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Abstract.

Most global climate models parameterize separate cloud types using separate parameterizations.

This approach has several disadvantages, including obscure interactions between parameterizations

and inaccurate triggering of cumulus parameterizations.

Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types.5

Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep con-

vective cloud. Vital to the success of a unified parameterization is a general interface between clouds

and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variabil-

ity of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a

microphysics scheme.10

This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface

that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model com-

putational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results

describing the mean climate and tropical variability from global simulations are presented. The new

model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liq-15

uid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.
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1 Introduction

Most climate models today use separate parameterizations to model separate cloud types, such as

stratiform clouds, shallow cumuli, and deep cumuli. Each parameterization uses its own separate

equation set. The resulting suite of parameterizations is intended, collectively, to represent the full20

range of subgrid-scale clouds included in the climate model.

While the use of separate parameterizations for separate cloud regimes offers several advantages,

it also suffers disadvantages. First, the use of multiple, separate cloud parameterizations leads to

unnecessary complexity. Some of the complexity is of a practical sort: it is hard to understand a

suite of parameterizations written by different authors that use differing coding conventions and25

assumptions. Some of the complexity is more conceptual in nature: even if each parameterization

is simple, the interactions among the parameterizations might be complex (Zhang and Bretherton,

2008; Bretherton, 2007). Second, it is difficult to formulate, in a realistic way, the triggers that are

used to activate cumulus parameterizations. For instance, deep convection does not appear instanta-

neously; rather, in many instances, deep clouds are initiated by the gradual and continuous growth30

of shallow clouds (Grabowski et al., 2006; Wu et al., 2009). Accurately parameterizing the gradual

onset of deep convection is important for modeling tropical phenomena such as the Madden-Julian

Oscillation (e.g., Bladé and Hartmann, 1993; Benedict and Randall, 2007; Del Genio et al., 2012;

Boyle et al., 2015) and convectively coupled waves (e.g., Lin et al., 2008; Frierson et al., 2011).

To avoid such difficulties, some past researchers have parameterized two or more cloud types35

using a single equation set, thereby partly unifying the description of clouds. The greater the degree

of unification, the greater the reduction in the number of interacting parameterizations and trigger

functions.

For instance, to avoid the difficulties of coupling shallow and deep cumulus parameterizations,

some researchers have represented both cloud types using a single parameterization (Kain, 2004;40

Park, 2014a, b). However, the aforementioned parameterizations are only partly unified because

they do not include stratiform clouds; instead, those clouds must be handled by a separate parame-

terization.

To avoid the difficulties of coupling stratocumulus and shallow cumulus parameterizations, some

researchers have parameterized both cloud types with a single equation set (Lappen and Randall,45

2001; Golaz et al., 2002; Larson and Golaz, 2005; Cheng and Xu, 2006, 2008; Firl, 2009; Bogen-

schutz and Krueger, 2013). To close some higher-order terms in the equation set, these parameter-

izations make an assumption about the shape of the probability density function (PDF) of subgrid

variability. Assumed PDF parameterizations have a long history in atmospheric science (e.g., Man-

ton and Cotton, 1977; Sommeria and Deardorff, 1977; Mellor, 1977; Bougeault, 1981a, b; Lewellen50

and Yoh, 1993). For several decades, PDF parameterizations have been implemented in regional or

global models (e.g., Smith, 1990; Tompkins, 2002; Nakanishi and Niino, 2004). Recently, the Cloud

Layers Unified By Binormals (CLUBB) parameterization has been implemented and evaluated in
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two global climate models (Bogenschutz et al., 2013; Guo et al., 2014). In these implementations,

CLUBB does unify the representation of boundary layer clouds, but both implementations parame-55

terize deep convection separately. Guo et al. (2015) uses a similar configuration to Guo et al. (2014),

but also uses CLUBB to parameterize deep clouds. However, this configuration does not parameter-

ize, in a unified way, subgrid variability in ice clouds.

The configurations used by Bogenschutz et al. (2013), Guo et al. (2014), and Guo et al. (2015)

share three drawbacks. First, none of those three configurations fully unifies the description of all60

cloud variability because in all three configurations, cloud ice is not “seen" by CLUBB. Specifically,

cloud ice is not included in CLUBB’s subgrid PDF. Second, even for liquid clouds, the description

is, in certain respects, internally inconsistent. For instance, a different marginal PDF shape of cloud

water is assumed by CLUBB in order to diagnose cloud liquid water content (namely, a truncated

normal mixture) than is assumed by the microphysics in order to compute autoconversion and ac-65

cretion (namely, a gamma function) (Morrison and Gettelman, 2008). (A univariate marginal PDF

is the PDF that remains when a multivariate PDF is integrated over all variates but one.) Third,

certain aspects of the subgrid variability, such as the precipitation fraction, are treated by a micro-

physics scheme that is designed to parameterize stratiform cloud (Morrison and Gettelman, 2008)

and whose assumptions about subgrid variability may not be well suited to cumulus clouds. These70

three drawbacks might be related to certain errors seen in the simulations, such as the overestimate

of precipitable water and underestimate of cloud ice noted by Guo et al. (2015).

One key to parameterizing deep convection is accurately parameterizing the subgrid coupling

between clouds and microphysics (Emanuel, 1991; Donner, 1993). The reason is that interactions

among condensed water content, clear-air relative humidity, and precipitation evolution are strong.75

In fact, Hohenegger and Bretherton (2011) state that “the main difference between shallow and

deep convection is precipitation (both rain and snow) and its effects." If true, this hints that a PDF

parameterization that can accurately parameterize shallow convection can, in conjunction with a

suitable coupling to the microphysics, also parameterize deep convection.

Here, in order to interface clouds and microphysics, we use a Monte Carlo integration technique80

named the Subgrid Importance Latin Hypercube Sampler (“SILHS") (Larson et al., 2005; Larson

and Schanen, 2013). SILHS samples the subgrid PDFs predicted by CLUBB, thereby providing

a set of vertical profiles, or “subcolumns," of sample points. The subcolumns are then fed into a

single microphysics scheme, thereby allowing the microphysics to respond to subgrid variability in

clouds (Jakob and Klein, 1999; Jess et al., 2011; Tonttila et al., 2013, 2015). Within an individual85

subcolumn, each grid level has uniform properties (e.g. all cloudy or all clear), but collectively,

a set of subcolumns represents the subgrid variability within a grid column. This may improve the

representation of non-linear microphysical process rates (Pincus and Klein, 2000; Larson et al., 2001;

Jess et al., 2011). Subcolumn approaches have long been used for radiative transfer applications in

large-scale models (e.g., Barker et al., 2002; Pincus et al., 2003; Räisänen et al., 2004; Räisänen and90
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Barker, 2004; Räisänen et al., 2005; Pincus et al., 2006; Räisänen et al., 2007; Barker et al., 2008;

Räisänen et al., 2008).

The use of SILHS helps mitigate the three aforementioned drawbacks of the configurations of

Bogenschutz et al. (2013), Guo et al. (2014), and Guo et al. (2015). First, cloud ice is included

in CLUBB’s subgrid PDF and is sampled by SILHS, thereby driving ice microphysics with sub-95

grid variability. Second, SILHS feeds within-cloud variability directly and consistently into micro-

physics, ensuring that the same marginal PDF that is used to diagnose cloud water content is also

used to diagnose autoconversion. Third, assumptions about subgrid variability, such as those re-

garding vertical overlap of condensate and vapor, are removed from the microphysics scheme and

instead embedded in SILHS (Larson and Schanen, 2013; Storer et al., 2015). This facilitates the100

implementation of subgrid assumptions that are more general.

Here, we evaluate a new configuration of the CAM climate model that we call “CAM-CLUBB-

SILHS." It shuts off the Zhang and McFarlane (1995) parameterization of deep convection and

instead uses CLUBB to parameterize deep cumulus, shallow cumulus, stratiform liquid clouds, and

stratiform ice clouds. SILHS is used in order to feed samples of the subgrid variability into a mi-105

crophysics scheme, following the approach of Storer et al. (2015). A single microphysics scheme

is used in all cloud types. This model configuration provides a more fully unified parameterization

of clouds. The purpose of the present paper is twofold. First, it outlines the subcolumn software

framework in CAM. This software framework contains SILHS. Second, unlike Storer et al. (2015),

this paper evaluates the behavior of CLUBB-SILHS in a global context, including climatologies of110

cloud-related fields and some aspects of tropical variability.

This paper is organized as follows. Section 2 describes the CLUBB-SILHS methodology and its

implementation in CAM. Section 3 estimates the computational cost of CAM-CLUBB-SILHS. Sec-

tion 4 evaluates the mean climate versus satellite observations. Section 5 evaluates CAM-CLUBB-

SILHS’ simulation of tropical variability. Section 6 illustrates the sensitivity to the number of sub-115

columns. Section 7 summarizes the evaluation and concludes.

2 Methodology

2.1 Description of the CLUBB moist turbulence parameterization

CLUBB’s methodology is described in Golaz et al. (2002), and an up-to-date listing of CLUBB’s

equations is contained in Storer et al. (2015). CLUBB parameterizes subgrid turbulence in both clear120

and cloudy air, and subgrid variability in all cloud types, including stratiform, shallow cumulus, and

deep cumulus.

If CLUBB’s single equation set is to represent turbulence and all cloud types, the equation set

must be sufficiently rich and general. CLUBB’s equation set includes prognostic equations for var-

ious moments of the vertical air velocity w, the liquid water potential temperature θl, and total125
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water mixing ratio (vapor plus liquid cloud water) rt. The grid-averaged means of these variables

are prognosed by the host model, CAM. CLUBB adds prognostic Reynolds-averaged equations for

the following moments: w′θ′l, w′r
′
t, w′2, w′3, r′2t , θ′2l , r′tθ′l (Golaz et al., 2002; Larson and Golaz,

2005). CLUBB parameterizes momentum fluxes using down-gradient diffusion, but CLUBB does

not explicitly parameterize subgrid-scale mesoscale convective organization (e.g., Moncrieff, 1992;130

Donner, 1993; Moncrieff and Liu, 2006).

These prognostic equations include several higher-order moments that are unclosed. To close

them, CLUBB integrates them over a PDF of subgrid variability. CLUBB contains a multivariate

subgrid PDF for rt, θl, w, cloud ice (mass) mixing ratio ri, and cloud ice number mixing ratio Ni.

The inclusion of rt and θl allows both moisture and temperature fluctuation enter the diagnoses of135

cloud fraction and cloud water mixing ratio. The inclusion ofw allows the buoyancy flux,w′θ′v , to be

computed consistently with cloud fraction and cloud water. The inclusion of ice in the PDF allows ice

processes to be coupled to the drafts and thermodynamics on the subgrid scale. The marginals of w,

rt, and θl are normal mixtures, that is, the sum of two Gaussians. This PDF shape has been shown

to compare favorably with aircraft observations and large-eddy simulations of stratiform, shallow140

cumulus, and deep cumulus clouds (Larson et al., 2002; Bogenschutz et al., 2010). The marginal

PDF for ri and Ni is a delta double-lognormal. That is, the PDF shape for ice is the sum of a delta

function representing the ice-free area and the sum of two lognormal distributions. This PDF shape

has recently been evaluated against large-eddy simulations (Griffin and Larson, in preparation). The

within-ice standard deviation of ri is assumed to be proportional to the within-cloud mean (Lebo145

et al., 2015). The same is true for Ni. The correlations among hydrometeors — including mass and

number mixing ratios of liquid and ice — are prescribed as in Storer et al. (2015).

2.2 The interface between clouds and microphysics: SILHS

CLUBB computes the transport of hydrometeors and production of cloud water via saturation ad-

justment, but CLUBB must be coupled to a microphysics scheme in order for other microphysical150

process rates to be computed. The coupling between clouds and microphysics is accomplished by

use of a Monte Carlo sampler called “SILHS". SILHS’ methodology is described in Larson et al.

(2005) and Larson and Schanen (2013). SILHS draws n samples from the subgrid PDF at each grid

level. When the liquid cloud fraction is moderate, half the samples are drawn from liquid cloud and

half are drawn from the remainder of the grid box, with appropriate weighting, using the method155

described in Larson and Schanen (2013). The n samples at each grid level are used to construct n

vertical profiles of sample points, or subcolumns. In order to parameterize cloud overlap, non-zero

vertical correlation between vertical grid levels is allowed. The vertical correlation between samples

is assumed to drop off exponentially with vertical distance (Larson and Schanen, 2013).

Each subcolumn is fed into Version 1.0 of the Morrison-Gettelman (MG1) microphysics scheme160

(Morrison and Gettelman, 2008). MG1 provides a simplified initial test for the subcolumn method-
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ology because MG1 diagnoses rain and snow. Therefore, rain and snow are not inputs to MG1, and

hence the subcolumns need not contain rain or snow variates. In the future, we hope to use SILHS

with Version 2.0 of Morrison-Gettelman (MG2) microphysics scheme (Gettelman and Morrison,

2015; Gettelman et al., 2015). MG2 prognoses rain and snow, and hence using it will require us to165

draw subcolumns with rain and snow. Although this will add complexity and expense, the higher-

dimensional PDF will offer greater control over processes that involve two or more hydrometeor

species, such as accretion of cloud water by rain water.

When subcolumns are used, MG1’s native assumptions about subgrid variability, including a

gamma distribution of cloud water, are shut off, and MG1 is made to assume that each grid level170

has uniform properties, e.g. is overcast or clear. MG1 calculates time tendencies for cloud ice, cloud

liquid water, water vapor, and other relevant microphysical variables. One set of microphysical ten-

dencies is calculated per each subcolumn. The tendencies are then averaged in order to produce a

grid-mean tendency. The grid-mean tendencies are then fed into the host model’s grid-mean equa-

tions for microphysical species, temperature, and moisture. The averaging is weighted appropriately175

to account for the fact that different subcolumns may represent different-sized areas of a grid column,

as described in Larson and Schanen (2013).

Ice processes are coupled to CLUBB’s grid-mean thermodynamical variables, θl and rt, through

the microphysics. Subcolumns that include subgrid variability in vapor, liquid, and ice are fed into

the microphysics, and the effects of ice, such as the Bergeron effect, are computed by the micro-180

physics at the subgrid scale. These effects of ice are expressed in terms of microphysical tendencies

of vapor, liquid, and ice. These tendencies are used to update θl, rt, and ri. These updated values

influence ice during the subsequent time step. In this sense, ice and liquid processes interact on

the subgrid scale. Although information about the subgrid PDF of ice is contained within CLUBB,

SILHS is needed in order to carry out the subgrid (Monte Carlo) integration of complex, non-linear185

ice microphysical processes.

Although CLUBB is substepped with a 5-minute time step, MG1 is called with a 30-min (“physics")

time step. At each physics time step, new SILHS sample points are drawn from CLUBB’s PDF from

CLUBB’s most recent substep. The subcolumn-averaged microphysical tendencies are fed back into

the host model at the end of the physics time step. SILHS retains no memory of sample points from190

one time step to the next. Rather, the memory is retained within CLUBB’s prognosed moments.

2.3 Comparison of CLUBB-SILHS with other modeling techniques

Now that CLUBB-SILHS’ methodology has been described, we pause and briefly contrast CLUBB-

SILHS with other methods.

First, we compare and contrast CLUBB-SILHS with the eddy-diffusivity mass-flux (EDMF) ap-195

proach (e.g., Soares et al., 2004; Siebesma et al., 2007; Neggers et al., 2009; Neggers, 2009; Sušelj

et al., 2012, 2013, 2014). Broadly speaking, two types of grid-box averaging ought to be performed,
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explicitly or implicitly, in large-scale models: 1) grid averaging of subgrid turbulent fluxes, and

2) grid averaging of source terms, such as microphysical tendencies. Whereas CLUBB prognoses

the turbulent fluxes of moisture and heat content based on the parameterization of each individual200

term in the flux budget, EDMF diagnoses those turbulent fluxes based on physical considerations.

Whereas CLUBB-SILHS averages microphysical tendencies by Monte Carlo integration, EDMF per

se delegates the averaging of those tendencies to other parameterizations. CLUBB-SILHS is more

expensive than EDMF, but CLUBB-SILHS’ foundation in PDFs facilitates the consistent calcula-

tion of, e.g., cloud fraction and virtual potential temperature, and allows the global use of a single205

microphysics scheme for all clouds.

Second, we distinguish CLUBB-SILHS from methods that alter the grids on which the equations

are solved. We consider two examples of such methods. One is the Multiscale Modeling Framework

(MMF, Grabowski (e.g., 2001)). It embeds a convection-permitting model within each grid column

of a climate model, thereby unifying the description of cloud features larger than about 4 km in the210

horizontal extent. Another is the method of Yano et al. (2005), which spectrally decomposes the

equations into wavelet modes, and thereby unifies the description of those cloud features that are

resolved by the wavelet models. These two methods are more akin to nested gridding or variable-

resolution gridding techniques than to parameterizations such as CLUBB. These two methods have

the advantage of containing information about the horizontal spatial arrangement of cloud parcels,215

but they are computationally expensive. For instance, a standard MMF configuration is on the order

of 180 times slower than conventional climate models (Khairoutdinov and Randall, 2001).

Finally, we note that CAM-CLUBB-SILHS deviates from common practice in microphysical pa-

rameterization. Namely, climate models typically use separate microphysics schemes for separate

cloud types, such as stratiform and cumulus clouds. For instance, a relatively sophisticated micro-220

physics scheme might be used in stratiform cloud, and a simpler microphysics scheme might be

used in a mass-flux parameterization (e.g., Donner et al., 2011; Neale et al., 2012). In contrast,

CAM-CLUBB-SILHS uses a single microphysics scheme, MG1, in all cloud types. Although we

have previously mentioned some advantages of using a single, unified parameterization for clouds

and turbulence, there are also advantages to using a single, unified scheme for microphysics. For in-225

stance, use of a single microphysics scheme avoids complexity and allows aerosol effects on clouds

to be parameterized in all cloud types.

2.4 The subcolumn software framework in CAM

The subcolumn software framework in CAM is a newly developed piece of infrastructure that allows

subcolumn samplers, such as SILHS, to feed subcolumn values from clouds to microphysics. The230

subcolumn framework will be available publicly in the release of CAM 5.4 and later versions, and

is described in Appendix A.

The call sequence involving subcolumns is as follows:
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1. CLUBB calculates a multivariate PDF that contains information about the subgrid variability

of temperature, vapor, cloud liquid (mass) mixing ratio, cloud droplet number mixing ratio,235

cloud ice (mass) mixing ratio, cloud ice number mixing ratio, and vertical velocity.

2. The subcolumn software framework passes information about CLUBB’s PDF to the SILHS

sampler.

3. SILHS draws subcolumn profiles from CLUBB’s PDF. Each subcolumn includes all the afore-

mentioned variates in CLUBB’s PDF. The subcolumn framework creates a new model state240

data-structure with these profiles.

4. Microphysics computes tendencies for all microphysical variates for each subcolumn, on the

assumption that each subcolumn is horizontally uniform (e.g., overcast or cloud-free). Aerosol

tendencies are not computed on subcolumns.

5. The subcolumn tendencies are averaged together to obtain a grid-mean tendency. This averag-245

ing is done by the subcolumn framework using weights provided by SILHS.

6. The grid-mean tendency is applied to the grid-scale values in each column. Energy and water

conservation checks are performed.

In order to visualize the flow of the calculations in CAM-CLUBB-SILHS, a schematic is provided

in Fig. 1.250

In order to ensure conservation of water and energy, the version of CAM-CLUBB-SILHS pre-

sented here modifies the sample values such that the weighted mean of all samples is constrained

to be the same as the grid-mean value. In the limit of many sample points, the sample mean of the

subcolumns converges to the grid mean seen by CLUBB. With a finite number of samples, however,

the sample mean will in general differ from the grid mean. If, hypothetically, microphysics were255

evaluated on a set of samples whose mean exceeded the grid mean, the averaging could produce a

mean drying tendency that is larger than the amount of water actually present in the grid column,

even though the microphysics guarantees that each subcolumn individually returns non-negative val-

ues of water. If this excessive tendency were applied to the grid mean, the resulting negative water

would be reset to zero by the energy checker, and a spurious source of water would be created. We260

prevent this from occurring by scaling the subcolumn values at each level and each time step by a

constant factor, so that the weighted mean of the subcolumns exactly matches the grid-mean value

at that point. The scaling occurs after SILHS has drawn sample values but before those values have

been fed into the microphysics. This scaling has the undesirable side effect of effectively reducing

the standard deviation of the subgrid PDFs. However, CLUBB’s assumption that the standard devia-265

tion is proportional to the mean has uncertainty regardless of whether any scaling is done. Other than

this scaling, no upper limit is placed on the values of the samples. We constrain the means of water
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vapor, liquid and ice mass mixing ratio, and liquid and ice number mixing ratio, but not temperature

and vertical velocity.

2.5 Configuration of CAM simulations270

All of the CAM-CLUBB-SILHS simulations presented here are based on the CAM 5.3 model code

with the addition of the subcolumn framework. Our code branched from the CAM development

trunk at tag 5_3_38. We use CLUBB and SILHS revision 7508 in these simulations. The simula-

tions presented here are uncoupled atmosphere-only runs, using prescribed climatological sea sur-

face temperatures as a data ocean (CESM component set F_2000). Unless otherwise stated, all of275

our simulations use 2-degree resolution, 30 vertical grid levels, and 10 subcolumns. All of our sim-

ulations use the Finite Volume dynamical core and an 1800-second physics time step. None of the

CAM-CLUBB-SILHS simulations uses the Zhang and McFarlane (1995) deep convection scheme.

Table 1 details the differences in physical parameterizations between CAM 5.3 and CAM-CLUBB-

SILHS.280

3 Computational cost

Simulations were performed on the Yellowstone supercomputer administered by the National Center

for Atmospheric Research (NCAR) (Computational and Information Systems Laboratory, 2015).

Estimates of the computational cost of running different configurations of CAM-CLUBB-SILHS are

shown in Table 2. A configuration without subcolumns but with CLUBB handling all convection is285

about 63% more expensive than basic CAM 5.3 in terms of total wall clock time. Using 4 subcolumns

increases the cost another 25%, and using 10 subcolumns adds 57%. This implies a cost of about 6%

per subcolumn.

It is currently unknown how much the cost per subcolumn can be reduced by optimization. An-

other way to reduce the cost is to draw more representative subcolumns, so that fewer subcolumns290

are needed. In the future, we will evaluate a new sampling method that produces equal accuracy with

about half as many subcolumns (Raut and Larson, 2015).

These test runs for timing do not attempt to vectorize subcolumn calculations. Since subcolumns

do not communicate with each other, they can be efficiently parallelized. For this reason, subcolumn-

based methodologies are well suited to take advantage of vector processing and the next generation295

of high-performance computers.

4 Mean climate

This section evaluates the time-averaged climatology simulated by CAM-CLUBB-SILHS. We com-

pare three versions of CAM — CAM-CLUBB-SILHS with 2-degree horizontal resolution, CAM-

CLUBB-SILHS with 1-degree horizontal resolution, and CAM 5.3 with 2-degree horizontal resolu-300
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tion — to a range of observational datasets that are summarized in Table 3. More information on each

observational field, including specific references and discussion of observational uncertainties, can

be found online with the National Center for Atmospheric Research (NCAR) Climate Data Guide at

https://climatedataguide.ucar.edu/. In all figures in this section, the first row of plots shows the total

field, and the second row shows differences from observations (model - obs).305

Total surface precipitation rates for the three model versions and the Global Precipitation Clima-

tology Project (GPCP) observations are presented in Fig. 2. CAM 5.3 exhibits a moderate, spurious

double Inter-Tropical Convergence Zone (ITCZ), that is, a double band of precipitation in the In-

dian Ocean, and, to a lesser extent, in the Equatorial Pacific. Both versions of CAM-CLUBB-SILHS

produce a single band of rain through the tropics, thereby reducing the double-ITCZ bias. How-310

ever, CAM-CLUBB-SILHS’ precipitation is too intense and its ITCZ is too narrow, as compared to

GPCP observations. The overall pattern of precipitation is similar between the 2-degree and 1-degree

simulations, but the RMSE increases in the 1-degree simulation due to noise in the rain rate field.

CAM-CLUBB-SILHS slightly improves the mean climatological column-integrated water vapor

(Fig. 3), as compared to NVAP observations. CAM 5.3’s overestimate of precipitable water is re-315

duced in both the CAM-CLUBB-SILHS 2-degree and 1-degree simulations. The 2-degree and 1-

degree simulations resemble each other, with the 1-degree simulation providing a closer match to

observations. Furthermore, the bias in precipitable water for the 1-degree simulation is reduced by a

factor of 4 as compared to the results of Guo et al. (2015). The improvement may be related to the fact

that SILHS contains a detailed representation of hydrometeor/vapor overlap (Larson and Schanen,320

2013; Storer et al., 2015), which influences the evaporation or accretional growth of precipitation as

it falls to the ground or ocean (Jakob and Klein, 1999).

The top-of-the-atmosphere (TOA) long-wave cloud forcing (LWCF) for the three models is com-

pared to observations in Fig. 4. Both versions of CAM-CLUBB-SILHS have smaller bias and lower

RMSE in LWCF than does CAM 5.3. Furthermore, CAM-CLUBB-SILHS’ bias is about a factor325

of 4 less than that of the simulation of Guo et al. (2015). The representation of LWCF in CAM-

CLUBB-SILHS is aided by the fact that SILHS samples within-cloud variability of ice and feeds

it into the microphysics scheme. Within-cloud subgrid-scale variability in ice is important because

several ice processes are non-linear (Morrison and Gettelman, 2008).

The use of CLUBB-SILHS improves the TOA short-wave cloud forcing (SWCF) (Fig. 5). CAM330

5.3 produces excessively reflective clouds over tropical land masses, probably because the deep con-

vective microphysics does not precipitate out sufficient liquid cloud water. Use of CAM-CLUBB-

SILHS, however, mitigates the excessive reflectivity of deep cumuli. The improvement may be re-

lated to the fact that accurate parameterization of the SWCF of deep cumuli requires accurate cou-

pling of subgrid variability of clouds and precipitation (which in CAM-CLUBB-SILHS is handled335

by SILHS) and also requires accurate parameterization of deep convective microphysics itself (which

in CAM-CLUBB-SILHS is handled by MG1).
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The total grid-box cloud fraction for the three models and observations is presented in Fig. 6.

Both versions of CAM-CLUBB-SILHS have a slightly lower cloud fraction (by about 5%) than do

CAM 5.3 or the observations. This is largely due to a lower cloud fraction throughout the tropics and340

subtropics in CAM-CLUBB-SILHS.

CAM-CLUBB-SILHS has about 35% more total grid-mean liquid water path (LWP) than does

CAM 5.3, improving the agreement with observations (Fig. 7). It is notable that CAM-CLUBB-

SILHS improves (increases) LWP without degrading (increasing the magnitude of) SWCF. How do

the clouds in CAM-CLUBB-SILHS increase in water mass without increasing in reflectivity? A first345

reason is that CAM-CLUBB-SILHS’ cloud fraction is slightly decreased in the Tropics, as noted

earlier. The decrease in cloud fraction, coupled with the increase in LWP, indicates that within-cloud

cloud liquid water is increased in CAM-CLUBB-SILHS, either because the cloud liquid water has a

more adiabatic profile, is more vertically stacked, or is more temporally intermittent. This “piled-up"

vertical structure of LWP allows more solar radiation to reach the ocean or land surface (not shown)350

and thereby leads to reduced cloud reflectivity per unit of LWP. A second reason is that CAM-

CLUBB-SILHS’ cloud droplet effective radius is increased (not shown), thereby decreasing the

reflectivity per unit of within-cloud LWP. Accurate simulation of droplet radius in deep convection

requires accurate formulation of microphysics, which in CAM-CLUBB-SILHS is handled by the

MG1 microphysics.355

Figure 8 shows the Taylor Score diagram for CAM 3.5, CAM 5.3, and 2-degree CAM-CLUBB-

SILHS (Taylor, 2001). CAM-CLUBB-SILHS is competitive with CAM 5.3 on most metrics, but has

a higher RMSE in land rainfall, ocean rainfall, and the Pacific surface stress. The fact that Pacific

surface stress is degraded suggests that CLUBB’s formulation of vertical momentum flux, which is

based on downgradient diffusion, needs to be modified in future work.360

Table 4 shows the top of the atmosphere (TOA) global mean values for several radiation and

energy balance terms, with mean values calculated from the observational datasets described in Table

3 and estimated uncertainties from Stephens et al. (2012). Unlike CAM 5.3, CAM-CLUBB-SILHS

has not yet been tuned for top of model (TOM) radiative balance. Such tuning will be necessary

before coupled simulations are attempted.365

The differences between CAM-CLUBB-SILHS at 2-degree or 1-degree horizontal resolution are

minor in the both globally averaged radiation (Table 4) and in the spatial patterns of radiation and

cloud fields (Figs. 3 to 8). This suggests that CAM-CLUBB-SILHS is relatively insensitive to small

changes in horizontal resolution, aside from localized phenomena such as near-coastal marine stra-

tocumulus clouds. In CAM-CLUBB-SILHS, the treatment of subgrid variability is removed from370

the microphysics and handled instead by CLUBB and SILHS. This removes one potential source of

sensitivity to grid scale.
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5 MJO and tropical variability

The outgoing longwave radiation (OLR) power divided by the background spectrum for various

zonal wave numbers and frequency (as in Wheeler and Kiladis (1999) Fig. 3b) is shown in Fig. 9 for375

CAM 5.3, CAM-CLUBB-SILHS, and observations. This figure shows that, as compared to CAM

5.3, CAM-CLUBB-SILHS has increased power in the low-wavenumber, low-frequency, eastward-

propagating region of the spectrum associated with the Madden Julian Oscillation (MJO). The MJO

power is not as strong as in the observations, and the frequency is slightly too high. The power

associated with Kelvin waves is also increased in CAM-CLUBB-SILHS as compared to CAM 5.3,380

and compares well to the observations. However, CAM-CLUBB-SILHS has too much power in the

high-frequency, westward-propagating side of the spectrum often associated with large convective

systems advected westward by the mean flow (Wheeler and Kiladis, 1999).

Figure 10 shows the 20-80 day bandpass filtered precipitation and U 850 hPa winds at a given

lag relative to a composite MJO passage and at a given Longitude (top) and Latitude (bottom). The385

MJO precipitation for CAM-CLUBB-SILHS is weaker than both the observations and CAM 5.3, but

shows eastward propagation at the correct phase and speed. The overall coherence and structure of

the MJO is much better in CAM-CLUBB-SILHS than in CAM 5.3. Figure 10 indicates that CAM

5.3 has primarily westward propagation of disturbances at this scale and has westerly winds nearly

in phase with the maximum in precipitation. In contrast, CAM-CLUBB-SILHS simulates eastward390

propagation, with eastward winds leading the precipitation and westward winds following, as seen

in the observations.

In order to investigate differences in tropical convective processes between CAM 5.3 and CAM-

CLUBB-SILHS, Fig. 11 shows average profiles of relative humidity, total physics moisture tendency

and total physics temperature tendencies per value of rain rate for latitudes between 15 north and 15395

south and longitudes between 60 east and 180 east (the Indian Ocean and West Pacific Warm Pool).

These are similar to diagnostics used to evaluate MJO fidelity in Thayer-Calder and Randall (2009),

Kim et al. (2009), Xavier (2012), and Kim et al. (2014). All of these studies stress the importance

of a smooth, gradual build-up in moisture from shallow convection (and light precipitation) to deep

convection (and intense precipitation).400

In observations, and in most models with a realistic MJO simulation, deep convection occurs in

a nearly saturated column (Bretherton et al., 2004; Kim et al., 2009; Halloway and Neelin, 2009).

Figure 11 shows that CAM 5.3 does not produce rain rates as intense as those simulated in CAM-

CLUBB-SILHS; thus the right-most profiles are missing. However, both models have nearly sat-

urated profiles for the most intense rain rates that do occur. CAM-CLUBB-SILHS has a deeper405

boundary layer with higher relative humidity for mid-range precipitation values (between 0.5 and

10 mm day-1) than CAM 5.3. The relative humidity contours also show a smoother transition be-

tween light and intense precipitation than CAM 5.3. The transition from 80% relative humidity in

the boundary layer to near saturation around 11 mm day-1 in CAM 5.3 is more abrupt than reanal-
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ysis shown in similar results from Kim et al. (2009) Fig. 13 and Xavier (2012) Fig. 3. This abrupt410

transition may be an ill effect of poor deep convection triggering function. In contrast, the unified

convection in CAM-CLUBB-SILHS produces a smooth deepening of the boundary layer into a fully

saturated column at high rain rates.

Figure 11 also shows the total physics moisture and temperature tendencies for both models.

CAM-CLUBB-SILHS shows strong moistening in shallow convective layers that transitions smoothly415

to intense drying through the entire column for deep convection. Similarly, the temperature ten-

dencies smoothly change from low level heating, to convection rising in depth, to intense heating

through nearly the entire column. These profiles resemble results for the SP-CAM presented in

Thayer-Calder and Randall (2009) Figs. 4 and 9. The SP-CAM has been shown to simulate a realis-

tic MJO (Khairoutdinov et al., 2008; Benedict and Randall, 2009), and so producing similar results420

in these diagnostics is promising.

In contrast, CAM 5.3 seems to have two main regimes. In the first, shallow convection produces

light moistening tendencies above and below a layer of cloud-related drying around 900 hPa. This

cloud layer produces a positive temperature tendency above a layer of cooling for all precipitation

rates between 0.0003 mm day-1 and 2.5 mm day-1. Past this point, there is an abrupt transition to con-425

vective drying and warming below 700 hPa, and then to a full column of drying above about 30 mm

day-1. However, unlike CAM-CLUBB-SILHS, the most intense precipitation in CAM 5.3 has strong

heating only above 600hPa. Again, the transition in moistening and heating rates is more abrupt than

that seen in similar plots by Thayer-Calder and Randall (2009). There is a clear signal in CAM 5.3

of an unrealistic transition from convection handled by the shallow/stratiform parameterizations to430

convection produced by the Zhang and McFarlane (1995) deep convection parameterization.

There are still deficiencies in the simulation of the MJO by CAM-CLUBB-SILHS, but our unified

parameterization of clouds produces promising improvements in the build-up of tropical moisture

and the transition from shallow to deep convection. Boyle et al. (2015) show that an acceptable MJO

in CAM 5.3 can be produced with tuning changes, but only at the expense of the mean climate.435

Our structural changes to CAM 5.3 have, in one and the same simulation, produced a realistic mean

climate and improved tropical variability.

6 Subcolumn impact

In order to evaluate the impact of the number of subcolumns on these simulations, we performed

four sensitivity experiments. All four simulations use the exact same settings and tuning parameters440

as the main 20-year, 2-degree simulation described in Sect. 2.5. In our No Subcolumns simulation,

we turned off the subcolumn sampler (SILHS), fed CLUBB’s cloud fraction into MG1 microphysics,

and enabled MG1’s assumptions about subgrid variability that are operative in CAM5.3, including

a subgrid integration over cloud liquid water. The deep convection parameterization remains turned
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off here. This simulation indicates how CAM5.3 would behave if it used CLUBB as a unified pa-445

rameterization and it used MG1’s subgrid assumptions, developed for stratiform clouds. The three

other simulations varied the number of subcolumns from 4 to 10 to 50. Because of restrictions in

the SILHS importance sampling algorithm (Larson and Schanen, 2013), the number of subcolumns

must always be divisible by two.

As expected, the simulation without subcolumns produces an unrealistic climate. Figure 12 shows450

that the No Subcolumns simulation has very low longwave cloud forcing, and Table 4 shows this

simulation has the highest OLR, largest radiative imbalance, and greatest error in SWCF. This is

likely because the convection is not penetrating as deeply into the atmosphere, and the clouds are

not cold and icy enough. This is supported by the large shortwave cloud forcing for the simulation

(Table 4), which has a high bias and RMSE in Fig. 13. Figure 14 shows that this simulation has an455

even lower LWP than that of CAM 5.3.

The simulation with only four subcolumns shows marked improvement over the No Subcolumns

simulation. Table 4 shows a large decrease in both net solar TOA flux and OLR, with reasonable

values of LWCF, but a lower SWCF corresponding to brighter clouds. This is also seen in Fig. 13,

where the low bias in SWCF is distributed over all oceans. This low bias in SWCF is tied to the460

higher cloud LWP for this simulation (Fig. 14). The 4-subcolumn simulation appears to have a lower

precipitation efficiency than the 10-subcolumn simulation. The reason, we speculate, is that use of a

limited number of subcolumns leads to poor sampling of the tails of the distribution, which is where

precipitation forms and grows.

The 10- and 50-subcolumn simulations are similar, suggesting that climatological averages are465

fairly close to converged even when only 10 subcolumns are used. Table 4 shows that increasing to

50 subcolumns decreases the OLR by 1 W m-2 and increases the net Solar flux by 0.5 W m-2. Figure

12 shows that the LWCF is very similar between the 10- and 50-subcolumn runs. Both simulations

have similar SWCF (Fig. 13) and LWP (Fig. 14). The fact that LWP decreases when the number of

subcolumns is increased to 50 supports the hypothesis that increasing subcolumns increases precip-470

itation efficiency, although there is diminishing effect after 10 subcolumns.

7 Summary and Conclusions

This paper evaluates a version of CAM, “CAM-CLUBB-SILHS", that uses a single equation set to

parameterize all cloud types, including shallow convective, deep convective, and stratiform liquid

and ice clouds. The equation set is CLUBB’s set of equations for higher-order moments. CLUBB475

uses the higher-order moments to construct a multivariate subgrid PDF, which, in turn, is sampled

by SILHS. The samples are then used to drive a single microphysics scheme, MG1, that acts on all

cloud types. In CAM-CLUBB-SILHS, clouds are parameterized in a more fully unified way, and so

are microphysical processes.
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The use of a single, multivariate subgrid PDF fosters consistency in the sense that all cloud and480

microphysical processes see the same subgrid PDF. In this paper, the PDF has been extended to

include cloud ice mass and number, thereby incorporating subgrid variability in ice processes.

As compared to CAM5, the most important degradation in the CAM-CLUBB-SILHS simulations

is the root-mean-square error in surface precipitation rate. In particular, the surface precipitation field

is stronger in the precipitating regions than that observed by satellite. However, several aspects of485

the simulations have been improved. We list the improvements here, even though it is difficult to

pinpoint their causes.

First, CLUBB-SILHS slightly reduces CAM5’s overestimate of precipitable water. This may be

related to the fact that CLUBB-SILHS contains a detailed representation of vertical overlap, which

affects the relative rates of evaporation and accretional growth of precipitation.490

Second, CLUBB-SILHS improves LWCF. In general, CLUBB-SILHS offers a more detailed rep-

resentation of subgrid variability in ice because cloud ice mass and number mixing ratio are included

in the subgrid PDF. The inclusion of ice in the PDF, in turn, allows subgrid variability in ice to drive

ice-related microphysical processes.

Third, CLUBB-SILHS simultaneously improves the simulation of both LWP and SWCF. In CAM5,495

LWP is underestimated by almost a factor of 2, and deep convective clouds are too reflective over the

tropical continents. In CAM-CLUBB-SILHS, LWP is increased without unduly increasing the mag-

nitude of SWCF. In part, this is related to the fact that CAM-CLUBB-SILHS predicts smaller cloud

fraction. That is, CAM-CLUBB-SILHS’ liquid water content is more vertically and/or temporally

correlated and less horizontally extended, allowing more LWP to be present without causing exces-500

sive cloud albedo. In addition, in CAM-CLUBB-SILHS, the cloud liquid droplet radius is increased,

thereby reducing reflectivity of clouds.

Fourth, although CLUBB-SILHS underestimates MJO wave activity, it improves (strengthens) the

spectral power associated with the MJO and convectively coupled Kelvin waves. The improvement

may be related to the fact that CLUBB-SILHS is a unified parameterization in which there is no505

categorization of clouds nor a cumulus trigger function. This allows for a smoother, more realistic

transition between shallow and deep convection in the tropics.

The simultaneous improvement of LWP, SWCF, and tropical power spectrum is significant. Use of

automated parameter estimation reveals that although CAM5’s MJO can be improved by changes in

parameter values, the improvement comes at the expense of the simulated climatology, including the510

absorption of short-wave radiation (Boyle et al., 2015). This suggests that, in order to simultaneously

improve CAM 5.3’s MJO and mean state, structural modifications to the parameterization suite are

required. The use of CLUBB-SILHS is one possible structural modification.

The results are relatively insensitive to an increase in resolution from 2◦ to 1◦. Avoiding unde-

sirable grid-scale sensitivity is aided by the fact that CAM-CLUBB-SILHS does not require the515

microphysics scheme to internally account for resolution changes. Instead, any model awareness of
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horizontal resolution is contained in CLUBB and is communicated to the microphysics via SILHS.

As cloud-resolving resolutions are approached, CLUBB is designed to gradually shut itself off by

reducing its turbulent dissipation time scale (Larson et al., 2012). Whether in practice the output of

CAM-CLUBB-SILHS proves to be sensitive to significant changes in resolution is left for future520

work.

Although acceptable results can be found with as few as four sample points per grid box and

physics time step, the results are moderately sensitive to the number of sample points. This suggests

that climate simulations are sensitive to the details of subgrid variability within clouds and how such

variability is communicated to the microphysics. Therefore, it is worth investigating subgrid integra-525

tion methods, whether they be Monte Carlo methods or alternative methods. One alternative method

is analytic integration, which is computationally inexpensive but is restricted to simple microphysical

formulations (Morrison and Gettelman, 2008; Larson and Griffin, 2013; Griffin and Larson, 2013).

Another alternative method is deterministic quadrature, which requires somewhat intrusive software

changes but is more generally applicable than analytic integration (Golaz et al., 2011; Chowdhary530

et al., 2015).

Each subcolumn that is added increases the total model computational cost by about 6%. This cost

is reasonable, considering the wealth of detail that is output by subcolumns.

Much further unification of parameterizations of subgrid variability is possible in the future. Al-

though CLUBB-SILHS unifies the parameterization of subgrid-scale variability in clouds and feeds535

that information into a microphysics scheme, that information is not fed consistently into aerosol,

radiative, or land surface processes. That extension is left for future work.

8 Code availability

The model code used in these simulations is stored within the CAM development repository and

is available upon registration and request from the corresponding author. Results in this paper are540

based on tag subcol16_SILHS_cam5_3_38, which is not a publicly released version of CAM.

CLUBB and SILHS source code is publicly available at http://clubb.larson_group.com.

Appendix A: CAM subcolumn implementation

A1 Description of subcolumn implementation

Subcolumns were implemented in CAM to assist in the study of subgrid-scale physics. The imple-545

mentation supports both studies based on spatial subdivision of a physics column and studies based

on statistical sampling of subgrid variability (e.g., SILHS). Other features of the CAM implementa-

tion of subcolumns are:

– Use subcolumns to study subgrid-scale physics in a select subset of physics parameterizations.
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– Subcolumn data may be shared between parameterizations (for example, passing microphysics550

subcolumns to the radiative transfer scheme).

– The subcolumn scheme (see below) may specify a different number of subcolumns per grid

column (e.g., 15 subcolumns per grid column in the tropics, 2 elsewhere).

– The memory layout provides for efficient, threaded performance and seamless use in current,

portable code layers (see Fig. A1).555

– Subcolumn data may persist across time steps.

– If subcolumns are not invoked, the basic model state is not altered.

– Parameterizations themselves do not need to know about subcolumns because information is

passed at the interface and driver levels.

– Subcolumn information can be output for analysis.560

Subcolumns in CAM are considered static: once the number of subcolumns in any grid column is

set at the beginning of simulation, this number should not be changed. The subcolumn framework

supports only instantaneous history output of subcolumn fields. Currently, the only CAM physics

parameterization that accepts subcolumn input is the Morrison-Gettelman microphysics(Morrison

and Gettelman (2008)). However, the software framework allows subcolumns to be applied to other565

parameterizations. A key goal is to apply subcolumns uniformly across the column physics: for

example, currently there are separate subcolumn generators for radiation and satellite simulators in

CAM, these could be made consistent with this framework.

Use of subcolumns begins with sampling or generation of subgrid fields based on the current

physics state. In this way, a complete state on subcolumns is passed to the parameterization. The570

sampling can occur by any method (in this case SILHS) and for arbitrary fields. Parameterizations

then use these fields to produce subgrid tendencies. Finally, the subgrid state and tendencies are

averaged back to the grid scale. The subcolumn “gather” or averaging routines can be customized

so that averaging can be performed using weights or masking if desired. Organization of different

methods for drawing or generating subcolumns and averaging them back to the grid is described575

below. For more details or for documentation on making a parameterization subcolumn aware, see

the CAM reference manual(Eaton et al. (2015)).

A2 Implementing a new subcolumn scheme within CAM

Different methods or “schemes” for generating and averaging subcolumn fields can be invoked.

SILHS is one subcolumn scheme. The use of a specific subcolumn scheme is controlled by the580

CAM subcol_scheme namelist variable. Each of the generic subcolumn interfaces listed below

call the scheme-specific version based on the value of subcol_scheme. Scheme-specific versions
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of the following routines will need to be supplied, even if they contain no executable code. Typically

the scheme-specific versions are designated by the generic name followed by “_schemeName” ,

noted below by XXX (e.g., subcol_register_SILHS). The routines are:585

subcol_register_XXX: Register any subcolumn-specific physics buffer fields using pbuf_add_field.

subcol_readnl_XXX: Read any subcolumn-scheme-specific namelist parameters.

subcol_init_XXX: Perform subcolumn-specific initialization, set up any output calls for

subcolumn diagnostics (via addfld), and initialize any subcolumn physics buffer fields, if

required.590

subcol_gen_XXX: Contains the details of mapping state, physics tendencies, and physics

buffer fields from the grid to subcolumns. Typically, this routine will be the interface between

CAM and the unique code for generating the subcolumns or drawing them from PDFs.

Once physics tendencies and/or updates are computed for each subcolumn, the subcolumn values

need to be averaged back onto the CAM grid. This is accomplished via calls to averaging routines.595

The default behavior of these routines is to perform a simple average, applying optionally supplied

scheme-specific weights and/or filters, such as a cloud mask or conditional sampler. If a more so-

phisticated method is required, scheme-specific routines may be supplied for these two routines.

subcol_ptend_avg_XXX: Average the subcolumn physics tendency values back to the

grid so that these values can be applied to the grid-resolved state.600

subcol_field_avg_XXX: Average the physics buffer fields from subcolumn values back

to the grid. This function only needs to be called for physics buffer fields which are used in

other parameterizations on the grid.

The data layout for subcolumns is illustrated in Fig. A1. The number of subcolumns varies by

grid column, as shown in the conceptual layout (Fig. A1, left). Internally, the subcolumns are stored605

in a compressed layout (Fig. A1 right). The information on organization is stored in a series of

parameters some of which can be set by the user (black) and others which are internally calculated

(blue). For further details, see Eaton et al. (2015).
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Figure 1. The sequence of calculations in CAM-CLUBB-SILHS. Red lines represent temperature profiles and

dark blue lines represent moisture profiles, as an example. Light blue lines represent figurative microphysical

tendencies, for both temperature and moisture. For details on the SILHS and subcolumn methodology, see

Section 2.
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CAM 5.3 2° (years 1-10) CAM-CLUBB-SILHS 1° (years 1-5)CAM-CLUBB-SILHS 2° (years 0-19)

CAM-CLUBB-SILHS 2° di" GPCP CAM-CLUBB-SILHS 1° di" GPCPCAM 5.3 2° di" GPCP

Figure 2. Total surface precipitation rate for CAM 5.3 (left), CAM-CLUBB-SILHS 2 degree (center), and

CAM-CLUBB-SILHS 1 degree (right). The difference from GPCP observations of precipitation rate is shown

in the second row. CAM-CLUBB-SILHS has more intense precipitation, but less of a double ITCZ than CAM

5.3.

CAM 5.3 2° (years 1-10) CAM-CLUBB-SILHS 1° (years 1-5)CAM-CLUBB-SILHS 2° (years 0-19)

CAM-CLUBB-SILHS 2° di! NVAP CAM-CLUBB-SILHS 1° di! NVAPCAM 5.3 2° di! NVAP

Figure 3. Total column water vapor field for CAM 5.3 (left), CAM-CLUBB-SILHS 2 degree (center), and

CAM-CLUBB-SILHS 1 degree (right). The difference from National Aeronautics and Space Administration

(NASA) Water Vapor Project (NVAP) satellite observations (model - obs) is shown in the second row. CAM-

CLUBB-SILHS reduces the overall moist bias seen in CAM 5.3.
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CAM 5.3 2° (years 1-10) CAM-CLUBB-SILHS 1° (years 1-5)CAM-CLUBB-SILHS 2° (years 0-19)

CAM-CLUBB-SILHS 2° di� CERES-EBAF CAM-CLUBB-SILHS 1° di� CERES-EBAFCAM 5.3 2° di� CERES-EBAF

Figure 4. Top of the atmosphere long wave cloud forcing (LWCF) for CAM 5.3 (left), CAM-CLUBB-SILHS

2 degree (center), and CAM-CLUBB-SILHS 1 degree (right). The difference from Clouds and Earth’s Radiant

Energy Systems (CERES) Energy Balanced and Filled (EBAF) observations of LWCF (model-obs) is shown

in the second row. CAM-CLUBB-SILHS has a slightly lower global error in LWCF than CAM 5.3 due to an

increase in cloud forcing in the mid-latitudes and polar regions.

CAM 5.3 2° (years 1-10) CAM-CLUBB-SILHS 1° (years 1-5)CAM-CLUBB-SILHS 2° (years 0-19)

CAM-CLUBB-SILHS 2° di" CERES-EBAF CAM-CLUBB-SILHS 1° di" CERES-EBAFCAM 5.3 2° di" CERES-EBAF

Figure 5. Top of the atmosphere short wave cloud forcing (SWCF) for CAM 5.3 (left), CAM-CLUBB-SILHS

2 degree (center), and CAM-CLUBB-SILHS 1 degree (right). The difference from CERES-EBAF observations

of SWCF is shown in the second row. CAM-CLUBB-SILHS reduces the SWCF low bias over tropical land

regions seen in CAM 5.3.
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CAM 5.3 2° (years 1-10) CAM-CLUBB-SILHS 1° (years 1-5)CAM-CLUBB-SILHS 2° (years 0-19)

CAM-CLUBB-SILHS 2° di� CLOUDSAT CAM-CLUBB-SILHS 1° di� CLOUDSATCAM 5.3 2° di� CLOUDSAT

Figure 6. Total grid box cloud fraction for CAM 5.3 (left), CAM-CLUBB-SILHS 2 degree (center), and CAM-

CLUBB-SILHS 1 degree (right). The difference from CLOUDSAT observations of total cloud fraction is shown

in the second row. The global mean cloud fraction in CAM-CLUBB-SILHS is reduced by about 5% compared

to the CAM 5.3 mean value.

CAM 5.3 2° (years 1-10) CAM-CLUBB-SILHS 1° (years 1-5)CAM-CLUBB-SILHS 2° (years 0-19)

CAM-CLUBB-SILHS 2° di" NVAP CAM-CLUBB-SILHS 1° di" NVAPCAM 5.3 2° di" NVAP

Figure 7. Total grid box liquid water path (LWP) for CAM 5.3 (left), CAM-CLUBB-SILHS 2 degree (center),

and CAM-CLUBB-SILHS 1 degree (right). The difference from NVAP observations of LWP is shown in the

second row. The global mean LWP in CAM-CLUBB-SILHS is about 35% higher than that of CAM 5.3.
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Figure 8. Taylor diagram with metrics for CAM 3.5 (black), CAM 5.3 (blue), and 2-degree CAM-CLUBB-

SILHS (green). CAM-CLUBB-SILHS is competitive for all metrics except ocean and land rainfall, and Pacific

surface stress.

CAM 5.3 2° (y 1-10) CAM-CLUBB-SILHS 2° (y 0-19) NOAA Obs

Figure 9. OLR power divided by the background spectra for various wavenumbers and frequencies in the trop-

ics for CAM 5.3 (left), CAM-CLUBB-SILHS (center), and NOAA OLR observations (right). CAM-CLUBB-

SILHS has stronger MJO signal, and a stronger signal for Kelvin waves, than CAM 5.3
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CAM 5.3 2° CAM-CLUBB-SILHS 2° ERA Reanalysis

Figure 10. Lag-Longitude plots of winter MJO wave activity (top row), and Lag-Latitude plots of winter MJO

wave activity (bottom row) for CAM 5.3 (left column), CAM-CLUBB-SILHS (center column), and ERA Re-

analysis (right column). Precipitation is denoted by colors, zonal wind by lines. The signal in CAM-CLUBB-

SILHS is weaker than observations, but the wave is moving eastward, rather than westward as in CAM 5.3.
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CAM-CLUBB-SILHS Moisture Tendency (kg/kg/day) CAM5 Moisture Tendency (kg/kg/day)

CAM-CLUBB-SILHS Temperature Tendency (K/day) CAM5 Temperature Tendency (K/day)

CAM-CLUBB-SILHS Relative Humidity (%) CAM5 Relative Humidity (%)

Figure 11. Daily average profiles of fields per daily average value of precipitation for the region between

latitudes 15N and 15S and longitudes 60E to 180E over one year. Relative humidity for CAM-CLUBB-SILHS

(top left) and CAM5 (top right), total physics moisture tendencies for CAM-CLUBB-SILHS (middle left)

and CAM5 (middle right), and total physics temperature tendencies for CAM-CLUBB-SILHS (bottom left)

and CAM5 (bottom right) are shown. Because CAM-CLUBB-SILHS is a unified parameterization, there is a

smoother transition from light to intense precipitation values for all fields.
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CAM-CLUBB No Subcols CAM-CLUBB-SILHS 4 Subcols

CAM-CLUBB-SILHS 10 Subcols CAM-CLUBB-SILHS 50 Subcols

Figure 12. LWCF difference from CERES-EBAF observations for five years of simulation without subcolumns

at all (top left), 4 subcolumns (top right), 10 subcolumns (bottom left), and 50 subcolumns (bottom right).

Without subcolumns, the LWCF has a severe low bias. The simulation with 4 subcolumns has the lowest global

error, and very little changes between the simulations with 10 and 50 subcolumns.

CAM-CLUBB No Subcols CAM-CLUBB-SILHS 4 Subcols

CAM-CLUBB-SILHS 10 Subcols CAM-CLUBB-SILHS 50 Subcols

Figure 13. Simulated SWCF minus CERES-EBAF observations for five years of simulation without sub-

columns at all (top left), 4 subcolumns (top right), 10 subcolumns (bottom left), and 50 subcolumns (bottom

right). Without subcolumns, the clouds are too dim. The simulation with 4 subcolumns has brighter clouds than

observed, and the simulations with 10 and 50 subcolumns differ little from each other.
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CAM-CLUBB No Subcols CAM-CLUBB-SILHS 4 Subcols

CAM-CLUBB-SILHS 10 Subcols CAM-CLUBB-SILHS 50 Subcols

Figure 14. LWP for five years of simulation without subcolumns at all (top left), 4 subcolumns (top right), 10

subcolumns (bottom left), and 50 subcolumns (bottom right). Without subcolumns, the model has little cloud

liquid water. The simulation with 4 subcolumns has a large amount of cloud liquid, which moderates in the 10

and 50 subcolumn simulations.
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Figure A1. Schematic for CAM’s subcolumn software framework. The number of subcolumns varies by grid

column, as shown in the conceptual layout (left). Internally, the subcolumns are stored in a compressed layout

(right). The information on per-chunk linkages is stored in a series of software parameters, some of which can

be set by the user (black) and others of which are internally calculated (blue). pcols is the maximum number

of grid columns, psubcols is the maximum number of subcolumns, psetcols is the maximum number of all

columns (= pcols*psubcols), ngrdcol is the actual number of grid columns that contain data, nsubcol(pcols) is

the number of subcolumns in each grid column with data, ncol is the total number of all subcolumns with data,

and indcol(psetcols) is the grid index for each subcolumn, which is used for mapping subcolumns back to grid

columns.
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Table 1. Physical parameterizations in CAM 5.3 and CAM-CLUBB-SILHS

Physics CAM 5.3 CAM-CLUBB-SILHS

Deep Convection Zhang and McFarlane (1995) CLUBB-SILHS

Shallow Convection Park and Bretherton (2009) CLUBB-SILHS

Boundary Layer Bretherton and Park (2009) CLUBB-SILHS

Cloud Macrophysics Park (Neale et al., 2012) CLUBB-SILHS

Cloud Microphysics Morrison and Gettelman (2008) Morrison and Gettelman (2008)

Radiation
Rapid Radiative Transfer Model for GCMs

(RRTMG); Iacono et al. (2008)
RRTMG; Iacono et al. (2008)

Aerosols Liu et al. (2012) Liu et al. (2012)

Table 2. Computational cost of CAM 5.3 and CAM-CLUBB-SILHS simulations.

Simulation
Number of Proces-

sors

Years/Computer-

day

Percent Increase

Over CAM5.3

CAM 5.3 256 20.2 –

0 sc 256 12.4 63%

4 sc 256 10.7 89%

10 sc 256 9.2 120%

50 sc 256 4.6 440%
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Table 3. Information about observational datasets used for comparison in this paper. More information about

each of these can be found on the website for the National Center for Atmospheric Research (NCAR) Climate

Data Guide at https://climatedataguide.ucar.edu/.

Data Set Acronym Number of Years Fields Used

National Aeronautics and Space

Administration (NASA) Water Va-

por Project

NVAP 14 (1988-2001)
Total column water vapor and

cloud liquid water

Global Precipitation Climatology

Project
GPCP 30 (1979-2009) Total Precipitation Rate

Clouds and Earth’s Radiant Energy

Systems - Energy Balanced and

Filled

CERES-EBAF 13 (2000-2013)

TOA longwave flux, shortwave

flux, longwave cloud forcing,

shortwave cloud forcing and

radiation imbalance.

NASA CloudSat CloudSat 4 (2006-2010) Total cloud fraction

National Oceanic and Atmospheric

Administration Polar-orbiting Op-

erational EnvironmentalSatellites

NOAA POES 21 (1979-2000)
TOA (outgoing) longwave radia-

tion

European Centre for Medium-

Range Weather Forecasts Reanaly-

sis - Interim

ERA-Interim 9 (1996-2005) Precipitation and U 850 winds

National Centers for Environmen-

tal Prediction Reanalysis
NCEP Reanalysis (R1) 19 (1981-2000) 200hPa velocity potential

Table 4. Globally averaged top of the atmosphere (TOA) radiation fields, and the top of model (TOM) radiation

imbalance for various configurations of CAM-CLUBB-SILHS. Estimates of observational uncertainty are from

Stephens et al. (2012). Values are in units of W m-2.

Simulation Length Net solar flux

Upward

longwave

flux

Longwave

Cloud

Forcing

Shortwave

Cloud

Forcing

TOM

Imbalance

Observations (CERES-EBAF) – 240.5±2.0 239.7±3.3 26.1±4.0 -47.1±3.0 –

CAM 5.3 2 degree 10 years 239.2 235.0 24.1 -52.1 2.118

CAM-CLUBB-SILHS 2 degree 20 years 241.9 236.4 25.5 -48.7 3.510

CAM-CLUBB-SILHS 1 degree 5 years 242.5 237.4 25.3 -47.9 3.001

CAM-CLUBB-SILHS No Subcols 5 years 254.1 243.4 18.4 -37.2 8.648

CAM-CLUBB-SILHS 4 Subcols 5 years 239.1 236.5 25.0 -51.2 0.520

CAM-CLUBB-SILHS 10 Subcols 5 years 241.9 236.3 25.5 -48.7 3.580

CAM-CLUBB-SILHS 50 Subcols 5 years 242.4 235.4 26.4 -48.3 4.982
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