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Abstract. In order to easily enforce solid-wall boundary conditions in the presence of complex

coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating

shallow water equations. This penalization does not lead to higher wave speeds in the solid region.

The error estimates for the penalization are derived analytically and verified numerically for lin-

earized one dimensional equations. The penalization is implemented in a conservative dynamically5

adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry

and coastline data from NOAA’s ETOPO1 database. This code could form the dynamical core for a

future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by

using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.

1 Introduction10

Properly handling coastlines is crucial for realistic two-dimensional or three-dimensional ocean

models. Two-dimensional, one-layer models focus on the propagation of barotropic waves and

coastal effects. When modelling tsunami-induced flooding the position of the coastline itself may

be an unknown to be predicted by the model. In that case wetting and drying at the shoreline must

be properly handled (Audusse et al., 2004; Harig et al., 2008). Properly predicting inundation of15

urban areas also requires extremely detailed topography data, typically to O(10m) accuracy. Three-

dimensional global ocean models usually treat coastlines as fixed, rigid boundaries. This is a simpler

setting for which numerous methods have been designed in the broader context of computational

fluid dynamics (e.g. Almgren et al. (1997); Angot et al. (1999); Popinet and Rickard (2007)). For

operational ocean models, improvements over the crude representation of coastlines as vertical walls20

limiting the horizontal extent of each model layer have been introduced (e.g.Adcroft et al. (1997)).
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When the horizontal grid is not fitted to the shape of coastlines, care must be taken that boundary

conditions are enforced accurately (Adcroft and Marshall, 1998; Popinet and Rickard, 2007).

When it is desireable to capture non-stationary small-scale flow features, using a dynamically

adaptive computational mesh may be considered. Whether this strategy is advantageous is strongly25

problem-dependent. For tsunami simulations a properly implemented adaptive strategy has been

shown to provide strong efficiency gains (Popinet and Rickard, 2007; Harig et al., 2008). For statis-

tically homogeneous shallow-water turbulence, we have obtained encouraging results by combining

wavelet-based adaptivity with local refinement criteria based on truncation-error estimates (Dubos

and Kevlahan, 2013; Aechtner et al., 2014).30

Wavelet-based adaptive solvers for the incompressible Navier-Stokes equations can be combined

easily with a treatment of complex three-dimensional rigid boundaries based on Brinkman penal-

ization (Kevlahan et al., 2000; Schneider and Farge, 2002; Vasilyev and Kevlahan, 2002; Kevlahan

and Vasilyev, 2005). In this paper, a similar approach for handling fixed coastlines without wet-

ting/drying is explored. A novel Brinkman penalization of the rotating shallow water equations is35

implemented in our dynamically adaptive wavelet model on the sphere (Dubos and Kevlahan, 2013;

Aechtner et al., 2014) to simulate oceanic flows with realistic coastlines and bathymetry over scales

ranging from sub-kilometre to global.

Brinkman penalization methods for the numerical solution of the Navier–Stokes equations with

solid boundaries were originally introduced by Angot et al. (1999) following the pioneering work40

of Arquis and Caltagirone (1984). Like all penalization methods, their goal was to avoid having to

adapt the discretization scheme to account for complex solid boundaries by instead modifying the

dynamical equations such that as a control parameter tends to zero the solution of the modified equa-

tions with simple boundary conditions (e.g. periodic) tends to the solution of the original equations

with the desired boundary conditions. The physical analogy is that the regular fluid is replaced by45

a porous medium where the porosity and permeability tend to zero in the solid portion of the com-

putational domain and the porosity is one (i.e. a regular fluid) in the fluid part of the domain. Angot

et al. (1999) proved that the method converges and gave (non-sharp) estimates of the error in terms

of the control parameter. Because it is a volume penalization, Brinkman penalization methods are

easy to implement since the geometry of the boundary need not be known. It is sufficient to know50

the indicator function (or mask) defining points as belonging to either in the solid or fluid parts

of the computational domain. Notice that Brinkman penalization enforces the boundary conditions

only with first-order accuracy while other methods reach second- or higher-order accuracy (Popinet

and Rickard, 2007). A family of higher-order Brinkman penalization methods has been recently

proposed by Shirokoff and Nave (2015).55

Since its introduction Brinkman penalization has been applied to a wide range of fluid flow prob-

lems and numerical schemes, including spectral methods Kevlahan and Ghidaglia (2001), mov-

ing boundaries (Kevlahan and Wadsley, 2005; Kolomenskiy and Schneider, 2009), the wave equa-
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tion (Paccou et al., 2005), the compressible Euler equations (Liu and Vasilyev, 2007) and the shallow

water equations (Perret et al., 2003; Reckinger et al., 2012). The shallow-water penalization method60

we propose is a modification of the one proposed by Reckinger et al. (2012) to ensure that mass and

energy are conserved and that the wave speed is the same in both the solid and fluid parts of the

domain. We also modify the velocity penalization (i.e. permeability) term to ensure better control of

the overall error using the porosity parameter alone.

Penalization methods are particularly well-suited to dynamically adaptive methods since these65

methods automatically refine the computational grid in the boundary layers and can use very coarse

grids in the solid part of the computational domain where the solution is irrelevant (Kevlahan et al.,

2000; Schneider and Farge, 2002; Vasilyev and Kevlahan, 2002; Kevlahan and Vasilyev, 2005).

In addition, because penalization methods enforce the boundary conditions to only first-order ac-

curacy adaptive methods can provide the required level of accuracy by local grid adaptation (i.e.70

h−refinement).

Previous volume penalization methods for the shallow water equations are reviewed in section 2.

The new penalization is derived from the porous shallow water equations in and section 3. The

new penalization is verified for the linearized one-dimensional equations in section 4 . Finally, we

illustrate the potential of the new method by applying it to two global ocean flows: tsunami propa-75

gation and wind driven gyres. These simulations have realistic bathymetry and coastlines from the

1 arc minute NOAA ETOPO1 global relief data base (Amante and Eakins, 2009). The two exam-

ples show how the Brinkman penalization of the shallow water equations works with a dynamically

adaptive wavelet method for both fast (tsunami) and slow (global ocean circulation) dynamics and

in the inertia–gravity (tsunami) and quasi-geostrophic (global ocean circulation) regimes. We intend80

to extend the methods presented here to build a full dynamically adaptive global ocean circulation

model.

2 Previous penalization methods for the shallow water equations

In vector-invariant form, Reckinger et al. (2012) proposed the following set of penalized shallow

water equations with a flat bottom,85

∂h

∂t
+

1

φ(x)
div hu= 0, (1)

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gh+

1

2
|u|2

)
=−σ(x)u, (2)

where h is the height of the fluid column, u is the vertically averaged horizontal velocity and g is

gravity. In this section, as well as in sections 3 and 4 , the Coriolis force is omitted for simplicity.

It will be reintroduced in the numerical experiments of section 5. The corresponding momentum90

equation is

∂m

∂t
+ div(m⊗u) +φ grad

(
1

2
gh2

)
=−σ(x)u, (3)
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where momentumm= hu coincides with the mass flux. φ(x) and σ(x) are respectively the variable

porosity and linear friction terms characterizing the porous medium. In order to model a fluid with

solid boundaries these terms have the following discontinuous forms95

(φ(x),σ(x)) =

 (α,1/ε) in the penalized region,

(1,0) in the fluid,
(4)

where the parameters α and ε control the accuracy of the boundary condition approximation. (For

stable numerical implementation of the penalization the discontinuities in φ and σ are smoothed

over a few grid points.) Physically, a large jump in porosity leads to a large jump in impedance that

causes inertia–gravity waves to be almost perfectly reflected at the solid boundary, while a strong100

linear friction term rapidly damps velocity fluctuations approximating a no-slip velocity boundary

condition.

Equations (1–3) are derived from Liu and Vasilyev (2007)’s similar penalized equations for the

compressible Euler equations. Both penalizations have the property that mass and momentum do not

move at the same speed and so it is impossible to conserve mass or to define an energy equation.105

The lack of mass conservation is easy to see from the mass equation (1), which can be rewritten

as

∂φ(x)h

∂t
+ divm= 0, (5)

wherem= hu is the height (i.e. mass) flux. In order to conserve mass, the mass flux should actually

bem= φ(x)u to take into account the changing volume fraction of the fluid in the porous medium.110

The penalized momentum equation (3) also uses a non-porous mass flux (i.e. hu instead of φhu).

Therefore, it is impossible to derive an energy budget from (1,3).

Reckinger et al. (2012)’s penalization also has the property that inertia–gravity wave speeds are

1/
√
α times faster in the porous medium. This introduces a stiffness in time associated with the

small porosity α that enforces an artificially small time step.115

The earlier shallow water equation penalization used by Perret et al. (2003) is even simpler in

that only the velocity field is penalized using the friction term −σ(x)u. Therefore, only the no-slip

velocity boundary condition is approximated and not the perfect reflection of inertia–gravity waves

at the boundary. This penalization can therefore be approximately valid in the quasi-geostrophic

regime where wave motion is insignificant compared to vortical motion.120

In the following section we derive the shallow water equations for a porous medium using Euler-

Poincaré theory and then use these physical equations to propose a new Brinkman penalization for

the shallow water equations in complex geometries. The final equations differ only slightly from

those proposed by Reckinger et al. (2012), but they conserve both mass and energy and the wave

speed is the same in both the fluid and penalized parts of the domain. Although our penalization is125

better justified on physical grounds, it is not yet clear whether it has any computational advantages

apart from eliminating the stiffness constraint associated with the small porosity α.
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3 New volume penalization for the shallow water equations

3.1 Derivation of porous shallow water equations

Euler–Poincaré theory (Holm et al., 2002) states that Hamilton’s least action principle applied to the130

action

L=

∫
L(h,u,x) dxdydt

generates momentum equations for a particular choice of Lagrangian densityL(h,(u),(x)) = T−V .

The Lagrangian density is the difference in kinetic and potential energy density and is assumed to

depend on a scalar h, velocity vector field u(x) and position vector x ∈ R2. If the conservation135

equation for the scalar h is

∂h

∂t
+ div(hu) = 0,

then locally conservative vector-invariant equation for momentumm is

∂m

∂t
+ div(m⊗u) + grad(p) =

∂L

∂x
, (6)

and the vector-invariant equations of motion are140

∂v

∂t
+
∇×v
h
×hu+∇B = 0, (7)

where

m=
∂L

∂u
= hv, B = u ·v− ∂L

∂h
, p= L−h∂L

∂h
, v = u.

The total energy

E =

∫∫
(m ·u−L) dxdy145

is conserved.

We now use Euler–Poincaré theory to derive standard and modified shallow water equations. The

fluid has free surface perturbations η(x) from the mean free surface η = 0 and the depth of the fluid is

given by b(x)> 0 so the total depth is h(x) = η(x)+b(x) as shown in figure 1. (In ocean modelling

b is called the bathymetry, and b= 0 corresponds to coastlines.) The shallow water approximation150

assumes that η is small compared to depth b and that the wavelength of surface waves is much longer

than the depth b. Note that h is proportional to the total mass density of the fluid column.

The standard shallow water equations are obtained using the Lagrangian density for the shallow

water system

L(h,u) =
1

2
h
(
|u|2− g(η− b)

)
,155
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from which one derives

m= hu,

B = gη+
1

2
|u|2, p=

1

2
gh2,

E =
1

2

∫∫
h
(
u2 + g(η− b)

)
dxdy.

Thus, the shallow water equations of motion are the equations of motion160

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gη+

1

2
|u|2

)
= 0. (8)

We now assume a porous medium with volume fluid fraction given by the variable porosity φ(x).

We define a new variable h̃= φh satisfying the conservation law

∂h̃

∂t
+ div

(
h̃u
)

= 0, (9)

and the action165

L=

∫∫∫
1

2
h
(
|u|2− g(h− 2b)

)
φdxdydt. (10)

The Lagrangian density for the new variable h̃ is then

L(h̃,u,x) =
h̃

2

(
|u|2− g h̃

φ
+ 2gb

)
, (11)

from which

m= h̃u, v = u, B = gη+
1

2
u2,170

p=
1

2
φgh2,

∂L

∂x
=

1

2
gh2 grad(φ) + ghφ grad(b).

The momentum equation for the porous shallow water system is

∂m

∂t
+ div(m⊗u) +φ grad

(
1

2
gh2

)
− ghφ grad(b) = 0.

However, surprisingly, the vector-invariant form of the equations of motion for the shallow water

system are identical to the usual shallow water equations (8); only the mass budget has changed175

to (9). States of rest correspond to constant h and inertia-gravity waves travel at speed
√
gh if the

porosity φ is constant, independent of the actual value of φ.

The non-dissipative equations of motion derived above do not fully model flow in porous media

since they do not include the friction force per unit volume that resists flow through the medium.

Including the friction force, the full vector-invariant equations of motion for the porous shallow180

water system are

∂u

∂t
+

curl(u)

h
×hu+ grad

(
gη+

1

2
|u|2

)
=− µφ(x)

K(u,h,x)
u, (12)
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where µ is the fluid viscosity and K(u,h) is the effective permeability of the medium due to various

friction terms. However, for the purposes of this paper we will assume the simple linear friction term

of the form185

−φ(x)

K
u, (13)

with constant permeability K which, like ε, has the dimensions of a time.

If the porosity is not small, it is better to use an empirical nonlinear friction law that includes both

bottom and wall shear stresses (Guinot and Soares-Frazao, 2006). For example, the Strickler law

approximates the friction term as190

− gh̃|u|
k2h4/3

u, (14)

where k is the so-called Strickler coefficient that depends empirically on the bottom roughness ks,

e.g. Ramette’s formula gives k = 8.2
√
g/k

1/6
s (Hervouet, 2007). Strickler’s law is used by Guinot

and Soares-Frazao (2006) in their porous shallow water model for large-scale flooding of urban

areas.195

3.2 Volume penalization of the shallow water equations

Our goal in this paper is to derive a volume penalization for solid boundaries in the shallow water

model (e.g. coastlines or islands in an ocean model). As in all penalization methods, the idea is to

implement boundary conditions implicitly by modifying the equations in a suitable way. In the limit

as certain control parameters tend to zero the solution of the modified equations tends to the solution200

of the original equations with the desired boundary conditions. Such penalization techniques are

particularly well-suited to adaptive numerical methods since, although the solid region is technically

part of the computational domain, it can be resolved very coarsely except near the boundary.

We propose modelling the solid parts (e.g. continents and islands) of the computational domain

as a porous medium with vanishingly small porosity φ and permeability K. The fluid part of the205

computational domain remains a regular fluid. The jump in porosity causes inertia-gravity waves to

be reflected physically at the coastline and the small permeability approximates a no-slip boundary

condition for velocity, i.e. u= 0.

The vector-invariant penalized shallow equations based on (12) are

∂h̃

∂t
+ div h̃u= 0,

∂u

∂t
+

curl(u)

h̃
× h̃u+ grad

(
gη̃

φ(x)
+

1

2
|u|2

)
=−σ(x)u,

(15)210

where η̃ = φ(x)η. The porosity φ(x) and porous friction coefficient σ(x) are discontinuous such that

the fluid portion of the domain is unaffected and the solid portion is penalized as a very impermeable
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medium,

(φ(x),σ(x)) =

 (α,α/K) in the penalized region,

(1,0) in the fluid,
(16)

with K� α� 1. The solid regions are defined by the indicator function χ(x),215

χ(x) =

 1 in the solid,

0 in the fluid.
(17)

When implemented numerically the indicator function χ(x) is smoothed over a few grid points, as

discussed in Reckinger et al. (2012). The porosity φ(x) and friction coefficient σ(x) are then defined

based on χ(x) and the control parameters α� 1 and K� α� 1 as

φ(x) = 1 +χ(x)(α− 1), (18)220

σ(x) =
α

K
χ(x). (19)

Note that the prognostic variables for the penalized shallow water equations (15) are (h̃,u) and that

h̃= h in the non-penalized (i.e. non-porous) region.

Equation (19) shows that the velocity penalization friction term σ(x) depends explicitly on both

the porosity α and the permeability K. In contrast, in Reckinger et al. (2012) the velocity friction225

parameter ε is formally independent of porosity. Although for a porous medium the velocity friction

parameter depends on porosity, when these equations are used for penalization there is ε and α can

be varied independently.

The flux form of the equations is

∂h̃

∂t
+ div(m) = 0,230

∂m

∂t
+ div

(
m⊗m
h̃

)
+φ grad

(
gh̃2

2φ2

)
− gh̃ grad(b) =−σm,

where the mass fluxm= φhu. This shows clearly that both mass and momentum move at the same

speed u.

Although this penalization scheme is similar to that proposed by Reckinger et al. (2012), it does

have some important physical and numerical differences that could prove advantageous. In addition,235

we fully characterize the error and convergence properties of penalization by deriving analytical

estimates for the exact solution of the linearized one-dimensional wave propagation problem.

3.3 Properties of the penalization

We now summarize the main numerical properties of the volume penalization of the rotating shallow

water equations introduced in the previous section.240

8



The impedance mis-match at the solid boundary means that inertia-gravity waves are reflected

with reflection coefficient

R=
α−1− 1

α−1 + 1
= 1− 2α+O(α2),

whereas the exact behaviour at the boundary is perfect reflection, R= 1. Therefore, some height

amplitude will be lost since part of the wave is transmitted and the size of the error is O(α).245

There are two main differences compared with the method proposed in Reckinger et al. (2012).

First, mass and energy both move at the same speed u and so energy is conserved. In particular, total

energy decreases as

d
dt

1

2

∫∫
h̃
(
g(η− b) + |u|2

)
φ(x)dxdy =−

∫∫
σ(x)h̃|u|2φ(x)dxdy,

which implies that the penalization is stable. Secondly, ignoring friction, the linear wave speed is the250

same in both the fluid and porous regions,

c= u±

√
gh̃

φ(x)
= u±

√
gH,

where h̃= hφ(x) = (H+O(η))φ(x), with η� 1, independent ofα. This means that, unlike Reckinger

et al. (2012)’s method, the height penalization does not affect the time step or stability properties of

the numerical method.255

The velocity penalization term is stiff in time, and limits the time step to ∆t=O(ε) for explicit

methods. It is straightforward to avoid the stiffness by implementing the penalization term implicitly,

however the time step still needs to be small enough to accurately resolve the numerical boundary

layer in the solid generated by the penalization. The height penalization parameter α does not place

any additional constraints on the spatial resolution ∆x or the time step ∆t.260

Because height and velocity are governed by diffusion (and not wave) equations in the penalized

solid region a wave will not be emitted from the boundary if there is no incoming wave. Therefore,

the penalization is stable according to GKS stability theory for numerical stability of hyperbolic

problems (Gustafsson et al., 1972).

The error and convergence properties of this method are derived analytically and verified numeri-265

cally for a simple linear one-dimensional example in following section.
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4 Analysis of linearized 1-D equations and guidelines for use

4.1 Exact solution and error analysis

We consider the one-dimensional penalized shallow water equations linearized about the state of rest

with depth H and speed u= 0,270

∂h̃

∂t
=−H ∂

∂x
(φ(x)u) ,

∂u

∂t
=−g ∂

∂x

(
h̃

φ(x)

)
−σ(x)u,

(20)

where the penalization functions φ(x) and σ(x) are as given in (4). The geometry of the domain is

defined by the indicator function χ(x) =H(x), where H(x) is the Heaviside function. This means

that x < 0 is fluid and x≥ 0 is solid. (Note that in a numerical implementation the indicator func-

tion is smoothed over a few grid points to avoid numerical oscillations.) The initial conditions are275

u(x,0) = 0 and

h(x,0) =


Hw, x <−L− 1,

−HwL (x+ 1), −L− 1≤ x≤−1,

0, x >−1,

(21)

i.e. a linear ramp wave front with (non-dimensional) width L and amplitude Hw.

Following Kevlahan and Ghidaglia (2001) we solve the problem by taking separate Laplace trans-

forms in time for the regions x < 0 and x≥ 0 and solving the resulting ordinary differential equa-280

tions in x. The resulting four constants are determined by the requirement of finite solutions as

x→±∞ and from the jump conditions at x= 0,

h̃(x−) = h̃(x+)/α, u(x−) = u(x+)α. (22)

These jump conditions are found by integrating equations (20) across the fluid–solid boundary x= 0.

The exact Laplace transforms of penalized height and velocity in the fluid solid regions are285

h̃fluid(x,s) = h̃1(x,s) +
cHw

2Ls2
esx/c

(
e−s/c− e−s(1+L)/c

) (1 +α2)εs+ 1− 2α
√
εs(εs+ 1)

(1−α2)εs+ 1
,

ufluid(x,s) = u1(x,s)− c2Hw

2HLs2
esx/c

(
e−s/c− e−s(1+L)/c

) (1 +α2)εs+ 1− 2α
√
εs(εs+ 1)

(1−α2)εs+ 1
,

h̃solid(x,s) =−αcHw

Ls2

εs+ 1−α
√
εs(εs+ 1)

(1−α2)εs+ 1
e
− x√

εc

√
s
√
εs+1

(
e−s/c− e−s/c(1+L)

)
,

usolid(x,s) =
gHw

Ls3/2

√
εs+ 1−α

√
εs

(1−α2)εs+ 1
e
− x√

εc

√
s
√
εs+1

(
e−s/c− e−s(1+L)/c

)
,

(23)

where the wave speed c=
√
gH , and h̃1(x,s) and u1(x,s) do not depend on the penalization. Now,

taking the leading order series expansions in α� 1 we have the following approximate expressions
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for the Laplace transforms of the penalized solutions,

h̃fluid(x,s) = h̃exact(x,s)−
αε1/2cHw

L

esx/c
(
e−s/c− e−s(1+L)/c

)
s3/2
√
εs+ 1

+O(α2),

ufluid(x,s) = uexact(x,s) +
αε1/2c2Hw

HL

esx/c
(
e−s/c− e−s(1+L)/c

)
s3/2
√
εs+ 1

+O(α2),

h̃solid(x,s) =
αcHw

Ls2
e
− x√

εc

√
s
√
εs+1

(
e−s/c− e−s(1+L)/c

)
+O(α2),

usolid(x,s) =
gHw

Ls3/2

e
− x√

εc

√
s
√
εs+1

√
εs+ 1

(
e−s/c− e−s(1+L)/c

)
+O(α),

(24)290

where we recall that the exact solution in the solid region is zero.

Taking the inverse Laplace transform of (24) gives the following results for the penalizations

errors in the fluid part of the domain,

h̃fluid(x,t)− h̃exact(x,t) =
αHw

L
[f1(x+ ct− (1 +L))− f1(x+ ct− 1)] ,

ufluid(x,t)−uexact(x,t) =− c

H
(h̃fluid(x,t)− h̃exact(x,t)),

(25)

where295

f1(x) =H(x)xM

(
1

2
,2,− x

cε

)
,

and M(1/2,2,−z) is a hypergeometric function with leading order asymptotic expansion for large

argument z

M(1/2,2,−z)∼ 2√
π
z−1/2.

Note that the error is exactly zero until the wave reflects from the boundary. After reflection the error300

is zero at the leading edge of the wave x= 1− ct and maximal at the trailing edge x= 1 +L− ct.
The maximum relative penalization errors are therefore

||h̃fluid− h̃exact||∞
Hw

= αM(
1

2
,2,−L

cε
)∼ 2

√
c

L
αε1/2,

||ufluid−uexact||∞
c

= α
Hw

H
M(

1

2
,2,−L

cε
)∼ 2

Hw

H

√
c

L
αε1/2,

(26)

where we have assumed that ε� L/c.

The asymptotic estimates (26) show that the penalization converges as ε→ 0 and α→ 0 and that305

the relative errors the penalized equations areO(αε1/2
√
c/L) for height andO(αε1/2

√
c/LHw/H)

for velocity. As expected, the error is exactly zero until the wave reaches the solid boundary at t= 1.
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Now, taking the inverse Laplace transform in the solid region we find that

h̃solid(x,t) =
αcHw

L

 t−1/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ2−

(x
c

)2
)
e−

t−1/c−τ
ε M

(
3

2
,1,

t− 1/c− τ
ε

)
dτ

−
t−(1+L)/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ2−

(x
c

)2
)
e−

t−(1+L)/c−τ
ε M

(
3

2
,1,

t− (1 +L)/c− τ
ε

)
dτ


usolid(x,t) =

gHw

L

t−1/c∫
t−(1+L)/c

e−τ/2εI0

(
1

2ε

√
τ2−

(x
c

)2
)

dτ.

(27)

If we now assume that ε� t−(L+1)/c to approximate I0(z)∼ ez/
√

2πz for z� 1, x� ct−(L+310

1) to approximate
√
τ2− (x/c)2 = τ(1− 1/2(x/cτ)2) +O(x/cτ)4) and ε� x/c to approximate

M(3/2,1,−z)∼ 2z1/2/
√
π, the above Laplace transform integrals become

h̃solid(x,t) =
2αcHw

πL

 t−1/c∫
x/c

(
t− 1/c

τ
− 1

)1/2

exp

(
− x2

4c2ετ

)
dτ

−
t−(1+L)/c∫
x/c

(
t− (1 +L)/c

τ
− 1

)1/2

exp

(
− x2

4c2ετ

)
dτ

 ,
ũsolid(x,t) =

gHw

L

√
ε

π

t−1/c∫
t−(1+L)/c

τ−1/2 exp

(
− x2

4c2ετ

)
dτ.

(28)

Again, assuming ε� x/c the integrand in the first equation decays exponentially as τ → x/c and

we can approximate the lower integration limit x/c by zero. Evaluating the integrals in (28) gives315

the final results,

h̃solid(x,t)

Hw
∼ αc

L
[f2(x,t− 1/c)− f2(x,t− (L+ 1)/c)] ,

usolid(x,t)

c
∼ gHw

Lc
[f3(x,t− 1/c)− f3(x,t− (L+ 1)/c)] ,

(29)

where

f2(x,t) =H(t)t

[(
1 +

x2

2c2εt

)
erfc

(
x

c
√
εt

)
− x

2c
√
πεt

exp

(
− x2

4c2εt

)]
,

f3(x,t) =H(t)

[
x

c
erf

(
x

2c
√
εt

)
+ 2

√
tε

π
exp

(
− x2

4c2εt

)]
.

(30)

Assuming an interaction time t≈ L/c, the results (29,30) show that the penalized solution pene-320

trates a distance O(
√
cLε) into the solid region. This numerical boundary layer must be resolved, so

we require a local grid size near the boundary ∆x≤
√
cLε/2 or, equivalently, ε≥ 4∆x2/cL for a
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given grid size ∆x. If the wavefront is well-resolved, i.e. L is much larger than the grid size ∆x, then

the penalization is first-order accurate in space with a relative height error O(α∆x/L). However, if

the wavefront is only marginally resolved, i.e. L≈∆x, then the relative error is O(α), independent325

of the grid resolution. In this case a sufficiently small error can be achieved for any grid by choosing

α appropriately.

In summary, we have found that the penalized solution converges to the exact solution in the fluid

domain with rate O(
√
c/Lαε1/2) for height and O(Hw/H

√
c/Lαε1/2) for velocity where c is the

wave speed, L is the length scale of the wave, and Hw/H is the ratio of wave height to mean depth.330

The numerical solution penetrates a distance
√
cLε into the solid region and this numerical boundary

layer must be resolved.

4.2 Numerical verification on linearized 1-D wave propagation

The error estimate O(αε1/2) =O(
√
αK) for height and velocity derived in the previous section

is verified here for one-dimensional linear wave propagation with reflection. The computational335

domain is x ∈ [0,Lx] with periodic numerical boundary conditions. The penalized (i.e. solid) region

is x≤ x1 and x≥ x2 defined by indicator functions,

χ(x) =
1

2

(
tanh

(
x−x2

∆/4

)
− tanh

(
x−x1

∆/4

))
,

φ(x) = 1 +χ(x))(α− 1),

σ(x) =
1

ε
(H(−(x−x1)) +H(x−x2)).340

A smoothed porosity is used since φ(x) must be differentiated. However, the permeability σ(x)

is not smoothed since otherwise the penalization error begins to grow for sufficiently small ε (de-

pending inversely on α). (If ε=K/α, a smoothed σ(x) may be used.) When ε=K/α we choose

K = (4∆x)2. A good choice for the smoothing parameter is the smallest value that ensures stable

solutions and linear error convergence with α. Since we use a low order (second order) method in345

space, it is often possible obtain stable solutions with no smoothing. However, to ensure the solution

is always stable we choose ∆ = 4∆x which smooths the indicator function over about four grid

points as shown in figure 2. We use these choices for the K and ∆ in the remainder of this section.

Smoothing is also useful to produce more accurate coastline profiles from masks as in the examples

in the following section.350

The initial condition is a Gaussian wave for height and zero velocity,

h0(x) = exp

[
−
(
x−Lx/2

L

)2
]
,

u0(x) = 0,

(31)

with wave width L= 1/24 = 4.1667× 10−2. The initial conditions and porosity are shown in fig-

ure 2. The computational domain is [0,0.6] (i.e.Lx = 0.6), with the fluid part of the domain [0.05,0.55]
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(i.e. x1 = 0.05 and x2 = 0.55) of length 0.5 and the left and right solid boundaries are penalized re-355

gions of width 0.05 each.

The exact solution with initial conditions (31) and solid boundary conditions u= 0 and ∂h/∂x=

0 is

h(x,t) =
1

2
(hp0(x− t) +hp0(x+ t)) +

1

2
(up0(x− t)−up0(x+ t)),

u(x,t) =
1

2
(up0(x− t) +up0(x+ t)) +

1

2
(hp0(x− t)−hp0(x+ t)),360

where hp0(x) and up0(x) are odd periodic extension of the initial conditions outside the fluid interval

[x1,x2].

The linearized one-dimensional equations (20) are solved using a standard second-order finite

volume/finite difference scheme with third-order Runge–Kutta integration in time on a uniform

grid with N = 2400 grid points (except where noted). The time step, based on stability, is ∆t=365

min(4ε,0.4∆x/c). The wave speed is c= 1, wave height Hw = 1, water depth H = 1 are fixed.

The wave width L= 1/24 are fixed except in the smoothing study. The factor
√
c/L≈ 5 in the

expressions (26) for the error convergence and we expect ε� 4.1× 10−2 to observe the asymptotic

convergence rate.

A typical penalized solution is shown at time t= 0.22 in figure 3, when the wave is strongly370

interacting with the walls. This figure confirms the expected behaviour of the penalized solution

near the walls: the velocity boundary condition has an error and internal boundary layer of size

O(ε1/2), while the height perturbation does not penetrate into the solid.

In order to measure the effect of the penalization on the error of the global solution after reflection

we measure the L∞ error at t= 0.5 when the exact solution should precisely reproduce the initial375

conditions. The prediction that the error should scale proportional to the porosity α if α and ε are

independent and like α1/2 if ε=K/α (as in a porous medium) is verified in figure 4. Note that

the error at small α < 10−4 is effectively limited by the error of the underlying finite-volume/finite-

difference numerical scheme, which is about 6× 10−5 for the exact boundary conditions at this

resolution N = 2400.380

Figure 5 (left) confirms that the error scales like K1/2 when ε=K/α. Finally, figure 5 (right)

confirms that the error for this penalization scheme, with permeability K = ∆x2, is first-order accu-

rate. Since we implement this penalization in a dynamically adaptive simulation, sufficient accuracy

is achieved by refining the grid at the boundary (i.e. by h−refinement) and choosing α appropriately

as explained in section 4.3.385

As mentioned in section 3.2, Reckinger et al. (2012) assume that α and ε are formally independent.

However, in practice they advise that ε should be smaller than α, and choose ε/α= 10−2 for their

simulations. This restriction is not necessary in our case since the error is O(αε1/2). This means

that α can be chosen smaller than ε, as shown in figure 4. In fact, to ensure scaling of the error like

O(ε1/2) when α is fixed it is necessary to choose εα=K (constant) when the indicator function390
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defining the solid region is smoothed. Although Reckinger et al. (2012) interpret figure 8 for α= ε

as showing a weaker error convergence O(α1/2), it actually appears to show the expected scaling

O(α), but over a small range of α of about one decade.

Finally, we consider the effect of smoothing width ∆ on the accuracy of the results. As explained

above, to guarantee stability of the penalized solution it is often necessary to smooth the porosity395

φ(x) at the fluid–solid boundary in order to ensure stable results. Since this is a purely numerical

problem it is best to choose the smallest width sufficient for stable solutions. Figure 6 (left) shows

the error as a function of the number of grid points of smoothing for four different grid resolutions.

The results are only weakly dependent on the smoothing width ∆ for ∆< 6∆x and ∆ = 2∆x is the

minimum smoothing to ensure stability. Figure 6 (right) shows how the error depends on the ratio400

L/∆ (wave width to smoothing width). As expected, the error decreases roughly proportional to

this ratio. We can therefore conclude that two to four points of smoothing should be optimal and the

penalization gives good results for well-resolved waves L/∆x� 1.

4.3 Guidelines for choosing penalization parameters

The parameters ε, α and ∆ determining the penalization are chosen as follows.405

The permeability parameter ε is set first, based on the spatial resolution of the simulation ∆x

near the coastlines. As explained in section 4.1, the smallest permissible value for ε is 4∆x2/cL.

However, the velocity penalization term is stiff, restricting the time step to ∆t≤ C1ε (with C1 an

order one constant) for an explicit method. It is therefore often preferable to choose a larger ε so

the penalization does not enforce an artificially small time step. For example, set ε= ∆t= C2∆x/c410

according to the Courant–Friedrichs–Lewy (CFL) stability condition for hyperbolic equations. Note

that this is also the smallest permissible ε when the smallest wavefronts are only marginally resolved

so L∼∆x, where ε≥ 4∆x/c. Using this choice of ε, and in the least favourable case where the

smallest wavefronts are only marginally resolved, the relative error in height isO(α) and the relative

error in velocity is O(αHw/H) independent of ε and ∆x.415

Now, since ε has been determined by the resolution of the simulation, the desired accuracy is

controlled by setting the porosity α. Recall that the choice of α does not affect the numerical stability

of the simulation. Typically, α=O(10−3) is appropriate for a second-order accurate simulation. In a

dynamically adaptive method like the one used here, α should be set about ten times smaller than the

tolerance ε. Recall that the parameter ε also enforces the no-slip (i.e. tangential) velocity condition420

to a relative accuracy O(ε1/2
√
u/l), where u and l are the velocity and length scales of the flow

tangential to the boundary (Kevlahan and Ghidaglia, 2001).

The smoothing scale ∆ of the indicator function χ(x) is set to smooth over a few grid points (e.g.

two to four). The smoothing scaling should be much smaller than the scale L of the smallest waves

and also smaller than
√
Lcε.425
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These choices ensure the penalization is well-resolved, produces sufficiently accurate results and

is consistent. When implemented in the adaptive wavelet method we must also ensure α is not too

small, i.e. α > 7.5× 10−4, in order to avoid negative heights near the boundary due to the linear

interpolation used in the wavelet transform.

In the following section we verify the results of the penalization analysis numerically using a430

dynamically adaptive second-order finite difference – finite volume scheme (Dubos and Kevlahan,

2013; Aechtner et al., 2014) on the sphere based on the TRiSK scheme (Ringler et al., 2010).

5 Applications to ocean simulation

The Coriolis force, which is omitted in the previous sections, is now included by adding the Coriolis

parameter f to the relative vorticity curl(u) in the curl-form equations of motion (15).435

5.1 Sensitivity of penalized solutions to piecewise-constant boundary approximation

In our penalized model of no-slip boundary conditions coastline geometry is approximated as piece-

wise-constant on the hexagonal–triangular C-grid via the mask χ(x). Adcroft and Marshall (1998)

proposed a test to identify any spurious effects due to piecewise-constant boundary approximations.

They calculated wind-driven β-plane flow in a square domain where the physical domain was rotated440

at various angles with respect to the Cartesian computational grid, with both no-slip and free-slip

boundary conditions. The solution has the form of an intense western boundary current, a strong

sub-gyre in the northwest corner and a standing Rossby wave along the northern boundary (see

figure 7).

Adcroft and Marshall (1998) found that piecewise-constant boundary approximations exert a spu-445

rious form stress on the boundary currents, leading to significantly different results. The differences

were greatest for free-slip boundary conditions, but still evident for no-slip boundary conditions

(see their figure 4). The main differences at large angles of rotation (θ = 45◦) are that the western

boundary current separates earlier from the western boundary and the recirculating sub-gyre in the

northwestern corner of the domain is much stronger.450

In our case, although the boundary is defined via a mask function, the actual boundary condition

is not strictly piecewise-constant since the boundary is smoothed slightly due to both the exponential

form of the penalization and the fact that the mask itself is smoothed over a few points. In addition,

the hexagonal–triangular C-grid is more symmetric than the Cartesian grid used in Adcroft and

Marshall (1998). Nevertheless, it is interesting to see how large the effect of the boundary mask is455

on the solution.

We implement exactly the test case proposed in Adcroft and Marshall (1998): wind-driven flow

on a β-plane in a square domain. The model parameters are: basin size L= 2000 km, f0 = 0.7×
10−4 s−1, β = 2× 10−11 m−1 s−1, kinematic viscosity ν = 500 m2 s−1, linear friction coefficient
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r = 10−7s−1, density ρ0 = 103 kg m−3, reduced gravity g′ = 0.02 m s−2 and wind-stress τ0 =460

0.2 N m−2. The equilibrium layer thickness is H = 500 m. The wind-stress τ(ỹ) =−τ0 cos(πỹ/L)̃i

and the Coriolis parameter is f(ỹ) = f0 +βỹ where (x̃, ỹ) are the physical coordinates which are

rotated by an angle θ with respect to the computational model coordinates (x,y). No-slip solid

boundaries are located at x̃= 0,L and ỹ = 0,L.

The wind-driven flow is computed using the matlab code described in Dubos and Kevlahan465

(2013) which solves the adaptive wavelet method on the plane for the TRiSK second-order finite

volume–finite difference discretization of the shallow water equations Ringler et al. (2010). We set

the grid adaptation tolerance ε= 0 so the computation is non-adaptive with a uniform triangular

grid size of 25.14 km. To allow for rotation of the physical domain the lozange-shaped compu-

tational domain has sides of length 3420 km Dubos and Kevlahan (2013).The equations are non-470

dimensionalized with respect to L, ρ0 and the Sverdrup velocity USv = τ0/(ρ0βHL) = 0.01 m s−1.

In this non-dimensionalization the penalization parameters chosen are α= 10−2 and η = 10−4. The

mask χ(x) is smoothed over two grid points.

The equations are integrated from rest for 10 years using a third-order strong stability preserving

Runge–Kutta method with a CFL number of 0.8 (Spiteri and Ruuth, 2002). Note that Adcroft and475

Marshall (1998) deliberately specify a grid resolution such that the Munk layer is barely resolved

(only δM = 1.16∆x) to emphasize any spurious effects of the boundary conditions.

Figure 7 shows the instantaneous layer thickness after 10 years where the physical flow and do-

main is at the angles θ = 0◦, 10◦, 30◦ and 45◦ degrees with respect to the computational hexagonal–

triangular C-grid. All four figures are very similar qualitatively and qualitatively. There are some480

slight qualitative differences discernible in the internal structure of the standing Rossby wave south-

east of the intense sub-gyre. There is also very small variation in the maximum height of the

layer: hmax = 724.8 m at θ = 0◦, hmax = 723.4 m at θ = 10◦, hmax = 722.1 m at θ = 30◦, hmax =

728.7 m at θ = 45◦. The biggest variation in maximum height is 1.7% of the perturbation in layer

depth (or 0.78% of the total layer depth), which is negligible given the long integration time and485

second-order discretization. These qualitative and quantitative differences are insignificant compared

with those observed in Adcroft and Marshall (1998), where the sub-gyre was clearly displaced to the

southeast and the maximum height was at least 160 m higher at θ = 45◦ than at θ = 0◦.

We therefore conclude that our Brinkman penalization method is not sensitive to the orientation

of solid boundaries with respect to the computational hexagonal–triangular C-grids of interest on the490

sphere.

5.2 Implementation of penalization in adaptive wavelet solver on the sphere

Penalization techniques are especially well-suited to dynamically adaptive numerical simulations,

where the local resolution changes in time to resolve the solution. In particular, in ocean flows we ex-

pect the resolution to be finer near coastlines in order to resolve boundary currents (e.g. wind-driven495
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gyres in the quasi-geotrosphic regime) or wave interaction with the coast (e.g. tsunami propagation

in the inertia gravity wave regime). Ocean flow is well-suited to variable resolution adaptive numer-

ical methods since about 25% of the surface of the Earth is land (which thus requires no resolution)

and the ocean flows are highly inhomogeneous and variable in both time and space.

An explicit definition of the coastline is difficult to implement in adaptive simulations because the500

precise location of the coastline changes as the grid refines and coarsens. On the other hand, it is

computationally inefficient to resolve the coastline to the finest resolution at all locations and at all

times. Defining the coastline as a mask means the coastline is defined implicitly and automatically

becomes more detailed as the grid refines to follow the local flow dynamics. In addition, smoothing

the profile of the coastline over a few grid points arguably produces a better physical model than a505

sharp boundary (since coastlines are in fact porous). The multiscale and staggered structure of the

adaptive wavelet scheme also causes problems for an explicit definition of the coast line since the

hexagonal cells containing the height are shifted between adjacent scale of resolution (see Dubos

and Kevlahan, 2013; Aechtner et al., 2014).

Finally, as mentioned in the previous section, grid refinement near the coastlines increases the510

local accuracy of the penalization through h−refinement compensating for its relatively low order

of accuracy.

The penalization defined by the variable porosity (18) and friction (19) is easily integrated into

the dynamically adaptive second-order finite difference – finite volume scheme on the sphere pre-

sented in (Dubos and Kevlahan, 2013; Aechtner et al., 2014) since it requires only straightforward515

modifications of the shallow water equations. The bathymetry and topographic data are from the

1 arc minute NOAA ETOPO1 global relief data base (Amante and Eakins, 2009).

The raw bathymetry data from from the ETOPO1 database naturally tends to zero depth near the

coast. Because we have not implemented wetting and drying in our shallow water model, we impose

a minimum depth Hmin near the coastlines,520

b=


br br ≤−Hmin,

−Hmin −Hmin < br < 0,

0 otherwise.

(32)

In practice, Hmin > 2m is usually sufficient.

The mask χ(x) defining the solid and fluid regions is found by setting locations with negative

bathymetry to zero and regions with positive (or zero) bathymetry to one,

χ=

 0, br < 0,

1 otherwise.
(33)525

This generates a mask on the regular 1 arc minute latitude–longitude ETOPO 1 grid, which does

not correspond to the non-uniform dual hexagonal–triangular grids used in the adaptive scheme. The

value of the mask at required points on the hexagonal–triangular grid are found by using a simple
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exponential radial basis function (RBF) with weights f(x;a) = exp(−(ar)2) where r is the arc dis-

tance between the ETOPO 1 mask and the location of the required grid point. The parameter a is530

chosen to smooth over an area equivalent to two to four hexagonal cells. This RBF procedure both

interpolates from the latitude–longitude grid to the adaptive grid nodes and smooths the resulting

mask. The RBF procedure can also be used to smooth the bathymetry data in the fluid part of the do-

main, although this is not usually necessary. Currently, all points are smoothed although the method

could be optimized by smoothing only those points in a small neighbourhood of a coastline.535

During grid refinement the bathymetry is computed at the new grid-points using the RBF in-

terpolation described above. The adaptive wavelet method exactly conserves the mass of the per-

turbed free surface with respect to the mean sea level. However, the RBF procedure for interpolating

bathymetry on a locally refined grid does not conserve the total mass of mean sea level since the

newly interpolated points could modify the mean sea level over the refined cell. However, this mass540

defect is extremely small (approximately roundoff error). The mass defect caused by changes in the

bathymetry cannot accumulate and is bounded at all times. If the grid coarsens again to its initial

configuration the mass defect is precisely zero. If exact cell-wise mass conservation of the mean sea

level is necessary, the bathymetry data could be stored as a wavelet transform such that the mean is

conserved at all levels of resolution.545

In the following sections the adaptive wavelet method for the shallow water equations with penal-

ization is used to solve two characteristic ocean flows: tsunami propagation (i.e. the inertia gravity

wave regime with fast dynamics) and wind-driven gyre flow (i.e. the quasi-geostrophic regime with

slow dynamics). The goal of these simulations is to demonstrate the potential of this method for effi-

cient simulation of global flows with localized small scale features. It should be stressed that different550

degrees of physical accuracy are to be expected in each case due to the approximations inherent in

the shallow water model. On the one hand, the shallow water equations model tsunami propagation

quite accurately, so that a realistic tsunami simulation is expected. On the other hand, the shallow

water equations are quite insufficient to model the general circulation of the oceans. Only the mean

gyre circulation, driven by the wind stress and Sverdrup balance, which is acceptably represented555

in a one-layer model, can be captured realistically. Smaller-scale features, such as vortices and jet

meandering, are predominantly generated in the real ocean by baroclinic mechanisms which can-

not be captured by a single-layer model. Their main characteristics are not expected to be realistic.

Rather, the capacity of the adaptive model to produce, say, boundary currents, should be analyzed as

a qualitative demonstration of the potential of the method, rather than evaluated quantitatively for its560

accuracy.

5.3 Tsunami propagation

Our first example illustrates how the penalization, combined with the dynamically adaptive wavelet

method (Aechtner et al., 2014), performs for global calculation of tsunami wave propagation. In
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the absence of a treatment of wetting and drying at the shoreline, important aspects of the tsunami,565

especially in terms of its impacts, cannot be simulated. Nevertheless the propagation of the wave

should be properly captured, especially wave refraction by the bathymetry, arrival times and wave

amplitude before breaking and flooding.

The flow is clearly in the inertia gravity wave regime and the dynamics are fast. Since the solution

is very localized, the dynamical adaptation is particularly effective, allowing local resolutions up to570

0.5 km on a global model. This inertia–gravity regime is a good test of the accuracy of the penal-

ized approximation of the reflecting boundary conditions for height since reflection off coastlines

and islands is an essential component of tsunami dynamics. Note that because of the sensitivity of

the results on the precise choice of initial condition, bathymetry and coastline geometry a precise

measure of the error is not possible although the results are qualitatively in good agreement with the575

observations and other simulations.

We simulate the 2004 tsunami generated by the Sumatra–Andaman Earthquake. The initial con-

dition is based on the seismic data calculated by Fujii and Satake (2007) from available tide gauge

and satellite altimetry data. This initial condition is given in the form of complete seismic data on 22

separate square geographic regions, as shown in figure 4 of Fujii and Satake (2007). These 22 sepa-580

rate sets of seismic data are used to find the perturbed surface height using the Okada (1985) method

with matlab software written by Beauducel (2012). (Note that each of the 22 regions provides a

separate sea surface height perturbation.) The initial velocity is taken to be zero.

The degree of mesh refinement is controlled by an overall non-dimensional tolerance ε (not to

be confused with the relaxation time ε of the penalization), from which thresholds for height and585

velocity are deduced (Dubos and Kevlahan, 2013). The simulation was run with an overall tolerance

of ε= 0.05, and the thresholds for height and velocity were εh =Hmaxε
3/2 and εu =Hmaxg/cε

3/2

where Hmax is the maximum height perturbation at any given time step. This allows the adaptation

to accurately track the waves even though after several hours their characteristic height Hmax is

only 10% of its initial value. This modification is important for cases where the flow field is not590

statistically stationary in time. Note that we have deliberately chosen a relatively high tolerance

value to demonstrate that the code can provide qualitatively good results even for grid compression

ratios of O(103).

The coarsest level is J = 9 with 5 levels of refinement to give a maximum scale of J = 14 cor-

responding to a minimum average resolution of about 〈∆xmin〉= 475m. Note that a non-adaptive595

simulation at this resolution would require about 2.68× 109 height nodes (hexagonal cells), while

the initial condition requires only about 3.09× 106 height nodes in the adaptive simulation corre-

sponding to a grid compression ratio of 867.

The penalization parameters are α= 8× 10−3 and η = 5× 10−5 and the minimum bathymetry

depth is Hmin = 50 m. The adaptive wavelet code was run on 256 cores on the Scinet supercom-600

puter.
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The first arrival time of a 5 cm wave and the maximum wave height over all times up to 16 hours

at all positions are shown in figure 8. The maximum wave height results show the focusing effect

of bathymetry features (particularly the Southwest Indian Ridge) and agree qualitatively with both

observations and simulations using the MOST model (Titov et al., 2005). Detailed quantitative veri-605

fication is not possible due to sensitive dependence of the results on details of the initial conditions,

bathymetry and coastline modelling (including run-up, not included in this model).

The ability of the code to track an evolving localized tsunami wave over long times and through

reflection and focusing events is illustrated in figures 9, 11 and 12. The actual tolerances are scaled

dynamically to take into account the decreasing maximum wave height over time. Note that the finest610

J = 14 (475 m) resolution is only needed very locally along some parts of the coastline and where

the wavefront is very steep or focusing. Figure 10 uses a zoomed view to show precisely where

the finest resolution is required in the interior of a focusing wave packet. As mentioned above, we

have deliberately chosen a relatively large tolerance since we are interested in the propagation of the

wavefront (and to illustrate the extreme adaptivity potential of the method). If we were interested in615

accurate simulation of the entire wavefront (e.g. the residual wave motion shown in figure 12 at 16

hours) we could select a smaller tolerance.

This simulation has demonstrated the potential of the dynamically adaptive wavelet method with

penalization for high resolution simulation of tsunami propagation. Local resolutions of less than

500 m have been achieved on a global model with modest consumptions of computational resources:620

the simulation until the arrival at the African coast requires only two to three days on 256 cores of a

computing cluster. Because of the localization of the wavefronts, tsunami propagation is particularly

well-suited to adaptive simulation.

The plot of the grid compression ratio shown in figure 13 shows that the code achieves very high

grid compression ratios, ranging from 936 at 40 minutes to 400 at 16 hours when the wave has625

entered the Atlantic ocean. Note that Aechtner et al. (2014) found that cpu time is proportional to

the number of active grid points. When all potential degrees of freedom are included (height and

velocity nodes) the grid compression ratio varies from 1240 to 455. Since Aechtner et al. (2014)

found that the adaptive wavelet code is about three times slower per active height node than the

non-adaptive TRiSK code we expect the tsunami simulation to be between 130 and 300 times faster630

than the non-adaptive code for a J = 14 resolution. Compared to a similar spectral code the adaptive

simulation should be about 248 to 91 times faster.

In terms of actual cpu time, it takes on average 9.1s of wall clock time for 1s of physical time for

the 475 m on 256 cores. Since the code has 94 % strong parallel scaling efficiency for at this number

of cores operational forecasting should be possible using a few thousand cores. Note that the com-635

putational efficiency could be further improved by using a more efficient technique for smoothing

the bathymetry and topography masks.
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5.4 Wind-driven ocean circulation

The second simulation is of global wind-driven ocean circulation over several years. This tests the

adaptive wavelet model with Brinkman penalization in the quasi-geostrophic regime for slow dynam-640

ics. Our goal is to qualitatively predict the structure of the main ocean gyre flows, within the limits

of the rotating shallow water equation model. In this case large basin-scale circulation is driven by

the applied wind stress forcing via the Sverdrup relation. Intense boundary currents are expected to

form along western coastlines (e.g. the gulf stream). The shallow water equations are modified by

adding a wind-stress forcing term τ/(ρh) to the right hand side of the equation.645

As for the tsunami case, the bathymetry and topographic data are from the 1 arc minute NOAA

ETOPO1 global relief data base (Amante and Eakins, 2009). The wind-stresses τ (x,y) are stationary

in time and derived from the mean December wind stresses from the NCAR Hellerman and Rosen-

stein Global Wind Stress Data set (Hellerman and Rosenstein, 1980, 1983) shown in figure 14. This

data set consists of monthly averaged wind stress over the global ocean for the years 1870 through650

1976 on a two degree latitude–longitude grid. The wind stress data is evaluated on the adapted grid

using bilinear interpolation.

The numerical experiment is characterized by a few independent dimensional parameters : τ/ρ

with τ the mean wind stress and ρ the density of water, the planetary rotation rate Ω∼ f and radius

R, the basin scale L∼R, the mean ocean depthH , gravity g, the Reynolds numberRe, the width of655

the boundary layer δM , and the Froude number of the boundary layer FrBC . Once these are defined

a few other scales emerge following Sverdrup balance in the ocean interior and balance between

viscous friction and meridional transport of planetary vorticity in the western boundary current.

The kinematic viscosity is therefore ν = UBCδM/Re, and β = ν/δ3
M . The gyre velocity USv set by

Sverdrup balance is660

USv ∼
1

βHL

τ

ρ
. (34)

The gyre is characterized by its Rossby number Ro= USv/fL which should be small.

The dimensional and non-dimensional parameters are fully summarized in table 1. Given the

limitations of the shallow-water model, we have sacrificed the realism of some of the dimensional

parameters, while preserving the main scales of the gyres and boundary currents. We retain realistic665

values of R, L, H , UBC and USv. On the other hand we choose unrealistic values for gravity g and

planetary rotation Ω, β. Indeed, a large gravity wave speed c imposes small explicit time steps which

make the simulation very costly without affecting the gyre and boundary current. Since we do not

currently use a local time-stepping scheme, the (global) time step is set by the smallest grid size over

the whole computational domain. Hence we sacrifice the realism of c and reduce it to a minimum,670

i.e. FrBC is set as large as possible without producing shocks. This defines c= UBC/FrBC and

g = c2/H . The Reynolds number is set moderately large to permit barotropic instability and the

generation of vortices.
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The wavelet simulation uses a tolerance of ε= 1.0, and the thresholds for height and velocity are

εh = USvRoR/gε
3/2 and εu = USvRoε

3/2. The coarsest level is J = 12 with 3 levels of refinement675

to give a maximum level of J = 12 and a minimum average resolution of about ∆xmin = 1.9 km or

1/64◦. The penalization parameters are α= 10−2 and η = 10−4. The minimum bathymetry depth is

limited to Hmin = 50 m. The initial conditions are zero velocity and zero sea surface height pertur-

bation. The adaptive wavelet code was run on 64 cores on the Scinet supercomputer.

The mean ocean circulation consists of basin-scale gyres driven by the wind stress via Sverdrup680

balance. The rigid-wall boundary condition induces narrow and intense western boundary currents

dominated by advection of planetary velocity and friction. This case is therefore a good test for the

penalized velocity boundary conditions. We stress again, however, that the mechanism generating

meanders and vortices from the gyre circulation and the boundary currents in the shallow water

equations is purely barotropic. Except possibly close to coastlines and at kilometer-scale, a different,685

baroclinic mechanism is believed to be dominant in the oceans at mesoscale and submesoscale but

cannot be captured in a one-layer shallow water model.

Figure 15 shows the vorticity after 301 days. The grid has refined only at the boundary currents

and the grid compression ratio for height nodes is roughly constant at about 210 once the boundary

currents have developed (after about one week). Coherent vortex shedding, similar to von Karman690

vortex streets is clearly visible at some high wind stress locations, such as the Drake passage and

southern coast of Argentina shown in figure 15. The zoom of the unstable boundary layer region off

southern Argentina shown in figure 16 illustrates the complex structure of the boundary current and

multiple small scale vortices. Note that the details of the boundary current are well-captured by the

adaptive grid.695

Figure 17 shows the Eastern coast of North America, including the area where the Gulf Stream

is generated off Cape Hatteras. Intense western boundary currents and some vortices are clearly

visible. The boundary current detaches north of Cape Hatteras, as for the Gulf Stream although it

subsequently stays closer to the coast than the Gulf Stream. However, as noted above, we do not

expect to accurately model the dynamics and structure of the Gulf Stream since the shallow water700

equations used here do not capture the necessary baroclinic mechanisms of vortex generation.

Higher resolutions and Reynolds numbers would lead to more complex two-dimensional turbu-

lence like dynamics (with physics different from the actual flow due to the shallow water approx-

imation). Despite the limitations of the experimental set-up, these results give an indication of the

potential performance of a multi-layer model and the ability of the method to capture boundary705

currents and their complex vortical structure.
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6 Conclusions

We have derived and analyzed mathematically a new volume penalization for no-slip boundary con-

ditions for the shallow water equations. This penalization is based on the physical equations for

shallow water flow in a porous medium with vanishing porosity and permeability in that part of710

the domain corresponding to solid regions. Mathematical analysis of the linearized one-dimensional

shallow water equations shows that the solution of the penalized equations converges to exact solu-

tion in the limit as porosity α and permeability η tend to zero. The error at finite α and η isO(αη1/2).

Unlike previous penalizations of the shallow water equation, it conserves mass and energy and the

wave speed is the same in both fluid and solid regions. The convergence and error properties of the715

method have been verified numerically for the one-dimensional linearized equations.

The primary motivation for developing this new penalization is to extend our recent dynamically

adaptive wavelet method on the sphere (Dubos and Kevlahan, 2013; Aechtner et al., 2014) to model

ocean flows with coastlines. Penalization techniques are ideal for dynamically adaptive methods

because they implement the coastline geometry implicitly by modifying the equations of motion720

rather than by explicitly changing the geometry of the computation. The resolution of the coastline

is high only where required by the flow dynamics.

We have implemented the proposed penalization in the adaptive wavelet code and tested it on two

typical global scale flows: long-distance tsunami propagation (i.e. the inertia-gravity wave regime

with fast dynamics) and wind-driven ocean circulation (i.e. the quasi-geostrophic regime with slow725

dynamics). These simulations show the potential of the adaptive method combined with the penal-

ization to drastically reduce the number of computational elements. The adaptive tsunami simulation

uses between 455 and 1245 times fewer computational elements (i.e. height nodes) than an equiv-

alent non-adaptive simulation, while the wind-driven ocean circulation simulation uses around 210

times fewer elements.730

Although the shallow water equations are considered quite accurate for tsunami calculations (and

are used in many operational models) they are clearly physically insufficient for calculating ocean

circulation. The next step in the development of the adaptive wavelet model for ocean circulation

is to add vertical layers and temperature and density equations. The grid adaptation will only be

done in the horizontal plane and so the three-dimensional model should actually have better parallel735

performance than the model on the sphere since the computational load will be better balanced. We

expect to also use penalization to model bathymetry, as well as coastlines, in the three-dimensional

model, following Reckinger et al. (2012).

The penalization method presented here should aid in the development of fully dynamically adap-

tive ocean global models for tsunami propagation and ocean circulation.740
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7 Code availability

The complete adaptive wavelet code used to generate the results in this paper is available at

bitbucket.org/kevlahan/wavetrisk.
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Non-dimensional parameters of boundary layer determining simulation

Reynolds number Re 104

Froude number of boundary layer FrBC 0.3

Non-dimensional boundary layer width δ∗M 0.0125

Unconstrained parameters

Radius of Earth R 6.3710× 106 m

Reference length scale (radius of North Atlantic) L 3.0000× 106 m

Mean ocean depth H 3.5729× 103 m

Velocity of boundary layer UBC 1.8000× 100 m/s

Rotation rate Ω 5.7664× 10−7 s−1

Wind stress τ 7.1592× 10−2 N/m2

Density ρ 1.0270× 103 kg/m3

Quantities determined by above choices

Boundary layer width δM = δ∗ML 3.7500× 104 m

Kinematic viscosity ν = UBCδM/Re 6.7500× 100 m2/s

Effective β parameter β = ν/δ3M 1.2800× 10−13 m−1s−1

Sverdrup (gyre) velocity USv ∼ 1
βHL

τ
ρ

5.2875× 10−2 m/s

Wave speed c= UBC/FrBC 6.0000× 100 m/s

Gravitational acceleration g = c2/H 1.0076× 10−2 m/s2

Coriolis parameter f ∼ Ω 5.7664× 10−7 s−1

Rossby radius of deformation Rd = c/f 1.0405× 107 m

Rossby number Ro= USv/(Lf) 3.0565× 10−2

Table 1. Physical parameters used for the reduced gravity simulation of wind-driven ocean circulation.
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Figure 1. Shallow water geometry. The perturbation of the sea surface from equilibrium sea surface z =

0 is η(x) and the sea depth is given by the bathymetry b(x) ≥ 0, which is the depth of the seafloor below

the equilibrium sea surface. The total height of the fluid is then h(x) = η(x) + b(x). In the shallow water

approximation the wavelength of the perturbations of the sea surface is much greater than the depth, and the

amplitude of the perturbations is much less than the depth.
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Figure 2. Height initial conditions for the wave packet and Gaussian test cases and porosity φ(x) with α= 0.1.

The velocity is initially zero. Note the smoothing of the indicator function over about four grid points at the left

and right solid boundaries with ∆ = ∆x.
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Figure 3. Solution at t= 0.26 just after the reflection when the wave is still interacting strongly with the

wall (circles) compared with the exact solution (line). Parameters α= 10−3 and K = 4×10−6. The resolution

N = 300 is low to clearly illustrate the internal boundary layer and the differences between the exact and

penalized solution near the boundaries. Note the boundary layer in the penalized solid region for the velocity

and the fact the height drops slightly inside the fluid due the smoothing of the porosity φ(x). The error in the

velocity boundary condition is 0.03 ≈ ε1/2, as expected.

10
−6

10
−4

10
−2

10
−4

10
−3

10
−2

α

L
∞

E
r
r
o
r

 

 

ǫ = 10
−3

ǫ = K/α

Figure 4. Control of L∞ height penalization error by the porosity parameter α for the Gaussian wave test case

compared with predicted scaling α (straight line) when ε= 10−3 is fixed, and scaling α1/2 when ε=K/α as

in the porous medium equations. The permeability is fixed at K = (4∆x)2 and the resolution is N = 2400.

Note that at this resolution the error of the second-order finite volume method saturates at 7.7× 10−5. (The

velocity results have exactly the same error as the height results.)
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Figure 5. Left: control of L∞ height penalization error by the permeability parameter ε for the Gaussian wave

test case compared with predicted scaling ε1/2 (straight line). Right: convergence of L∞ error with grid size

∆x for the Gaussian wave test case compared with predicted first-order scaling (straight line). The porosity is

fixed at α= 10−2. The resolution is N = 2400 for both results.
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Figure 7. Grid geometry sensitivity study of the penalized no-slip boundary for wind-driven ocean circulation

in a square basin (Adcroft and Marshall, 1998). The four images show instantaneous layer depth after 10 years

for four simulations at where the physical domain is at various angles with respect to the discrete hexagonal–

triangular computational grid.
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Figure 8. First arrival time (of a wave with height at least 5 cm) and maximum wave height for simulation of

2004 Indonesian tsunami.

Figure 9. Tsunami after 70 minutes. The grid compression ratio is 930 and the finest J = 14 resolution is

required only near the coasts where the tsunami has hit and very locally in the propagating wavefront. The

black boxes indicate the zoomed regions shown in figure 10
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100 km

Figure 10. Tsunami: approximately 650 km×550 km zoom of grid (left) and height (right) for results shsown

in figure 9. Recall that in the left figure the black hexagons have size approximately 0.5 km.

Figure 11. Tsunami: adaptive grid and wave height after 4 hours. The grid compression ratio is 740.
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Figure 12. Tsunami: adaptive grid and wave height after 16 hours. The grid compression ratio is 455.
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Figure 13. Grid compression ratio for tsunami simulation counting height nodes only and all degrees of free-

dom (i.e. height and velocity nodes).
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Figure 14. December wind stress field from Hellerman and Rosenstein (1980, 1983) used to force wind-driven

ocean circulation shown in figure 15. Only every other wind stress data point is shown. The rms wind stress is

7.1592× 10−2 N/m2.
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Figure 15. Adapted grid (left) and relative vorticity field (right) for wind-driven ocean circulation after

301 days. Note vortex shedding from the boundary current off Argentina and in Drake’s Passage.
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Figure 16. Zoom of vortex shedding dynamics off the southern coast of Argentina shown in figure 15: grid

(left), relativity vorticity (right). The scales are as in figure 15. Note the complex boundary layer structure and

vortices captured by the adaptive grid.
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Figure 17. Adapted grid (left) and relative vorticity (right) for wind-driven circulation near the East coast of

North America, corresponding to the location of the Gulf Stream. The scales are as in figure 15. Intense western

boundary currents and some vortices are clearly visible.

39


