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Abstract

We implement a new stomatal conductance model, based on the optimality approach,
within the Community Atmosphere Biosphere Land Exchange (CABLE) land surface
model. Coupled land-atmosphere simulations are then performed using CABLE within
the Australian Community Climate and Earth Systems Simulator (ACCESS) with pre-5

scribed sea surface temperatures. As in most land surface models, the default stom-
atal conductance scheme only accounts for differences in model parameters in relation
to the photosynthetic pathway, but not in relation to plant functional types. The new
scheme allows model parameters to vary by plant functional type, based on a global
synthesis of observations of stomatal conductance under different climate regimes over10

a wide range of species. We show that the new scheme reduces the latent heat flux
from the land surface over the boreal forests during the Northern Hemisphere summer
by 0.5 to 1.0 mmday−1. This leads to warmer daily maximum and minimum temper-
atures by up to 1.0 ◦C and warmer extreme maximum temperatures by up to 1.5 ◦C.
These changes generally improve the climate model’s climatology and improve existing15

biases by 10–20 %. The change in the surface energy balance also affects net primary
productivity and the terrestrial carbon balance. We conclude that the improvements in
the global climate model which result from the new stomatal scheme, constrained by
a global synthesis of experimental data, provide a valuable advance in the long-term
development of the ACCESS modelling system.20

1 Introduction

Stomata control the exchange of water vapour and carbon between the vegetation
and the atmosphere. The coupling of the energy, water and carbon exchange at the
leaf-level was a profoundly important step in the development of land surface mod-
els (LSMs, Sellers et al., 1996). Accurately capturing these exchange processes in25

LSMs is critical since they affect the terrestrial water, energy and carbon balances (Pit-
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man, 2003). Early studies at the point scale have illustrated the potential impact of
stomatal behaviour on local meteorology (e.g., Jacobs and De Bruin, 1992; Raupach,
1998; Huntingford and Monteith, 1998). This has prompted a number of investigations
showing impacts at both the global (e.g., Henderson-Sellers et al., 1995; Pollard and
Thompson, 1995) and regional (e.g., Avissar and Pielke, 1991; Martin et al., 1999; Cruz5

et al., 2010) scales. Recent studies have also shown that the different physiological re-
sponse of tropical forests to increasing CO2 is a larger source of uncertainly in estimat-
ing future Carbon stocks than the future emission scenarios (Huntingford et al., 2013).
Similarly, other studies suggest that physiological adaptations of subtropical vegetation
to increasing CO2 could account for reductions in the annual transpiration flux of up10

to ∼ 60Wm−2 in some regions (de Boer et al., 2011). Given such large impacts, there
is currently an urgent need to explore accurate representations of stomatal behaviour
suitable for implementation in LSMs within general climate models (Huntingford et al.,
2015).

It is common in LSMs (e.g., Sellers et al., 1992; Bonan, 1995; Cox et al., 1998;15

Wang et al., 2011) to represent stomatal conductance (gs) using an empirical model
(Jarvis, 1976; Ball et al., 1987; Leuning, 1995). Whilst parameters for these empirical
models can easily be calibrated using experimental data, in practice they rarely are. In-
stead, the current suite of LSMs, including the Community Atmosphere Biosphere Land
Exchange (CABLE, Wang et al., 2011), only differentiate model parameters by photo-20

synthetic pathway (C3 vs. C4) (Krinner et al., 2005; Oleson et al., 2013), rather than
by plant functional type (PFT). Medlyn et al. (2011) proposed an alternative approach,
deriving a stomatal conductance scheme from optimal stomatal theory. This approach
maintains the same functional form as the empirical models, but attaches a theoreti-
cal meaning to the model parameters. Parameters now represent a plant’s water use25

strategy and thus can be hypothesised to vary across climate space. Lin et al. (2015)
used a global database of gs data to show that stomatal behaviour varied between
PFTs as predicted by the optimal stomatal theory (and the leaf and wood economic
spectrum), in line with the Medlyn et al. (2011) model. De Kauwe et al. (2015) tested
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an implementation of this gs scheme within CABLE using flux tower observations and
global offline forcing and showed a ∼ 30 % reduction in annual fluxes of transpiration
compared to the standard CABLE model across boreal, tundra and C4 grass regions.

This paper extends De Kauwe et al. (2015) in several ways. CABLE is the LSM used
in the Australian Climate and Earth Systems Simulator (ACCESS) (Bi et al., 2013),5

a global climate model that performed very well in comparison with observations within
the Coupled Model Intercomparison Project (CMIP-5, Flato et al., 2013). Our first goal
is to test the feasibility of using the De Kauwe et al. (2015) implementation of the
Medlyn et al. (2011) stomatal conductance scheme globally, within the ACCESS cou-
pled land-atmosphere climate model. De Kauwe et al. (2015) showed that the new10

scheme generally improved CABLE’s performance in off-line experiments, forced by
prescribed meteorology and evaluated using observations. Our second goal is to de-
termine whether this improved performance is sustained in the coupled environment
of the ACCESS model. ACCESS has a satisfactory control climate in terms of means
(Bi et al., 2013; Kowalczyk et al., 2013), but Lorenz et al. (2014) examined the model’s15

climatology in terms of some extremes linked with the land surface and showed seri-
ous problems in the simulation of the diurnal temperature range due to biases in both
maximum and minimum temperatures. We seek to determine whether these problems,
affecting these and other extreme indices can be resolved in part via the parameteri-
zation of gs. We also note that ACCESS is also used for numerical weather prediction20

(NWP) in Australia (Puri et al., 2013) and hence our results have implications for mod-
elling across time scales.

2 Methods

2.1 Model description

We use the Australian Community Climate Earth System Simulator version 1.3b (AC-25

CESS1.3b). The set-up follows Lorenz et al. (2014) and consists of the atmospheric
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Unified Model (UM7.3) (Davies et al., 2005; Martin et al., 2006), CABLE2.0, the Mod-
ular Ocean Model, and a coupling framework that couples the ocean and sea ice to
the atmosphere (Bi et al., 2013). We use ACCESS1.3b in an Atmospheric Model In-
tercomparison Project (Gates, 1992, AMIP) configuration with prescribed sea surface
temperatures and sea ice fractions. These were sourced from the Program for Climate5

Model Diagnosis and Comparison (Taylor et al., 2000) and re-gridded and converted
to the Unified Model data format. We performed simulations at 1.25◦ latitude by 1.875◦

longitude resolution (N96 resolution), with 38 vertical levels, and a 30 min time step.
Further details of the ACCESS model can be found in Bi et al. (2013) and Lorenz et al.
(2014).10

2.2 New stomatal conductance scheme

The implementation of the new gs scheme was documented by De Kauwe et al. (2015),
and we only provide a brief description here. The default gs (molm−2 s−1) scheme in
CABLE is based on Leuning (1995):

gs = g0 +
a1βA

(Cs −Γ)
(

1+ D
D0

) (1)15

where A is the net assimilation rate (µmolm−2 s−1), Cs (µmolmol−1) and D (kPa) are
the CO2 concentration and the vapour pressure deficit at the leaf surface respectively,
Γ (µmolmol−1) is the CO2 compensation point of photosynthesis, and g0 (molm−2 s−1),
D0 (kPa) and a1 are fitted constants representing the residual stomatal conductance
as the assimilation rate reaches zero, the sensitivity of stomatal conductance to D,20

and the sensitivity of stomatal conductance to assimilation, respectively. In CABLE, the
fitted parameters g0 and a1 vary with photosynthetic pathway (C3 vs. C4) but not PFT,
and D0 is fixed for all PFTs. g0 is scaled from the leaf to the canopy by accounting
for leaf area index, following Wang and Leuning (1998). β represents an empirical soil
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moisture stress factor:

β =
θ−θw

θfc −θw
;β[0,1] (2)

where θ is the mean volumetric soil moisture content (m3 m−3) in the root zone, θw is
the wilting point (m3 m−3) and θfc is the field capacity (m3 m−3).

In this study we replaced Eq. (1) with the gs model of Medlyn et al. (2011) and the5

same β factor as above:

gs = g0 +1.6
(

1+
g1β√
D

)
A
Cs

(3)

where g1 (kPa0.5) is a fitted parameter representing the sensitivity of the conductance
to the assimilation rate. In this formulation of the gs model, the g1 parameter has a the-
oretical meaning:10

g1 ∝

√
Γ∗

λ
(4)

where λ (molCmol−1 H2O) is the marginal carbon cost of water use and Γ∗ (µmolmol−1)
is the CO2 compensation point in the absence of mitochondrial respiration. As a result,
g1 is inversely related to the marginal carbon cost of water (Medlyn et al., 2011).

Values of g1 for the CABLE PFTs (Fig. 1) are shown in Table 1. These have been15

compiled from a global database of stomatal conductance from 314 species across
56 field sites (Lin et al., 2015) including Arctic tundra, boreal, temperate forests and
tropical rainforest biomes. Further details can be found in De Kauwe et al. (2015).

2.3 Simulations

Two sets of simulations were carried out, the control simulation using the default Le-20

uning (1995) scheme (LEU, Eq. 1) and the experiment using the Medlyn et al. (2011)
5240
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scheme (MED, Eq. 3). ACCESS1.3b simulations cover the period 1950–2012. The first
10 years were used as a spin-up period and are not included in the analysis. Five en-
sembles were carried out for each simulation, initialized a year apart, so that the impact
of natural model variability is reduced and any signal from the change in gs is clear rel-
ative to internal model noise. Results are shown averaged over these 5 ensembles.5

The initial conditions are the same as those used by Lorenz et al. (2014).
We note that CABLE has the ability to incorporate carbon pool dynamics with nitro-

gen and phosphorus limitations and simulate leaf area index (LAI) (Wang et al., 2010),
i.e., dynamic phenology can be activated. This feature was not used here. Instead, sim-
ilar to the experimental set-up of Lorenz et al. (2014), a monthly climatology derived10

from MODIS estimates was used. This was deliberate so as to allow comparisons with
Lorenz et al. (2014) and additionally, as a first step, it is critical to first isolate the bio-
physical effects of the new gs scheme before considering the combined biophysical
and biogeochemical effects.

2.4 Benchmarking datasets15

We use a similar benchmarking data-sets to those employed by Lorenz et al. (2014)
in a prior evaluation of the ACCESS1.3b climatology of both mean and extremes of
temperature and precipitation.

Maximum (TMAX) and minimum (TMIN) temperatures were obtained from the
HadGHCND gridded daily temperature data set (Caesar et al., 2006), which is de-20

rived from near-surface maximum and minimum temperature observations from 1951
to present at a 2.75◦ latitude by 3.75◦ longitude resolution. We also used the Ex-
pert Team on Climate Change Detection and Indices (ETCCDI, http://www.climdex.
org/indices.html), which are derived from daily TMAX and TMIN. The indices chosen for
this study include the warmest seasonal maximum (TXx) and the di-urnal tempera-25

ture range (DTR, the amplitude between TMAX and TMIN). These indices are from the
HadEX2 dataset and described in detail by Donat et al. (2013). These indices were
chosen as Lorenz et al. (2014) highlighted significant under-estimation of TMAX and
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over-estimation of TMIN, leading to an under-estimation of the DTR. The ACCESS re-
sults were interpolated to the HadGHCND domain prior to comparison as they are at
a higher resolution. Seasonal means of TMAX, TMIN, DTR and TXx were computed over
the period 1960–2010.

We also tested the influence of the new scheme on precipitation using the Global5

Precipitation Climatology Project (GPCP) dataset version 2 (http://www.esrl.noaa.gov/
psd/data/gridded/data.gpcp.html). This data-set is derived from a combination of satel-
lite and rain-gauge measurements and is available at a 2.5◦ latitude by 2.5◦ longitude
resolution. The ACCESS precipitation was interpolated to the GPCP grid and seasonal
means were computed over the period 1979–2011.10

Finally, given the influence of gs on the exchange of water vapour from vegetation
to the atmosphere, we assess the influence of the new scheme on total evapotranspi-
ration (ET). While there are no direct observations of ET available at the global scale,
the LandFlux-EVAL data set (Mueller et al., 2013) provides a comprehensive ensem-
ble of global ET estimates at a 1◦ latitude by 1◦ longitude resolution, derived from15

various satellites, LSMs driven with observationally based forcing, and atmospheric re-
analysis. We used data over the period 1989 to 2005 and the LandFlux ET product was
interpolated to the ACCESS domain as it is at a higher resolution.

For all comparisons of ACCESS against the various datasets, seasonal means were
computed from each of the 5 ensembles separately, then averaged for comparison.20

3 Results

Figure 2 shows the seasonal mean differences in TMAX during the Boreal winter
(December–January–February, DJF) and summer (June–July–August, JJA) between
the MED and LEU simulations and observations over the period 1960 to 2010 (pan-
els a to d), as well as the differences between the MED and LEU simulations (panels e25

to f). All results are averaged across the 5 ensembles. The two climatologies from the
ACCESS1.3b model are very similar, and show similar large-scale biases. There are,
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for example, large biases over the Himalayas and parts of North America during DJF
and JJA, as well as Australia and South America in JJA, irrespective of whether MED or
LEU is used. Unsurprisingly, to first order, the parameterization of gs does not resolve
the large-scale biases in ACCESS1.3b. The differences between the two experiments
(MED-LEU) however demonstrate an improvement in the TMAX bias over the Boreal5

forests in JJA of up to 1 ◦C, but the positive bias over North America is increased. MED
also leads to warming, relative to LEU, of ∼ 0.3 ◦C over the regions of tropical forest
over South America and Africa. A large region of Eurasia warms with MED in DJF by
∼ 0.3 ◦C, reducing the bias in ACCESS1.3b. Figure 3 shows the same results but for
TMIN and the results are broadly similar to the TMAX results. Specifically, the inherent10

biases within ACCESS1.3b remain and the net effect of the MED gs scheme is a small
overall increase in the biases associated with TMIN. However, the simulation of TMIN is
worsened in some regions, particularly in JJA over North America, likely linked with
poor simulations of cloud (Franklin et al., 2013).

Having examined the influence of the new gs scheme on TMAX and TMIN, we now fo-15

cus on two extreme temperature indices based on TMAX and TMIN, namely, the warmest
TMAX of the year (TXx, Fig. 4) and DTR (Fig. 5). ACCESS1.3b has a systematic cold
bias in TXx in both DJF (Fig. 4c) and JJA (Fig. 4d) using LEU. In both seasons, this cold
bias commonly exceeds 10 ◦C. Replacing LEU with MED reduces this cold bias by up
to 20 % over Eurasia and parts of North America. The MED-LEU difference (Fig. 4e, f)20

is almost always positive, implying a reduced error over most of the globe using MED.
Remarkably, a large region of warm bias to the north east of the Mediterranean cools
with MED relative to LEU in JJA (Fig. 4f) reducing this bias by ∼ 20 %. While clearly
not resolving all biases in TXx, replacing LEU with MED clearly leads to improvements
and has a regional impact that helps reduce both positive and negative biases in the25

model.
One of the errors identified by Lorenz et al. (2014) was an unsatisfactory simulation

of the diurnal temperature range (DTR). Figure 5 shows little impact by switching to
MED in DJF, but in JJA there are large areas of the Northern Hemisphere, coincident
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with the boreal forests, where the 3–5 ◦C error in DTR is reduced by 10–20 %. Clearly,
using MED does not resolve ACCESS’s limitations in capturing the observed DTR, but
the magnitude of the error is reduced.

The change in the gs parameterization has the most immediate effect on vegetation
transpiration (here represented as part of the total moisture flux, evapotranspiration,5

ET). Figure 6 shows comparisons between the two experiments and the LandFlux ET
as well as the differences between the two simulations. There are two major regions
where MED leads to reduced ET. Over the boreal forests, ET is reduced by ∼ 0.1–
0.3 mmday−1 which reduces the high ET bias seen in LEU (Fig. 6c, d). MED also
reduces ET in the tropical forest regions by ∼ 0.1mmday−1 again generally reducing10

the bias seen in LEU. There are regions where the use of MED degrades the simula-
tion (relative to the LandFlux product), for example over eastern Australia in DJF and
through the croplands of western and Eastern Europe.

The changes in ET directly affect total precipitation (Fig. 7). In DJF, ACCESS1.3b
has a wet bias over Amazonia and southern Africa and these biases are reduced using15

MED. In JJA ACCESS1.3b has a wet bias over the boreal forests and a dry bias over
the region to the north west of the Mediterranean. Replacing LEU with MED reduces
this wet bias over the boreal forests by ∼ 10 % but does not resolve the bias to the north
west of the Mediterranean. A wet bias in JJA is also reduced (Fig. 7h) in areas of the
tropics. Further to affecting elements of the hydrological cycle through precipitation, the20

reduced ET also affects the terrestrial carbon balance via the net primary productivity
(NPP, Fig. 8). There is a clear reduction in NPP coincident with the Boreal Forests in
JJA (Fig. 8b) and in the tropics in both JJA and DJF (Fig. 8). There is also an increase
in NPP in JJA in the region to the north and east of the Mediterranean, consistent with
an increase in ET in this region (Fig. 6h) using MED.25
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4 Discussion

We implemented a new gs scheme within the ACCESS global climate model by modi-
fying the CABLE LSM. The new scheme, MED, has advantages over the LEU scheme
in being founded on optimization theory and utilizing a database of stomatal conduc-
tance data (Lin et al., 2015) with a reasonable, if heterogeneous, spatial coverage. The5

MED gs scheme also has an advantage that it improves the performance of CABLE’s
simulation of ET in off-line studies, particularly for boreal forests, against a wide range
of flux station observations as well as global offline simulations forced by re-analysis
(De Kauwe et al., 2015). One aim of this paper was to determine if the MED gs scheme
would show similar improvements within the ACCESS1.3b climate model.10

An advantage of using an analytical model based on optimization theory rather than
an empirical model is that it provides a foundation for future model parameterization
development. Our implementation of the optimal model has one key parameter, g1,
which is related to the marginal carbon cost of water. It is qualitatively possible to use
theoretical considerations to predict how this parameter should vary among PFTs and15

with mean annual climate (e.g., Prentice et al., 2014; Lin et al., 2015). For example,
Lin et al. (2015) demonstrated a significant relationship (r2 = 0.89) between g1 and
two long-term average (1960–1990) bioclimatic variables: temperature and a mois-
ture index representing an indirect estimate of plant water availability. This implies
that links between changing temperature and moisture could, in principle, be built into20

MED (De Kauwe et al., 2015). For example, in the future, there is the potential to build
a framework that enables ecophysiology research utilizing flux tower observations to
be more strongly coupled with global climate modelling via the use of parameterization
schemes which are more founded in observations. There is considerable likelihood
that gs schemes built on new theory and informed by observations would affect how25

the terrestrial carbon balance responded to climate change and the direct forcing by
increased atmospheric CO2.
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Our results show first and foremost, that replacing LEU with MED results in an overall
decrease in ET by 0.1 to 0.3 mmday−1 and subsequent warming signal of up to 1 ◦C,
mostly over the boreal forests. However, this does not drastically change the overall
climatology of ACCESS at the global scale. Modelling groups using parameterizations
based on approaches similar to LEU are unlikely to result in major errors. However, at5

regional scales, in particular in the Boreal Forests and to a lesser degree in the tropical
forests using MED in ACCESS does reduce systematic model biases in TMAX, in other
warm extremes and in rainfall. It is noteworthy that the largest improvements are in the
most extreme metrics used for temperature, suggesting that while MED may not make
a major impact on the mean temperature, it does affect TMAX and TMIN, and affects TXx10

quite strongly. We plan to examine the impact of using MED in the simulation of present
and future temperature extremes in forthcoming work.

Replacing LEU with MED reduces ET (Fig. 6) in the boreal forests and to a lesser
degree in the tropics. These changes are of a similar order of magnitude, but generally
smaller, as those reported by De Kauwe et al. (2015) in their off-line simulations with15

the MED gs in CABLE. This reduction in ET results from the lower g1 used in this
region which reflects a more conservative water use strategy of the vegetation (Lin
et al., 2015) and the resulting lower gs reduces ET. This reduction in ET varies between
vegetation types and in CABLE there tends to be a stronger impact on boreal regions
(coniferous evergreen forest) in comparison to grasslands and crops. All subsequent20

results are a direct consequence of this first order impact in ET. The reduction in ET
reduces the latent heat flux and by energy balance constraints, increases the sensible
heat flux. This modification to the surface energy balance leads to surface warming.
Since this tends to be amplified during the day when net radiation is higher we see
a stronger impact on TMAX than TMIN, and since the impact of reduced latent heat can25

have a proportionally stronger impact on temperature extremes we see a larger impact
on TXx. The lower latent heat flux means a lower moisture flux into the atmosphere,
which tends to reduce precipitation. The lower ET also reduces the capacity of the
vegetation to fix carbon and tends to lead to a lower net primary productivity.
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It is worth commenting on why the change in ET (Fig. 6) is generally smaller in our
coupled experiments in comparison to the off-line results reported by De Kauwe et al.
(2015). Coupling a LSM to an atmosphere introduces feedbacks; a change in ET can
impact rainfall as found in our results, but it can also impact cloud cover, incoming
solar radiation and thereby net radiation. These feedbacks are complex and examining5

the relative contributions of each component requires an explicit experimental design
and the storage of variables that we did not attempt here because it was beyond the
scope of our study. It would be useful, in the future, to examine how the change in
conductance directly affects ET in contrast to how it triggers feedbacks that indirectly
affect ET.10

We note that the differences shown here between LEU and MED predominately re-
sult from the new spatial varying g1 parameter values (Fig. 1 and Table 1), rather that
the different structures of the gs models (Eqs. 1 and 3). De Kauwe et al. (2015) used
offline global simulations to investigate the relative roles of structure vs. parameter-
isation, concluding that structure only resulted in small differences in ET estimates.15

We also note that a limitation of our work is that we use a prescribed LAI climatol-
ogy, however, this is not uncommon in global climate models. It is highly likely that the
use of prognostic LAI would result in larger differences between the two schemes and
this will be subject to future work. For example Piao et al. (2006) have shown using
a global dynamic vegetation model that changes in climate and ambient CO2 strongly20

influence greening trends in the Northern Hemisphere (> 25◦N). Our use of a pre-
scribed monthly LAI climatology does not allow for such feedbacks, and additionally,
MODIS LAI has known inaccuracies over forested regions (e.g., Shabanov et al., 2005;
De Kauwe et al., 2011; Sea et al., 2011; Serbin et al., 2013).

Finally, we note that other land surface modelling groups are also moving towards25

replacing empirical scheme of gs with schemes that explicitly account for optimal be-
haviour. For example, Bonan et al. (2014) replaced the original empirical stomatal con-
ductance model (Ball et al., 1987) within the Community Land Model with a numerical
scheme based on Williams et al. (1996), which optimizes carbon gain per unit of water
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loss while also limiting stomatal opening to prevent leaf water potential from dropping
below critical levels. This has been shown to improve simulations offline, similar to
De Kauwe et al. (2015). Our implementation differs in that we use an analytical solu-
tion, and account for soil-water limitation via the empirical scalar relationship in Eq. (2),
rather than solve for it numerically. Nonetheless, the the gs model presented here can5

be extended to other LSMs both offline and coupled, but would require a subjective
mapping of g1 to PFT classifications used by different LSM groups.

5 Conclusions

We had three goals for this paper. First, we sought to test the feasibility of using the
Medlyn et al. (2011) stomatal conductance scheme, based on optimal stomatal theory,10

within the ACCESS global climate model. We have demonstrated that this is feasi-
ble. Our second goal was to determine whether the improvements found by using the
Medlyn et al. (2011) stomatal conductance scheme in off-line simulations (De Kauwe
et al., 2015) was also found in the ACCESS1.3b coupled model. We have shown that
by reducing evapotranspiration, temperatures are increased which generally reduces15

associated biases by around 10–20 % over the Boreal forests. Maximum temperatures
are generally improved, but major error systematic biases in minimum temperatures re-
main and are in some cases made worse. This can be expected as ACCESS is known
to systematically over predict minimum temperatures, and the net effect of the MED
scheme is an overall warming due to a reduction in ET. Lorenz et al. (2014) linked the20

biases in TMIN to systematic biases in incoming longwave radiation, and hence we ex-
pect that future improvements within ACCESS’s atmospheric component will resolve
this.

The reduction in evapotranspiration also affects rainfall, generally reducing some
regional-scale biases. This also affects net primary productivity, with regions of de-25

crease (increase) in evapotranspiration corresponding to regions of decrease (in-
crease) in net primary production. The majority of these changes are clearly associated
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with boreal forest regions, but areas of the tropics and to a lesser degree areas of crop-
lands in Eurasia are also affected. Using the Medlyn et al. (2011) stomatal conductance
scheme therefore helps address improve aspects of the ACCESS1.3b model and also
helps address some of the extremes biases found by Lorenz et al. (2014). However,
while some of the systematic biases are reduced, they were not fully resolved and thus5

other major problems must exist in the ACCESS-CABLE system.
The Medlyn et al. (2011) stomatal conductance scheme is founded in ecological the-

ory and it adds skill to our global model and has the potential to be developed further
to account for physiological responses to climate change and increasing atmospheric
carbon dioxide. Given these advantages, we plan to use it in CABLE since we expect it10

provides a framework for longer-term, more flexible, more data informed and more suc-
cessful future model developments in the long-term than alternative schemes. Future
work will focus on the impact of the new scheme on future climate simulations under
different representative concentration pathway scenarios.

6 Code availability15

The CABLE source code is publicly available upon registration at https://trac.nci.
org.au/trac/cable. The modified version of CABLE with the new gs scheme can
be viewed by registered users at https://trac.nci.org.au/trac/cable/browser/branches/
Share/CABLE-2.0.1-Tagged-plus-Medlyn-Stom-Param. The ACCESS model source
code is not publicly available, but information can be found at https://accessdev.nci.20

org.au/trac/wiki/access.
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combined precipitation data were developed and computed by the NASA/Goddard Space Flight
Center’s Laboratory for Atmospheres as a contribution to the GEWEX Global Precipitation
Climatology Project. GPCP data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,
USA, from theirWeb site at http://www.esrl.noaa.gov/psd/. This study uses the LandFlux-EVAL
merged benchmark synthesis products of ETH Zurich produced under the aegis of the GEWEX5

and ILEAPS projects (http://www.iac.ethz.ch/groups/seneviratne/research/LandFlux-EVAL). All
this assistance is gratefully acknowledged.
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Table 1. Fitted g1 values for the PFTs shown in Fig. 1.

PFT g1 (kPa0.5)

Evergreen needleleaf 2.35
Evergreen broadleaf 4.12
Deciduous needleleaf 2.35
Deciduous broadleaf 4.45
Shrub 4.70
C3 grassland 5.25
C4 grassland 1.62
Tundra 2.22
C3 cropland 5.79
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Figure 1. Distribution of dominant plant functional types (PFTs) across the model domain.
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Figure 2. (a–d): mean seasonal difference in maximum temperature (TMAX) between the MED
and LEU experiments and the HADGHCND dataset (OBS) during boreal summer (JJA, left
panels) and winter (DJF, right panels), and (e–f): difference between the MED and LEU sim-
ulations. Seasonal means are computed over the period 1960–2010. Inland areas in white for
panels (a–d) represent missing data.
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Figure 3. Same as in Fig. 2 except for minimum temperature (TMIN).
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Figure 4. Same as in Fig. 2 except for the warmest maximum (TXx). Observations are from the
HADEX2 dataset and seasonal means are computed over the period 1960–2010.
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Figure 5. Same as in Fig. 4 except showing the Diurnal Temperature Range (DTR) from the
HADEX2 dataset.
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Figure 6. Same as in Fig. 2 except for evapotranspiration (ET). Multi-model estimates are from
the LandFlux (LF) dataset and seasonal means are computed over the period 1989–2005.
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Figure 7. Same as in Fig. 2 except for total precipitation. Observations are from the GPCP
dataset and seasonal means are computed over the period 1979–2011.
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Figure 8. Mean seasonal difference in net primary productivity between the MED and LEU
simulations.

5264

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/5235/2015/gmdd-8-5235-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/5235/2015/gmdd-8-5235-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Methods
	Model description
	New stomatal conductance scheme
	Simulations
	Benchmarking datasets

	Results
	Discussion
	Conclusions
	Code availability

