Dear Andrew,
Dear reviewers,

please find our detailed answers to the referees’ letters below.

General remarks:

1. In this text, we used boldface for our answers and italics for the reviewers’ original
comments.

2. Line numbers refer to the included revised document.

3. As suggested by the second reviewer, we have used professional language editing
support for this revision. Thus, the provided latex-diff document includes also
many changes resulting from this process.

4. Figure / Table numbering: We experienced problems with figure and table

numbering: After adding an appendix, we received the latex compilation error

| LaTeX Error: Too many unprocessed floats.

Using the\ clearpage command, the figure numbering is wrong (starting from Fig.
21 etc.). Alternative would be not to use the ,,\ appendix” command. This has to
be sorted out with the copernicus publishers.

Referee #1:

This is a review of the second version of the manuscript : “Metos3D: A Marine Ecosystem
Toolkit for Optimization and Simulation in 3-D — Simulation Package v0.3.2"” by Piwonski
and Slawig.

The manuscript has certainly improved from the previous version, the objectives are now
outlined and it clearly transpires the effort made by the authors to improve its structure and
readability. However, in its present form this manuscript is not ready yet for publication in
GMD until further moderate changes are made to the text to eliminate most of the residual
confusion. As a general comment, I think the lack of coherence in the terminology used
throughout the paper is the reason of the “fugacity” of the main message that I have
perceived. In other words, I think that if the authors try to call things the same way
throughout the text, after having clearly defined them (if possible) things would improve
significantly.

Finally, I would like to call the attention of the authors to something that would have made
this reviewer's task much easier at little cost. The font chosen for the document where the
answers to the reviewer's comments are reported is an incredibly poor one. This, together
with the plain editing of the text made reading such document nothing short of painful. Latex
is great but sometimes a more popular text editor can do wonders when it comes to



highlighting text, using bold font etc etc; all things usually appreciated for these types of
documents. Below are some comments and suggestions:

Main points:

-Section 1, page 1, lines 64-66. Here three strategies used to accelerate the computation of
steady-state are mentioned as they are put together in Metos3D. I was expecting later in the
text to find somehow a tighter correspondence to this outline in the organization of the
sections/subsections but the correspondence wasn't always obvious to me. Again, I think it
could all be explained in a much more linear way when the terminology is well-defined in the
introduction and it is used in a coherent way throughout the text.

We think that the ordering of the Sections 3. Off-line simulation, 4. Steady annual
cycles (containing Newton method) and 5. Software description (containing
spatial parallelization) corresponds now better to the outline in the introduction.

For example: it wasn’t obvious what you were comparing Metos3D with in Section 7.4.
Here you use the expression : "parallel performance of the TMM” but you never explain
what you exactly mean by it.

Here scalability is meant, which is now mentioned explicitly, see line 749.

I am familiar with the TMM and it took a while to me to understand that you were
comparing Metos3D with the implementation provided by Khatiwala together with the
transport matrices you use here. In the Introduction you briefly describe this comparison at
lines 133-136 where you use the expression :” the one used in Khatiwala (2013)”. Here is
where you should assign to “the one used in Khatiwala (2013)” a name and stick to it in the
rest of the manuscript.

The name ,TMM framework” has been introduced for this purpose now, see line
82.

-Section 6.1. It is an improvement from the previous version. The use of the schematic in
Figure 1 (note that numbering of the figures start from 11) ...
Figure numbering: see above.

... helps to follow the description of the implementation however, the terminology used in this
section does not correspond with that used in the figure. For example, at lines 470 and 472,
the words “debug” and “utilization” are used in italics and are actually called “layers”
however there’s no trace of them in the Figure. In general, as a suggestion , I would simplify
the description, try to outline the main message of this section and leave the details for the
appendix.

Section 5.1 has been renamed and rewritten. We replaced the old schematic figure
by two new ones showing the software layers (Figure 21) and the call graph
(Figure 22). See lines 420 ff.

-Section 6.3 concerns only the interpolation of the transport matrices so it should be specified



in the title. Alternatively, you could group all the following parts concerning interpolation
under this section. For example Section 6.4 lines 555-569. Also Section 6.5 seems like it
could be merged (and shortened with Section 6.3.

As suggested, we merged all text passages regarding interpolation into one
,Interpolation’ section. See lines 550 ff.

-Section 7.3. This part of the analysis is very interesting and very useful for model developers
however, I believe it would be useful to present results also in terms of the incremental
computing time per tracer vs number of tracers.

We added a new table and the following text passage: (lines 736-738)
»Additionally, in Table 210 the absolute timings and the computing time per tracer
versus number of tracers are shown.”

Minor comments:

-Introduction, page 1, lines 45-50. These two sentences are incomprehensible to me. I don’t
understand what is “its intended (intented in the text) later usage”, perhaps try to be more
explicit. What does it mean “and mentioned in the name of” ? It seems like this bit of text got
lost in there somehow. Rephrase all this part with a clear structure.

Has been reformulated. See lines 47-54.

-Introduction, page 2, line 105. “Except for the latter.....” what latter?
We reformulated this passage and made clear it refers to a load-balancing
algorithm. See line 110.

-Section 5, line 430. Maybe you mean “current” instead of “actual”?
We changed it to ,common’, see line 527.

-Section 6.3, lines 528-535. How is this different from what is commonly done (I guess in the
Khatiwala implementation) ? Maybe try to explain (explicitly) how this procedure is different
from the common practice and why is preferred.

In general, it is the same what is done in the TMM framework. We just thought it
is worth mentioning here as in the TMM references it is not. We used the
following references:

[Khatiwala et al., 2005]

Accelerated simulation of passive tracers in ocean circulation models

[Khatiwala, 2007]

A computational framework for simulation of biogeochemical tracers in the ocean
[Khatiwala, 2008]

Fast spin up of Ocean biogeochemical models using matrix-free Newton-Krylov

-Be careful with the order of the Figures as they are mentioned in the text, for example, at line
728 you mention Figure 19 before Figures 14 1nd 15.
The figures are in the right order now.



-Section 6.4, lines 570-579. Why are there two different “data alignments” ? I could not
figure out what you mean here. Maybe this should have resulted clear from the previous
sections but it did not so this paragraph sounds like coming out of nowhere to me. Also in
this paragraph you mention the “software utilization layer” of which there is no trace in
Figure 1.

We added a new Section 5.2 ,Geometry information and data alignment ‘, which
makes this clearer now. See lines 448 ff, in particular lines 462-473:

We denote by y; € R"=* the values of the i-th tracer
corresponding to the k-th profile at fixed time step. Then the
vector of all tracers at a fixed time, here denoted by y omit-

ss  ting the time index, can be represented in two ways: Either
by first collecting all profiles for each tracer and then con-
catenating all tracers, namely

y=[(Yir)pZy - WUni)ili], 9)
or vice versa, i.e.
. Y= ((?Jzk):l:ﬁ)zg (10)

In order to multiply matrices with tracer vectors, the first
variant is preferable. In order to evaluate a water-column
based biogeochemical model, the second one is appropriate.

-Section 7.1.1, lines 653-668. This part looks like it could go in the Appendix or directly in
the instructions.
Yes. It is part of the Appendix now, see lines 967 ff.

-Section 7.2, lines 738-744. Mind to elaborate a little bit further on the cause of those peaks?
We did, see lines 673 ff.

-Section 7.4, lines 841-842. You should explain clearly here what you mean by theoretical

efficiency.
We added a text passage that explains the terms ,ideal’ and ,theoretical’, see lines
777-784:

Figure 219 depicts ideal, theoretical and actual data for:
speed-up and efficiency. Here, the term ’ideal’ refers to a
perfectly parallelizable program and a perfect hardware with

70 1o delay on memory access or communication. Regarding
the load distribution implemented by us a good (theoretical)
performance can be observed over the whole range of pro-
cesses. This refers again to a perfect hardware except that we:
distribute a collection of profiles of different length here.

-Lines 978-980. This sentence is not clear. Consider rewording.
The whole passage has been rephrased, see line 917 ff.



Referee #2:

The authors have without doubt clarified and improved the general focus of the paper, I
welcome the omission of the somewhat pre-mature optimisation section and in particular the
analysis involving a suite of biogeochemical models is a nice addition.

However, while I think the contents are generally adequate, the manuscript is still lacking
significantly in terms of clarity and precision. I have the feeling that this is partly due to
short- comings in English language and grammar, which may be sorted by language editing
support,but it is also due to a somewhat careless effort in elaborating and revisiting the text,
which at this point of the submission process is a little concerning, so in its current form I
cannot recommend the work for publication in Geoscientific Model Development. I can only
re-iterate my final comments in this respect in the previous review step.

In the following I give some examples of my concerns (all line numbers refer to the
manuscript version with track changes in the authors response):

I believe the title of the work is inadequate: even if optimisation is the ultimate goal, the work
does not currently include it , so the title is misleading.

We have designed and implemented a software system that is able to simulate and
optimize marine ecosystem models coupled to ocean transport. We assigned the
name Metos3D to this system. The name was chosen to reflect its final purpose.

As mentioned in lines 47-54, a prerequisite for optimization is simulation. Since
the description of the simulation package that is the topic of this work obviously
already fills a whole paper, we decided to present the optimization package
separately. Thus we think that the title of the paper exactly reflects this situation.
Moreover, we thought that you (the reviewer(s)) somehow recommended such
separation after the first submission.

However, we followed the editor’s recommendation and changed the title to:
+Metos3D: A Marine Ecosystem Toolkit for Optimization and Simulation in 3-D -
Part 1: Simulation Package v0.3.2 -, which hopefully expresses (slightly) more
clearly this rationale.

Throughout the main body of the text it appears that all states where treated equally in the
analysis, while from some figures and the model descriptions in the appendix it appears that
only or mainly inorganic phosphate was considered. This should be clarified.

We added information on the regarded tracer variable in each figure caption.
Otherwise all states are treated equally, which has been made clear in Section 3,
see lines 206 f..

Lines 29 following: State explicitly first that the tool has been tested with 6 biogeochemical
models.



Done, see line 11.

Line 87: I can see that the effort increases, but why would it get more complex?
Changed to computational complexity, see line 58.

Line 132-135: language
We rephrased the paragraph, see lines 100 £f.
Old:

models-No matter whether fixed-point or Newton iteration
is used, the necessary multiply repeated simulation of one
1w model year for the marine ecosystem in 3-D is still sub-
ject to high performance computing. A-paratiel-Parallel soft-
ware that employs transport matrices and targets a multi-core
distributed-memory architecture requires appropriate data
types and linear algebra operations. Additionally, aNewton
o solver-and-atoad-balancing-algorithm-are neededthe special
ocean geometry with different numbers of vertical layers in
different regions is a challenge for standard load balancing
algorithms — and a chance for the development of adapted
us  cept for the latter, an-adequate-basisfor-an-implementationis

made-the basis for our implementation is freely available by
the Portable, Extensible Toolkit for Scientific Computation

library (PETSc; Balay et al., 1997, 2012b), which in turn
is based on the Message Passing Interface standard (MPI;
150 Walker and Dongarra, 1996).

New:

100 Whether fixed-point or Newton iteration is used, high per--
formance computing will be needed for running multiple
simulations over one year of model time of a 3-D marine
ecosystem. Parallel software employing transport matrices
and targeting a multi-core distributed-memory architecture

105 requires appropriate data types and linear algebra operations.
The specific geometry of oceans with their varying num-
bers of vertical layers poses an additional challenge for stan-
dard load-balancing algorithms — but also offers a chance of
developing adapted versions that will improve overall sim--

1o ulation performance. Except for these adaptations our im-
plementation is based on the freely available Portable, Ex-
tensible Toolkit for Scientific Computation library (PETSc;
Balay et al., 1997, 2012b), which in turn is based on the Mes-
sage Passing Interface standard (MPI; Walker and Dongarra,

15 1996).

Line 144: versions of what?
Versions of load balancing algorithms. See lines 106 ff.

Line 145: it's not clear to me what the latter refers to
We reformulated this passage and made clear it refers to a load-balancing
algorithm. See lines 110 ff.



Line 172: is->are
Corrected.

Section 2 is a brief mathematical description of the pdes of the coupled system, but not a

description of marine ecosystem dynamics. Title of the section needs changing.

We changed the section title to ,Model equations for marine ecosystems” see line
156

Line 265: While I accept that the overall application of the Neumann condition is good

enough in the context of testing this software package, for a realistic implementation of a

steady state solution of the annual cycle of marine biogeocheimstry, I'm not sure how

reasonable a general Neumann condition is. I would have thought that atmospheric

deposition of nutrients and riverine discharges have a role here.

The corresponding paragraph has been extended to describe how this (and also
Dirichlet b.c.) can be handled, see lines 193 ff.

Line 274 Kappa is diffusivity, not diffusion, diffusion is the process described by the full term.
Corrected. See line 209.

Lines 185 following: the 128 appears as a general rule here, while I'd expect it to depend on
the number of grid points and the strategy of parallelization, which restricted to horizontal
domain decomposition. Also it’s anticipating results and shouldn’t be placed in the
introduction.

We omitted the number of processes. See line 139.

Eq. 4: what is z?
It is an arbitrary vector in RMn_y n_x}. This is stated at line 293.

Line 404: other
Corrected. See line 299.

Line 406: "are equivalent with”: I suspect what is meant is that all norms fulfill that
condition? Equivalent is a different thing.

We refer to the mathematical definition of norm equivalence. We changed the
sentence. See lines 299 ff.

Line 520: which number?
The number of inner iterations. We rephrased the sentence. See lines 387 £f.

Lines 555-556: Unclear what is meant by this sentence, I'd drop it.
Dropped.

Line 565: nx I suppose?
Yes. Corrected.



Line 744-756: I can't find any if the following represented in the figure it refers too up to Lin
754? E.g. what is the bottom layer, what is it’s role within the software package?

Section 5.1 has been renamed and rewritten. We replaced the old schematic figure
by two new ones showing the software layers (Figure 21) and the call graph
(Figure 22). See lines 420 ff.

Line 784 it's not true that it can’t be split, but that would require message passing between
processes.
Corrected. See lines 601 ff.

Line 788-790 not clear what’s meant by its mid in relation to the vector length and how that
is used for balancing then?
We reformulated the text. See lines 612 ff.

Line 849 following: sounds like a lot of memory operations to reorganise the data structure in
the memory space. Should be possible to avoid this using pointers.
To our knowledge, this is not possible. If you define a Fortran routine like

subroutine sub(nz, n, y)
integer :: nz, n
real*8 :: y(nz, n)

end subroutine
it is expected that y represents a contiguous piece of memory.

Lines 877-879 1 don't think there’s much value in as adding the code fragment here, there no
added information with respect to the equation.

We are not sure to what this comment refers to. If it is Listing 1, i.e. the Fortran 95
implementation of the interface, we think it is valuable for the reader.

Lines 890 following: The analogy to the treatment of interpolation remains unclear here as
that section doesn’t mention any of those routines.
The interpolation section has been reorganized. See lines 550 ff.

Lines 919-921: This sounds more like the section would be a kind of step-through user guide,
rather than a description of the software package as the rest of the text. In fact the rest of the
section give a lot of details to enable reproduction of the results. This is great and very useful
for interested readers, so I think it would be good to mention this in the introduction of the
section rather than introducing it as a presentation of results. In fact there is no results in
this section until pg 12. Might be worth splitting this into two sections to separate out the
part with the actual results from the experiment description.

The experimental setup is now part of the Appendix. See lines 962 ff.



Line 925 "original implementation” is a bid misleading here as it may sound as it would be
an original part of this work, while it was rather introduced in the paper cited shortly
afterwards (Dutkiewwicz 2005). 1'd suggest to drop the “original”

Here, we again followed the editor’s suggestions and reformulated the text to:

In order to test our interface we couple an N, N-DOP, NP-
DOP, NPZ-DOP, NPZD-DOP model hierarchy as well as an
implementation of Dutkiewicz et al. (2005)’s original bio-,
o0 geochemical model. The former has been implemented from
scratch for this purpose. The corresponding equations are
shown in Appendix B. The latter is the model used for the
MIT General Circulation Model (cf. Marshall et al., 1997,
MITgcm) biogeochemistry tutorial. We will denote it as the,
o5 MITgem-PO4-DOP model.

Line 976 "filled in”, does that mean it has been set to land?

If so it would be interesting to state the reasoning of this choice.

Yes. This originates in the data provided by Khatiwala. We added this to the text:
Old:

975 The surface grid of the used domain has a longitudinal and
latitudinal resolution of 2.8125°, which results in 128 x 64
grid points (cf. Figure 12). Note that the Arctic has been
filled in. The depth is divided into 15 vertical layers that are
depicted in Table 17. This geometry translates to a (single)

se0 tracer vector length of #y;=-52749-n, = 52749 and the cor-
responding n, = 4448 profiles. Moreover, the total volume
of the ocean is specified as V ~ 1.174 x 10'®m?, whereas
the minimal and maximal volume of a grid box is Vi,in =~
8.357 x 10 m? and Vi,ay ~ 6.744 x 103 m3, respectively.

s The temporal resolution is at At = 1/2880, which is equiva-
lent to an (ocean) time step of 3 hours assuming that a year
consists of 360 days.

New: 7

The surface grid of the domain used has a longitudinal and
latitudinal resolution of 2.8125°, which produces 128 x 64
grid points (cf. Figure 23). Note that the Arctic has been filled
105 1in, i.e. set to land. This originates in the data provided at the
TMM webpage (cf. Khatiwala, 2013). The depth is divided
into 15 vertical layers as described in Table 26. This geome-
try translates to a (single) tracer vector length of n, = 52749
and to n, = 4448 corresponding profiles. Temporal resolu-
o0 tion is at At =1/2880, which is equivalent to an (ocean)
time step of 3 hours, assuming that one year consists of 360'

days.

Lines 980-983: What is the relevance of these volumes?
They are used to compute a weighted norm. We dropped them here and used them

to compare the solution of spin-up and Newton (cf. Section 6.1 line 658 and Table
29).



Lines 1038-1040: Looking at the figure, I don’t understand what the phrase "We observe that
the solutions converge to the same difference in between consecutive iterations.” means?
This was reformulated. See line 656.

Table 16: What is the difference between the two columns, i.e. that does the V stand for?
It stands for volume. This has been added to the figure catpion.

Figures 110,111,... what happened to the figure numbering?
See remark at the beginning,.

Figures 19 and similar: the states used in the formula of the norm are not normalised as far as
I can see, so what are the states and units we are looking at in the norm? Is this just
phosphate? Is it all states? If it is all, shouldn't there be different weights between different
states?

It is phosphate only and the units are mmol P/m”3. We added this information in
each caption.

Line 790: Figures 117-115?
The figures are in the right order now.

Lines 1132-1134: 1t is unclear to me how the Sievertsen work has impacted the profiling
capacity in this work.

This seems to be a misunderstanding. The passage has been rephrased.
Old:

This profiling capability was also used as the software was
n3s  ported by Siewertsen et al. (cf. 2013) to an NVIDIA graphics

processing unit (GPU). The authors investigated the impact

of the accelerator’s hardware on the simulation of biogeo-

chemical models. The work comprises a detailed discussion

on peak performance as well as memory bandwidth and in-
140 cludes a counting of floating point operations.

New:
Siewertsen et al. (cf. 2013) also made use of this profiling
70 capacity when porting the software to an NVIDIA graphics
processing unit (GPU). The authors investigated the impact
of the accelerator’s hardware on the simulation of biogeo-
chemical models. Their work comprises a detailed discussion
of peak performance and memory bandwidth and includes a
7s  counting of floating point operations.

Lines 1143-1147: Does the TMM use the same boundary and initial conditions and time
steps? I suppose so, but it might be worth mentioning it.
Yes, the configuration is the same. We added this information. See lines 748 £f.

Lines 1165-1166: “Here, we use the given output, which is the timing for the whole run.
Owerall, for the calculation of the speed-up and efficiency results we use the minimum



timings for a specific number of cores.” Not clear to me.
Rephrased. See lines 758 £f.

Line 1185 How is the theoretical speed-up computed?
We reformulated the text. See lines 779 £f.

Lines 13002-1312 I don’t understand the "On one hand ..., on the other hand...” here, isn’t
the point simply that the implementation of different biogeochemical models underlines the
flexibility and generality of the interface?

Rephrased. See lines 859 ff.

Lines 1444-1447: meaning of "whose” is unclear.
The sentence has been omitted and the paragraph has been rephrased. See lines
911 ff.

Lines 1485: Not sure what is meant by the investment in the simulation itself.
Dropped.

A1.1 and A1.2: The formulation that phytoplankton is treated "implicitly” in these models is
misleading, when it is actual a free model input parameter and should be treated as such
(particularly with view on optimisation!).

We added a remark here and also to the description of the NP-DOP model.
However, we sticked to the used formulation to be consistent with Kriest et al
(2010). See lines 1061 ff.
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Abstract. We designed and implemented a modular software
framework for the off-line simulation of steady cycles of 3-
D marine ecosystem models based on the transport matrix
approach. It is intended te—be—tised—in—for parameter opti-
mization and model assessment experiments. We defined a
software interface for the coupling of a general class of wa-
ter column-based biogeochemical models, with six efthem
models being part of the package. The framework offers
both spin-up/fixed-point iteration and Jacobian-free Newton
method for the computation of steady states.

The simulation package has been_ tested with all six
models. The Newton method converged with-standard-setting
for four models and—with—a—change—in—one-when using
standard settings, and for two more complex models after

alteration of a solver parameter or the initial guessfor
fwe«mef&eemp}e#eﬂes For-all-considered-models;—both
Both methods delivered the same steady state-states (within
a reasonable precision) on convergence for all models

employed, with the Newton iteration bemg—m—geﬂefa}
generally operating 6 times faster. Forone-exemplary-medel;
we-investigated-the-effeet The effects on performance of both
the biogeochemical and the Newton solver parameters en-the
performancewere investigated for one model. We-performed
a-profiling-analysisfor-all-considered-models——in—which-A
profiling analysis was performed for all models used in this
work, demonstrating that the number of tracers had a dom-
inant impact on the-overall performance. We also imple-
mented a geometry-adapted load balancing procedure which
showed nearly-close to optimal scalability up to a high num-
ber of parallel processors.
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1 Introduction

In the field of climate research ;—simulation-simulations of
marine ecosystem models is-are used to investigate the car-
bon uptake and storage of the—earth’s oceans. The aim is
to identify those processes that are—involved—with-play a

role in the global carbon cycle. This—tequires—a—coupled

stmulation-For this purpose coupled simulations of ocean cir-
culation and marine biogeochemistry are required. In this

context, marine ecosystems are understood—treated as ex-

tensions of the-tatter-biogeochemical systems (cf. [Fasham| m
2003} [Sarmiento and Gruber, 2006). Consequently—we—witt

use-both-terms-synonymousty-belowBoth terms are therefore
used synonymously in this paper. However,—whereas—the

The equations and variables of ocean dynamics are well
knewnunderstood. However, descriptions of biogeochemi-
cal or ecological sinks and sources still entail-unecertainties
eoneerning-contain uncertainties with regard to the num-
ber of components and parameterizations-to parameterization
(cf.Kriest et al. [2010).

A—To improve this situation a wide range of marine

ecosystem models reedsneed to be validated, i.e. assessed
regarding-as to their ability to reproduce real world data.
This involves a prefessional-thorough discussion of simula-
tion results and, moreeverbefore this, an estimation of opti-
mal model parameters for preferably standardized data sets
beforehand—(cf. [Fennel et al, 2001}, [Schartau and Oschlies),
2003).

Optimization—methods—usually—require—As_a_rule hun-
dreds of model evaluations are required for optimization.
nameof)our—software-Metos3D-Therefore any optimization
framework is intended to supply (as suggested by its name),
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first and foremost has to provide a fast and flexible simulation
frameworkatfirst. On—this—pre-requisite-for-an—optimization 12
environment-we-coneentrate-in-this-paper-alwayskeepingin
mind-itstater-intented-usageln this paper we will concentrate
on this prerequisite and present the snnulatlon ackage of

WWBL@@W
jfhe—eempﬂfaﬂeﬂa}—effeﬁ—ef—%ﬁg%fully cou-
pled simulation, i.e. a—simultaneous and interdependent
computation—computations of ocean circulation and tracer
transport in three spatial dimensions, is—very—high——very 1o
high_computational efforts_are needed even at low res-
olution. Mereover;—the—complexity—inereases—additionally

Computational complexity increases still more if annual cy-
cles are investigated, in-which-one-medel-evaluationinvelves

a—tong—time—since each _model evaluation then_involves s
long-time integration (the so-called spin-up) until an equi-
librium state is_reached under given forcing is—reached

{eﬁmdmb»(wﬁ ernsen et al,[2008).
Individual-Several strategies have been developed to ac-

celerate the-computation of periodic steady-states-of-steady 1o
states in biogeochemical models driven by a 3-D ocean cir-

culation (cf. Bryan| [1984} [Danabasoglu et al., [1996; [Wang],
200T)). #n-this-work-we-combine-We have combined three of
them in our software, namely the-so-called off-line simula-
tion, the-optionfor-the-optional use of Newton’s method for s
the-computation-of-computing steady annual cycles (as an
alternative to a-spin-upspin-ups) and spatial parallelization
with high scalability.

Off-line simulation effers-a-affords fundamentally reduced
computational eost-eompared—to—costs combined with an s
acceptable loss of accuracy. The principle idea—is to pre-
compute transport data for passive tracers. Stech-an-approach
has—been-This approach_was adopted by
to-introduee-when introducing the so-called Trans-
port Matrix Method (FMM:[Khatiwala, 2053)(TMM). The 1ss
authors make-use-of-used matrices to store results—from-the
results of a general circulation modeland-to-apply-themtater

en-te-arbitrary-, which were then applied to biogeochemical
tracer variables. This method proved to be sufficiently accu-

rate to gain first insights into the behavior of biogeochem- s

ical models at global basin-scale (cf. 2007). The
software implementation used therein we denote as the TMM

ramework from now on. It is available at Khatiwala 2()

From the mathematical point of view ;-a steady annual
cycle is a periodic solution of a system of (in this case) s
nonlinear parabolic partial differential equations. This pe-
riodic solution is a fixed-point ef-in_the mapping that in-
tegrates the model variables over one year of model time.
In—this—sense;—Seen _in this light a spin-up is a fixed-
point iteration. By—a—straighforward-procedure——Using an 7o
uncomplicated procedure this fixed-point problem can be
equivalently—transformed-transformed equivalently into the
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problem of finding the root(s) of a nonlinear mapping. Fer
Newton-type methods (cf. [Dennis and Schnabell, [1996),
Chapter 6) are weH-known-well-known for their superlin-
ear convergence when applied to problems of this kind.
combination—When combined with a Krylov subspace ap-
proach ;-a Jacobian-free scheme can be realized that is based
n evaluations of just one model year
Keyes [2004; Merlis and Khatiwalal, 2008}, [Bernsen et al.|
2008).
Ne-matter—whether-Whether fixed-point or Newton iter-
ation is used, fhe—neeeswy—mu}ﬂpl—y—fepezﬁed—ﬁmﬂh&eﬁ

fggbvgezfgxmrrmce

computing will be needed for running multiple simulations
over one year of model time of a 3-D marine ecosystem.
Parallel software that-employs—employing transport matri-
ces and targets—targeting a multi-core distributed-memory
architecture requires appropriate data types and linear al-
gebra operations. Additionally—the-spectal-ocean—geometry

with—different-The specific geometry of oceans with their
varying numbers of vertical layers in—different—regions
is—a—poses an _additional challenge for standard load

ba%aﬂemgmg%malgomhms — and—a—chance—for

e with—tmproved—but
xma@wwm
will improve overall simulation performance. Except for
the-latter—the-basis—for-these adaptations our implementa-

tion is freely—avatlable-by—the-based on the freely available
Portable, Extensible Toolkit for Scientific Computation li-

brary (PETSc; [Balay et all [1997, 2012b), which in turn

is based on the Message Passing Interface standard (MPI;
[Walker and Dongarral, [1996)).

The objective of this work is to unite—the—mentioned
combine three performance-enhancing techniques (off-line
computation via transport matrices, Newton method, and
highly scalable parallelization) i1-in order to produce a soft-
ware environment with—which offers rigorous modularity
and complete open-source accessibility. Here;—modularity
refers—to—the—separation—of-Modularity entails separating
data pre-processing and simulation and—the—flexibility—of

coupling—as well as the possibility of implementing any
water column-based biogeochemical model with minimized

implementation—minimal effort. For this purpose —we-we
have defined a model interface that permits the use of any
number of tracers, parametersas—wel—as—, and boundary

and domain data. Hts—flexibility—we—show—by—using—both

an—available-To demonstrate its flexibility we employed an
existing_biogeochemical model (Dutkiewicz et al. 2005),

taken—from—part of the MITgcm ocean model, as well as
a suite of more complex enesmodels, which is included
in our software package. Our software allewsforchoosing
amoeng-offers optional use of spin-up/fixed-point iteration
and-Newton-method;—where-or Newton method; for the lat-

ter tuning-options-are-some tuning options were studied. As
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a result -the work of [Khatiwala| (2008) could be extended by
numerically showing convergence for all six abevementioned

models-models mentioned above without applying precon- zzs

ditioning. Moreover, a detailed profiling analysis for—the
stmutation—with-the-of the simulation when using different
biogeochemical models shows-demonstrated how the num-
ber of tracers impacts the-overall performance. Finally ;-an
adapted load balancing method is presented. ¥-showsnearhy 220

optimal-sealability-up-to—128-proeesses;-It shows scalabilit

that is close to optimal and in this respect saperiority-ever
Wother approaches, including the one-used-in

Khtiwals 2013)TMM framework (Khatiwal 2013).

Clihe—papeﬁs—efgamzed—as—feﬂew%Thls aper is structured zss

as follows: In Sections 2 and 3we—deseribe—the—marine

eeesysteﬁrdyﬂﬂmies—&ﬂéﬂcee&p&ulaf& , model equations are
described, and the transport matrix approach is recapitulated.

In SeetionsSection 4 we—summarize—the—two—options—for

the-eomputation-of-both_options for computing steady cy-
cles/periodic solutions ;—namely—the—(fixed-point and New-

ton iteration;—where—) are summarized, and for the latter 20

AAANRAAAANARAANAANANRANAANAS

we-also-diseuss-some tuning options to achieve better con-
vergence are discussed. In Sections 5 and 6, we—deseribe
design and implementation of our software package ;—and
are_described, while Section 7 shows—ist-offers a number

RAAANARARARRRRAANAANARAS

of numerical results to_demonstrate_its_applicability and ™

performancein—several-numerieal-results. In—Section 8 we
draw-conelustonsand-in-presents our conclusions, and Sec-
tion 9 deseribe—explains how to obtain the source code.

In-the-Appendix——we—summarize-the-model-equations—and

parameter—settings—of—the—medelsuite—we—The Appendix *

contains all model equations as well as the parameter settings
used for this workand-that-is—availabletogether—with—the—;

these are available at the same location as the simulation soft-
ware.

2 Model equations for marine ecosystems
3 Mari ) .

We-We will consider the following tracer transport model,

which is defined by a system of semilinear parabolic partial

differential equations (PDEs) of the form

Jyi
ot

=V (RVyl) -V (vyl) +qi(y7uabad)a 1= 1,...,le,

6]

on a time interval I := [0,7] and a spatial domain {2 C R3
with boundary I' = 0Q. Here-y; : I x 2 — R denotes one-a
single tracer concentration, and y = (y;);-*, is the vector of
all tracers. Since we are interested in long-time behavior and

steady annual cycles, we will assume that the time variable

is scaled in years. W&emﬁ—thﬁtddiﬁﬁﬂal—depeﬂéeﬂey—eﬂ—fhe

For brevity’s sake we have omitted the dependency on time
and space coordinates (f,x) in the—netationfor-brevityour

notation,

The transport of tracers in marine waters is determined by
diffusion and advectionwhich-is-, which are reflected in the
first two linear terms on the right-hand side of (I). Diffu-
sion mixing coefficient x : I X {2 — R and advection velocity
field v : I x Q — R® may either be regarded as given dataer
,_or else have to be simulated together—with-by an ocean
model along with (I). Molecular diffusion of the-tracers is
regarded as negligible compared to the-turbulent mixing dif-
fusion. Thus x and both transport terms are the same for all
Yi-

The—biogeochemical—proeesses—in—Biogeochemical
processes within the ecosystem are represented by the last
term on the right-hand side of (1), i.e.

)y’I'L?u’b’d)?

ql(yauabad):qi(yl, Z:].,,ny

Often;—thefunetions—The functions represented by ¢; are
will often be nonlinear and depend on several tracers, which
eeup}e%@gggwl@ivrlg/ghe system. We will refer to the
set of functions ¢ = (¢;);-*, as “the biogeochemical model”.
This—model—typically—depends—alse—Typically this model

will also depend on parameters. In the software we-present
presented in this paper these parameters are assumed to be

constant w. r. t. space and time, i.e. we have u = u € R"«.
Fa-For the general setting of (I)) this assumption is not neces-
sary. Boundary forcing (e.g. insolation or wind speed, de-
fined on the ocean surface as I's CI') and domain forc-
ing functions (e.g. salinity or temperature of the ocean wa-
ter) my-also-enter-may also enter into the biogeochemical
model. These are denoted by b = (b;);*, ,b; : I xI's — R and
d=(d;);¢,,d; - T x Q— R, respectively.
A-reasonable-setting-are-homogeneeus-For tracer transport
models, Neumann conditions for al-the tracers y; on the
eﬂﬂf&boundary r W Mefeever—zkf—uﬂeaeﬂ

7 s—They may be_either
WWMWMWW
present) or inhomogeneous (to account for flux interactions
with_atmosphere or sediment, ¢.g. deposition of nutrients

and riverine discharges). In the inhomogeneous case,
the necessary data_have to be provided to—solve—an
mﬁiﬂl—b@uﬁd&fy&/a}ue—pfeb}efn%ef—wg/g@rm

________ 2007, Sect. 3.5) it is shown how the case
of tracers with prescribed surface boundary conditions (i.e.
Dirichlet conditions) can be treated using the TMM. Then,
and an additional boundary vector has to be added in every
time step.

3 Transpert-matrix-appreachQOff-line simulation usin
transport matrices

The Transport Matrix Method
(Khatiwala et al.l [2005) allows fast simulation of tracer
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transportass

&QM&W& and  advec-
tion velocity v are given. The-This method is based on
the—a_discretized counterpart of (I). We introduce the
following notation: Let the domain {2 be discretized
by a grid (x),~, CR® and one year in time by so
0=ty <...<tj <tj+Atj :th+1 <...<tlp, =1.

This means that there are n; time steps per year. AtFor time

instant ¢;, we-denote-by-

- ¥ji = (Yi(tj,@x)),2, denotes the vector of the values
of the 7-th tracer at all grid points,

- yj = (y;i)it, € R™"= denotes a vector of the values
of all tracers at all grid points, appropriately concate-

nated.
340

We use analogous notations b;,d;, and q; for the-boundary
and domain data as-wel-as-and for the biogeochemical terms
in-at the j-th time step. For-the-boundary-data-enty-Only cor-
responding grid points are incorporated —for boundary data.

The transport matrix method approximates the discretized
counterpart of (T) by

345

Yjt+1 = Limp,j (Leap,jy; + Atiq;(y;,u,bj.d;)) 2)

::soj(yja’uﬂbjadj)a j:(),"'ant*]-'

The linear operators L), j, Limp, ; Tepresent the-those parts
of the transport term in (T)) that are discretized explicitly and **°
or implicitly w. r. t. time;-respeetively. Consequently,—these
operators—These operators therefore depend on the given
transport data x,v and thus on time. The biogeochemical
term is treated explicitly in (2)) by-using an Euler step.

Since the-transport-effects-each-tracerseparately-transport

affects each tracer individually and is identical for all .
of them, both L.y} j,Limp ; are block-diagonal matri-

ces with n, identical blocks Aewp’j,Aimp’j € Re X7
respectively. i
[Khatiwala et al.| (2003)) describes how these matrices can be
computed by running one step of an ocean model for 4,
employing an appropriately chosen set of basis functions for

a—tracer distribution. As—a—consequenee;—the—partition—The
operator splitting scheme used in this ocean model therefore
determines the partitioning of the transport operator in (IJ)
into the-explieit-and-imphett-matrix-depends-on-the-operator
splitting—scheme—used—in—the—ocean—modelan_explicit and
an_implicit matrix. Ysualty—diffusion—er—a—Diffusion (or*®
some part of it) is &%&eﬁ%edﬂmphaﬂfmz&d
implicitly; in our case rthis applies only

to_vertical diffusion. By this procedure +-we obtain a set

of matrix pairs (Aczp,j, Aimp, J);” , is-obtained, which usu-

ally are sparse. To reduce storing effert-and—to—make—the

method—feasible—at-all—only—a—smaller number—of(efforts sn
and increase feasibility only a small number of averaged
matrices are stored; in our case monthly )-averaged-matrices
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is-storedaverages were used. From-these-Starting from these

matrices, for any time instant ¢; an approximation of the ma-
trix pair at-a-time-instant-;-is computed by linear interpola-

tion.

The onof i tel s

eonsists—of-Thus integration of tracers over one model year
only involves sparse matrix-vector multiplications and eval-

uations of the biogeochemical model. Speeificalty; In fact the
implicit part of the-time integration is now pre-computed and
contained in A, j, Which is the benefit of the-this method.

The approximation error of this method when compared
to_direct _coupled computation is_determined by_the in-
terpolation of the—transport matrices, the linearization of
eventually—used—possibly nonlinear discretization schemes
(e g. flux hmlters) and dﬁfegafdiﬁg—fh&mﬂtmee—ef—ﬂie

eeﬁp%eekeempﬁ%&t:eﬂb dlscountm the reverse mﬂuence of
ocean biogeochemistry onto circulation fields.

4 Steady annual cycles

The purpose of the software presented in this paper is
the—to_allow fast computation of steady annual cycles
eHhe—eeﬂ%&defedﬁfor the marine ecosystem model under
consideration. A steady annual cycle is defined as N\pel‘lOdlC

solution of () with perieddength-a period length of 1 (year),
thus satisfying

y(1),

Obviously, the forcing data functions b,d are-required-need
to be periodic as well.

For-the-application-of-the-To apply the transport matrix

method —we assume that a set of matrices for one model
year (generated with-sueh-using this kind of periodic forc-
ing) is available, and that these are-interpelated-te-have been
interpolated_to_obtain pairs (Acap,j, Aimp,;) for all time

y(t+1) = efo,1].

steps j =0,...,n; — 1. In the discrete setting, a periodic so-
lution satisfies-will satisfy
ynt,-‘rj:yj j:(),...,nt*l.

Assuming that the discrete model is completely determin-

istic, it suffiees-to-satisty-this-equation—just-for-is_sufficient
if this equation is satisfied for just one j. Here;we-compare
selutions-of therespeetive-In this section we will compare the

solutions for the first time instants of two succeeding model
years. Defining

yZ =Ye-1)n, GRnynz7 £=1,2,...

as the vector of tracer values at the first time instant of model
year £, a steady annual cycle satisfies
1 ¢ 0
=9y’ )=y

in R™¥"* for some ¢ € N,

3)
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where ¢ := ¢,,_10--- 0y is the mapping that performs the
tracer integration @) over one year. Here—we—omitted—all
other-arguments-except-of-All arguments except for y have «o
been omitted in the notation. Fhus;&-A steady annual cycle
therefore is a fixed-point of the nonlinear mapping ¢.

Since condition (3) will never be satisfied exactly in a sim-
ulation, we measure the-periodieityperiodicity, using norms
on R™ ™= for the residual of (3) . We use the weighted Eu-
clidean norm

1
N 425
= (Zzwkzm) owk>0,k=1,....n,, (4

i=1 k=1

for—zc R =—with  z € R™"® indexed as
((zik)p=q)r,. This corresponds to our indexing of the

tracers, see Sectlon Bl If wy =1 for all k, we obtain the 4o

Euclidean norm denoted by ||z||s. A—nerm—that—strenger

corresponds—A _stronger correspondence to the continuous
problem (T)) is achieved by using the discretized counterpart

of the (LQ(Q))% -norm, where wy, is set to the volume

Vj,_of the k-th grid box. %mwmwveﬁeﬂe{ewﬁ—}hw
Orther—settings—of—the—We denote this norm b Vo 4ss

Other settings of weights are possible. All these norms are
equivalent with-in the mathematical sense, i.c. it holds

min w|[2]lz < [|2]2w < | max gz

1<k<n 1<k<n

z =

440

for all z € R™"= and all weight vectors w = (wy)}*
satisfying the positivity condition in Eq. ().

4.1 Computation by spin-up (fixed-point iteration)

Repeatedly-applying Spin-up signifies repeated application ™
of iteration step (B)er——, in other words—integrating—,
integration in time with fixed forcing until convergence is
reached;is-termed-spin-up. Iis-well-knewn-by-Based on Ba-
nach’s fixed-point theorem (cf. Stoer and Bulirsch, WZ[)

is well-known that, assuming ¢ is a contractive mapping sat-
isfying

lo(y) = ¢(2)|| < Llly — =||

with L <1 in some norm, this iteration will converge to *®
the—a_unique fixed-point for all initial values y°. This re-

sult de%%tﬁmmr

assumptions as well (cf. [Ciric, [1974). Fhe-This method is
quite robust, but eﬂ—fhe—efheﬁhaﬁekshows only linear con-

vergence which is especially slow for L ~ 1. An estima-
tion of L =max, ||¢'(y)|| is difficult, since it involves the
JacobiansJacobian g (y;) of the nonlinear biogeochemical o
model at the current iteratesiterate. Typically, thousands of
iteration steps (i.e. model years) are needed in order to reach
a steady cycle (cf. Bernsen et al.,[2008). Fhe-Moreover, this
method offers only restricted options for convergence tuning,
the only straightforward one being the-choice-of-a-to choose s

forall y,z € R™"=

different time steps At;. To—to—so—the-For this all trans-
port matrices have to be re-scaled accordingly. The natural
obvious stopping criterion is the-reduction of the difference
between two succeeding iterates measured by

0, 0—1
=y =y 2w
in some — optionally weighted — norm.

4.2 Computation by inexact Newton method

By defining F'(y) :=y — ¢(y), the fixed-point problem (3)
can be equivalently transformed into the problem of finding
a root of F':R"¥™» — R™"™=_ This problem can be solved
by Newton’s method (cf.[Dennis and Schnabell, [1996}; [Kelleyl,
[2003} Bernsen et al, [2008)). We apply a damped (or global-
ized) version that incorporates a line search (or backtracking)
procedure which (under certain assumptions) provides super-
linear and locally even quadratic convergence. Starting from
an initial guess y°, in every-each step the linear system

—F(y™)

has to be solved, followed by an update y =y + os™
Here-p > 0 is-a-here denotes the step-sizethat-, which is cho-
sen iteratively sueh-in such a way that a sufficient reduction
in ||F(y™+ ps™)||2 is achieved (cf. Dennis and Schnabel,

Section 6.3). Note that regarding the Newton solver
the Euclidean norm is used. This is determined by the PETSc
implementation.

The Jacobian F’(y™) of F at the-currentiterate-includes

any current iterate contains the derivative of one model

year, thus it is not as sparse as the transport matrices them-
selves. As-a-consequenee;a-Lherefore a matrix-free version
of Newton’s method is applied: The linear system (5) itself
is solved by an iterative, so-called Krylov subspace method,
which only requires the evaluation of matrix-vector products
F'(y™)s. Since F’'(y™) cannot be expected to be neither
symmetrie-nor-symmetric or definite, we use the generalized
minimal residual method (GMRES, [Saad and Schultz}, [1986).

The needed-matrix-vector products needed for this can be in-
terpreted as directional derivatives of F' at the-point y™ in
direetton-the direction of s. FThey-ean-They may be approxi-
mated by a forward finite difference:
F(y™+d0s)— F(y™
Flymys~ LW F ? (y").

The finite difference step-size § is chosen automatically
as a function of y™ and s (cf. [Balay et al} [20124d).
An alternative here-method would be an exact evaluation
of the derlvatlve using the forward mode of algerithmie

Algorithmic Differentiation (cf.Griewank and
m

The—abeV&NTllisv@pproximation of the Jacobian or direc-
tional derivative is one reason for-this-method-to-be-ealled
an-to_call this method inexactone. The second reason is the

Fy™)s™ = ®)

m—+1

6>0. (6)
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fact that the inner linear solver has to be stopped and thus
is-alse-therefore also is not exact. Here-we-We use a con-
vergence control procedure based on the technique described
by [Eisenstat and Walker| (1996) for this purpose. They-stop sz
Stopping occurs when the Newton residual at the current in-
ner iterate s satisfies

1 (y™)s + F(y™)ll2 < mnl| F(y™)l|2- @)
The factor 7,,, is determined as-by
1E@™)|2 )a
nm'y(m_ , m>2, =0.3. (8
1 (y™ =)z

525
This approach avoids so-called over-solving, i.e. wasting

inner steps when—the—current—Newton—step—was—not—very
sueeessfulif the current outer Newton residual F'(y™) is still
relatively big. The latter is-typically-the-case-in-the-beginning

ofaNewton—tterationtypically occurs at the beginning of s
Newton iterations. Fhe-parameters-Parameters v and « can

be used to influence—this—behavior-avoid over-solving by
adjusting inner accuracy depending on outer accuracy in a
linear and-or nonlinear way, respectively. Moreover, they
are-both parameters provide a subtle way to tune the solver. s
In contrast to a fixed-point iteration, Newton’s method alse

even in its damped version may eﬂ+y—eeﬂvefg&99§§ivljvly
WWlth an appropriately chosen initial guess y°.

In a high-dimensional problem as-eur-application—such as
ours (in R™ ™), it is a non-trivial task to find such an ini- s
tial guess if the method—with-thestandard-one—(estandard
one used for the spin-up (i.e. a constant tracer distribution)
proves unsuccessful. g—the—ene—used—in—thetiterature)—is
not-sueeessful—ThusHf-anNewton-iteration-is-slow-and-the
above-eriterion-may-consequently-Jead-to-In cases where the s
Newton iteration proceeds slowly and the criterion described
above yields only a few inner iterations, it makes—sense—to
inerease-this-may be advisable to increase their number by
either decreasing ~y or increasing «. We-will-giveexamples
later-on—where—exactly—this—strategyenables—eonvergence—at
alBelow we will give some examples of how convergence
may be made possible using this strategy.
Coneerning-the-total-effert-of-In order to estimate the total

computational effort needed for the inexact Newton solver
and in-erder-to compare its efficiency with the spin-up —we
first-note-method, it must be noted that one evaluation of
I basically corresponds to one application of ¢, i.e. to one sss
model year. Thus;-each-Each Newton step requires one evalu-

ation of I as the right- -hand side in-of of (B). Withia-The initial

guess for the inner linear solver iteration %h&mmal—gﬁess
is-always-taken-as-is always set at s = 0. Thus s-no compu-
tation is required for the first step. Each-For each following seo

inner iteration require-sone-additional-some evaluation of I’

is required to compute the second term in the numerator of

the right-hand side of (6). Additionatty—the-The line search

may require—additional-eaviuations—also require additional
evaluations of F'. In-tetalTaken together, the overall number ses

Piwonski and Slawig: Metos3D

of inner iterations plus the overall number of evaluations in
for the line search determine the number of necessary-eval-

uations of F’ thateannecessary for this method, which ma
then be compared to the neeessary-model-yearsta-number of

model years needed for the spin-up.

5 Software description
6 Bioseochemical modelinterf

W ] ] ] | . I. 1 ) ] g] ]
software is divided into four repositories, namely met os3d,
model, data and simpack. The aim-is-to-link-any-model
anee : - | : ‘. ‘
first comprises the installation scripts, the second the
biogeochemical model source codes and the third all data

preparation scripts as well as boundary-and-domain-data—to
fh&dﬁveesefewafethe data themselves The eeuphﬁgmus&

the-followinglast repository contains the simulation package,
Le, the transport driver, which is implemented in C and
based upon the PETSc library. While we have often used
l-indexed arrays within this text for convenience, within
the source code C arrays are 0-indexed and Fortran arrays
are_l-indexed. This—means—no—geometrical-information—on

horizontal-vieinity-of-the-vertical profilesis-preserved-in-the
interfaceAll data files are in PETSc format.

5.1 Implementation structure

The implementation of the simulation package is structured
in layers as is shown in Figure P11 Merecever—any—ehient
model—must—be—able—to—take—up—its—states—{rom—such
profiles;The layers are organized hierarchically, i.e. each
layer provides routines for the layers above. Medels—that
; hori ] o ite ! .

internals-of-the-toolThe foundation of the implementation is
the PETSc library with its data types and the implementation
of the Newton-Krylov solver.

o i omd thed :
for-the-future-The bgc model layer initializes tracer vectors,
arameters and boundar and domam data. In—faet—the

responsible for the inter olatlon of forcing data and the
evaluation of the biogeochemical model (cf. Section .
The transport layer is responsible for reading in the transport
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matrices, interpolating them to the current time step _and

Ceonsequently;—througheut-this—werk;—each-diserete—tracer
veetor is-a-eotlection of profitesThe main integration routine
& (cf. Algorithm [T} 2) is located at the time stepping layer. ¥
can—be-understood-as—a—sparse-representation—of-aland-sea
cuboid—ineluding—only—wet—grid—boxesOn_top resides the ex
solver layer, which contains the spin-up implementation and
the call to the Newton-Krylov solver.

A call graph for the computation of a steady annual cycle is
therein. Calls to initialization and finalization routines are
gathered at the beginning respectively end of a simulation
run. The geometry—former are responsible for memory e
allocation and storage of data used at run time. The latter are
employed to free memory and delete all vectors and matrices.

The dimensions of the used vectors and matrices
depend on the underlying geometry (cf. Section . The

distribution of the work load for a parallel run is determined
during initialization of the work load (cf. Section . 630

5.2 Geometry information and data alignment

Geometry information is provided as a 2-D land-sea mask
with—additioral-plus a designation of the number of ver-

tical layerst, i.e. the depth of the different water columns
(or_profiles, cf. Flgure. Henee—a—vectorlength-n—is=a
sum-of non-equidistant-This can be understood as a sparse
representation of a land-sea cuboid including only wet grid
boxes. Hence, the length n, of a single tracer vector (at fixed
time) is the sum of the lengths of all profiles, i.e.

np
Ny = E Nek,
k=1

where np is the total number of profiles in the ocean and
(Mo k) o2y ﬁ—a~the set of profile depths—lengths. Each profile
corresponds to a horizontal gridpoint. Due to_the locally *
varying ocean depth, the profile lengths depend on the
horizontal coordinate, i.e. on the index k.

The-We denote by y; . € R " the values of the i-th tracer
corresponding to the A-th profile at fixed time step. Then
the vector of all tracers at a fixed time, here denoted by y =
omitting the time index, can be represented in two ways:
Either by first collecting all profiles for each tracer and hen
concatenating all tracers, namely
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Y= [(yre)ly - Unn)ila] (9) s
y = ((in)iZ)ily (10)

In order to multiply matrices with tracer vectors, the first
variant is preferable. In order to evaluate a water-column
based biogeochemical model, the second one is appropriate. sso

As_a result, all tracers need to be copied from
representation (9) to (10) after a transport step. After eval-
uation of the whole-n;—tracer-modelfor-a-fixed-time-index—5
eonsist thenbiogeochemical model we reverse the alignment
for the next transport step. _

The situation is similar for domain data. Again, we group
all domain data profiles by their profile index k, i.e.
(i)l - (nap)ily] =2 (din)if)ily
where d; x denotes a single domain data profile. However, no
reverse copying is required here.

Boundary data have to be treated in a slightly different
way. Here we align boundary values, which are associated

with the surface of one water column each,

()i - (buy )iy — (b))

where b; ;. denotes a single boundary data value as opposed
to a whole profile. As with domain data, no reverse copyin,
is required.

5.3 Biogeochemical model interface

One of our main objective in this work is to specify a general
coupling interface between the transport induced by ocean
circulation and the biogeochemical tracer model. We wish
to_provide a method to couple any biogeochemical model
implementation using any number of tracers, parameters and
boundary and domain data to the software that computes the
ocean transport, Despite the fact that we consider off-line
interface shall not be restricted to this case. This coupling
shall furthermore fit into an optimization context, and it shall
be compatible with Algorithmic Differentiation techniques

The only restriction we make for the tracer model is that it
operates on each single water column (or profile) separately.
exchanged via the coupling interface. For models that require
for internal computations, a redefinition of the interface and
some internal changes would be necessary. In fact, most of
the relevant non-local biogeochemical processes take place
within a water column (cf. [Evans and Garconl [1997).

The evaluation of a water-column based biogeochemical
model for any fixed time ¢ consists of separate model eval-
uations for each profile —Fer—a—fixed—(corresponding to
a horizontal spatial coordinate), i.e. for profile index kwe
compute;

(b )i (s ) 2400 (1)

Here, {4y~ (Y1), is an input array of n,, prefilestracer
profiles according to (I0), each with a length or depth of
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Ng k. The vector u a—veetor-of-contains m, parameters;

(b, Boundary data (b,)7", are given as a vector of
ny, boundary-data—valuesand{d ) —an-values, and domain
data (d; ;):?, as input array of ng demain—data—profiles. 7
Both-inputs-are-regarded-as-already-interpolated—Theresult
isResults of the biogeochemical model are stored in the
the-output-array—{e) . that-consist-output array (q; )"y
which also consists of n,, profilesas-wel—Formalty—-the-,
Formally speaking this tracer model is scaled with—the
toceanfrom the outside by the (ocean circulation) time 7o

stepfrom-the-outside. However, we integrate-have integrated
At into the interface as a concession to the aetual-practice

~where-common practice of refining the time step is-often
sefined-within the tracer model implementation (cf. [Kriest m

et all [2010). €ensequentlyAs a consequence, the responsi- 7

bility to-seale-the-result-beforereturning-it-back-for scaling
results before returning them to the transport driver software

rests with the model implementer.

Listing[I|shows a realization of the biogeochemical model
interface in a Fortran 95 subroutine called metos3dbgc. 7o
The arguments are grouped by their-data type. The list be-
gins with variables of the type integer, i.e. Ny, Ng ks Ny,
ny, and ng. They-These are followed by real =8 (double pre-
cision) arguments, i.e. At, g, t;, y, u, b and d. We-negleeted
Mw}mme profile index k and the time 7ss
index j in the-netationfor-elarityour notation. Moreover, we
use-have used dt as a textual representation of At.

Addmeﬁaﬂy—&A model initialization and finalization
interface is also_specified. The former is denoted-named
metos3dbgcinit and the latter metos3dbgcfinal. no
These routines are called at the beginning of a-each model
year, i.e. at tg, and after the last step of the annual iteration,
respectively. Both have-routines employ the same argument
list as met os 3dbgcand-, They are not shown here. Al-three
routine-names-The names of all three routines are arbitrary 7s
and can be ehanged-altered using pre-processor variables that
are defined within the-Makefile.

Piwonski and Slawig: Metos3D
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5.1 Interpolation

The-transport-Transport matrices as well as the-boundary and
domain data vectors are provided as sets of files. Although;
most-of-the-data—we-use-in-this-work-represents—a—monthly
mean;—the—The number of files in each set is arbitrary,
although most of the data we use in this work represent a
monthly mean.

. Nimp

Nexp H 830
(1kexp7] )le B where mp and Rexp Speel“ the-number-of

825

interpolatedfirst—Herefor-In the same way, ng denotes the
number of domain data sets and n4 ; the number of data files

of a particular set,
For every index 7 and the-its corresponding boundary data

set (bz J);Lb‘i we compute the appropriate weights «, 3 as
well as indices j,, jg and form-the-linear-combination—as
then form a linear combination

bi=ab; , +Bbij,.

The same applies for-the-to domain data, i.e. for every domain
data set (d; ;)] we compute
d;=ad;j, +fd; .

Technically;—we-use-the-We use PETSc routines VecCopy,
VecScale and VecAXPY for this purpese;—which—is

analogeus—te—the—interpolation—ofthe—transpert-matrices—in
Seetion-22?process.

However, the-time-step-eount-time step counts per model

year is-are generally much higher than the number of avail-
able data files. Thus;—the-For this reason matrices and vec-
tors are finearty linearly interpolated to the current time step
during the-iteration. Fhe-All files of a specific data set are *°
interpreted as averages of the time intervals they represent.

~ Iy e interpolate_in_t ] oy

eenters-of-these-We therefore interpolate between the centers
of associated intervals. The appropriate weights and indices

are computed on the fly using Algorithm[4]
With regard to boundary and domain forcing, we denote

Tp,i\np nd,i\Nd

850

provided-data—Here, n;, is the number of distinct boundar

data sets, and ny, ; is the number of data files provided for the
i-th set.

855

[(yl,k)Zil — ((yi,k):‘,b:l)Zilv

With regard to transport we have (A; "ime - and

A, i) as data files, where Wdeﬁe{es—fhe—!ﬁh
o of the it v roril luati ;

he_bi hemical tel he_ali :

| T S fine ]
domain-data—1;,,, and n.,, specify the number of implicit
and explicit matrix files, respectively. Again,—we-group-the
] d fles by thoi feindexie.

[(dig)ily - (dng )]

. (yn,k)ZiJ
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On-entry,-we-interpelate-the-userprovided-Analogous to the
interpolation of vectors we first interpolate all user-provided

matrices to the current point in time ¢;first, i.e. we assemble s2s

AZOéAja —|—6.A‘7[3

with-using the appropriate «, 5 and j,, jg. Analogeusty-to
the-interpolation—of-veetors—we-We use the matrix variants
MatCopy, MatScale and MatAXPY for this purpose. The
technical details hereof-has—been—already—diseussed-atfull
tength—in—of this process have been discussed in depth in
[Siewertsen et al] (2013). Subsequent—we-apply MatMutt
to-every-tracer-of the-input-variable-ym o35
To avoid redundant storing we do not assemble both (block
diagonal) system matrices during simulation. We use the
matrices provided to build just one block for each matrix
type instead. The transport step is then applied as a loop over

individual tracer vectors.
1 e Lo : | n
feﬂl}weeteﬁapefaﬁem—eael%e#fh&ma%ﬁaeygvlg@vymectm 940

interpolation and vector operations in general, each matrix
operation has a significant impact on the-computational time.

In Section @ we will present results from profiling experi-
ments thatshow-detailed-information-about-showing detailed
information on the time usage of each operation.

5.2 Load balancing for spatial parallelization
For spatial parallelization, the discrete tracer vectors
have to_be distributed to_the available processes. Since
biogeochemical models operate on whole water columns,
profiles cannot be split without message passing. But due to s
the locally varying ocean depth, a tracer vector is a collection
of profiles with different length. Thus a load balancing that
takes into account only the number of profiles, but not their
respective length, would be sub-optimal.

The PETSc library provides no load balancing algorithm sss
suitable for this case. We therefore use an approach that
was inspired by the idea of space filling curves presented by

Zumbusc

For each profile we compute its ’computational weight’,
i.e. its mid, in relation to the overall computational effort, i.e. s6o

Piwonski and Slawig: Metos3D

the vector length. We then project this ratio to the available
number of processes, i.e_we round this figure down to an
integer and use the result as the index of the process the
profile belongs to. By using this information the profiles can
then be assigned consecutively to the processes involved.
For_O-indexed arrays this calculation is_described by
Algorithm [ Its_theoretical and actual performance is
discussed in_Section [6.31 where a comparison_ between

Metos3D and the TMM framework is shown.

6 Results

In this section ;-we-we will present results from our numeri-
cal experiments to verify the software. We-tse-the introdueed
interface For these experiments the interface described in this
paper has been used to couple the transport matrix driver
with a suite of biogeochemical models. We-We will also in-
spect the convergence behavior of both solvers included in
the software. A profiling of the main parts of the algorithm

complements-the-initialb-will complement the verification.

Subsequent—we—perform—In_a_second step we have
performed speed-up tests to analyze the implemented-load
distribution—load distribution implemented in our software
and compare it with the TMM framework. We eontintue
by-investigating-will also investigate the convergence con-
trol settings of the Newton-Krylov solver and examine the
solver’s behavior within parameter bounds.

6.1 Setup

W he PETS . abl g
Heitisinstatled-and-d . I Jabl
as-ashellcommand.

6.0.1 Models

> D )

coinal impl . C o bi hemical el
l river— Thef o irmo] i
The experimental setup is described in Appendix [BF

we—store—the—source—code—filenamed-modet-FA] in_more
detail. We-use-this-directory-structure-for-all-medels-Overall;
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erate for 10,000 model years. The Newton approach is set to
a line search variant and the Krylov subspace solver to GM-
RES. All other settings are left te-default—in—particular-the
at default, so overall absolute tolerance is at 10~® and the
maximum number of inner iterations is 10,000.

The parameter values we-use-used for the MITgcm-PO4-
DOP model are depieted-listed in Table@aﬁéﬁameé@glg
the heading ugtherein. Table 28] depiets—lists_the param-
eter values used for the N, N-DOP, NP-DOP, NPZ-DOP,
NPZD-DOP model hierarchy. If not stated otherwise the ini-
tial value is set to 2.17 mmol Pm~3 for N or PO4 and
0.0001 m mol P m~? for the-all other tracers.

For-the MITgem-PO4-DOP-model-a—comparison—of-the
A _comparison of convergence towards a steady annual cy-

cle for both solvers, applied to the MITgcm-PO4-DOP
model, is shown in Figure@ We observe that the-selations

RAAAAAL

converge—to—the—same-difference—in-both solvers reach the

same difference between consecutive iterations at the end.
MefeeveFTable@ shows the differeneedifferences between
both solutions in Euclidean WMSW
norms, cf, Eq. (@). AdditionallyFigure 25| depicts the dif-
ference between both solutions for Whe surface
layer. Except for the-numerical-error—numerical error both
solvers obviously compute the same solution.

Figures [26] and [27] show the convergence behavior of
both solvers for the N respeetively-and the N-DOP model,

respectively. There-is-no-essential-difference-in-comparison
to—the—MITgem-PO4-DOP—medelAgain both solvers end
with approximately the same accuracy and produce similar
results. An—inspeetion—of—the—surface—This_impression is
confirmed by an inspection of Figures 28] and 9] confirrms
this-tmpression—There-is-no-peeuliarity shown-in-as well as
Table 20kither.

However, for-the NP-DOP-medel-in Figure |ﬂ_T5| shews
a different behavior ef—can be observed for the Newton-
Krylov solver at the end of the solution process, applied to
the NP-DOP model. A—etoser—Closer inspection reveals a
peak every 30 model years, which ebvieusly-results from
the settings of the inner solver, where GMRES is set to
perform a restart every 30 yearsby—default. Surface—This

etermine-the-fluxes-of particutate-organ | s-an option is chosen to reduce the internal storage requirement,
to-approximate—a—derivative with—respeet—to—depth—Note  but_may lead to_stagnation for indefinite matrices, cf.
i i i i , Sect. 6.5.6). It is likely that the Jacobian at some
important-and-must eorrespond-to-the-order used-within-thewss  Newton step becomes indefinite, and thus we assume that this
model-implementation—Mereover—aspreviously i is the case here. Figure 21| and Table 29 --hewever-do not
indicate any effeetinfluence on the solution, however.

Fhe-For the NPZ-DOP and-or the NPZD-DOP modets

— g = shew—&dtffetceﬂt—behaweﬁegafdmgmodel the Newton solver
iterations-per-model-year— e shows a different behavior. For both models ;—the solver
does not converge with-default-settings-as—shown-if default

6.1 Solver settings are used, as depicted in Figure 212 (top) and Fig-
ure @ (top). {&eafkbe—%eeﬂ—ﬂﬂr&t—fhe—fedaeﬁeifgvegggggg

We begin our verification by computing a steady annual cycle of the residual per step is quite low, which results in a
for every modelwith-, using both solvers. Regarding-Wheniss huge number of iterations. Here-In this case the solver was
using the spin-up ;-we set no tolerance and let the solver it- stopped after 50 iterations (the default setting), which already
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is—a—high-number-is_quite high for Newton’s method. Theiz
reasorris-This behavior was caused by the fact that conver-
gence of the-this method — even in its so-called globalized or
damped version used here — stit-may-depend-at times still
depends on the initial guess y". We therefore used a dif-
ferent one, which was successful fer-with the NPZD-DOPi+2s
model, see Figure |ﬂ_’3'| (middle). Fer-With the NPZ-DOP
model, it-stit-was-not this procedure still did not work, see
Figure (middle).

However, the result of a second and much easier way to
achieve convergence can be deduced-already—from—seen inrso
Figure[212](top) and Figure 213 (top). Fhe-stopping-eriterion
of-the-inner-iterations-of-the Newton-selverislessrestrictive
i—the-If the last Newton iteration was—not-very—sueeessful;

whieh-is-step did not lead to a big reduction of the residual,
which was obviously the case here, the stopping criterionits

() for the inner iterations of the Newton solver becomes
less restrictive. Fhe-If this criterion is sharpened the num-
ber of inner iterations increases and thus the accuracy of
the Newton direction wrmpfwedﬂvhe&fh&mﬂeﬁemeﬂeﬂ
is-sharpened;-thussomehow-contradieting-the-improve. Thisiao

omewhat contradicts the idea formulated in
). Fhis—ean—be—easily-Sharpening can easily

be ¢ achleved by decreasing -, here-in this case to v =0.3.
This tuning now-led to convergence, see Figure[212] (bottom)
and Figure 23] (bottom). With-thissettings—the-respeetivers
solutions-are-the-same-as-When using these settings the ones
obtained by-the-same solutions are obtained as with the spin-
up, when-if numerical errors are neglected (see Figures
and . This is-alseresult is confirmed by evaluating the
differences in the norm, see Table 29} 1150
Overatl,—we—observe—that-It can be observed that as a
rule the Newton-Krylov solver does not reach the-default
toleranee-default tolerance within the last Newton step and
iterates unnecessarily for 10,000 model yearswithin-theJast
Newton—step. Thus,—we-Trom now on we will therefore

limit the inner Krylov iterations to 200—in—the—follewing
experiments—200, Mereoverforfurtherinvestigations—withiss

For our next investigations using the MITgem-PO4-DOP
model we ehanrge—will alter the convergence settings as

well to get rid of the over-solving that-we-observe—at-the

begmmﬂgobserved before. Referring—to-this;mere-detailedieo

experiments—More detailed experiments on this subject are
presented in Section[6.4]

6.2 Profiling

1165
In—fellowing—In the next two sections we investigate-will
investigate more closely some technical aspects of the imple-
mentationmore-closely. First-of-all-we-are-interested-in-We
will first look at the distribution of the-computational time
among the main operations of a-one model year.
For this s-purpose we perform a profiled sequential run for
each modelat-whieh-we-iterate-, iterating for 10 model years.

1170
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Fhe-analysis—of-the-An_analysis of our profiling results is
shown in Figures . Regarding-When using the
MITgcm-PO4-DOP model, for instance, we-observe-that-the

biogeochemical model takes up 40% of the-computational
time. The-interpolation-Interpolation of matrices (Mat Copy,
MatScale and Mat AXPY) amounts to approximately a-one
third. The-matrix-Matrix vector multiplication (MatMult)
takes up a quarter of the-all computations and all other oper-
ations amount to 0.5%.

Meoreover;—we—recognize—that—the—more—tracers—are
involvedthe-more-the-Our data also suggest that the greater
the_number_of tracers involved, the more dominant ma-
trix vector multiplication becomesdeminant. For—the—N
model-it-The MatMult operation takes up 19,8% of the
computationak-time -whereascomputational time for the N
model, but 56,7% for the NPZD-DOP modelthe Maedatt
operation—amounts—to—56;7%. The pessible—implications
implications of these results are discussed in Section m
computing_time per tracer versus number of tracers are
shown.

Thic " 3 ] I
used as the software Was ported by
Stewertsenetalef-203)Siewertsen et al| (cf. 2013) also

made use of this profiling capacity when porting the software
to an NVIDIA graphics processing unit (GPU). The authors

investigated the impact of the accelerator’s hardware on
the simulation of biogeochemical models. FThe-Their work
comprises a detailed discussion eﬂ—peak—peffermaﬁc—eﬂe—weﬂ
as-of peak performance and memory bandwidth and includes
a counting of floating point operations.

6.3 Speed-up

In this section ;—we-investigate-we will investigate in detail
the performance of the load balancing algorithm in—detait
aﬂd—eempafe%h&gggvggwresults with the parallet
framework. We compile both drivers with-using the same
biogeochemical model. For—this—purpose—we—~choose—We
choose the MITgem-PO4-DOP sinee-itispartof-the FviM-as
well-and,-eonsequently,-we have the same-setap-—model using

the same time step, initial condition as well as boundary and
domain data.

We-run-the-tests-on-a-hardware-that-Our tests are run on
hardware located at the computing center of Kiel Univer-
sity«IH'% an Intel® Sandy Bridge EP architecture with In-
tel Xeon® E5-2670 CPUs that consist of 16 cores running at

2.6 GHz. Regarding-our-implementation-we-We perform 10

tests for our implementation, using 1 to 256 cores.
Each test consists of a simulation run of three model years,

at-whieh-where each year is timed separately. For the TMM
framework we use 1 to 192 cores and run 5 tests on each
core. Here;we-We use the given output ;-whieh-is-here, which
shows the timing for the-one whole run.
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Overall;for-the-ealeulation-of-the-To _calculate speed-up
and efficiency results-we use the minimum timings for a spe-
cific number of cores. Mereever;-all-All timings are related to
the timing of a sequential run. For a set of measured-compu-

tational times (¢;);, measured during our experiments, with
N =192 or N = 256we-ealeulate-thespeedup-, respectively,izso
we_calculate speed-up as s; =t1/t; and the—efficiency as

e; =100 s; /1.

Jditionatly. Corti ] ] L toad
distribution-To investigate the load distribution implemented
by us (cf. Sectlon@ +we compute the best possibleratioress
ratio possible between a sequential and a parallel run. Fer

a-number—Using Algorithm [3| we first compute the load

distribution for all numbers of processes, ie. i = 1,..., 260

then retrieve the maximum (local) length ni,maz. Feﬁhe:[gm
calculate speed-up we divide the vector length by this value,
i.e. S; =My/Nimaz, and fer-theto calculate efficiency we
again ealewlate-use e; = 100 * s, /1.

Figure [219] depicts the—ideal, theoretical and actual
speedup—respectively—efficieney—data _for speed-up andias
efficiency. Regarding—the—implemented—load—distribution
Here, the term ‘ideal’ refers to a perfectly parallelizable
program and a perfect hardware with no delay on memory

access or communication. Regarding the load distribution
implemented by us a good (theoretical) performance can berzso

observed over the whole range of processeseai-be-observed.

MWHHeeegmwThls refers again to a perfect
hardware except that we distribute a collection of profiles of

different length here.
The data also _show that a parallel run of Metos3Diess

on the Intel hardware reaches—achieves close to perfect
performance when using between 100 and 140 coresalmost
best-performance. In-this—range-the-efficiency—is-Efficiency
is_at about 95% and-the-in this range and speed-up nearly
corresponds to the number of processes. fndeed;—the-In factizeo
speed-up stitbrises-may rise still further up to slightly over
160but-requires-atdeast, but a minimum of 200 processes to
reach-thisfactorare required to achieve this.

In eontrast; the performanee-comparison, the scalability of
the TMM Wmml %Ehf%efﬁeleﬂc—%

wm%ﬂ@mm%mww
speed-up never rises above 40. From-For 120 cores up-and
above Metos3D is at least 4 times faster. Interestingly-there
is-Interestingly, for low numbers of processes a significant
drop in performance at-the-beginning—can be observed for
both drivers. The-possible-implications-are-shortly-diseussedian
The implications of this are discussed briefly in Section [7}
However,-We_did not_investigate this effect any further,
however, since the results give-us-a-good-orientation-anyway
Meﬁﬁmﬂweﬁgﬁeﬁufmmygggy
provide a good guideline.
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6.4 Convergence control

After a-this basic verification and a-—review-of-the review of
some t technical aspects of our implementation, we investigate

fhe%e&mgﬁ&c—eﬂfrekfhewﬂl now investigate those settings

that _control convergence of the Newton-Krylov solver.
Again-we-tse-Once again we use only the MITgecm-PO4-
DOP modelenty. Our intention here is to eliminate the over-
solving that-we-observe-we observed during the first 200 it-
erations as shown in Figure @ This effect occurs if the
accuracy of the inner solver is significantly higher than the
resulting Newton residual (cf. [Eisenstat and Walker], [1996).
The relation between these-these two is controlled by the
parameters v and the o parameter-depieted-used in Equa-
tion ().

Henee,_To_investigate the influence of these parameters

on convergence we compute the reference solution frent
Q‘ESVCQV@VLQ Sectlonlgwﬂ%mdlfferent values of ’y and
o .
We set the-overall tolerance to the measufeekéﬁefeﬁe&e#
difference measured between consecutive states after 3,000
model years of spin-up, i.e. approximately 9.0 x 10~%. We
letthe-value-ofy vary-is varied from 0.5 to 1.0 in steps of 0.1
and « is-ehosen-from 1.1 to 1.6, also in steps of 0.las-well.
This is-makes for a total of 36 model evaluations.

Figure @ depicts the required-number of model years
and Newton steps required as a function of -y and o. We ob-
serve that the overall number of years decreases —as—beth
parameters-tend-to-as the two parameters tend towards 1.0
and 1.1, respectively. In contrast, the number of Newton steps
increases, i.e. the Newton residual is computed more often
and the inner steps become shorter.

Consequently, since the computation of a-one residual is
negligible in comparison to the simulation of a-one model
year, we focus on decreasing the overall number of model
years. A detailed inspection of the results reveals that for
v=1.0 and a=1.2 the solver reaches the set—tolerance
tolerance set above after approximately 450 model years,
which is significantly less than the 600 if-years needed when
using the default settings. Thus;wve-

We therefore use these values for the-our next experiment.

6.5 Parameter samples

Until-now—we—solved—the—given—So_far we have solved
the model equations for one (reference) parameter—set
monly During an—eptimizationa—solation
optimization, however, solutions must be computed for var-
ious parameter sets. Thus;-weperform-the-next-experiments
in-order-to-study- Our next experiments therefore investigate
the solver’s behavior with regard to ether-different model pa-
rameters. Again—we-Once again we only use the MITgcm-
PO4-DOP modelenty. For—this—purpese;—using—Using the
MATLAB® routine 1hsdesign, we create 100 Latin Hy-

percube (cf. McKay et al.}[T979) samples within the bounds
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that-are-depieted-described in Table 27 We-set-the-overathso
tolerance-again-As before we set overall tolerance to a value
that-is—comparable-with-comparable to 3,000 spin-up itera-
tions and let the Newton solver compute a solution for each
parameter sample.

Figure221]shows histograms of the total number of modelizss
years respeetively—or Newton steps required to solve the
model equations. We observe that most computations con-
verge -between-after 400 to 550 model years and require 10
to 30 Newton steps. Interestingly, regarding-the-latter-there is
a high peak around 15 and a smaller peak-around—12—onero
around 12 for the Newton method. Mereover,werecognize

We also find some outliers in both graphs. Nevertheless 5
alfstarted-model-evatuation-all model evaluations we started
converged towards a solution within the desired tolerance.

1345

7 Conclusions

We designed and implemented a simulation framework
for the computation of steady annual cycles for a generahaso
generalized class of marine ecosystem models in 3-D,

driven by pre-computed-transportmatrices-transport matrices
pre-computed in an off-line mode. The-Our framework al-

lows computation of fhe—%teadyeye}eéﬁby—&gtveggw@gsvby

spin-up or by a globalized Newton method. The software isass
completely-realized-as(or-using-available)-has been realized
as open source code throughout.

We also introduced a software interface for water column-
based biogeochemical models. On-one-hand;-we-showed-We
demonstrated the applicability and flexibility of this inter-ise
face by coupling the biogeochemical component used in the
MITgcm general circulation model to the simulation frame-

work. On—the-other-hand;—we—eoupled-To test the general
usability of the interface we then coupled our own implemen-
tations of five other-biogeochemical-models—talso-differentiass
biogeochemical models of varying complexity (already used
in [Kriest et al] (2010)) with-different-complexity—to—show
the-interface’s-generalityto the framework. Theirsourcecode
The source code of these models is also available within-the
software-as part of the software package, and may serve asisno
temptatesfor-template for the implementation or adaption of

other models.

We implemented a transient solver based on the trans-
port matrix approach, where all matrix operations and the
evaluation—of-the-evaluations of biogeochemical models areisrs
performed with-by spatial parallelization via MPI using the

PETSc library. The needed-transpoert-matrices—are—directly

avatlable—transport matrices needed for this process are
available directly and require no pre-processing.

We realized both a spin-up (or fixed-point iteration) and aisso
globalized Newton solver for the computation of steady cy-
cles. We compared these-the performance of both solvers and
made the following observations: Both deliver-delivered the
same results (up to a reasonable precision) on convergence.
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The spin-up eonverges—with—converged when using stan-

dard sets of parameters, which were taken from
(2010), fer-and equally distributed values for each-tracerall

tracers. The Newton solver showed-the-same-behaviordid
the same for the four models of lower complexity. For-the

efher—fwe—fﬂt did not converge with-the-standard-setting-of
M&mﬁﬁ%&h&mﬁﬂ@ﬁe&%%(m@ls
when using standard parameter settings and an initial distri-
bution of tracers as described above. For both of these twe
more complex models -eonvergenee-was-convergence could
be achieved by increasing the number of inner iterations in
the Newton solver, which is realized by decreasing the pa-
rameter v in (8). For one of these models +-the-same-could
convergence could also be achieved by choosing a different
initial guess.

Concerning—With regard to performance, the Newton
solver was about 6 times faster for all models. It can be
concluded that for complex models the Newton method re-

quires more thereugh-selver-parameter—settingfor-complex
medelsattention to solver parameter settings, but then is su-
perior in-any-easeto_the spin-up, at least for-the-considered
parameter sets when using parameter sets as desctibed above.

We-studied-the-dependeney-In a next step we investigated
how performance of the Newton performance-with-respeet
te-method is influenced by the two solver parameters o7y
in (B)for-one-exemplary—meodel—, using one model as an
example. With—an—Employing the optimal choice derived
from these experiments (fer-and one model parameter set),
we then investigated-the-dependeney-of-the-needed-studied
the number of Newton iterations and overall model years
needed for 100 latin hypercube model parameter samples.

This testis-tmpertantis an important test for the usability of
the Newton method ferexample-in-a-optimizationran-where

in various kinds of optimization runs, for example if model
parameters are varied by the optimizer. Hturned-eut-thatthere

ts-a-As it turned out there was a certain variance in the needed
steps-and-thus-number of steps needed and thus in the over-
all effort, but that-there-are-there were no extreme outliers.
We-eonelade-Our conclusion is that the Newton method —

&erpv@g\%at least for this model—is
appropriate-for-optimization, and faster than the usually ro-
bust spin-up.

We further analyzed the—prepertions—in—time—that—the
different-pieces—of—the—simulation—n—which proportion of
computational time is utilized by different parts of our
software during simulation of one model yearneed. It-turned
out that-with-inereasing-Qur experiments showed that with
W number of tracers -the matrix-vector oper-
ations deminate-and-thus-have-the-mest-started to dominate

the process, thus offering the greatest potential for further

performance tuning. This is-despite-the-fact-that-was the case
even though the transport operator was the same for every

traceris-the-same. HoweveritstiH-hasto-beevaluated~whese

effertis-propertional-to-the number-of tracers-in-the-medel:
In-contrary;—the-biogeochemicalinteractions-In_contrast all



1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

Piwonski and Slawig: Metos3D

biogeochemical interactions contained in the nonlinear cou-
pling terms q;, which are-mestly-mostly are spatially local,
become less performance-relevant as the number of tracers

increases.

Finally, we implemented a load balancing thatexploits-theiuo
differentdepths-of the mechanism which exploits the fact that
water columns in the ocean that-result—in—differentlengths
of-the-corresponding-data-vectors-vary in depth, resulting in
data vectors of variable length. With-this batancings-anearly
Using this balancing method a close to optimal speed-up by
spatial parallelization up-to-abeuta-comparably-was achieved
up _to the relatively high number of 128 processeswas

possible. This-is-a-huge-difference-to-theperformanee-with
The difference to standard load balancing is immense.
S rined I cof ; i

. ] ] L o
and—meodel—assessment—rans—It—has—T0 summarize, the

ANAARNANANANARIIAANARANE
software framework presented here offers high flexibility
w.r.t. models and steady cycle solvers—eﬁfefs—fmpfeved

algoerithms—less—parallelizableimplemented load balancin s

scheme results in significant improvement in arallel

performance. Our—results—show—that—the —parallelization
effertis-wel-invested-in-the-simulation-itsefEspecially, the

apllied Newton solver can be tuned to converge for all six

bio eochemical models. o

8 Code availability

Name of software: Metos3D (Simulation Package v0.3.2)
Developer: Jaroslaw Piwonski

Year first available: 2012

Software required: PETSc 3.3

Program language: C, C++, Fortran

Size of installation: 1.6 GB

Availability and €estcosts: free software, GPLv3
Software homepage: https://metos3d.github.com/metos3d

The toolkit is maintained using the distributed revision con-
trol system git. All source codes are available at GitHub
(https://github.com). The current versions of simpack and
model are tagged as v0.3.2. The data isrepesitory-is-at
repository is tagged as version v0.2. All experiments pre-

sented in this work were carried out using this—these ver-,,,,

sions. The-assoetated-Associated material is stored in the
2016-GMD-Metos3D repository.

To install the software ;—the—user—users should visit
the homepage and follow the—instructions. Whereas—in

the—future—an—installation—will-always—refleetthe—eurrent

Future installations will reflect the state of developmentiao

—the—user—ean—always—inveke—at that point of time, but
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users may still retrieve the versions used in this work b
invoking git checkout vO0.3.2 in the simpack and

model repository as well as git checkout vO0.2 inthe
data repository-to-retrieve-the-versions-used-in-this—work:
repositories.

Appendix A: Experimental setu

We assume that all PETSc environment variables have been
set, the toolkit has been installed and the metos3d script
has been made available as a shell command.

Al Models

In order to test our interface we couple an N, N-DOP,
NP-DOP, NPZ-DOP, NPZD-DOP model hicrarchy as well
as an implementation of Dutkiewicz et al| (2005)’s original
biogeochemical model, The former has been implemented
equations_are_shown_in_Appendix [Bl The latter is the
model used for the MIT General Circulation Model
(cf. Marshall et al 1 [1997, MITgem) biogeochemistry
tutorial, We will denote it as_the MITgem-PO4-DOP
model.

For every model implementation that is coupled to the
transport driver via the interface a new executable must be
compiled. We have established naming conventions for the
directory structure so that it fits seamlessly into an automatic
compile scheme. We create a folder that is named after the
biogeochemical model, for instance MITgcn-PO4-DOP,
within the mode directory of the mode1 repository.

Within this folder the source code file named model . F
is_stored. This directory structure is used for all models.
Although the file suffix used here implies a_pre-processed
Fortran fixed format, any programming language supported
by the PETSc library will be accepted.

invoke

$> metos3d simpack MITgcm—-PO4-DOP
and obtain an executable named

metos3d-simpack-MITgcm—PO4-DOP.exe

which we will use for all experiments described below.
Specific settings will be provided via option files.

A2 Data

All matrices and forcing data used in this work are based

on the example material available at ( a, [2013)). This

material originates from MITgem simulations and requires
some post-processing. The corresponding preparation scripts
are_provided along with the processed data in the data
repository.
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The surface grid of the domain used has a longitudinal and
latitudinal resolution of 2.81257, which produces 128 x 64
grid points (cf. Figure 23). Note that the Arctic has been
filled in, i.e. set to land. This originates in the data provided
pag . al, 3). The depth is
divided into 15 vertical layers as described in Table 6l
This_geometry translates to a (single) tracer vector length
of ny = 52749 and to n, = 4448 corresponding profiles. .,
Temporal resolution is at At = 1/2880, which is equivalent
to an (ocean) time step of 3 hours, assuming that one year
consists of 360 days.

The method of computing_photosynthetically available
short wave_radiation is _the same for all models. Tt is
deduced from insolation, which is computed on the fly using
the formula of [Paltridge and Platf (1976). For this purposeis«o
latitude and ice cover data are required for the topmost layer,
Le. ny = 2. We use a single latitude file for the former, i.e.
1 = 1, and twelve ice cover files for the latter, npp = 12.

The depths and heights of all vertical layers are required
as well, so_we have ng =2 domain data sets. Each set
consists of only one file, ie. 141 =1 and 14,2 = 1. This
information_is used to_compute the attenuation of light
by water to_determine the fluxes of particulate organic
phosphorus and to_approximate a derivative with respect
to_depth. Note that these data sets have to be provided;ss
in a specific order, which must correspond to_the order
used within the model implementation. In addition, twelve
implicit _transport matrices, i€ Nimp =12, and twelve
explicit transport matrices, i.€. Nerp = 12, are provided as
mentioned previously. Each simulation starts at ¢ = 0 and
performs n, = 2880 iterations per model year.
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Appendix B: Model equations

The here—presented—N, N-DOP, NP-DOP, NPZ-DOP and
NPZD-DOP model hierarchy presented here is based on the
descriptions used by [Kriest et al.| (2010). Fhe—introducedisss

parameters-All parameters introduced are shown in Table@

B1 Short wave radiation

As mentioned in Section the-short wave radiation for the
topmost layer is s deduced from the-insolattonthat-insolation,
which is computcd on the fly using the formula of 560
and Platt| (1976). Here-For this purpose latitude ¢ and ice
cover Cice data is—are_required. We denote the computed
value by Isywgr = ISWR(qé,awe) For dhotosteeen —ois
depths-all lower layers data on depth (2;)7Z; and heights
gggkl}g»(dzj)"m are required. Additionally,—the—attentaation ss
%mggggg/\b\x water is described by the coefficient k,,

respectively—the—attenuvation—of—and_attenuation by phyto-
plankton (chlorophyll) by k..

B1.1 Implicit phytoplankton

Piwonski and Slawig: Metos3D

For-the N-and-the-For models N and N-DOP medel-the-short
wave radiation is computed without phytoplankton, i.e.

I ji=1
;=1
JooewR {I’ H else
where I} = exp(—kw dz;/2),
I, =ex fk: dz;), and j is the aeeuaHayer—me}eaﬂndex of

the individual layers.

B1.2 Explicit phytoplankton

Fer-the-For models NP-DOP, NPZ-DOP and NPZD-DOP
model-the-short wave radiation is computed with phytoplank-
ton included, i.e.

Iy, j=1
IP_]H

where  Ip ;= exp(—(kw + kcyp;)dz;/2)
exp(—(kw + kcypi) dzi).

Ipj=Iswr { else

IP,k

/ —
and [p, =

B2 N model

The simplest model used here consists of nutrients (N) only,

i.e. y = (yn). The equation is presented in Table
the-eguation. The-biologieal-Biological uptake is computed

as

I) = )
felyn. 1) MPyPKN+yNKI+I
where phytoplankton——is——implieitly set—to

Yp="0-6028 mmel P/mthe ___implicitly __ prescribed
concentration __of __ phytoplankton _ is _ set __to
Yp=0.0028 mmol Pm 7. Note_that_yp could be a
free model parameter as well. However, we stick to_this
formulation to be consistent with [Kriest et al (2010).

The N model introduces n, =5 parameters, where—with
u = (kw,pp, Kn, Kr1,b).

B3 N-DOP model

The N-DOP model consists of nutrients (N) and dis-
solved organic phosphoreus—phosphorus (DOP), ie. y =

(yn,ypop). Fhe—eomputation—ef—the—Computation of
biological uptake remains the same. The equations are
shown in Table . The N-DOP
model introduces n, =7 parameters, where—with u =

(kwa,upa KNaKlao—DOPa )\DOP7b)'
B4 NP-DOP model

The NP-DOP model consists of nutrients (N), phytoplankton

(P), and dissolved organic phesphereus-phosphorus (DOP),
ie.y = (yn~,ypr,Ypop). Here—the-Here nutrient uptake by
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(explicit) phytoplankton is computed as

YN Ip
Kn+yn Kr+1p’

The—computation—Computation of short wave radiation
ehanges-is altered as well (see Section [BT.2). Additionalty;

In addition a quadratic loss term for phytoplankton is intro-iez
ducedantt, as is a grazing function

1615

feyn,yp,Ip) =ppyp

yP
fz(ypr)=1zy7 7= = K1y
1625
where zooplankton——is——implieitly———set—to

115 — 0.01 mmol P /i'the implicitl rescribed
concentration of zooplankton is set to
¢, =0.01 mmol P m_3 A ain we stick to this formulatio

W arameter. The equations are
shown in Table . The NP-DOP

model introduces n, = 13 parameters, where—with u =,
(kwske;popspz, Kn, Kp,K1,0p0P; AP, kP, ANp, ADOP; D).

B5 NPZ-DOP model

The NPZ-DOP model consists of nutrients (N), phytoplank-iess
ton (P) Zooplankton (Z) and dissolved organic phesphereus
phosphorus (DOP), i.e. y = (yn,Ypr,Yz,Ypop). The pro-
duction function remains the same. The-For the compu-
tation of grazingtakes—explieit—zooplankton—into—aceount,
zooplankton is dealt with explicitly, i.e

1640

2
Yr
fz(yp.yz)=pryz 75
Kp+yb
The _equations _are _shown _in  Table
the—equations. The  NPZ-DOP  model intro-
duces « =16  parameters, where—with u=

(kw. ke, pips iz, KN, Kp,K1,07,0p0P, AP, Az, K27,

N Az ABDOL Y Np Ny Ny oo b).
B6 NPZD-DOP model

1650

The-NPZ-DOP-The NPZD-DOP model consists of nu-
trients (N), phytoplankton (P) zooplankton (Z), detritusess
(D) and dissolved organic phespherous—phosphorus
(DOP), ie. y=(yn,ypP,Yz,YD,Ypop). Theequations

mainly-remains—the-same;—exeept-a—depth-dependent-Most

equations are unchanged, except that a depth-dependent
lmear smkmg speed is mtroduced for detrltus

The1 660
. The
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Table B1. Equations for the N model with fp = fp(yn,I) and E; = fpdz;.

‘ Euphotic zone ‘ Sinking
an(y) = | —fp | +E;8:(2/2)"

Table B2. Equations for the N-DOP model with fp = fp(yn,I) and E; = Gpop frdz;.

‘ Euphotic zone ‘ All layers ‘ Sinking

an (y) = —fp +E;8.(2/2)~"
gpopr(y) = +oporfp

+A/Dop Yopor
—XDOP Ypor

Table B3. Equations for the NP-DOP model with fp = fp(y~,ypr,Ipr), fz = fz(yp) and E; = Gpop fzdz;.

‘ Euphotic zone ‘ All layers ‘ Sinking
an(y)=| —fr +Xpopypop | +E;0:(z/2)"
ar(y)=| +fp —fz —Apyp —kpyb | —Npyp

gpopr(y) = +oporfz +Apyp +KPYP | +Apyr  —ApopypoPr

Table B4. Equations for the NPZ-DOP model with fp = fp(yN,yp,Ip), fZ = fz(yp,yz) and Ej = 5'DOP(5'Z fz—|—)\p yp+Kz y%)dzj

‘ Euphotic zone ‘ All layers ‘ Sinking
an(y)=| —fpr +Azyz +X\popypor | +E;9:(2/2)7"
qr(y) = | +fp —fz —Apyp ~MNpyp
qz(y) = +oz fz —AzYz —sz% —/\'Zyz

gpor(y) = +opor(Gz fz +Apyp +rzyz) | FXpyr  FAyyz  —Mpopypor

Table B5. Equations for the NPZD-DOP model with fp = fp(y~n,ypr,Ip) and fz = fz(yp,yz).

| Euphotic zone | All layers Sinking
an(y)= | —fp +Azyz +Xpyp  +Apopypor
gr(y)= | +fp —fz —Xpyp —Apyp
qz(y) = +oz fz —KzYy —Azyz Ny yz
gp(y) = +opor (5zfz +Apyr +kzyy) —Xbyp +0.w(z)yp
gpor(y) = +opor (Gzfz +Apyr +kzYy) +XNpyr +Azyz —XpopYDOP
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Figure 21. Implementation layers of the Metos3D simulation package (cf. Section .
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Figure 22. Sehematie-of-Call graph for the implementation-struetare-computation of Metes3Pa steady annual cycle(cf. Section[5.T).
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Latitudinal grid

Longitudinal grid

Figure 23. Land-sea mask (geometric data) of the used numerical model. Shown are the number of layers per grip point. Note that the Arctic
has been filled in.
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Figure 24. MITgcm-PO4-DOP model: Convergence towards an annual cycle. Spin-up: norm of difference between initial states of consec-
utive model years (solid line). Newton-Krylov: residual norm at a Newton step (diamond) and norm of the GMRES residual during solving
(solid line in-between).
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Figure 25. MITgcm-PO4-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first

layer (0 — 50 m) in the Euclidean norm. Units are mmol P m73.w
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Figure 26. N model: Convergence towards an annual cycle using a-spin-up and a-Newton-Krylov solver.
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Figure 27. N-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.
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Figure 28. N model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0 — 50 m) in

the Buclidean norm. Units are mmol Pm ™7,
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Figure 29. N-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0 — 5

m) in the Euclidean norm. Units are mmol P m_i
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Figure 210. NP-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.
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Figure 211. NP-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0 —

50 m) in the Euclidean norm, Units are mmol Pm ™2,
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Figure 212. NPZ-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver. Top: Default Newton-
Krylov setting. Middle: Changed-initial-Initial value altered to %%Hﬁrme}%miﬂm/jor all tracers. Bottom: Changed
inner-Inner accuracy altered to v = 0.3.
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inner-Inner accuracy altered to v = 0.3.
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Figure 214. NPZ-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0
— 50 m) in the Euclidean norm. Units are mmol P m_3.N
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Figure 215. NPZD-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (O

— 50 m) in the Euclidean norm. Units are mmol P m*S.N
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Figure 216. Distribution of the-computational time among main operations during the-integration of #-one model year. Left: MITgcm-PO4-
DOP model. Right: N model.
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Figure 217. Distribution of the-computational time among main operations during the-integration of a-one model year. Left: N-DOP model.

Right: NP-DOP model.
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Algorithm 1: Load-balaneing Phi (¢)
Input : initial condition: (o, yo), time step: At, number of time steps: ¢, implicit matrices: A p, explicit matrices: Aczp,
parameters: u € R™, boundary data: b, domain data: d
Output: final state: Yout

1 W= in = Y0 3
Rp 17 =0 fOrj::l,...ﬂ'lt do

2
3 t; = mod (to+ (7 —1)At,1.0);

4 Yout = PhiStep (tjzAtyAimp,Aea:payin7u7b,d) 5
5

6

Yin = Yout ;
end
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Figure 220. MITgcm-PO4-DOP model: Number of model years and Newton steps required for the computation of the annual cycle y(uq)
as a function of different convergence control parameters « and v (cf. Equation (§)).

Algorithm 2: Interpolation PhiStep (¢;)

Input

: point in time: ¢;, time step: A¢, implicit matrices: A p, explicit matrices: A¢zp, current state: y;,, parameters: w € R™,

boundary data: b, domain data: d
Output: next state: Yout

= BGCStep (t;,At,Yin,u,b.d) ;

= TransportStep ({;,Aczs
ﬁﬁ—fﬁeéeﬂ%féﬂ’%ﬁﬂﬂﬁw
out = TransportStep (L, Aimp.Yw) ;
G e A N L o 1 .
Jo=mMoa oo T T data 5 Ibdata} B
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Figure 221. Distribution of number of model years and Newton steps required for the computation of a-one annual cycle using 100 random
parameter samples (cf. Section[6.3).

Algorithm 3: Ph+ {¢)- Load balancin

Input : vector length: n,, number of profiles: np, profile lengths: (1, k)Zi 1> number of processes: N
Output: profiles per process: (np,i)fil

1 Ym=yow =0

Np1. N =0 fork=1,...,n, do
i =floor(((w+0.5%ngx)/ny)* N) ;
Npi =Npi +1;
W=W+Ngk

end

a B W
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Table 26. Vertical layers of the numerical model, in meters.

Layer Depth of Thickness of
layer bottom layer (Az)
1 50 50
2 120 70
3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690

Table 27. Parameters implemented in the MITgem-PO4-DOP model. Specified are the location within the parameter vector, the symbol
used by |Dutkiewicz et al.|(2005) and the value used for the computation of the reference solution (uq). Shown are furthermore the lower (b;)
and upper (b,,) boundaries used for the parameter samples experiment.

u Symbol ug b, b. Unit

Ui KRremin 05 025 075 y_l

Uz a 2.0 1.5 200.0 mmol Pm™3
us fpor 0.67 0.05 0.95 1

Ug KPO, 0.5 0.25 1.5 mmolPm™3
us K1 30.0 10.0 50.0 Wm™!
Ug k 0.02 0.01 0.05 m~!

ur QAremin 0.858 0.7 1.5 1

Algorithm 4: PhiStep () Interpolation

Input : point in time: ¢ € [0, 1[, number of data points: n4qtq
Output: weights: «, 8, indices: ja,js

2 yo="FransportStep{t; Ay ¥m) B = mod(w,1.0) ;

3 yo=ywtejs = mod(floor(w), ndare) ;
ut — V) tRumps ) N%\LL/Q/\:@;

s Jo = mod(floor(w) 4 Naate = Laldata) i e

1 = 75 YT

Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.

subroutine metos3dbgc (ny, nx, nu, nb, nd, dt, g, t, y, u, b, d)
integer :: ny, nx, nu, nb, nd
real«8 :: dt, g(nx, ny), t, y(nx, ny), u(nu), b(nb), d(nx, nd)
end subroutine
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Table 28. Parameter values used for the solver experiments with the N, N-DOP, NP-DOP, NPZ-DOP and NPZD-DOP model hierarchy.

Parameter N N-DOP NP-DOP NPZ-DOP NPZD-DOP | Unit

Euw 0.02 0.02 0.02 0.02 0.02 m™!

ke 0.48 0.48 0.48 (mmolPm™—3)"'m™!

wp 2.0 2.0 2.0 2.0 2.0 d—!

Pz 2.0 2.0 2.0 d!

Kn 0.5 0.5 0.5 0.5 0.5 mmol Pm ™3

Kp 0.088 0.088 0.088 mmol P m~—3

Kr 30.0 30.0 30.0 30.0 30.0 W m™2

oz 0.75 0.75 1

opoP 0.67 0.67 0.67 0.67 1

Ap 0.04 0.04 0.04 d—!

Kp 4.0 (mmolPm™3)"*d~*

Az 0.03 0.03 d—!

Kz 3.2 3.2 (mmol Pm~—3)~td~*
% 0.01 0.01 0.01 d-!
o 0.01 0.01 d—!

Np 0.05 d—!

Npop 0.5 0.5 0.5 0.5 y !

b 0.858 0.858 0.858 0.858 1

ap 0.058 d—!

bp 0.0 md~!

Table 29. Difference in the Euclidean (|| - ||2) and volume-weighted (|| - ||2,v, cf. Eq. (@) norms between the spin-up (ys) and the Newton
(y) solution for all models. The total volume of the ocean used here is V' ~ 1.174 x 10'®¥m?. Solutions for models NPZ-DOP and NPZD-
DOP were produced by experiments with altered inner accuracy or initial value, respectively.

Model lys —yn||2 lys —ynll2,v
MITgem-PO4-DOP 1.460e-01 7.473e+05
N 4.640e-01 2.756e+06
N-DOP 2.421e-01 1.199e+06
NP-DOP 7.013e-02 3.633e+05
NPZ-DOP 1.421e-02 8.514e+04
NPZD-DOP 3.750e-02 2.062e+05

Table 210. Minimum, maximum, average and standard deviation of computational time for one model year as well as the computing time
per tracer is shown. All computations were performed on a single core Intel Xeon® E5-2670 CPU at 2.6 GHz.

Min Max Avg StdDev  Min per tracer
N 112.53s  112.87s 112795 0.09 112.53 s
N-DOP 14296s 14330s 143.12s 0.11 71.48s
NP-DOP 160.32s 161.28s 160.86 s 0.30 53.44s
NPZ-DOP 18546s 185.70s 185.53s 0.07 46.37 s
NPZD-DOP 19399s 194.63s 194.09s 0.19 38.80s
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