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Abstract

JULES-crop is a parametrisation of crops in the Joint UK Land Environment Simulator
(JULES). We investigate the sources of the interannual variability in the modelled maize
yield, using global runs driven by reanalysis data, with a view to understanding the impact
of various approximations in the driving data and initialisation. The standard forcing dataset5

for JULES consists of a combination of meteorological variables describing precipitation, ra-
diation, temperature, pressure, specific humidity and wind, at subdaily time resolution. We
find that the main characteristics of the modelled yield can be reproduced with a subset of
these variables and using daily forcing, with internal disaggregation to the model timestep.
This has implications in particular for the use of the model with seasonal forcing data, which10

may not have been provided at subdaily resolution for all required driving variables. We also
investigate the effect on annual yield of initialising the model with climatology on the sowing
date. This approximation has the potential to considerably simplify the use of the model
with seasonal forecasts, since obtaining observations or reanalysis output for all the initiali-
sation variables required by JULES for the start date of the seasonal forecast would present15

significant practical challenges.

1 Introduction

The ability to forecast crop yield on a seasonal timescale has significant economic and hu-
manitarian benefits (Hansen et al., 2006; Iizumi et al., 2014; Mishra et al., 2008). Climate
variability and extremes can have significant impacts on crops (e.g. Challinor et al. (2014))20

and improvements in the seasonal forecast of meteorological variables such as temper-
ature and rainfall (Molteni et al., 2011; MacLachlan et al., 2015; Manzanas et al., 2014)
therefore have the potential to improve yield forecasts. However, existing studies of crop
model performance focused on seasonal forecast applications show considerable variation
in skill depending on the region, scale, processes and crops involved (Hansen et al., 2011;25

Dessai and Bruno Soares, 2013; Falloon et al., 2013). Crop model simulations driven by
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statistically downscaled seasonal hindcasts for European wheat (Palmer et al., 2004; Can-
telaube and Terres, 2005), and specifically for wheat in Italy (Marletto et al., 2007) showed
that reliable crop yield predictions could be produced using an ensemble multi-model ap-
proach and the JRC crop model, for instance, estimating a high probability of a positive
yield anomaly in 1996 and a negative yield anomaly 1998 in the UK, consistent with ob-5

servations. Similarly, Coelho and Costa (2010) used an ensemble of bias-corrected and
disaggregated seasonal forecasts to simulate maize yields over Southern Brazil, with the
GLAM crop model. The model showed generally good agreement with observations, with
observed yields within the 95% forecast interval for most years. Using a statistical approach
to assess the reliability of hindcasts of global-scale yield decreases of at least 5%, Iizumi et10

al. (2013) found that within-season hindcasts with lead times of 1-3 months generally repro-
duced inter-annual variability in observed yields in major wheat exporting countries better
than pre-season hindcasts with lead times of 3-5 months. Iizumi et al. (2014) modelled
global yields of major crops by combining satellite derived NPP data and global agricul-
tural datasets for crop calendar, harvested area and country yield statistics. This statistical15

model mostly performed well compared to observations, with modelled yields explaining
45-81% of the spatial variation of observed yields in 2000, and correlation coefficients be-
tween modelled yield time series and sub-national yield statistics for 1982-2006 in major
crop-producing regions generally greater than 0.8. Nicklin et al. (2011) found some positive
skill in reproducing both severe crop failure (yields below 10th percentile of climatology)20

and less severe crop failure (yields below the 25th percentile of climatology) of groundnut
in West Africa with GLAM driven by seasonal forecast data, and found that these results
were relatively independent of assumptions on the varieties of groundnut modelled. Mishra
et al. (2008) ran the SARRA-H crop model at five locations in Burkina Faso, showing that,
in most cases, incorporating seasonal rainfall forecasts improved sorghum yield predictions25

made early in the season.
Palmer et al. (2004) and Cantelaube and Terres (2005) also found that downscaling sea-

sonal hindcasts improved crop model performance - the r2 value of simulated biomass for
the whole of Europe increased from 0.62 to 0.69 with greater regional improvements when

3
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downscaled seasonal forecasts were used instead of the original, pre-downscaled versions.
On the other hand Challinor et al. (2005) found that bias correction of GCM-derived sea-
sonal hindcasts data had generally small effects for simulation of groundnut yields in India.
Watson and Challinor (2013) found that errors in rainfall data had the largest impact on crop
model skill for groundnut in India, mainly because the study region was rainfall limited, while5

generally the largest yield errors were caused by errors in inter-annual variability in temper-
ature and precipitation. In contrast, for French maize, temperature errors had a stronger
influence on yield estimates from both a statistical model and a process-based model than
precipitation (Watson et al., 2014).

The ability of crop models to represent inter-annual effects of climate variables also varies10

depending on the processes represented in the models (Falloon et al., 2014b). For example,
high temperature stress around anthesis (the onset of flowering) can have strong impacts
on crop yields but not all models include this effect, and responses vary across models that
do (Asseng et al., 2013). In general, there is little information of the role of initial conditions
such as soil moisture on crop model performance on seasonal timescales (Falloon et al.,15

2013), although hydrological studies have shown that different spin-up approaches may be
needed for different impacts (Cosgrove et al., 2003) and different regions.

The JULES-crop model (Osborne et al., 2015) was developed with the dual aim of be-
ing able to simulate the impact of weather and climate on crop productivity and the impact
that crop-lands have on weather and climate. It is a component of the Joint UK Land En-20

vironment Simulator (JULES) (Best et al., 2011; Clark et al., 2011), which is a community
land surface model that can be used both online as part of the Met Office Unified Modelling
system and offline for impacts studies. As part of the EU FP7 project EUPORIAS (Hewitt
et al., 2013), JULES-crop will be driven by seasonal forecasts and its ability to produce
probabilistic forecasts of crop yield will be investigated. EUPORIAS (European Provision Of25

Regional Impacts Assessments on Seasonal and Decadal Timescales) aims to maximise
the societal benefit of seasonal and decadal forecasts by making the predictions directly
relevant to decision-makers. As part of this project, a multi-model ensemble of seasonal
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meteorological forecasts will be used to drive an ensemble of impacts models, including
JULES-crop.

However, using JULES-crop on a seasonal timescale introduces a number of technical
and scientific issues. The aim of this paper is to address those issues that are centred
around the availability of data, by investigating to what extent the interannual variability of5

the modelled yield can be captured if some of these data requirements are relaxed.
The first data availability issue concerns the driving data. JULES is driven by a combi-

nation of meteorological variables describing air temperature, precipitation, radiation, wind
speed, humidity and pressure (for a full description, see the JULES User Guide, available
at https://jules.jchmr.org/) for each grid box in the model domain, ideally at sub-10

daily resolution. Output in this format for each ensemble member requires a large amount of
storage space and is typically not made externally available by seasonal forecast centres.
It is therefore useful to investigate whether the yield variability can be modelled sufficiently
well if only a subset of the forcing variables are taken from the seasonal forecast and the
others set to climatology, or if the model is forced with daily meteorological data and disag-15

gregated internally to the model timestep. To gain a better understanding of the dependence
of the yield on the different forcing variables, we look at the effect of removing water stress
and the correlation of the yield with the total gridbox precipitation during the crop growing
season.

The second data availability issue concerns the variables required to initialise the JULES-20

crop runs, such as the moisture content of each soil layer (as a fraction of the water content
at saturation). Obtaining accurate values for these variables on the start date of the sea-
sonal forecast runs would present a significant practical challenge, as recent observations
would be required to estimate these values directly or as input to a reanalysis run. There-
fore, we investigate the loss in predictability of yield if the JULES-crop model run is started25

on the sowing date of the crop in that gridbox and initialised by the climatological values for
that date. This set-up would be simple to reproduce with seasonal forecast forcing that has
been bias corrected to a reanalysis dataset, such as those available as part of EUPORIAS,
since JULES-crop can be run with this reanalysis dataset to produce a climatology of the
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initialisation variables. Starting the run before or on the sowing date means that the initial-
isation of crop variables (e.g. height) is trivial since the crop either does not yet exist, or
only exists as a seed. It has also been suggested that the initialisation of impact model runs
driven by seasonal forecasts is more critical for some impacts and regions than others, for
example, it may be more critical for water resources in cold regions where snow stores are5

important than for dry land cropping (Falloon et al., 2014a).
It is important to note that while this study provides a practical methodology for driving

JULES-crop with seasonal forecasts, given commonly available forcing and initialisation
data, there are many aspects of the uncertainty chain that remain to be addressed. For
example, once an application has been identified (e.g. a decision threshold based on the10

yield of a particular crop in a particular region), a thorough validation would need to be
performed of the relevant model diagnostic against observational data and against hindcast
driven runs.

This paper is organised as follows. Section 2 describes the JULES-crop model and how
it interacts with the other JULES components, Section 3 describes the model set-up used15

for the runs presented in this paper, Section 4 presents the results and Section 5 draws
conclusions from these runs about the model behaviour and sensitivities and how these
can inform the design of JULES-crop runs forced with seasonal forecasts.

2 Model description

JULES is a process-based model that simulates fluxes of carbon, water, energy and mo-20

mentum between the land surface and the atmosphere. Sub-grid heterogeneity is repre-
sented through tiles of various surface types, such as broadleaf trees, bare soil and C3
grass. As of JULES version 4.0, it includes a crop parametrisation (JULES-crop) which in-
troduces an additional tile for each crop simulated. We refer the reader to Best et al. (2011);
Clark et al. (2011) for a fuller description of JULES and Osborne et al. (2015) for a descrip-25

tion of JULES-crop in particular, and focus here on features that are particularly relevant

6



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

to this article, such as the influence of temperature on crop growth stage, soil moisture on
photosynthesis and the partitioning of carbon into different parts of the plant.

The status of development of the crop on each tile is parametrised by the crop devel-
opment index (DVI), which is -2 before sowing, -1 at sowing, 0 at emergence and 1 at
flowering. Under normal conditions, harvest occurs at a DVI of 2. The progression between5

the development stages is determined by crop-specific thermal time parameters, set by the
user. For the purposes of this paper, thermal time is an accumulation of effective tempera-
ture between one development stage and the next (since we do not include a photoperiod
dependence). Effective temperature is defined by

Teff =


0 for T < Tb

T −Tb for Tb ≤ T ≤ To

(To−Tb)(1−
T −To

Tm−To
) for To < T < Tm

0 for T ≥ Tm

, (1)10

where T is the air temperature of the tile at that timestep and Tb, To and Tm are crop-
specific cardinal temperatures.

Potential leaf-level photosynthesis (unstressed by water availability and ozone effects) is
calculated as the smoothed minimum of three potentially limiting rates, based on Collatz
et al. (1991, 1992): (a) the Rubisco-limited rate, which depends on the maximum rate of15

carboxylation of Rubisco, (b) the light-limited rate and (c) the rate associated with the trans-
port of photosynthetic products for C3 plants or PEP-Carboxylase limitation for C4 plants.
The vertical profile of radiation through the canopy can use either the big-leaf approach (fol-
lowing Beer’s law) or a multi-layered canopy radiation scheme, which treats the direct and
diffuse components of the radiation separately. The latter can optionally include the direct20

component of the direct beam radiation (‘sunflecks’). The potential leaf-level photosynthe-
sis is scaled by a soil water factor β, to account for soil moisture stress. This factor is zero
when the mean soil moisture content in the root zone θ is less than or equal to a wilting
point concentration θw, 1 when θ is greater than the critical concentration θc and linearly

7
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increasing in between (i.e. a slant step function). As of JULES version 4.1, it is possible
to irrigate part of each gridbox, which involves adding water to the soil until β = 1 during
certain times of the year.

Net primary productivity (NPP) is calculated by scaling the leaf-level photosynthesis to
the canopy level and subtracting plant maintenance and growth respiration. Crop growth5

is modelled by integrating NPP over the course of a day and splitting this carbon between
the crop root, stem, leaf, harvest and stem reserve carbon pools for that tile (Croot, Cleaf ,
Cstem, Charv, Cresv respectively). The proportion of carbon given to each pool depends on
the DVI of the crop and the crop type.

Once the proportion of carbon given to the stem pool drops below 0.01, carbon from the10

stem reserve pool is mobilised to the harvest pool, by reducing Cresv by 10% each day and
adding this carbon to the harvest pool. Similarly, once the DVI is above 1.5, carbon from
the leaf pool is mobilised to the harvest pool, by reducing Cleaf by 5% each day and adding
this carbon to Charv, to simulate leaf senescence. At harvest, the carbon in the harvest pool
becomes yield and each crop carbon pool is reset.15

The model does not include a way of calibrating against yield observations (e.g. a yield
gap parameter which accounts for the impact of pests, diseases and non-optimal manage-
ment on the crop yield). Therefore the outputted yield is the water-limited potential yield
when irrigation is switched off and the potential yield when the crop is fully irrigated.

3 Experimental Set-up20

All runs were performed with JULES 4.2.

3.1 Control run (control)

The experimental set-up for the control run follows the global set-up in Osborne et al.
(2015). The control run was forced by 6 hourly CRU-NCEPv4 climate data as used by
the Global Carbon Project (Le Quéré et al., 2014), regridded to a n96 grid (i.e. gridboxes25

are 1.875 degrees by 1.25 degrees). The main run was from 1960 to 2009. The initiali-
8
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sation variables were taken from a CRU-NCEPv-forced run with the crop model switched
off and the model was spun up by repeating the first 10 years five times, before start-
ing the main run, in order to remove the sensitivity to this initialisation. Wheat, soybean,
maize and rice were modelled, with the crop parameters listed in Osborne et al. (2015).
A multi-layer canopy radiation scheme was used, which accounts for direct/diffuse radi-5

ation components including sun-flecks (can_ran_mod=5). The crop sowing dates were
taken from Sacks et al. (2010) and extended using nearest neighbour interpolation. The
crop tile fractions were taken from Monfreda et al. (2008) and other ancillaries taken from
HadGEM2-ES (Collins et al., 2011; Jones et al., 2011). Irrigation was not switched on.

3.2 Fully irrigated run (irrig)10

We repeated the control run with irrigation demand switched on, such that, when one of
the crops on the gridbox had DVI>-1, water was added to the top two soil levels until the
critical soil moisture content θc was reached, so that the soil water factor β was 1, with no
constraint on water availability. The run was initialised and spun up in the same way as the
control run.15

3.3 Full disaggregated run (disagg)

We created daily means and daily temperature ranges from the CRU-NCEPv4 driving
data, and used this to drive a JULES run. The internal JULES disaggregator (described
in Williams and Clark (2014)) was used to disaggregate this forcing data to the internal
model time step of one hour. For temperature, this involves adding a sinusoidal diurnal cy-20

cle. Precipitation in a day is modelled as occurring in one rainfall event of constant intensity,
with a duration that depends on the precipitation type. The run was initialised and spun up
in the same way as the control run. All other settings were the same as the control
run.

9
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3.4 Disaggregated runs with some forcing from climatology (sens-*)

In order to investigate the sensitivity to variability in different parts of the driving data, we
created daily climatologies of each driving data variable in the full disaggregated run. For
example, for each gridbox, the value used for the 1st January in the precipitation climatology
was the mean over the CRU-NCEP precipitation on every 1st January from 1960 to 20095

in that gridbox. We then repeated the runs (for 1960 to 2009, as before) with climatological
driving data for all variables apart from certain combinations. The combinations we refer to
in this paper are shown in Table 1. The run was initialised and spun up in the same way as
the control run.

3.5 Runs initialised from climatology (init)10

We created a climatology for each initialisation variable, for each day of the year, using
daily means outputted from the control run and averaging over 1960-2009. The model
requires 16 initialisation variables, on multiple model layers or tiles, such as tile surface tem-
perature and moisture in soil layers as a fraction of water content at saturation (see JULES
user guide for full list). The model domain was split by sowing date and we performed a15

separate run for each sowing date for each crop for each year, initialised by the climatology
for that sowing date, without spin up. For example, for Maize, we modelled 77 different sow-
ing dates across the globe for 48 years, which involved 77×48 individual JULES runs. The
full 6 hourly driving data was used. Each run lasted one year and the annual yields were
concatenated to get a 48 year time series for each crop in each gridbox.20

4 Results

Global time series for each crop were constructed from the model output by first masking
any gridboxes which had one or more years in which the the crop did not reach a DVI of
1.5 or greater or had a yield less than the seed carbon 0.01 kgCm−2 (which we assumed
was due to a failure on the part of the model or model settings to represent the crops in this25

10
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gridbox) and then weighting according to grid box size and crop tile fraction. We define a
year as January 1st to December 31st (i.e. the model year). In a small fraction of the grid-
boxes with harvest dates around the end of December/beginning of January, this definition
caused issues, as two harvests could fall in one year and none in the next. These points
were masked out, as the zero yield appears as a model failure. Osborne et al. (2015) found5

that maize yield in the control run had the highest correlation with detrended global FAO
yield observations out of the four crop types modelled (maize, soybean, rice and wheat);
therefore we will explicitly discuss the results for maize only, although we have confirmed
that our overall conclusions apply to each of the four crops individually. Results from the
other crops are given in the supplementary material.10

11
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Figure 1. All plots show the correlations with the annual maize yield in the control run for each
gridbox. Top left: the correlation between yield in control run and crop season precipitation. Top
right, bottom left and bottom right: the correlation between yield in control run and yield in the
disagg, init and irrig runs, respectively.
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Figure 2. The correlations between the annual maize yield in the disagg run and the annual
maize yield from the sens-P (top left), sens-TP (top right), sens-T (bottom left) and sens-TPR
(bottom right) runs for each gridbox.

Using daily forcing data and disaggregating rather than using the full six hourly data
results in a slightly lower mean global yield (10.2 Mgha−1 for the disaggregated run, com-
pared to 10.6 Mgha−1, see Table 2). The global yield time series from the disaggregated
run correlates very well with the global yield time series from the control run: the Pear-
son correlation coefficient is 0.98. The annual control yield is plotted against the annual5

disagg yield in Figure 3, and shows no obvious deviations from linearity, even at the
extremes. Figure 1 (top right) shows the correlation for each grid box, 94% of which are
greater than 0.85 (note that there will be spatial correlation between gridboxes and autocor-
relation in the time series for each gridbox. Also the Pearson correlation coefficient is not
resistant to outliers). It is interesting to note that many of the gridboxes with low correlations10

are in Brazil, a region where the disaggregator has been seen previously to reproduce the
climatology of key variables such as evaporation better than runs driven with three hourly
data (Williams and Clark, 2014). As discussed in Williams and Clark (2014), since the three
hourly data is more representative of the underlying driving data than the disaggregated
data, this apparent ‘improvement’ with the disaggregator is likely to be result of the extra15

parameters involved in the disaggregation being tuned to compensate for a bias elsewhere
in the model. As a result, the maize yield from the disaggregated run can actually have a
higher correlation with FAO country yield data than the control run for Brazil (not shown
here). We can therefore conclude that using daily forcing data and disaggregating is a very
good approximation to the control run, for the purposes of looking at variability in the20

maize yield.
Comparing the control run with the fully irrigated run allows us to determine how much

of the modelled yield variability is driven by soil moisture variability. Removing the effect of
soil moisture stress increases global NPP as expected, which results in considerably higher
global mean yields: maize yield rises from 10.6 to 16.2 Mgha−1 (Table 2). This increase in25

NPP also has the effect of increasing the number of gridboxes which contribute to the global
yield time series, since fewer gridboxes have crops that are harvested prematurely in the

14
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model due to lack of growth. Removing soil moisture stress also significantly decreases the
(year-to-year) standard deviation for maize yield, which has a global standard deviation of
0.55 Mgha−1 in the control run and 0.18 Mgha−1 in the irrigated run.

We also calculated the Pearson correlation coefficient between the global control run
yield and irrigated run yield for each gridbox, as shown in Figure 1, bottom right. There5

was a high correlation coefficient between the two runs in areas with high rainfall during the
model maize growing season such as South-east Asia, Central Brazil, the northern part of
the Amazon basin and Bangladesh/East India, where we would not expect soil moisture to
be a limiting factor in crop growth, even with no irrigation. However, in drier regions, these
correlations were much lower, as expected. The percentage of unmasked gridboxes with10

correlations above 0.85 was just 20% for maize, showing that in most regions, soil moisture
variability is an import contribution to the yield variability in the control run.

Moving on from soil moisture to precipitation, we constructed a time series for the crop
season precipitation by integrating the rainfall between the sowing and harvesting dates
for each crop in each gridbox. In many regions, this crop season precipitation index corre-15

lates reasonably well with the crop yield for the unmasked gridboxes, particularly outside of
South-east Asia, Central Brazil, the northern part of the Amazon basin and Bangladesh/East
India, where, as we have already identified, the modelled yield variability does not follow soil
moisture variability.

It is therefore interesting to look at how much of the modelled yield variability can be20

reproduced if the daily precipitation is used to drive the model, while keeping all other vari-
ables at their climatological value for each day of the year (sens-P). A priori we can not
assume this will be a good approximation to using the full daily driving data (disagg) from
the result for the crop season precipitation index above, since, in the control run, the pre-
cipitation is not independent of the other driving data. However, Figure 2 (top left) shows that25

the sens-P run does indeed correlate well with the disagg run in areas outside of South-
east Asia, Central Brazil, the northern part of the Amazon basin and Bangladesh/East India.
74% of the gridboxes shown have a correlation of 0.85 or more. The correlation between the
global yield timeseries from the sens-P run and the disagg run is 0.87. The sens-P run

15
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does have a slightly higher mean global maize yield than the disagg run: 10.9 Mgha−1 as
compared to 10.2 Mgha−1.

If temperature is the only variable allowed to vary between years (i.e. the sens-T run),
then the global mean maize yield is 10.7 Mgha−1, with standard deviation 0.23 Mgha−1.
This reduction in standard deviation compared to the disagg run is consistent with the re-5

duction in standard deviation seen when the effect of soil moisture was removed (the irrig
run). Unsurprisingly, figure 2 (bottom left) shows that the sens-T run does not correlate well
with the disagg run in areas where the sens-P run had a higher correlation.

If both daily precipitation and daily mean temperature are allowed to vary (sens-PT), the
gridbox correlations with the disagg run are much more spatially uniform than when either10

of these variables are varied on their own: in the sens-PT run, 81% of the gridboxes have
a correlation higher than 0.85 (Figure 2, top right). Many of the areas with low correlations
in the sens-P run are much higher in the sens-PT run, such as parts of Brazil, Columbia,
Bangladesh and Southeast Asia, although these still remain lower than surrounding regions.
The correlation between the global maize yield time series in the sens-TP run and the15

disagg run is 0.92. The scatter plot of these yield time series (Figure 4) shows that the
relation between the outputted yield is well approximated by a linear fit. In general, therefore,
driving the model with daily precipitation and mean temperature and using climatology for
all other driving variables is a good approximation to make when looking at the interannual
yield variability across the majority of global maize-growing regions.20

In order to improve the approximation further, it may be desirable to additionally allow
downward shortwave radiation to vary (sens-PTR) or additionally allow wind speed to
vary (sens-PTW). Allowing downward shortwave radiation to vary improves performance
(i.e. gridbox correlations with the disagg run) in the areas which still have relatively low
performance in the sens-PT run i.e. Brazil, Columbia, Bangladesh and Southeast Asia25

(Figure 2, bottom right). Alternatively, allowing wind speed to vary results in a mean global
yield that is closer to the mean global of the disagg run (Table 2).

The final remaining question concerns the model initialisation. The set of runs that are
initialised on each sowing date with climatology (init) in general reproduce the spatial
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distribution of yield from the control run. The global yield is generally lower than in the
control run in each year, which results in slightly lower mean global yield (10.3 Mgha−1)
compared to the control run (10.6 Mgha−1). The correlation between the global maize
yield in the init run and the control run is 0.91 (see Figure 3 for scatter plots) and 70%
of individual gridboxes have a correlation above 0.85 (Figure 1, bottom left). The correlations5

are relatively poor in some parts of India, the Congo basin and South/Southeastern Brazil.
However, outside these areas, initialising on the sowing date has the potential to be a very
useful approximation.

5 Conclusions

In this article, we have investigated a number of possible approximations that could be10

made when running JULES-crop:

– Use driving data at daily rather than subdaily resolution, and disaggregate internally
to the model timestep

– Use a subset of daily driving data and set the rest to a daily climatology

– Initialise with climatology on the crop sowing date15

Each of these approximations significantly simplify the use of JULES-crop for seasonal
crop yield forecasts, due to the reduction in required driving and initialisation data. With
this usage in mind, we have concentrated on the effect of these approximations on the
interannual variability of the modelled yield.

Using daily forcing data and disaggregating performs the best out of these approxima-20

tions, although care should be taken if modelling the Amazon basin, where the precipitation
disaggregation parameters may have been tuned to compensate for biases in JULES.

We have shown that, in most regions outside South-east Asia, Central Brazil, the northern
part of the Amazon basin and Bangladesh/East India, the interannual variability of the yield
from a JULES-crop run in the control configuration is mainly driven by precipitation, which25
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affects the crop via water availability from the soil, which we have confirmed with a fully
irrigated run. As a result, in these regions, it is a good approximation to drive the model
with forecast precipitation and leave the other driving data at their climatological values for
each day of year. It should be noted that the processes and parameters which govern the
response of the crop model to the soil moisture distribution, such as the soil water factor β5

and the root distributions in JULES, are therefore keys areas for future model development.
Driving the model with both precipitation and temperature improves the performance in
areas with high soil moisture and some further improvement in these areas can be obtained
from the addition of downward shortwave radiation.

Perhaps the most important approximation considered here is initialising with climatology10

on the sowing date, since obtaining accurate initialisation data on the timescales needed for
seasonal forecast runs is a particularly significant practical challenge. We have confirmed
that this approximation performs well across the majority of maize-growing regions and
identified areas where the approximation breaks down.

Taken together, these approximations allow JULES-crop to be driven by seasonal meteo-15

rological forecasts where ensembles of bias corrected daily precipitation and daily temper-
ature (and possibly downward short-wave radiation) are available. The reference dataset
used for the bias correction can be used to generate the climatology of the initialisation
variables and the other driving variables. Since this data is widely available, this provides a
practical methodology by which to obtain seasonal crop forecasts with JULES-crop.20
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name sens-T sens-P sens-TP sens-TPR sens-TPW

mean temperature (T) x x x x
precipitation (P) x x x x
downward short-wave radiation (R) x
wind speed (W) x

Table 1. Combinations of driving variables that are allowed to vary in the sens-* runs. Each
column is a separate run. All driving variables not marked with an ‘x’ are set to their daily climatology.
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name mean standard deviation global corr with control global corr with disagg

control 10.6 0.55
irrig 16.2 0.18 0.48
init
disagg 10.2 0.53 0.98

sens-T 10.7 0.23 0.23
sens-P 10.9 0.42 0.87
sens-TP 11.1 0.51 0.92
sens-TPR 11.1 0.50 0.92
sens-TPW 10.3 0.52 0.96

Table 2. Results from the global runs described in Section 3. First column is the run name, second
is the mean maize yield in Mgha−1, third is the standard deviation of the annual global yield time
series in Mgha−1. The fourth column gives the Pearson correlation coefficient with the global yield
in the control run and the fifth column gives the Pearson correlation coefficient with the global
yield in the disagg run. All results have been weighted as described in Section 4. These results
are presented as scatter plots in the appendix.

Appendix A: Scatter plots of global yield from model runs
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Figure 3. Scatter plots comparing the global mean maize yield from different model runs.
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Figure 4. Scatter plots comparing the global mean maize yield from different model runs.
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