however, that the mechanism generating

meanders and vortices from the gyre circulation and the boundary currents in the shallow water

equations is different from the baroclinic mechanism that
:::::
purely

::::::::::
barotropic.

::::::
Except

:::::::
possibly

:::::
close695

::
to

::::::::
coastlines

:::
and

::
at

:::::::::::::
kilometre-scale,

::
a
::::::::
different,

::::::::
baroclinic

::::::::::
mechanism is believed to be the dominant

effect
::::::::
dominant in the oceans

::
at

::::::::
mesoscale

::::
and

:::::::::::
submesoscale

:
but cannot be captured in a one-layer

shallow water model.

Figure 15 shows the vorticity after 301 days. The grid has refined only at the boundary currents

and the grid compression ratio for height nodes is roughly constant at about 210 once the boundary700

currents have developed (after about one week). Coherent vortex shedding, similar to von Karman

vortex streets is clearly visible at some high wind stress locations, such as the Drake passage and

southern coast of Argentina shown in figure 15. The zoom of the unstable boundary layer region off

southern Argentina shown in figure 16 illustrates the complex structure of the boundary current and

:::::::
multiple

:::::
small

::::
scale

:
vortices. Note that the details of the boundary current are well-captured by the705

adaptive grid.

:::::
Figure

:::
17

:::::
shows

:::
the

:::::::
Eastern

:::::
coast

::
of

:::::
North

::::::::
America,

:::::::::
including

:::
the

::::
area

:::::
where

:::
the

::::
Gulf

:::::::
Stream

:
is
:::::::::

generated
:::
off

:::::
Cape

::::::::
Hatteras.

::::::
Intense

:::::::
western

::::::::
boundary

::::::::
currents

:::
and

:::::
some

:::::::
vortices

:::
are

:::::::
clearly

::::::
visible.

::::
The

::::::::
boundary

::::::
current

::::::::
detaches

::::
north

:::
of

:::::
Cape

:::::::
Hatteras,

:::
as

:::
for

:::
the

::::
Gulf

::::::
Stream

::::::::
although

::
it
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::::::::::
subsequently

:::::
stays

::::::
closer

::
to

:::
the

:::::
coast

::::
than

:::
the

::::
Gulf

:::::::
Stream.

::::::::
However,

:::
as

:::::
noted

::::::
above,

:::
we

::
do

::::
not710

:::::
expect

::
to

:::::::::
accurately

::::::
model

:::
the

::::::::
dynamics

::::
and

:::::::
structure

::
of
::::

the
::::
Gulf

::::::
Stream

:::::
since

:::
the

:::::::
shallow

:::::
water

::::::::
equations

::::
used

::::
here

::
do

:::
not

:::::::
capture

:::
the

::::::::
necessary

::::::::
baroclinic

:::::::::::
mechanisms

::
of

::::::
vortex

:::::::::
generation.

Higher resolutions and Reynolds numbers would lead to more complex two-dimensional turbu-

lence like dynamics (with physics different from the actual flow due to the shallow water approx-

imation). Despite the limitations of the experimental set-up, these results give an indication of the715

potential performance of a multi-layer model and the ability of the method to capture boundary

currents and their complex vortical structure.

6 Conclusions

We have derived and analyzed mathematically a new volume penalization for no-slip boundary con-

ditions for the shallow water equations. This penalization is based on the physical equations for720

shallow water flow in a porous medium with vanishing porosity and permeability in that part of

the domain corresponding to solid regions. Mathematical analysis of the linearized one-dimensional

shallow water equations shows that the solution of the penalized equations converges to exact solu-

tion in the limit as porosity α and permeability η tend to zero. The error at finite α and η isO(αη1/2).

Unlike previous penalizations of the shallow water equation, it conserves mass and energy and the725

wave speed is the same in both fluid and solid regions. The convergence and error properties of the

method have been verified numerically for the one-dimensional linearized equations.

The primary motivation for developing this new penalization is to extend our recent dynamically

adaptive wavelet method on the sphere (Dubos and Kevlahan, 2013; Aechtner et al., 2014) to model

ocean flows with coastlines. Penalization techniques are ideal for dynamically adaptive methods730

because they implement the coastline geometry implicitly by modifying the equations of motion

rather than by explicitly changing the geometry of the computation. The resolution of the coastline

is high only where required by the flow dynamics.

We have implemented the proposed penalization in the adaptive wavelet code and tested it on two

typical global scale flows: long-distance tsunami propagation (i.e. the inertia-gravity wave regime735

with fast dynamics) and wind-driven ocean circulation (i.e. the quasi-geostrophic regime with slow

dynamics). These simulations show the potential of the adaptive method combined with the penal-

ization to drastically reduce the number of computational elements. The adaptive tsunami simulation

uses between 455 and 1245 times fewer computational elements (i.e. height nodes) than an equiv-

alent non-adaptive simulation, while the wind-driven ocean circulation simulation uses around 210740

times fewer elements.

Although the shallow water equations are considered quite accurate for tsunami calculations (and

are used in many operational models) they are clearly physically insufficient for calculating ocean

circulation. The next step in the development of the adaptive wavelet model for ocean circulation
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is to add vertical layers and temperature and density equations. The grid adaptation will only be745

done in the horizontal plane and so the three-dimensional model should actually have better parallel

performance than the model on the sphere since the computational load will be better balanced. We

expect to also use penalization to model bathymetry, as well as coastlines, in the three-dimensional

model, following Reckinger et al. (2012).

The penalization method presented here should aid in the development of fully dynamically adap-750

tive ocean global models for tsunami propagation and ocean circulation.

7 Code availability

The complete adaptive wavelet code used to generate the results in this paper is available at

bitbucket.org/kevlahan/wavetrisk.
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Non-dimensional parameters of boundary layer determining simulation

Reynolds number Re 104

Froude number of boundary layer FrBC 0.3

Non-dimensional boundary layer width δ∗M 0.0125

Unconstrained parameters

Radius of Earth R 6.3710× 106 m

Reference length scale (radius of North Atlantic) L 3.0000× 106 m

Mean ocean depth H 3.5729× 103 m

Velocity of boundary layer UBC 1.8000× 100 m/s

Rotation rate Ω 5.7664× 10−7 s−1

Wind stress τ 7.1592× 10−2 N/m2

Density ρ 1.0270× 103 kg/m3

Quantities determined by above choices

Boundary layer width δM = δ∗ML 3.7500× 104 m

Kinematic viscosity ν = UBCδM/Re 6.7500× 100 m2/s

Effective β parameter β = ν/δ3M 1.2800× 10−13 m−1s−1

Sverdrup (gyre) velocity USv ∼ 1
βHL

τ
ρ

5.2875× 10−2 m/s

Wave speed c= UBC/FrBC 6.0000× 100 m/s

Gravitational acceleration g = c2/H 1.0076× 10−2 m/s2

Coriolis parameter f ∼ Ω 5.7664× 10−7 s−1

Rossby radius of deformation Rd = c/f 1.0405× 107 m

Rossby number Ro= USv/(Lf) 3.0565× 10−2

Table 1. Physical parameters used for the reduced gravity simulation of wind-driven ocean circulation.
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Figure 1. Shallow water geometry. The perturbation of the sea surface from equilibrium sea surface z =

0 is η(x) and the sea depth is given by the bathymetry b(x) ≥ 0, which is the depth of the seafloor below

the equilibrium sea surface. The total height of the fluid is then h(x) = η(x) + b(x). In the shallow water

approximation the wavelength of the perturbations of the sea surface is much greater than the depth, and the

amplitude of the perturbations is much less than the depth.
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Figure 2. Height initial conditions for the wave packet and Gaussian test cases and porosity φ(x) with α= 0.1.

The velocity is initially zero. Note the smoothing of the indicator function over about four grid points at the left

and right solid boundaries with ∆ = ∆x.
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Figure 3. Solution at t= 0.26 just after the reflection when the wave is still interacting strongly with the

wall (circles) compared with the exact solution (line). Parameters α= 10−3 and K = 4×10−6. The resolution

N = 300 is low to clearly illustrate the internal boundary layer and the differences between the exact and

penalized solution near the boundaries. Note the boundary layer in the penalized solid region for the velocity

and the fact the height drops slightly inside the fluid due the smoothing of the porosity φ(x). The error in the

velocity boundary condition is 0.03 ≈ ε1/2, as expected.
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Figure 4. Control of L∞ height penalization error by the porosity parameter α for the Gaussian wave test case

compared with predicted scaling α (straight line) when ε= 10−3 is fixed, and scaling α1/2 when ε=K/α as

in the porous medium equations. The permeability is fixed at K = (4∆x)2 and the resolution is N = 2400.

Note that at this resolution the error of the second-order finite volume method saturates at 7.7×10−5. Note that

:::
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:
velocity results have exactly the same error as the height results.

:
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Figure 5. Left: control of L∞ height penalization error by the permeability parameter ε for the Gaussian wave

test case compared with predicted scaling ε1/2 (straight line). Right: convergence of L∞ error with grid size

∆x for the Gaussian wave test case compared with predicted first-order scaling (straight line). The porosity is

fixed at α= 10−2. The resolution is N = 2400 for both results.
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Figure 7.
:::
Grid

:::::::
geometry

::::::::
sensitivity

::::
study

::
of
:::
the

:::::::
penalized

::::::
no-slip

:::::::
boundary

:::
for

:::::::::
wind-driven

:::::
ocean

::::::::
circulation

:
in
::

a
:::::
square

:::::
basin

:::::::::::::::::::::::
(Adcroft and Marshall, 1998) .

:::
The

::::
four

::::::
images

::::
show

:::::::::::
instantaneous

::::
layer

:::::
depth

::::
after

:::
10

::::
years

:::
for

:::
four

::::::::::
simulations

::
at

:::::
where

:::
the

:::::::
physical

::::::
domain

::
is

::
at

::::::
various

:::::
angles

::::
with

::::::
respect

::
to
:::

the
:::::::

discrete

:::::::::::::::
hexagonal–triangular

:::::::::::
computational

::::
grid.
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Figure 8. First arrival time (of a wave with height at least 5 cm) and maximum wave height for simulation of

2004 Indonesian tsunami.

Figure 9. Tsunami after 70 minutes. The grid compression ratio is 930 and the finest J = 14 resolution is

required only near the coasts where the tsunami has hit and very locally in the propagating wavefront. The

black boxes indicate the zoomed regions shown in figure 10
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100 km

Figure 10. Tsunami: approximately 650 km×550 km zoom of grid (left) and height (right) for results shsown

in figure 9. Recall that in the left figure the black hexagons have size approximately 0.5 km.

Figure 11. Tsunami: adaptive grid and wave height after 4 hours. The grid compression ratio is 740.
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Figure 12. Tsunami: adaptive grid and wave height after 16 hours. The grid compression ratio is 455.
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Figure 13. Grid compression ratio for tsunami simulation counting height nodes only and all degrees of free-

dom (i.e. height and velocity nodes).
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Figure 14. December wind stress field from Hellerman and Rosenstein (1980, 1983) used to force wind-driven

ocean circulation shown in figure 15. Only every other wind stress data point is shown. The rms wind stress is

7.1592× 10−2 N/m2.
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Figure 15. Relative
::::::
Adapted

:::
grid

:::::
(left)

:::
and

::::::
relative vorticity field

::::
(right)

:
for wind-driven ocean circulation

after 301 days. Note vortex shedding from the boundary current off Argentina and in Drake’s Passage.
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Figure 16. Zoom of vortex shedding dynamics off the southern coast of Argentina shown in figure 15: grid

(left), relativity vorticity (right). The scales are as in figure 15. Note the complex boundary layer structure and

vortices captured by the adaptive grid.
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Figure 17.
::::::
Adapted

:::
grid

:::::
(left)

:::
and

::::::
relative

::::::
vorticity

:::::
(right)

:::
for

:::::::::
wind-driven

::::::::
circulation

::::
near

:::
the

:::
East

:::::
coast

::
of

::::
North

:::::::
America,

:::::::::::
corresponding

::
to

::
the

:::::::
location

:
of
:::
the

::::
Gulf

::::::
Stream.

:::
The

:::::
scales

::
are

::
as

::
in

::::
figure

:::
15.

::::::
Intense

::::::
western

:::::::
boundary

::::::
currents

:::
and

::::
some

::::::
vortices

:::
are

:::::
clearly

::::::
visible.
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