Dear Andrew,
Dear referees,

as suggested we changed the focus of the publication and concentrated purely on simulation,
which better suits the title.

We skipped all parts that refer to optimization (Section 7.7, including WOA data,
twinexperiments

etc) in the updated version.

We added remarks that the intended purpose of the ,,simulation package“ is a later
optimitazion (to motivate the ,,0“ in the abbreviation METOS3D for the software).

To emphasize the focus ,,simulation“, we additionally implemented and included results for six
biogeochemical models in total now.

Please find our detailed answers to the referees’ letters below:

Anonymous Referee #1
Received and published: 13 July 2015

General comments

In this paper the authors present a newly assembled toolkit (Metos3D) for the imple-
mentation of two solvers based on PETSc library. | understand Metos3D is meant to
generalize the coupling of transport matrices and source/sink models with the possibil-
1ty to use a Newton solver as well as a fixed point iteration (spin-up). This should
save the user the effort to develop a coding interface every time a new source/sink
model is introduced.

However, my understanding outlined above (if at all correct) comes from a lot of guess-
work. The authors do not explain clearly what the objective of the work is. There is a
paragraph that was meant for this (page 4404, lines 18-26) but it should be improved.

1 think the Introduction before that paragraph did a fair job in introducing the problem,
outlining the three components put together here to tackle it but then from line 10 of
page 4404 it gets a bit confused and the first sentence of the objective paragraph
(Lines 18-19) sounds oddly out of place to me.

HHHFEHFHFHFH TR

We have re-written the mentioned paragraph of the introduction and emphasized the objectives
of our work.

To improve the introduction we added the following paragraph before
(page 4404, line 10, a reference in parenthesis refers to the
gmdd-8-4401-2015.pdf discussion paper), where it got confusing.

See: metos3d-simpack-jpits-diff.pdf, lines 73-89.

Optimization methods usually require hundreds of model evaluations.

As a consequence, an environment for optimization of marine ecosystems
that is intended by (and mentioned in the name of) our software Metos3D
has to provide a fast and flexible simulation framework at first.

On this pre-requisite for an optimization environment we concentrate in this paper,
always keeping in mind its later intended usage.

As a consequence, we impose a high standard of flexibility w.r._t.
interchange of models and solvers.

Then we repeated the components of metos3d again.

See: metos3d-simpack-jpits-diff.pdf, lines 95-100.

In this work we combine three of them in our software,

namely the so-called off-line simulation,

the option for the use of Newton"s method for the computation of steady annual
cycles (as an alternative to a spin-up)

and spatial parallelization with high scalability.

We refined the paragraph about steady annual cycles and the Newton solver.
See: metos3d-simpack-jpits-diff.pdf, lines 112-126.

From the mathematical point of view,

a steady annual cycle is a periodic solution of a system of

(in this case) nonlinear parabolic partial differential equations.

This periodic solution is a fixed-point

of the mapping that integrates the model variables over one year model time.
In this sense, a spin-up Is a Fixed-point iteration.

By a straighforward procedure, this fixed-point problem can be equivalently
transformed into the problem of finding the root(s) of a nonlinear mapping.
For this kind of problem,

Newton-type methods \citep[cf.][Chapter 6]{DenSch96} are

well known for their superlinear convergence.

Then we emphasized the importance of a geometry-adapted load balancing algorithm.
See: metos3d-simpack-jpits-diff.pdf, lines 132-144.
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No matter whether fixed-point or Newton iteration is used,

the necessary multiply repeated simulation of one model year for

the marine ecosystem iIn 3-D is still subject to high performance computing.
Parallel software that

employs transport matrices and

targets a multi-core distributed-memory architecture

requires appropriate data types and linear algebra operations.
Additionally, the special ocean geometry with different numbers of vertical
layers in different regions is a challenge for standard load balancing algorithms --
and a chance for the development of adapted versions with

improved overall simulation performance.

Next, we emphasized the objectives of our work

as was intended on (page 4404, lines 18-26).

See: metos3d-simpack-jpits-diff.pdf, lines 151-165.

The objective of this work is to unite the mentioned three
performance-enhancing techniques (off-line computation via

transport matrices, Newton method, and highly scalable parallelization)
in a software environment with rigorous modularity and

complete open-source accessibility.

Here, modularity refers to the separation of data pre-processing and
simulation and the flexibility of coupling any water column-based
biogeochemical model with minimized implementation effort.

For this purpose,

we defined a model interface that permits any number of tracers,
parameters as well as boundary and domain data.

Its flexibility we show by using both an available biogeochemical

model \citep[][1{DuSoScSt05},

taken from the MITgcm ocean model, as well as a suite of more complex ones,
which is included i1n our software package.

# In general, 1 think the paper requires a better structural organization in order to

# improve its readability. Furthermore, it needs to highlight better what is the novelty
# here and why should a user use this toolkit and what for. What is the contribution with
# respect to the work of Khatiwala (Ocean Modelling 23 (2008) 121-129) where a matrix-free
# Newton— Krylov solver was applied to a similar framework?

This is now mentioned in the introduction (in the last but one paragraph) as well as in the
Section 7.

They are four main differences to the TMM software provided by Samar Khatiwala:

1. Open source: TMM uses Matlab — we purely rely on open source software

2. Modularity: TMM combines the extraction of matrices and their application, for the former
Matlab is needed — we decoupled both, provide software for the latter

3. Newton solver convergence: TMM was only used (or results were published) for one model —
we applied it for six, we studied and compared the convergence, moreover studied model and
solver parameters’ effect on performance, we discussed solver tuning options in the case of
poor convergence

4. Improved load balancing: see speed-up figure, our software scales much better than TMM on
parallel machines

Subsequent, we made clear what is the novelty of our approach compared to Samars TMM.
See: metos3d-simpack-jpits-diff.pdf, lines 168-187

As a result, the work of \citet[][]{Kha08}

could be extended by numerically showing convergence for all six
abovementioned models without applying preconditioning.

Moreover, a detailed profiling analysis for the simulation with

the different biogeochemical models shows how the number of tracers
impacts the overall performance.

Finally, an adapted load balancing method is presented.

It shows nearly optimal scalability up to 128 processes,

and in this respect superiority over other approaches,

including the one used in \citet[][]1{TMMweb13}.

In its present form 1°m afraid the manuscript wouldn’t be able to encourage a model user
to download and get acquainted with Metos3D.

Specific comments

Sections 2 and 3 could be shortened or maybe moved to supplement material or to an
appendix. Section 4 seems to get to the core of the novel contribution of this work and
I think it could be merged with Section 6. This merged section would benefit from
schematics or a flowcharts to help the reader to better understand how Metos3D works.
The description of the implementation of the toolkit in layers (section 6.1) is an
example of something that would probably be better explained in a schematic.

In Section 5 it would help to give 5.3.2 the same title as 5.2 (aren’t they the same

HHHFEFHFHFHFHR
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# thing?).

From here, in our opinion,
the "latexdiff"-document explains the differences best.

Sectons 2 and 3 were not put in appendix.

We use them to introduce the notation and explain the discretization
as well as the resulting off-line transport by matrices.

See comments below on comments of Referee #2.

To the achieve "a better structural organization”

old sections (page 4410, line 1 to page 4413, line 23), namely
5 Periodic solutions

5.1 Spin-up

5.2 Newton

5.3 Convergence

5.3.1 Spin-up

5.3.2 Newton

were removed.

See: metos3d-simpack-jpits-diff.pdf, lines 606-725.

They were replaced by

4 Steady annual cycles

4.1 Computation by spin-up

4.2 Computation by inexact Newton method

See: metos3d-simpack-jpits-diff.pdf, lines 358-537.

The next sections must be read in the new context anyway.

7.2 Solver, rewritten (due to new models).
See: metos3d-simpack-jpits-diff.pdf, lines 1028-1090.

8 Conclusions, rewritten (due to new focus).
See: metos3d-simpack-jpits-diff.pdf, lines 1298-1495.

Appendix, new (description of model hierarchy).
See: metos3d-simpack-jpits-diff.pdf, lines 1521-1598.

Former Sections 4 and 5 have been interchanged.

Old Section 4 (new Section 5) and Section 6 are now followed by each other.
Sections 2, 3, 5 old (= 4 new) have been shortened and reformulated.

We added a schematic figure in Section 6.

# Section 6.2: 1 know PETSc has its own load balancing algorithm. How is your
# procedure different?

Our procedure is a load balancing algorithm for vector parts (i.e. vertical profiles) with
different length.
We are not aware of such an algorithm in PETSc (3.3).

# In Section 7 results are presented. In Section 7.1.1 (Model) at

# lines 2-3 of page 4420, it is said that a model wrapper of the original source code is
# implemented. Is this something that the user of Metos3D will have to do for every

# source/sink model?

IT the model conforms to the biogeochemical interface, no.
# Is some sort of guidance or template provided?

We think that the description of the interface and the (now newly included) model suite will
be helpful.

# Figure 3 compares the initial state of the converged annual cycle with WOA. 1 don’t see
# the point of this comparison. Your solution should be compared with the solution coming
# from the spinup of the MITgcm coupled with the same biogeochemical model, if available,
# of course. 1 don’t believe the skill of the model in reproducing real-world observations
# 1s the point here. It does not say anything about Metos3D.

We omitted all comparison to data now. We compare the results of the spin-up with the results
of the Newton solver now.

# Technical corrections
# page 4403, line 12: .._.is often TOO high, even at LOW resolutions, ...
Corrected.

# page 4410, line 2: “With those two building blocks”. It does not hurt to remind which
# two blocks you mean.

Sections have been revised basically.
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# Page 4411, line 5: k=1,....7

Sections have been revised basically.

# Page 4414, line 5: “The latter includes (?)”

Corrected.

# Page 4414, line 23: “The next TWO layers”

Corrected.

# Page 4415, lines 6-7: this last sentence is confusing. Consider reformulating it.
We did.

# Page 4418, line 1-2: “We compare the simulation results with others” others what?
Obsolete. We compare solver results now.

# Page 4424, lines 11-12: consider rephrasing this one.

Section has been revised basically.

# Page 4426, lines 5-6: consider explaining why it is so interesting.

We considered this, but without any further experiments we don"t want to speculate.
# Page 4428, lines 2: what was the “intended purpose”? Remind it here.

Obsolete.

Anonymous Referee #2
Received and published: 15 July 2015

This manuscript presents a steady state offline solver for marine biogeochemical mod-
els using two alternative approaches: a iterative procedure towards the fixed point
solution or a Newtonian equation solver of the residual norm. While the subject of the
work is generally relevant to the journal presenting a novel tool with a high potential
for application in the scientific community, it falls short on a couple of Important
points that need addressing if it was to be considered for a full GMD publication.

My main concern is the lack of clarity on what the purpose of the tool in its current
state is and what it actually delivers.

The abstract promotes it as a tool for parameter

identification and a lot of the intrudctory and final discussion mention optimisation.
However, it is not stated what is intended by parameter identification and how the tool
would achieve it. 1 assume from the discussion that the intention of the authors is the
indentification of an optimal parameter set for a given biogeochemical model, while what
the tool actually delivers is a periodic steady state solver for biogeochemical models
using offline ocean physics.

HHHFEHFHFH TS

This was misleading in the first version. We now omitted the optimization as mentioned
earlier.

This can without doubt be a valuable element for a parameter

optimisation toolkit, but is nevertheless only one element of it and moreover it doesn’t
address the core of the actual optimisation problem, e.g. what should a model be op-
timised against. In addition, it doesn’t give a benchmark that would allow compariso
against other optimistation tools. (The work does give some permformance indications for
the steady state solver, but no generalised performance indications for the optimi-
sation process.) Moreover, the authors demonstrate themselves in their example that

the application within the optimisation process is still premature. On this background,
1 would suggest to change the pitch of the manuscript towards what the tool actually is
done for (at least to my understanding), and what it actually delivers successfully and
reliably, i.e. the periodic steady state solution of the biogeochemical model. 1 see no
reason to limit the tool to a specific application in optimisation that is then treated
only superficially and insufficiently if this is given as the main purpose of the tool.
On the contrary | can see a series of other valuable applications to any form of large
ensemble experiment and examples may be given in the discussions to highlight the utility
of such a tool beyond optimisation.

HHHFEFHFHTHFH TR

In this respect, we cleaned up the manuscript basically.

The new abstract states now clearly that we present

a comprehensive high-performace toolkit for the computation
of steady annual cycles with a general programming interface
for water column models.

See: metos3d-simpack-jpits-diff.pdf, lines 1-51.
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As a second point the manuscript lacks generally in

clarity (some examples below) and requires a considerable review in grammar and style.
For future submissions, | would strongly suggests the authors to review their manuscripts
before initial submission on these terms (maybe with the help of a native speaker) as |
believe a lot of the points given below could have been addressed in this process lead-
ing to a much more beneficial review. Reviewing the work in its current form required a
considerable amount of assumptions of what was actually intended.

HHHFHFHEH

We improve the text.

Some comments in detail:

pg 4402 line 2: what is intended with parameter indentification?

pg 4403 line 8: when talking about biogeochemical models and their validation in generic
term, the obvious question concerning the estimation of an optimal model parametrisation
forehand, is what the model should be optimised against? | believe this will be highly
application dependent.

HHHFEHFHIEHR

This becomes obsolete since we changed the focus of the paper.

# pg 4403 line 23: "acceptable loss of accuracy" involved in the
# splitting of ocean physics and biogeochemical processes: any references?

Khatiwala et al. 2005

pg 4404 line 4-10: 1°d suggest to move this to the later section where residual and norm
are introduced, it becomes much clearer then, particularly to modellers with a less
numerical background.

pg 4406, line 15: the dimensionless time "1" here refers to one intra-annual time step,
while in the above section (lines 4,6) it refers to one periodic step, i.e. one year.
These should be distinct by or using different variables for time within the annual cycle
and in the iteration procedure, or by explicitly using time units.

pg 4406, line 24 onwards: 1°d suggest to introduce necessity for the split explicit and
implicit treatment of physical processes first and then specify it’s application to the
offline solver in order to facilitate understanding for readers that are unfamiliar with
the problem.

HHFEHFHFHFHFFHTH

In this regard, Sections 2 - 4 have been revised basically.
# pg 4407 eq 2, lines 16,17: difference between A and A’ should be clarified.

Different notation was used:
A’ became L now, but the whole section was shortended and clarified.

# pg 4407 line 22 - pg4408, line 1: 1°d expect the sufficient resolution of the tracer
# transport process on monthly time steps to be highly configuration and application
# dependent, rather than hold generically.

We agree, but did not want to elaborate on this here. Anyway, the text is formulated more
generally now.

pg 4408, lines 11-15: "Generally, we assume

that a tracer model is implemented for a single water column, synonymously called profile
in the following. This assumption does not constrain the interface for the future and,

it actually simplifies the current software implementation." The interface to the
biogeochemical models is the main point of the tool and being clear here is essential to
encourage potential users. 17d suggest spending a couple of words here stating assumptions
and limitations clearer, i.e. - any "client” model must be able to take-up its states from
the interface in water column format. - no geometrical information on horizontal vicinity
of the vertical profiles is preserved in the interface. - any model that requires
horizontal structure in it’s internal computation requires modification in the internals
of the tool. | realise that the vast majority of biogeochemical models currently used will
fullfill these requirements, but they should be explicit.

HHIFHFHFHFHEHERRE

The remarks have been incorporated.

# pg 4409 eq 3, where have the indices y,k gone?

This seems to be a missunderstanding. n_{y.k} as the length of a profile has been fixed.
We tried to make this clear.

# pg 4409, last paragraph, what’s the purpose
# of the initialisation and finalisation routines.

Added to Section 6.1: "The former are responsible for memory allocation and
storage of data used at run time. The latter are employed to

free memory as well as delete the used vectors and matrices.”

# pg 4410 lines 3,4: confusion in the use of 1 in the time dimension, see above
This sections have been revised basically.

# pg 4412 line 16: Why is the unweighted norm used?
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It is equivalent to the weighted norm. We clarified this in the present manuscript.

# pg 4414 line 13 "repository of the simulation package"

Corrected.

# pg 4414 line 23 "The next both layers" -> next two layers

Corrected.

pg 4416 lines 12-15 "Thus, the matrices and vectors are linearly interpolated to the cur-
rent time step during the iteration. The files of a specific data set are interpreted as
averages of the time intervals they represent. Consequently, we interpolate in between the

assoclated centers of these intervals." If linear interpolation is used the result will be
non-conservative, which should be noted.

HHHFHH

At the end of the last paragraph of section 3 the sources of errors of the transport matrix
approach are summarized.

# pg 4416 line 25: how are the weights alpha and beta determined, i.e. is this a linear
# interpolation?

Yes, see Section 3.

# pg. 4419 lines 19-23: so the effective state variables are two, all others are
# diragnostics? Should be made clearer.

Yes, that is right.
# pg.- 4419, line25,26: what is the "introduced convention for directory structure"?
Made explicit now.

# pg- 4420 line 20: You may want to consider hosting the binary data outside the git
# repository.

In this regard, we considered alot. However, the data will stay at github.
But, we will use GitHub Large File Support in the future.

# pg. 4421 line 27: again, wouldn’t this number be application and configuration dependent?
Yes, whole section was revised.

# pg.-. 4423 line 27 ratio of what?

Section was revised.

# pg. 4426 line 12 state the origin of the reference solution and its purpose
# pg. 4427 lines 15-21 are unclear to me. Maybe the figure would

# help, but unfortunately the labels are unreadable at this scale.

Section has been removed.

# pg 4428 line 2 "intended purpose', what is the intended purpose?

Obsolete.

# pg 4428 line 22 "was somehow "natural' what’s meant by this?

Reference omitted.

# pg 4428 line 28 "computationally still too complex', 1 suppose the authors intend
# too expensive?

Yes.

# pg 4429 line 3-6 1 fail to see why a suitable choice of the time step
# would have complicated the verification.

For a different time step new matrices must be *prepared*.
This processes must be explained.

As it is part of the matrix preparation process

We decided this should not be part of this manussript.

# pg 4429 lines 9-13 Here the authors clearly state that the solver tool in its current
# form fails to deliver the intended purpose, i.e. parameter identification, see general
# comments above.

Reference omitted.
# pg 4429 lines 20-21 what’s the expected flexibility?
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# pg 4429 lines 24-25 not a sentence
Corrected.
# Figures 3,4,6,7,8,9,10 are unreadable and require larger labels.

Figures 3 (surface), 6 (speedup), 7 (convergence control), 8 (samples): labels have been
enlarged. Figures 4 (slices), 9 (twin) and 10 (twin) have been removed.
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Abstract. A—general-programming—interfacefor-parameter
identification—for-We designed and implemented a modular
software framework for the off-line simulation of stead
cycles of 3-D marine ecosystem models is—introdueed—A

'It ll'll‘%t""j"
and—a—Newton—solver.—The software is based on the
P ble—E sible_Toolkit_for_Scientific_C .
otf-line—simulation—n—3-Dtransport matrix approach. ia

is_intended to _be used in_parameter optimization and
model assessment_experiments. Fhe—model—is—coupled
and—+5-vertieatfayersWe defined a software interface for
the coupling of a_general class of water column-based
biogeochemical models, with six of them being part of
the package. Initial-tests—show—that-both—solvers—and—the
load—balancing—algorithm—work—eorreetlyThe framework
offers both spin-up/fixed-point iteration and Jacobian-free
Newton method for the computation of steady states. Further
experiments-demonstrate-the robustness-of- the Newton-solver
with—respeet—to—parameter—variationsThe Newton method
converged with standard setting for four models, and with
more complex ones. Mereover, For all considered models,

both methods delivered the same steady state (within a

40

55

reasonable precision) on convergence, with the numerieal

WMMMNM&W
Whereas—an—optimization—run—with—spin-up-based—medel
in-an-tnaceurategradient-approxtmationor one exemplary
model, we investigated the effect of both the biogeochemical
and the Newton solver parameters on the performance. We
performed a profiling analysis for all considered models, in
which the number of tracers had a dominant impact on the
overall performance. We implemented a geometry-adapted
load balancing procedure which showed nearly optimal
scalability up to a high number of parallel processors.

1 Introduction

In the field of climate research, simulation of marine ecosys-
tem models is used to investigate the carbon uptake and stor-
age of the oceans. The aim is to identify those processes that
are involved with the global carbon cycle. This requires a
coupled simulation of ocean circulation and marine biogeo-
chemistry. In this context, marine ecosystems are understood
as extensions of the latter (cf.[Fasham| 2003}, [Sarmiento and|
2006). Consequently, we will use both terms synony-
mously below. However, whereas the equations and variables
of ocean dynamics are well known, descriptions of biogeo-
chemical or ecological sinks and sources still entail uncer-
tainties concerning the number of components and parame-
terizations (cf. [Kriest et al.,[2010).

A wide range of marine ecosystem models needs to
be validated, i.e. assessed regarding their ability to re-
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produce the—real—werld—systemreal world data. This in-

volves a professional discussion of simulation results and,
preferablymoreover, an estimation of optimal model parame- 125
gers for preferably standardized data sets beforehand (cf. [Fen|
Inel et al., 2001}, [Schartau and Oschlies|, [2003).

Optimization methods usually require hundreds of
model evaluations. As a consequence, an environment for
optimization of marine ecosystems that is intended by (and o
mentioned in the name of) our software Metos3D has to
provide a fast and flexible simulation framework at first.
On_this pre-requisite for an optimization environment we
concentrate in_this paper, always keeping in mind its later
intented usage. As a consequence, we impose a high standard s
of flexibility w.r.t. interchange of models and solvers.

The computational effort of a fully coupled simulation,
i.e. a simultaneous and interdependent computation of ocean
circulation and tracer transport in three spatial dimensions,
hewev%&eﬂeﬁ&mhgh even at leweHesemﬁefr,mo

ef—mede}eva}ua&emlmwmswglgggg Moreover the complex-
ity increases additionally if annual cycles are investigated, in
which one model evaluation involves a long time integration
(the so-called spin-up) until an equilibrium state under given s

forcing is reached (cf. Bernsen et al.| 2008).

Individual strategies have been developed to accelerate
the computation of periodic steady-states of biogeochemi-
cal models driven by a 3-D ocean circulation (cf.
[1984}, [Danabasoglu et all, [1996; [Wang], 2001). In this work so
we combine three of them in a-single-our software, namely
the so-called off-line simulation, the usage-option for the use
of Newton’s method for anntat-eyeles-and-parallelizationthe
computation of steady annual cycles (as an alternative to a
spin-up) and spatial parallelization with high scalability. s

Off-line simulation offers a fundamentally reduced com-
putational cost compared to an acceptable loss of accuracy.
The principle idea is to pre-compute transport data for pas-
sive tracers. Such an approach has been adopted by
(2003) to introduce the so-called Transport Ma- 10
trix Method (TMM; [2013). The authors make use
of matrices to store results from a general circulation model
and to apply them later on to arbitrary variables. This method
proved to be sufficiently accurate to gain first insights into the
behavior of biogeochemical models at global basin-scale (cf. 1es

From the mathematlcal point of view, an—a steady an-
nual cycle is ebtained-by-selving-a-time-dependent,periodie
system-of nonltinear-a periodic solution of a system of (in
this case) nonlinear parabolic partial differential equations. 7o
The-This _periodic solution is a sequence—of states—and-its
nittal-is-a-fixed-point-of-a-mapping-that-is-used-to-integrate
given-variables-over a-modelyear fixed-point of the mapping
that integrates the model variables over one year model
time. This—fixed-point-is-a—zero-of-an—equivalent-nonlinear 17s
residual-as-wek-(ef-JReley: Z003)In this sense, a spin-up is
a fixed-point iteration. By a straighforward procedure, this
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fixed-point problem can be equivalently transformed into
the problem of finding the root(s) of a nonlinear mapping.
In-that-easeFor this kind of problem, Newton-type methods
(cf.[Dennis and Schnabell [1996] Chapter 6) are well known
for their superlinear convergencetewards-a-selation. In com-
bination with a Krylov subspace approach, a Jacobian-free
scheme can be realized that is based only on evaluations
of one model year (cf. [Knoll and Keyes| [2004; Merlis and|
[Khatiwala), 2008}, Bernsen et al., [2008).
I realisticatly_simulat : .

modets-No matter whether fixed-point or Newton iteration
is used, the necessary multiply repeated simulation of one

model year for the marine ecosystem in 3-D is still sub-
ject to high performance computing. A-paratiel-Parallel soft-

ware that employs transport matrices and targets a multi-core
distributed-memory architecture requires appropriate data
types and linear algebra operations. Additionally, aNewton
solver-and-aload-balancing-algorithm-are-neededthe special
ocean geometry with different numbers of vertical layers in
different regions is a challenge for standard load balancing
algorithms — and a chance for the development of adapted
versions with improved overall simulation performance. Ex-
cept for the latter, an-adequate-basisfor-animplementationis

made-the basis for our implementation is freely available by
the Portable, Extensible Toolkit for Scientific Computation

library (PETSc; [Balay et al [1997] [2012b), which in turn

is based on the Message Passing Interface standard (MPI;
[Walker and Dongarra|, [1996).

embedﬁ&eﬂf—ﬁe—&fhﬁp&miﬂfﬂ%e@ﬂ{eﬁw
work is to unite the mentioned three performance-enhancing
Newton _method, and highly scalable parallelization) in
a_software _environment with rigorous modularity and
complete open-source accessibility. Here, modularity refers
to_the separation of data pre-processing and simulation
and the flexibility of coupling any water column-based
biogeochemical model with minimized implementation
effort. Fhus;—we—define—a—general-programming—For_this
purpose, we defined a model interface that permits any
number of tracers, parameters as well as boundary and

domain data. We—implement—a—comprehensive,—transport
m'it‘r‘ix b']f‘ed solver {‘e#‘{*izll‘:e llFe‘]Hd the methed 6'1' (]ﬁd
final-executablelts flexibility we show by using both an
available biogeochemical model (Dutkiewicz et al.t[2005),
taken_from the MITgem ocean model, as_well as a
suite of more complex ones, which is included in_our
software package. Our software allows for choosing among
spin-up/fixed-point_iteration and Newton method, where
for the latter tuning options are studied. As a result, the
work of [Khatiwala (2008) could be extended by numerically
showing convergence for all six _abovementioned models
without applying preconditioning. Moreover, for-purposes
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of usability-we-provide-an *““f‘” setipt-for the-toolkit-and
experimentsa_detailed profiling analysis for the simulation
with _the different biogeochemical models shows how the
MM@@W‘M@@B@M
an adapted load balancing method is presented. This-inehudes
d&ta—prep&r&ﬁeﬂ—fesuh—p&rsmg—&né—wsua%&aﬂeﬁﬁeﬁpfslt
shows nearly optimal scalability up to 128 processes, and in
this respect superiority over other approaches, including the

The fematﬂeler—ef—fhf&paper is organized as follows. In zss
Sections 2—4-2 and 3 we describe the marine ecosystem dy-
namics ;—shertly—and recapitulate the transport matrix ap-
proachand—define—the—biogeochemical-modelinterface. In
Sections 5—7—we—disetss<4 we summarize the two options
for the computation of steady cycles/periodic solutions, go
into—details—of the—implementation—namely the fixed-point
and Newton iteration, where for the latter we also discuss 2«
tuning options to achieve better convergence. In Sections 5
and present-6, we describe design and implementation of
our software package, and Section 7 shows ist applicability

and performance in several numerical results. Finally;-In Sec-
tion 8 concludes-our-work-and-we draw conclusions and in 2+

Section 9 deseribes-describe how to obtain the source code.
In the Appendix, we summarize the model equations and

parameter settings of the model suite we used for this work

and that is available together with the simulation software.

2 Marine ecosystem dynamics 250

We consider the following eff-line-tracer transport model,
which is deseribed—defined by a system of nonlinear

parabelic—differential —equations—defined—on—the—unit
time—interval—={0HcR—semilinear _parabolic _partial »ss
differential equations (PDEs) of the form

y;
ot

=V (K’Vy’b)iv (Uyz)+q1(yauabad)7 1= 1a"'7ny7

(1) 260

on a time interval I ;= [0,7] and a spatial domain 2 C R3
and-its-with boundary I' = 90Q). Througheut-this—work:—the
time-intervalis-asseciated-with-one-meodel-year—-Forn-tracers
the-system-generally-reads-

oy
(;i — V- (vys) + ¢ (y,u,b,d),

i’ : sthar s o
y=r{yryi=ris—a—Here y;: I x Q — R denotes one single
tracer concentration and y = (y;);”; the vector of all trac-""
ers. Here;we-negleetthe Since we are interested in long-time
behavior and steady annual cycles, we assume that the time

variable is scaled in years. We omit the additional depen-
dency on the time and space coordinates {#-#)-(¢, ) in the

notation for brevity.

265

=V-(kVyi)

The transport of tracers in marine waters is depieted-by-a
diffusion-and-an-adveetiontermdetermined by diffusion and
advection which is reflected in the first two linear terms on
the right-hand side of (2). The-diffusion Diffusion mixing
coefficient x : I x  — R and the-advection velocity field v :

I x Q — R? are-may be regarded as given {ef—Sectionf3))-
data or have to be simulated together with (2) by an ocean
model. Nete-that-both-operators-effect-each-tracerseparately:
Molecular diffusion of the tracers is regarded as negligible
compared to the turbulent mixing diffusion. Thus  and both

The biogeochemical processes in the ecosystem are
represented by the last term on the right-hand side of (2),

M: qi(Y1s- -y Yn,u,b,d), i=1,...

5Ty
In-eontrasta-single-componentof-Often, the functions g; are
nonlinear and depend on several tracers, which couples the
“the biogeochemical modelg;—may—generatty-depend-on—al

tracers”. This model typically depends also on parameters.
In the software we present in this paper these are assumed to
be constant w. r. t. space and time, i.e.

ql(yau/b/d) :qi(y17"'ayn7u7b7d)'

we have wu—wu € R",

W&MN@) Ww&m@w
Wnsolatlon or wind speed whiehﬁ%deﬁned on

nd domain forcing functions (e.g. salinity or temperature
of the ocean water(ef—Seetion—5)—) my also enter the
biogeochemical model. As—mentioned—in—the—introduction;
the—modelalso—inclades—parameters—that—are—optionally

m

yeafThese are denoted by b= (b;)""", . b; : I xI'; =+ R and

d=(d; ,d; - I x 2 — R, respectively.
Addfﬁeﬂa}}y,—hemegeﬁeeﬁs—%}eumaﬂﬂ—beuﬂdﬂfy
eeﬂdiﬁeﬂs—eﬂ—fhﬁeﬁﬁfe—lLévv%W(mlﬂews;vdggnge

wmmfm all tracers y; are
+mpesedon the entire boundar Aﬁ—tmﬂalr—eeﬁdmeﬁ

z 1

Moreover, a function x) = ' O T x € (), has to
be provided to solve an initial-boundar value roblem for
).

3 Transport matrix approach

The transport matrix method (Khatiwala et al.|,2003) is
a method that allows fast simulation of tracer transport
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4

assuming that the forcing data diffusion x and advection
W@ve%—we&ssm%e@v@%ﬁefaﬁg

e*amp}eThe method is based on the discretized counte art
of (2). We introduce the following notation: Let the domain
Q be discretized by a grid (z,),* , C R3 and one year in time

= 1.3

whteh—t&At time instant ¢;, we denote b

— yi; = (y;(ti, xp))?", the vector of the values of the w0
i-th tracer at all grid points,

SN a

-y = vector of  tracer

) )

335

the values of all tracers at all grid points, appropriatel
concatenated.

We use analogous notations b;,d;, and g; for the boundar
and domain data as well as the biogeochemical terms in the
/-th time step.

340

4 TFranspert-matrices

For the boundary data only corresponding grid points are ,,s

incorporated.
The ides

i Lad . " . .
time-—Henee;the-model-equations-can-be-written-as-transport
matrix method approximates the discretized counterpart of ,,
(2) by
W)
ot

= L(t)yi(t) + ai(t,y(t), u, b(t),d(t)),

355

Yi01= Limp (Lep 395 + 24193 (y;,w, b5, d5)) @

zzwj(yj,u,bj7dj)7 ij,...,nt—l.

B : b e denend
the parts of the transport term in (2) that are discretized ™’
expliitly and implicitly w. £, t. time, respectively, Formatly;

37—1
with—L;—I{t;)Consequently, these operators depend on
the given transport data #,v and thus on time. Heresy—is

the-number—of timesteps—and—;=tg+{7—-At-denotes
a-speeifie-peintin-time-with-At=1/n;The biogeochemical
term is treated explicitly in (5) by an Euler step.

Since the transport effects each tracer separately

are block-diagonal matrices with n, identical blocks

365
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A i Ainp € Ra X respectively.  Nete——that

effect-of an-entire-timestepIn [Khatiwala et al.| (2005), it is
described how these matrices can be computed by running
one step of an ocean model for an appropriately chosen set
of basis functions for a tracer distribution. As a consequence,
the partition of the transport operator in (2) into the explicit
and implicit matrix depends on the operator splitting scheme
used in the ocean model. Usually diffusion (or a part of it)
is discretized implicitly, in our case vertical diffusion only.

&@w@m&%mwmm@amm
only a smaller number of (in our case monthly) averaged
matrices is stored. As-a-general-rule-once-the-discretization
parameters—are—chosen,—From these, an approximation of
the matrix pair at a time instant ¢; is computed by linear

The integration of the tracers over a_model year thus
Just_consists_of sparse_matrix-vector multiplications_and
evaluations of the biogeochemical model. Specifically, the
now pre-computed and contained in Ayy,,;, Which is the
benefit of the method. The interpolation of the transport ma-
trices, the beundary-and-demain-data—and-the-tracer—veetors
are-determined—forfurtherusagelinearization of eventually
used nonlinear discretization schemes (e.g. flux limiters), and
disregarding the influence of the biogeochemistry back onto
the circulation fields determine the approximation error of
the method compared to a direct coupled computation.

4 Steady annual cycles

The purpose of the software presented in this paper is the
fast computation of steady annual cycles of the considered
marine_ecosystem model. Formally,—an—implieit-transport
matrix-can-be-understood-as-the-solution-of the-implicit time
the-explieit-time-step;i—e—A steady annual cycle is defined
as periodic solution of (2) with period length 1 (year), thus
satisfying
t€[0,1].

Y+ )=u(0).telo.d

Obviously, the forcing data functions b,d are required to be
periodic as well.
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For the application of the transport matrix method, we
assume that a set of matrices for one model year (generated

with such kind of periodic forcing) is available, and that these

are interpolated to pairs (A, i, Ak for all time steps 41

i =0,...,n¢s — 1. In the discrete setting, a periodic solution

satisfies

Yn,+j= Yj 7=0,....,n, — 1.

415

Assuming _that  the discrete  _model is _completely
deterministic, it suffices to satisfy this equation just for
one j. Here, we compare solutions of the respective first
time instants of two succeeding model years. Defining

420

yf:: Y-1)n, ER™™, (=1,2,...

as the vector of tracer values at the first time instant of model
ear /, a steady annual cycle satisfies

425

y = ¢(y") =y" in R for some £ € N, 3)

where ¢ := @, 1 0 :- 9 o is the mapping that performs the

tracer integration (5) over one year. Here we omitted all other .

arguments except of y in the notation. Thus, a steady annual

cycle is a fixed-point of the nonlinear mapping ¢.
Since_condition (10) will never be satisfied exactly in

a simulation, we measure the periodicity using norms on

RItv? for the residual of (10). We use the weighted s
Euclidean norm

A'i/mp,j - (I -

Ae:l:p,j

At L'i/mp,j ) -

— (I —+ At Le:l:p,j) .

440

(iiwkzlk> we >0,k=1,...,n,, 4)

i=1 k=1

1212,

Here—for z € R"#"= indexed as z =

QWMMM
wg =1 for all k, we obtain the Buclidean norm denoted by
llzll2. A norm that stronger corresponds to_the continuous
problem (2) is the transpertis-sphtasty—=Ygmp—+Tempy
MMM%HWW

L2(Q -norm, where wy, is set to the volume of the k-th

rid box. This norm we denote by ||z . Orther settings of
the weights are possible. All these norms are equivalent with

min /wpl|zll2< llzll2w < | max w2l

1<k<n 1<k 455

4.1 Computation by spin-up (fixed-point iteration)

Repeatedly applying iteration step (10) or — in other words
— integrating in time with fixed forcing until convergence
is_reached, is_termed spin-up. Throughout—this—works
both-matrix—types-aresparselt is well known by Banach’s
fixed-point __theorem __(cf. [Stoer and Bulirschl 2002) that,

assumin is a contractive mapping satisfyin
llo(y) = ¢(2)[I< Ly — 2||_forall y,z € R™"

with L <1 in some norm, this iteration Will converge to

the unique fixed-point for all initial values y°. The-implieit
mﬁm&—WﬁmpﬂS@H&fﬂe&}—dﬁffuﬁt@ﬂ—eﬂ-}y—Thls
).

The method is quite robust, but on the other hand shows
only linear convergence which is especially slow for

L~1, An estimation of L = max, ||¢’ is difficult,

since it _involves the Jacobians g;(y;) of the nonlinear
biogeochemical model at_the current iterates. Typically,
thousands of iteration steps (i.e. a—process—within—a—water
column-thatis—computed-and-inverted-independently—ofits
vietnity-model years) are needed in order to reach a steady
cycle (cf.Bernsen et all 2008). Fhe-exphieit-matrixTrerp 7
represents—a—({oeeab—differential-operator,—which—natarally
has—a—sparse—diserete—representation—The method offers
only_restricted options for convergence tuning, the only
straightforward one being the choice of a different time steps
At To to 50, the transport matrices have to be re-scaled
accordingly. The natural stopping criterion is the reduction
of the difference between two succeeding iterates measured
by

eo=y' —y

671”2,71)

in some — optionally weighted — norm.
- Ithe_futly-di ; : ] form

leinabloek i ]
4.2 Computation by inexact Newton method

defining F' =y — the fixed-point problem

(10) can be equivalently transformed into the problem of
finding a root of F: R — R"">. Fheintegration—of
state—variables—ever—a—moedel-yearconsists—of-sparse-matrix
model—This problem can be solved by Newton’s method
(cf.[Dennis and Schnabell [1996} 2:Bernsen et al.,[2008). We
apply a damped (or globalized) version that incorporates a
line search (or backtracking) procedure which (under certain
assumptions) provides superlinear and locally quadratic
convergence, Fora-fixed-time-index—j-itreads-Starting from

an initial guess y°, in every step the linear system

= ALHI])J(A/I[)JyJ +Ath (y7 u, b d ))

Yi+1

:gpj(yjau'b_jvdj)7
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veetef%has to be solved followed by an update
Y =yt s, Accerdingly—Ag—and—A

' imp,j exp,j
denote—block—diagonal—matrices—with—Agmpy;—and
Acezp—as—their—identical—blocks;—respeetivelyHere 0> 0

sufficient reduction i F(y™4 ps™ is achieved
(cf.[Dennis and Schnabell [1996] Section 6.3).

The Jacobian I(y™) of I at the current iterate includes
the derivative of one model year, thus it is not as sparse
as_the transport matrices themselves. As a_consequence, sis
a_matrix-free_version of Newton’s method is_applied:
The linear system (10) itself is solved by an iterative,
so-called Krylov subspace method, which only requires
the evaluation of matrix-vector products F'(y™)s. Since
F'(y)_cannot be_expected to be neither symmetric_ nor e
definite, we use the generalized minimal residual method
(GMRES, [Saad and Schultz,[1986). The eomponents—of-the

su,by.d;) = (qilt),y;u,b;,d;))i, N

q; (y;

needed matrix-vector products can be interpreted as
directional derivatives of F' at the point y"* in direction s.
They can be approximated by a forward finite difference:

(6) 530

The ﬁmte dlfference step-size 5 is chosen automaticall
as a function of y™ and s (cf |Balay etal,2012a). An°®®

Wm

using the forward mode of algorithmic differentiation
(cf.[Griewank and Walther, [2008).
Actually—only 1 2—implicit-and12-explicit—matrices—are
extracted-and-stored,—when—the - TMM-data—is—preparedThe
above approximation of the Jacobian or directional derivative

is_ome_reason for this method to be called an_ inexact

§ a W Y atrwata ar{izoo -1 0€
second reason is that the inner linear solver has to be stopped
and thus is also not exact. Here we use a convergence
control procedure based on the technique described by %%

|[Eisenstat and Walker] . They stop when the Newton

residual at the current inner iterate s satisfies

|F'(y™)s + Fy™) 2= mall (g™ @)

The factor is determined as 0
IF(y™)ll2 >a

M= ——=——v— | , m>2, 1 =0.3. (8)

e (IIF(ym Dll2
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This_approach avoids so-called over-solving, i.e. wasting
inner steps when_the current Newton step was not very
successful. The same-applies—{for-the-given—toreinglatter is
typically the case in the beginning of a Newton iteration.
The matrices-as—well-as-the-boundary-and-domain-data-are
interpolatedater—on—to—the—eurrent—timestep—during—the
computationofa—medel-year(ef—Seetion{f)—parameters
and « can be used to influence this behavior in a linear
and nonlinear way, respectively. Moreover, they are a subtle
way to tune the solver. In contrast to a fixed-point iteration,
Newton’s method also in its damped version may_only
a high-dimensional problem as our application (in R"v"*), it
is a non-trivial task to find such initial guess if the method
with the standard one (e.g. the one used in the literature) is
not successful. Thus, if an Newton iteration is slow and the
above criterion may consequently lead to only a few inner
iterations, it makes sense to increase this number by either
decreasing y or increasing o. We will give examples later on
where exactly this strategy enables convergence atall,
Concerning the total effort of the inexact Newton solver
and in order to compare its efficiency with the spin-up, we
first note that one evaluation of £ basically corresponds to
one application of ¢, i.e. one model year. Thus, each Newton
step requires one evaluation of I’ as right-hand side in (10).
always taken as s = 0. Thus, no computation is required for
additional evaluation of /' to compute the second term in the
numerator of the right-hand side of (6). Additionally, the line
overall number of inner iterations plus the overall number
of evaluations in the line search determine the number of
necessary_evaluations of [7 that can be compared to the
necessary model years in the spin-up.

5 Biogeochemical model interface

In this context, our main objective is to specify a general
coupling between the transport that is induced by the ocean
circulation and the biogeochemical tracer model. The aim is
to link any model implementation with any number of trac-
ers, parameters as well as boundary and domain data to the
driver software. The coupling must additionally fit into an
optimization context, and it must be compatible with Algo-
rithmic Differentiation techniques (cf. Section[g).

Generally, we assume that a tracer model is implemented
for a single water column, synonymously called profile in

the following. This means no geometrical information on
horizontal vicinity of the vertical profiles is preserved in the
interface. Moreover, any client model must be able to take up
its states from such profiles. Models that require a horizontal
structure for its internal computation require a redefinition of
the interface and a change of the internals of the tool.



555

560

565

570

575

580

585

590

595

600

Piwonski and Slawig: Metos3D 7

However, this assumption does not constrain the interface changed using pre-processor variables that are defined within
for the futureand;—it-actaally-simplifiesthe-currentseftware cos the Makefile.
implementation. Mereover-itreflects-thefact-that-the-In fact,
the most important non-local biogeochemical processes hap—
pen within a water column (cf. [Evans and Garconl, [1997). 6 Periodiesolution

ThusConsequently, throughout this work, each discrete ) o )
tracer vector is a collection of profiles. It can be understood With-those-twe-building blocks;—a-medelevaluationfor2

as a sparse representation of a land-sea cuboid including only Wﬂmﬁeﬁ%s—*%}&mmﬂm
wet grid boxes. The geometry information is provided as a 2- mﬁ@%&%&&%s@h@%ﬁﬁw{#%%y@fef
D land-sea mask with additional designation of the number **° We%ﬂg%emwmﬁ%ﬁa{%
of vertical layers (cf. Figure @ Hence, a vector length n, %paaft}ﬁné%empeﬁd—dﬁereﬁ%&&mﬁeﬁequeﬁeeﬁf—%a{e%
is a sum of non-equidistant profiles, i.e. @ﬁp—lm

np
ve =D Mukaks
k=1
. ny n, 615
where n,, is the number of profiles and (#7073 211 ) 71

is a set of profile depths.
The evaluation of the whole #-n,, tracer model for a fixed
time index j consist then of separate model evaluations for

each profile. For a fixed profile index k w&hﬂ»depﬂcref—ﬁ—g

we compute

At(aqi(ty, (yyi)i=1""", uu, (bb;)i2y, (dd;)i2) )i " .
C))

Here, {y7)"=—(y;)7_, is an input array of n—profiles;u—a
veetor-of m—parameters; ()2, profiles, each with a_.
length or depth of 1, 1., u a vector of n,, parameters, (b;)™"
a vector of n;, boundary data values and {e-}4—(d;)?"¢, an
input array of ng domain data profiles. Both inputs are re- yir1 = d(y,u),
garded as already interpolated. The result is stored in the the
output array {eY=(q;).-, that consist of #-n,, profiles as _
well. Formally, the tracer model is scaled with the (ocean)
time step from the outside. However, we integrate At into 630
the interface as a concession to the actual practice, where the
time step is often refined within the tracer model implemen-
tation (cf.Kriest et al.,[2010). Consequently, the responsibil-
ity to scale the result before returning it back to the transport
driver software rests with the model implementer.
Listing[T|shows a realization of the biogeochemical model
interface in Fortran 95 called met os3dbgc. The arguments s
are grouped by their data type. The list begins with variables
of type integer, i.e. Py e My, Ny ks N> Np and ng.
They are followed by real + 8 (double precision) arguments,
i.e. At, aq, t;, y-u-b-and-dy, u, b and d. We neglected the
profile index k and the time index j in the notation for clarity. s
Moreover, we use dt as a textual representation of At.
Additionally, a model initialization and finalization inter-
face is specified. The former is denoted met os3dbgcinit
and the latter metos3dbgcfinal. These routines are
called at the beginning of a model year, i.e. at ¢y, and af-
ter the last step of the annual iteration, respectively. Both
have the same argument list as metos3dbgc and are not es
shown here. All three routine names are arbitrary and can be
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F'(yi) Sk %F(Yk-HSSk-&,L)—F(Yk) 70 FTheNewton-Krylov-solveris-a-more-sophisticated-approach

spaces—over—the—time—and—space—domain—te L2y I RSk + Flyn)llz - < me[F(yn)ll2

i g 1 ’ . . : . . .A . .

20 over-solving—and—deereases;—espectally—in—the—beginning;
1Yl Z2(rxqyn = 2oien J7 Jo Iyt @) dadt the—number—of evaluations—of F-—Thesealine factor——is
_— | e : N el
We-denote-the-diserete-counterpart-by-

B I F(yx)ll “
M =7 (M)

1Yl3, 00 =iy Yorty ALYy wi |y gkl

. . . . . '_
g t g " 205 GT(—I——F@%—Q—

6 Software implementation

The toolkit is divided into four repositories, namely
metos3d, model, data and simpack. The first com-
prises the installation scripts, the second the biogeochemi-
cal model source codes and the third all the data preparation
scripts as well as the data. The latter repository consist of the
simulation package,i.e. the transport driver, which is imple-

2 n Ny 2
lyllz =21 2okl |Yigkl” - mented in C and based upon the PETSc library.
The simulation context is represented by a data type called
5.0.1 Spin-up 7s metos3d that gathers all variables. Regarding the biogeo-

chemical models, C, C++ and Fortran implementations are
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accepted (cf. Section[7.T.1). Overall, whereas we often used
1-indexed arrays within the text for convenience, within the
source code C arrays are O-indexed and Fortran arrays are
1-indexed. Moreover, all data files are in PETSc format.

6.1 Layers

The implementation is structured in layers according to
which the source files are named. A schematic is shown in
Figure[[]] The bottom layer is the debug layer which imple-
ments output formatting and timing routines. Above resides
the utilization layer. It provides basic routines for reading in
options, allocating memory as well as reading data from and
writing data to disc. The option system and the individual
options are described in the documentation that is located
in a subdirectory of the git repository of the simulation
package. Moreover, the utilization layer comprises routines
to arrange profiles within a vector (cf. Section [6.4) and to
compute interpolation factors and indices (cf. Section[6.3)) as
well. The 2-D land-sea mask is read in by the geometry layer
and the profiles are balanced by the work load layer (cf. Sec-
tion[6.2)).

The next beth-two layers are the building blocks of the
simulation. The bgc model layer initializes tracer vectors, pa-
rameters as well as boundary and domain data. It is respon-
sible for the rearrangement of the profiles, the interpolation
of the forcing data and the evaluation of the biogeochemi-
cal model using the interface (cf. Section [6.4). The transport
layer is responsible for reading in the transport matrices, their
interpolation to the current time step and their application to
the tracer vectors (cf. Section[6.5).

The next layer is the time stepping layer, where the main
integration routine ¢ is located (cf. Algorithm [3). The New-
ton residual F' is implemented here as well. On top resides
the solver layer, which consist of the spin-up implementa-
tion and the call to the Newton-Krylov solver provided by
PETSc.

Additionally, all tayer-calls to initialization respectively fi-
nalization routines are eombined-as-one-call-within-located at

the init source file. The former are responsible for memor
allocation and storage of data used at run time. The latter are
employed to free memory as well as delete the used vectors

and matrices.
6.2 Load balancing

Once the geometry information is read in, the profiles have
to be distributed among the available processes. However, a
tracer vector is a collection of ner-non equidistant profiles
and the biogeochemical models that we couple to the trans-
port matrices operate on whole water columns. Thus, a pro-
file can not be split when the work load is distributed.

For this case, no suitable load balancing algorithm is pro-
vided by the PETSc library. Here, we use an approach that
is inspired by the idea of space filling curves presented by

790

795

800
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815
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835

Zumbusch!| (1999). For every profile, we compute its mid in
relation to the vector length and scale this ratio by the num-
ber of processes. We round this figure down to an integer and
use the result as the index of the process the profile belongs
to. This information is sufficient to consecutively assign the
profiles to the processes later on.

The calculation for 0-indexed arrays is depicted by Algo-
rithm(T] Its theoretical and actual performance is discussed in
Section where we show results of speedup tests that we
performed on two different hardware architectures.

6.3 Interpolation

The transport matrices as well as the boundary and domain
data vectors are provided as sets of files. Although, most of
the data we use in this work represents a monthly mean, the
number of files in each set is arbitrary.

Regarding the transport, we have (A ;);2]
(Aezpd)?:f’ , where 1y, and n.,, specify the number of
implicit and explicit matrix files, respectively. Note, we will
not assemble both (block diagonal) system matrices during
the simulation to avoid redundant storing. Instead, we use
the provided matrices to build only a block for each matrix
type. The transport is then applied as a loop over separate
tracer vectors as explained in Section [6.3]

Concerning the boundary and domain
we denote the data files by

Nimp

and

forcing,

nyp 1S th7€ number of distinct boundary data sets and nyp,; 1s the
number of data files provided for the ith set. Accordingly,
ngq denotes the number of domain data sets and ng; is the
number of data files of a particular set.

However, the time step count per model year is generally
much higher than the number of available data files. Thus,
the matrices and vectors are hinearly-linearly interpolated to
the current time step during the iteration. The files of a spe-
cific data set are interpreted as averages of the time intervals
they represent. Consenquently, we interpolate in between the
associated centers of these intervals. The appropriate weights
and indices are computed on the fly using Algorithm 2] Both
building blocks of the simulation, i.e. the biogeochemical
model and the transport step access the interpolation routine
in every time step ¢; to form a linear combination of the user
provided data.

6.4 Biogeochemical model step

During a simulation the BGCStep routine in Algorithm f]is
responsible for the evaluation of the biogeochemical model.
For this, the boundary and the domain data must be inter-
polated first. Here, for every index ¢ and the corresponding

boundary data set {—bﬁéj;—l(\b\w&vwe compute the ap-

propriate weights «, 3 as well as indices j,, jg and form the
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linear combination as

bb; = abb; ;, + Bbb; ;.

The same applies for the domain data, i.e. for every domain sss

data set {e77)71-(d; ;) ;<) we compute
dd; = add,; ;, +3dd,; j,.

Technically, we use the PETSc routines VecCopy,
VecScale and VecAXPY for this purpose, which is anal-

. . . . 890
ogous to the interpolation of the transport matrices in Sec-

tion
Next, we rearrange the forcing data and the tracer vectors.
This is necessary since the combination of transport matrices

and water column models results in two different data align-
95

. . . 8
ments. For the application of a matrix to a tracer vector, all

profiles of a tracer are kept one behind the other. In contrast,
to evaluate the tracer model the same profile of each tracer
must be kept in a contiguous piece of memory. Accordingly,
this has an effect on the forcing data as well. The routines for

900
rearrangement are provided within the softwares utilization

layer.

Concerning the tracers, we need to copy from n separate
vectors to one (block diagonal) vector, where the profiles are
grouped by their index, i.e.

(Xyl,k)zg : (zyn,k)Zil — ((Xyi,k)?:l)Ziv

where ¥;-y;,1. denotes the kth profile of the ¢th tracer. More-
over, after the evaluation of the biogeochemical model we
reverse the alignment for the transport step. The same situa-

905

tion occurs regarding the domain data. Again, we group the o0

domain data profiles by their profile index k, i.e.

[(ddy )iz, oo (A, )i | — (Adis)i2)i,
where d;7-d,; ,_denotes a domain data profile. However, no
reverse copying is required here.

The boundary data is a slightly different case. Here, we
align boundary values, at which each is associated with the

surface of a water column, i.e.

[(Brs)ily -

where b; j, denotes a single boundary data value in contrast to
a whole profile. Analogously to the domain data, no reverse
copying is required in this case.

Subsequent, we loop over all profiles and evaluate the bio-
geochemical model for every water column formally using

the interface introduced in (@). Within the implementation,

(bny )iy ] — ((bik) 1)y

915

920

since we only couple models that are written in Fortran, we o2s

use the programming counterpart depicted in Listing E Fi-

nally, as already mentioned, we prepare the output for the
transport step.

Piwonski and Slawig: Metos3D

6.5 Transport step

The application of the transport matrices to tracer variables is
the second building block of the simulation. The individual
steps are combined in the Transport Step routine, which
is applicable to both matrix types as shown in Algorithm []
On entry, we interpolate the user provided matrices to the
current point in time ¢; first, i.e. we assemble

AZOéAjQ +5Aj5

with the appropriate «, 3 and j,, jg. Analogously to the in-
terpolation of vectors we use the matrix variants Mat Copy,
MatScale and MatAXPY for this purpose. The technical
details hereof has been already discussed at full length in
Siewertsen et al.| (2013)). Subsequent, we apply MatMult
to every tracer of the input variable ¥579,.

In contrast to the interpolation of vectors, and generally to
all vector operations, each of the matrix operations has a sig-
nificant impact on the computational time. In Section[7.3| we
present results from profiling experiments that show detailed
information about the time usage of each operation.

7 Results

In this section, we present results from numerical experi-
ments to verify the software. Atfirst—we-We use the intro-
duced 1nterface to couple the transport matrlx driver w1th

of biogeochemical models. We inspect the convergencewbvc;-
havior of both solvers included. Subsequently,—we—perform

A profiling of the main parts of the algorithm complements
the initial verification.

Subsequent, we perform speed-up tests to analyze the

implemented load distribution and compare it with the TMM.
We continue by investigating the convergence control set-

tings of the Newton-Krylov solver and examine the solver’s

behavior within parameter bounds. We-finally-presentresults
; L . : Ltion

7.1 Setup

We assume the PETSc environment variables are set, the
toolkit is installed and the met os3d script is made available
as a shell command.

7.1.1 MoedelModels

In order to test our interface, we decide—to—couple—an

couple an N, N-DOP, NP-DOP, NPZ-DOP, NPZD-DOP
model hierarchy and an original implementation of a bio-

geochemical model that—s—to the transport driver. The

former is implemented from scratch for this purpose. The
equations are shown in Appendix The latter is used for
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the MIT General Circulation Model (cf. Marshall et al. sso
MITgcm) biogeochemistry tutorial and described in

detail in [Dutkiewicz et al.| (2005). i—has—been—widely

{ef—TFablefI9)—We will denote it as the MITgecm-PO4-DOP sss
model.

Generally, for every model implementation that is coupled
to the transport driver via the interface a new executable must
be compiled. Here, we feHew-the-introdueed-use a conven-
tion for the directory structure to fit seamlessly into the-an au-too
tomatic compile scheme. Within the model directory of the
model repository we create a folder named-that is named

after the biogeochemical model, i.e. MITgcm—PO4-DOP -

for instance. We-tmplement-a-model-wrapperfor-the-original
sotree-—code-and-store—t—ina-Within this directory we storeioos

the source code file named model . Fwithin-thatfolder. We
use this directory structure for all models. Overall, while the
file suffix implies a pre-processed Fortran fixed format, ev-
ery programming language that is supported by the PETSc
library will be accepted.

Finally, to compile all sources we invoke

1010

$> metos3d simpack MITgcm-PO4-DOP
for instance and such create an executable named

metos3d-simpack-MITgcm—P0O4-DOP.exe

1015

that we use for all the following experiments. Specific set-
tings will be provided via option files.

7.1.2 Data

All matrices and forcing data we use in this work are basedioz
on the example material that is freely available at
[2013). This material originates from MITgem simu-
lations and requires post-processing. We provide the prepa-
ration scripts as well as the prepared data within the data
repository.

The surface grid of the used domain has a longitudinal and
latitudinal resolution of 2.8125°, which results in 128 x 64
grid points (cf. Figure [T2). Note that the Arctic has been
filled in. The depth is divided into 15 vertical layers that are
depicted in Table [T7] This geometry translates to a (single)os
tracer vector length of #;=52749-n, = 52749 and the cor-
responding n, = 4448 profiles. Moreover, the total volume

1025
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of the ocean is specified as V = 1.174 x 10'® m?3, whereas
the minimal and maximal volume of a grid box is Vi, =
8.357 x 10 m? and Vj,ax ~ 6.744 x 103 m?, respectively.
The temporal resolution is at At = 1/2880, which is equiva-
lent to an (ocean) time step of 3 hours assuming that a year
consists of 360 days.

computation of the photosynthetically available short wave
radiation is the same for all models. It is deduced from the
insolation, which is computed on the fly using the formula of
[Paltridge and Platt| (1976)). Here, for the topmost layer lati-
tude and ice cover data is required, i.e. n, = 2. For the for-
mer we use a single latitude file, i.e. ny ;1 =1, and for the
latter twelve ice cover files, 1y o = 12.

Additionally, the depths and heights of the vertical lay-
ers are required, i.e. ng =2 domain data sets. Each con-
sist of only one file, i.e. ng1 =1 and ng o = 1. The infor-
mation is used to compute the attenuation of light by wa-
ter, to determine the fluxes of particulate organic phosphorus
and to approximate a derivative with respect to depth. Note
that the order in which the data sets are provided is impor-
tant and must correspond to the order used within the model

implementation. For-more—information,—an—algorithm—of—a
very simitar-model-can-be found-in Siewertsen et al. (2013).
Finally:-Moreover, as previously mentioned, twelve implicit
transport matrices, i.e. 1, = 12, and twelve explicit trans-
port matrices, i.€. neqp = 12 are provided.
We always start a simulation at
perform  n, =2880 iterations  per

and
year.

to =0
model

7.2 Solver

We begin our verification by computing a reference-solation

for-the-parameterset-ythatis-depieted-in-TFable I -steady
annual cycle for every model with both solvers. Boethselvers
are-started-with-the-same-initial-configuration—

Regarding the spin-up, we set no tolerance and
let the solver iterate for 10,000 model years;—despite
the—faet—that—usually—3;000—are—regarded—as—suffieient
(ef-Bernsen-et-al;2008)—. The Newton approach is set to a

line search variant and the Krylov subspace solver to GM-
RES. All other settings are left to default, in particular the
overall absolute tolerance is at 10~® and the maximum num-
ber of inner iterations is 10,000.

Figure—2?—shows—the-The parameter values we use for

the MITgcm-PO4-DOP model are depicted in Table [1&] and
named u 4 therein. Table|]l9ldepicts the parameter values used

for the N, N-DOP, NP-DOP, NPZ-DOP, NPZD-DOP model
hierarchy. If not stated otherwise the initial value is set to
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2.17mmol Pm~? for N or PO4 and 0.0001 mmol Pm_?
for the other tracers.

"~ For the MITgem-PO4-DOP model a comparison of theoss
convergence towards a periodie—steady—statesteady annual
cycle for both solvers is shown in Figure [[3| Both-solver
obviously—converge—towards—the—same—solutionWe_observe
that the solutions converge to the same difference in between
consecutive iterations. The-difference-is-generally-measuredioss
using—the—unweighted—norm—of initial—states—conseeutive
medel—yearsMoreover, Table [16| shows the difference

between both_solutions_in Euclidean norm. Additionally,
Figure [[9 depicts the difference between both solutions for
the surface layer. Except for the numerical error, both solversiioo
obviously compute the same solution.

solvers for the N respectively N-DOP_model. There is no
essential difference in comparison to the MITgem-PO4-DOP
model. An inspection of the surface Figures [IT0] and [TTlros
different behavior of the Newton-Krylov solver at the end
M&MQ&Q& Addw‘t*eﬂaﬂﬁve%ﬂweafwe
WMWWW
30 model years, which obviously results from the settings
of inner solver, where GMRES is set to perform a restart
however, do not indicate any effect on the solution.

The NPZ-DOP and NPZD-DOP models show a different
behavior regarding the Newton solver. For both models, the
solver does not converge with default settings as shown iniis
Figure (top) and Figure . It can be seen that
the reduction of the residual per step is guite low, which
results in a huge number of iterations. Here, the solver was
stopped after 50 iterations (the default), which alread
a high number for Newton’s method. The reason is_thatiz
convergence of the method — even in its so-called globalized
or damped version used here  still may depend on the initial
guess y°. We used a different one, which was successful
for the NPZD-DOP model, see Figure [[8] (middle). For the
NPZ-DOP model, it still was not, see Figure [[7 (middle).

However, a_second and much easier way to_achieve
convergence can be deduced already from Figure [[7] (top)

and Figure (top). The stopping criterion of the inner
iterations of the Newton solver is less restrictive if the last
Newton iteration was not very successful, which is obviouslyrso
the case here. The number of inner iterations and thus the
accuracy of the Newton direction is improved when the
inner criterion (10) is sharpened, thus somehow contradicting
the idea formulated in[Eisenstat and Walker (1996)). This can
be casily achieved by decreasing 7, here to 5 = 0.3. Thisuss
tuning now _led to_convergence, see Figure [I7] (bottom)
and Figure [T8] (bottom). With this settings, the respective
solutions are the same as the ones obtained by the spin-up,
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when numerical errors are neglected (see Figures and
. This is also confirmed by evaluating the differences in
the norm, see Table

Overall, we observe that the Newton-Krylov solver does
not reach the default tolerance and iterates unnecessarily
for 10,000 model years within the last Newton step. Thus,

we limit the inner Krylov iterations to 200 in the follow-

ing experiments. Moreover, for further investigations with

the MITgcm-PO4-DOP model we change the convergence
settings to get rid of the over-solving that we observe at the

beginning. Referring to this, more detailed experiments are
presented in Section[7.5]

7.3 Profiling

results:In following two sections we investigate some tech-
nical aspects of the implementation more closely. First of all,
we are interested in the distribution of the computational time
among the main operations of a model year.

For this, we perform a profiled sequential run for each
model at which we iterate for 10 model years. The analysis of

the profiling results is shown in Figure-2?Figures [[17] - [[13}
We-Regarding the MITgcm-PO4-DOP model for instance,

we_observe that the biogeochemical model takes up 40%
of the computational time. The interpolation of matrices
(MatCopy, MatScale and Mat AXPY) amounts to approx-
imately a third. The matrix vector multiplication (MatMult)
takes up a quarter of the computations and all other opera-
tions amount to +-5%0.5%.

Moreover, we recognize that the more tracers are involved
the more the matrix vector multiplication becomes dominant.
For the N model it takes up 19,87 of the computational time,
whereas for the NPZD-DOP model the MatMult operation
amounts to 56,7%. The possible implications are discussed

This profiling capability was also used as the software was
ported by[Siewertsen et al| (cf.[2013) to an NVIDIA graphics
processing unit (GPU). The authors investigated the impact
of the accelerator’s hardware on the simulation of biogeo-
chemical models. The work comprises a detailed discussion
on peak performance as well as memory bandwidth and in-
cludes a counting of floating point operations.
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7.4 Speed-up

In this section, we investigate the performance of the load
balancing algorithm in detail ——and compare the results

both drivers with the same biogeochemical model. For thisize

purpose we choose MITgem-PO4-DOP since it is part of the

TMM as well and, consequently, we have the same setup.
‘We run {esfs—eﬂ—fwefhﬁefeﬁt—hafdwafe—ph&eﬂﬂ&—?he—hfﬁ

%ﬂﬁ%ﬂf—@p&ef&%%%&—wﬁh#%ﬁfeﬁuﬂmﬁg—%zos
2--GHzthe tests on a hardware that located at the computing
center of Kiel University. Fhe-second-It is an Intel® Sandy
Bridge EP architecture with Intel Xeon® E5-2670 CPUs that
consist of 8-16 cores running at 2.6 GHz. Beth-are-integrated
inte-a-computerclusterlocated-at the-computingeenter-of-theizo
GWWB%&@WW%WG

perform 10 tests Wﬁh—fespeet—fe—&—speethﬁﬂﬂmbef—ef

%m&k&&mﬁuﬁa%mﬁ@fm&mmng 1 to 256 cores. Each test
consists of running—stmutations—a simulation run of three

model years, at which each year is timed separately. For theizis
TMM we use 1 to 192 cores and run 3 tests on each core.
whole run.

Overall, for the calculation of the speed-up and efficiency
results we use the smallest-measured-time-of-these-30-tests;ize0
te—the-best-performance-pernumber-of-processes—

Ad-minimum_timings _for a_specific number of cores.
Moreover, all timings are related to the timing of a se-

quent1a1 run. jr“he—ab%e}t&e—%eweﬂﬁ&l»mmmm—mmmg%

fespeefwe}y—For a set of measured computat10nal times

(t;)N; with N-=184-N = 192 or N = 256 we calculate the
speedup as s; = t1/t; and the efficiency as e; = 100 x s; /4.

Additionally, referring to the implemented load distribu-
tion (cf. Section[6.2]), we compute the best possible ratio be-izx
tween a sequential and a parallel run. For all number of pro-
cesses, i.e. 1 =1,...,260, we compute the load distribution
using Algorithm [T] and retrieve the maximum (local) length
Ni maz- FOr the speed-up we divide the vector length by this
value, i.e. $; =1y /N maqz. and for the efficiency we againess
calculate e; = 100 * s; /1.

Figure @ depicts the ideal, best—possible—theoretical
and actual speedup respectively efficiency. Regarding the
implemented load distribution a good (theoretical) perfor-
mance over the whole range of processes can be observed.izao
HeweverMoreover, we recognize that en-the AMD-hardware

a parallel run never—reaches—the—theoretically—possible
oeed-tp_T} . < achieved_1 00

13

fhe efﬁeieﬂefl (hghﬂj[ OVer ?()0{ |hef8‘lf{6f the E‘peed ”p
remains-the-same-but-the-efficieney-deereases—

In-contrast-a-paratlelrun—of Metos3D on the Intel hard-
ware reaches between 100 and 140 preeesses—cores almost
best performance. In this range the efficiency is about 95%
and the speed-up nearly corresponds to the number of pro-
cesses. After-that-theefficieney-drops-constantly-as-observed
for-the-AMD-architeeture—Indeed, the speed-up still rises to
slightly over 160 but requires at least 200 processes to reach
this factor.

In contrast, the performance of the TMM is poor. The
efficiency drops from the beginning and a speedup higher

than 40 is never reached. From 120 cores up Metos3D is
at least 4 times faster. Interestingly, there is a significant

drop in performance at the beginning en-both-architecturesfor
both drivers. {rrpame&}&r—eaeh%xafdwafe—shews—&diffefeﬂ{
pattern—The possible implications are shortly discussed in
Section [§] However, since the results give us a good orienta-
tion anyway this effect is not investigated further. Overall;-as

treadvindi I by the < itk runs—theIntel-hard
< the-obyi hoicef ] . .

7.5 Convergence control

After a basic verification and a review of technical aspects
of our implementation, we investigate the settings to control
the convergence of the Newton-Krylov solver. Again, we use
the MITgcm-PO4-DOP model only. Our intention is to elim-
inate the over-solving that we observe during the first 200
iterations in Figure 23] This effect occurs, if the accuracy
of the inner solver is significantly higher than the resulting
Newton residual (cf. [Eisenstat and Walker, [1996)). The re-
lation between those two is controlled by the v and the o
parameter depicted in Equation (10).

Hence, we compute the reference solution from Sec-
tion [7.2] with different values of -y and « to investigate their
influence on the convergence behavior. We set the overall tol-
erance to the measured difference of consecutive states after
3,000 model years of spin-up, i.e. approximately 9.0 x 10~*
We let the value of v vary from 0.5 to 1.0 in steps of 0.1 and
o is chosen from 1.1 to 1.6 in steps of 0.1 as well. This is a
total of 36 model evaluations.

Figure [T19] depicts the required model years and Newton
steps as a function of v and «. We observe that the overall
number of years decreases, as both parameters tend to 1.0
and 1.1, respectively. In contrast, the number of Newton steps
increases, i.e. the Newton residual is computed more often
and the inner steps become shorter.

Consequently, since the computation of a residual is neg-
ligible in comparison to the simulation of a model year, we
focus on decreasing the overall number of model years. A
detailed inspection of the results reveals that for v = 1.0 and
a = 1.2 the solver reaches the set tolerance after approxi-
mately 450 model years, which is significantly less than 600
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if using the default settings. Thus, we use these values for the

next experimentsexperiment.

7.6 Parameter samples

Hewever—until-Until now we solved the given model
equations for the-referenceparameter-set-ig-one (reference),,,
parameter set only. During an optimization a solution must
be computed for various parameter sets. Thus, we perform
the next experiments in order to study the solver’s behavior
with regard to other model parameters. Again, we use the

MITgcm-PO4-DOP model only. For this purpose, using the,
MATLAB® routine 1hsdesign, we create 100 Latin Hy-

percube (cf. samples within the bounds
that are depicted in Table [FOHI8] We set the overall tolerance
again to a value that is comparable with 3,000 spin-up itera-
tions and let the Newton solver compute a solution for each,,,,
parameter sample

Figure[T20]shows histograms of the total number of model
years respectively Newton steps required to solve the model
equations. We observe that most computations converge in
between 400 to 550 model years and require 10 to 30 New-,,,
ton steps. Interestingly, regarding the latter there is a high
peak around 15 and a smaller peak around 12. Moreover,
we recognize some outliers in both graphs. Nevertheless, all
started model evaluation converged towards a solution within
the desired tolerance. Thus—prepared;—we-carry-out-thetast,,,
experiment-

7.7 TwinExperiment

. 1325
8 Conclusions

same-settings)againstitWe_designed and implemented a
simulation framework for the computation of steady annual
cycles for a general class of marine ecosystem models in
3-D. driven by pre-computed transport matrices in an off-lineisss
mode. Regarding-the The framework allows computation of
mwmspln up we—let—%he—%e%veﬁﬁefa{e

s a § OI‘ a

lobahzed N ewton method The NeW‘EGﬂ—SGl—VeHS—S&H}p—&S
deseribedin-SeetionfZ3boftware is completely realized as (Orisso

using available) open source code.
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inJ
wep T

introduced a_software interface for water column-based

biogeochemical models. where-

J(u) = 5lly(w) —ydll3 10

| theadmissib] i< defined
U ={ueR™:b;<u<b,}.

fmﬁ%%dﬂﬂﬂ?me—ep&miﬂﬂeﬂ&%%ml
the applicability and flexibility of this interface by couplin

the biogeochemical component used in the MITgcm general
circulation model to the simulation framework. Fhe-norm-is

fm%s—af&s{ﬂﬁed—wifh—ug{eﬂ%b}e@(wrwg@w
coupled own implementations of five other biogeochemical
models (also used in [Kriest et al|(2010)) with different

complexity to show the interface’s generality. Their source
code is also available within the software, and may serve as
templates for implementation or adaption of other models.
To——solve—the——problem—we—use—MATEABs
friincen routine— for—— constraint— nonlinear
optimizationr;—where—we—set—the—algerithm—to—aetive-set
(et Noecedaland Wright-2000pp-—368)We __ implemented
a transient solver based on the transport matrix approach,
where all matrix operations and the evaluation of the
biogeochemical models are performed with spatial
arallelization via MPI using the PETSc library. s
The needed transport matrices are directly available and
We realized both a quasi-Newton-approach;-at-which-the
. : Hessian_i . | usineF on?
method-(ef-{Dennis-and-SechrabellF996l-pp-—169)spin-up (or
fixed-point iteration) and a globalized Newton solver for the
com utatlon of stead cycles. {&beﬂdrfw&ﬁexpeﬂmeﬂtwe
l i l 1
machine-preeiston—We compared these solvers and made the
following observations: Regarding—the Newton—solver—one
additional-experimentis-—earried-out-with-arelativestep-size
of10=2Both deliver the same results (up to a reasonable
ustng—the-The spin-up selverconverges with standard sets
of parameters, taken from [Kriest et al](2010), for equally
distributed values for cach tracer. Pue-to-the-time limitation
ofthe-used-batch-system;-we-had-torestart the-firstrun;-which
has-been-stopped-after 200-hoursThe Newton solver showed
the same behavior for the four models of lower complexity.
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] 3’ i l“ ains the diff b thatis taker bv-d
seeond—+un—For the other two, it did not converge with the

standard setting of its parameters and the mentioned initialisoo

distribution of tracers. However;-we-observe-a-convergenee
of the—parameters—towards—theirreference—values—At—the
last-optimization—step-they-are-u—=-{0-499For both of these
two more complex models, convergence was achieved b

increasing the number of inner iterations in the Newtonisos

solver, 2:016-0:670: 0:502: 30:46 1-0:019- 0:858)-which is

realized by decreasing the parameter + in (10). Here-For one
of these models, the valies are round off-to-threedecimat

ARAANARAAAARRATR

plaees—same could be achieved by choosing a different initial

ucss. 1410

objeetivefunetion—isJess-than 16— —whieh-is-Concemning
pgvfgggmhe ée#aul&valﬁeuef-%he%maeﬁeﬁ—te}efaﬂeeﬂ

{eﬂdemtﬁy—the—reweﬂc—&pafamefeﬁefNewton solver was
about 6 times faster for all models. Here,-based-on-the-twera

It can be

concluded that the Newton method requires more thorough
solver parameter setting for complex models, but then i
superior in any case, at least for the considered parameter

sets. Fhey-provide-only-firstelues(ef-Seetion[S— 1425

15

and overall model years for 100 latin hypercube model
parameter samples. Moreover-the-performed-speed-up-tests

the usability of the Newton method for example in a
optimization run where model parameters are varied by the
optimizer. Fhe- PEFSelibraryprovidesa-flexible-androbust
selver—implementation—that—in—our—ease;—solves—the—given
nonlinear-equations-at-Jeast-6-times-It turned out that there
is a variance in the needed steps and thus the overall effort,
but that there are no extreme outliers. We conclude that the
Newton method — at least for this model - is_appropriate
for optimization, and faster than the fixed—point-iteration:
usually robust spin-up.

However, ~concerning —the —twifi—experiments,we—must
blaek-box-optimizationWe further analyzed the proportions
in_time_that the different pieces of the simulation in
one model year need. Nete—thatthe—chosen—eptimization
approach—was—somehow—natural”It turned out that, with
increasing number of tracers, the matrix-vector operations
dominate_and _thus have the most potential for further
R@&m This Weflefeeuseekei%fhefempﬂfaﬁeﬁ

derivative—information—is—avatlableis despite the fact that
the transport operator for every tracer is the same. The

selverfor—parameter—identifieationstudied the de endenc

of the Newton performance with respect to the two solveriass

parameters o,y in (10) for one exemplary model. Here;
] ] Gl theinhorited At bili
] ] onal lexi ‘
medel-HmplementationWith an optimal choice derived from

these experiments (for one model parameter set), we thenisso

investigated the dependency of the needed Newton iterations

as—tmphed—by—(@@However nRew—transport
matrices—need—to—constructed—for—this—purpese—it_still has
to_be evaluated, whose effort is proportional to the number
of tracers in the model. Indeed;—the-appropriate-seripts-are
provided-in-the-data repository-of Metos3D;-butonee-again;

not-to-further-complicate—a—basie—verification—the-approach
was—not—diseussed—hereln contrary, the biogeochemical
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mostly spatially local, become less performance-relevant.
into-thesoftwareFinally, we implemented a load balancing™
that exploits the different depths of the water columns in the
ocean that result in different lengths of the corresponding
data vectors. And;-as-it-turned-out-a-model-evaluationusing
a—Nevﬁeﬂ—appfeaehﬁq—mﬁeh—fa%efvmgyév@Mrw
nearly optimal speed-up by spatial parallelization up to about”™”
a comparably high number of 128 processes was possible.

This is a huge difference to the performance with standard
load balancing.

o . 1520
by-{Khatiwala2008)Summarizing, the presented software
framework is an appropriate tool to be used in parameter
optimization and model assessment runs. IadeedPETSe
leastil ssibili pre .]]I. ‘ol ]
appropriatetoeationlt has high flexibility w.r.t. models and
steady cycle solvers, offers improved parallel performance
and can be easily combined with any optimization method."*”

Theo tion for effectlve high spatial a.rallehzatlon allows th
use of gradient based optimization methods, since they are —
in contrast to evolutionary algorithms — less parallelizable.
Fhus. i I el r e basi
verification this has not been considered here. Qur results™
show that the parallelization effort is well-invested in the

9 Code availability

Name of software: Metos3D (Simulation Package v0.3.2)
Developer: Jaroslaw Piwonski

Year first available: 2012

Software required: PETSc 3.3

Program language: C, C++, Fortran

Size of installation: 1.6 GB

1540
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Auvailability and Cost: free software, GPLv3
Software homepage: https://metos3d.github.com/metos3d

The toolkit is maintained using the distributed revision con-
trol system git. All source codes are available at GitHub
(https://github.com). The current verston-has-been-tagged-as
versions of simpack and model are tagged as v0.3.2.
The data_is_repository_is at_version v0.2. All experi-

ments presented in this work were carried out using this
versionyersions. The associated material is stored in the
verifieation2016-GMD-Metos 3D repository.

To install the software, the user should visit the homepage
and follow the instructions. Whereas in the future an installa-
tion will always reflect the current state of development, the
user can always invoke git checkout tags/v0.3.2

in the simpack ;-and model ;repository as well as git
checkout v0.2 in the data and—verifiecation

fepesﬁef—y—fes—peeﬂ—vel—yf repository to retrieve the version

versions used in this work.

Appendix A: Model equations

The here presented N, N-DOP, NP-DOP, NPZ-DOP_and
NPZD-DOP model hierarchy is based on_the descriptions
used by [Kriest et al.|(2010). The introduced parameters are
shown in Table[9

Al Short wave radiation

As mentioned Section the short wave radiation for the
topmost layer is deduced from the insolation that is computed
on _the fly using the formula of [Paltridge and Platt (1976).

Here, latitude ¢ and ice cover ;.. data is required. We
denote the computed value b I =1 JTice ). For

the lower layers their depths (z; and heights (dz;

are required. Additionally, the attenuatlon of water is
described by the coefficient k,, respectively the attenuation
of phytoplankton (chlorophyll) by k...

Al.l

Implicit phytoplankton

For the N and the N-DOP model the short wave radiation is
computed without phytoplankton, i.e.

the actual layer index.

Al1.2 Explicit phytoplankton


https://metos3d.github.com/metos3d
https://github.com
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For the NP-DOP, NPZ-DOP and NPZD-DOP model the AS NPZ-DOP model
short wave radiation is computed with phytoplankton, i.e.

The NPZ-DOP consists of nutrients (IN), phytoplankton (P)

I’ =1 1ss0  zooplankton (Z) and dissolved organic phosphorous (DOP),
I Ipj= Iswr I I ! ie. = . The production function
P,j H Pk else remains the same. The computation of grazing takes explicit

zooplankton into account, i.e.

where I . =exp(—(ky +keypi)dz; /2 and 5

Tpp =Pk £ dzp). f2(yp.yz)=1pyz ot —
7 Llarpa)”irve iy

A2 Nmodel

wes Table [Ad] depicts the equations. The NPZ-DOP
The simplest model consists of nutrients (N) only, i.e. model  introduces 1, = 16 arameters,  where

= . Table [AT] depicts the equation, The biological w=(ky.keopip iz Kn.Kp.K1,02.0 Ap A7k

uptake is computed as N Az ADOP,b).
Folyns D)= ppyp—25 1 A6 NPZD-DOP model

1s0 The NPZ-DOP consists of nutrients (N), phytoplankton

. . . P) zooplankton (Z), detritus (D) and dissolved organic
where hytoplankton is implicitl set to : o
AR AN hosphorous (DOP), i.e.

%, =0.0028 mmol P/m>. The N model introduces o

s . b 0 T KD The equations mainly remains the same, except a
1y = 5 parameters, where u = (k. up, Ky, K1) depth dependent linear sinking speed is introduced
1ses  for detritus. Table depicts the equations, The

A3 N-DOP model NPZD-DOP model introduces n,, — 16 parameters, where

The N-DOP model consists of nutrients (N) and dissolved
organic  phosphorous (DOP), i.e. = .
The computation of the biological uptake remains
the _same. Table depicts _the equations. The 4 4. iedgements. The authors would like to thank S. Khatiwala
N-DOP _model introduces 1, =7 _ parameters, where . fo providing support on the transport matrices and for providing

AD.ApOP,an,b

u=(k Kn. K50 ) b). the whole TMM material freely on the internet. Furthermore, both
authors would like to thank I. Kriest and A. Oschlies for many fruit-
A4 NP-DOP model ful discussions. In particular, Jaroslaw Piwonski would like to thank

I. Kriest for teaching him patiently so much about biogeochemical

The NP-DOP consists of nutrients (N), phytoplanktoniess models. Atlast-we-thank-ourcolleagueJoschaReimerforpreparing
P) and dissolved organic phosphorous (DOP), i.e. the-World-OceanDatabase-data—This work was partly funded by

= ; . Here, the nutrient uptake by (explicit) The Future Ocean cluster.
hytoplankton is computed as
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Table Al. Equations for the N model with £ = fp(yn, ).

‘ Euphotic zone ‘ Sinking
—fr(yn,I) | +Edz;8:(2k/2) "

qn(y) = ‘

Table A2. Equations for the N-DOP model with E = &pop fr(yn,I).

‘ Euphotic zone ‘ All layers ‘ Sinking

+Edz; 0, (Zk/Zj)ib

an(y) = —fe(yn,I) | +Xpopypor
gpopr(y) = | +oporfr(yn,I) | —Xpopypor

Table A3. Equations for the NP-DOP model with £ = Gpop fz(yp).

‘ Euphotic zone ‘ All layers ‘ Sinking
an(y) = | —fr(yn,yr,Ip) +Xpopypop | +Edz; 0. (2k/2) ™"
qr(y) = | +fr(yn,ypr,Ip) —fz(yp) —Apyp —kpyp | —Apyp
gpor(y) = +opopr fz(yp) +Apyr +kpyb | +Apyr  —Apopypor

Table A4. Equations for the NPZ-DOP model with E = 6pop(6z fz(yp,yz) + A\pyp + Kz y%).

| Euphotic zone

‘ All layers Sinking
an(y) = | —fr(yn,ypr,Ip) +Azyz +Apopypor | +Edz;9.(z
qr(y) = | +fr(yn,yr,Ip) —fz(ypr,yz) —Apyp ~Npyp
qz(y) = +oz fz(yr,yz) —Azyz —kzYy Nz Yz

gpor(y) = +opor(dz fz(yr,yz) +Apyp +rzyz) | +Npypr  +Nyyz —NpopypoP
Table AS. Equations for the NPZD-DOP model.

‘ Euphotic zone ‘ All layers S
gy (y) = | —fr(yn,ypr,Ip) +Azyz +Abyp  +Apopypor
qr(y) = | +fr(yn,yr,Ip) ~fz(yp,yz) —Apyp —Npyp
qz(y) = +oz fz(yr,yz) —KzYy —Azyz -z Yz
qo(y) = +3por (62 f2(yp,yz) +Apyr +rzYZ) —Apyp +

gpor(y) = +opor (Gz fz(yp,yz) +Apyp +KzYZ) +XMpyr  +Ayz —NpopYDOP
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init solver final

l
time stepping

Figure 11. Schematic of the implementation structure of Metos3D.

Latitudinal grid

Longitudinal grid

Figure 12. Land-sea mask (geometric data) of the used numerical model. Shown are the number of layers per grip point. Note that the Arctic
has been filled in.
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Figure 19. MITgcm-PO4-DOP model: Difference between the spin-up and Newton solution at the first layer (0 — 50 m) in the Euclidean
norm.
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Figure 110. N model: Difference between the spin-up and Newton solution at the first layer (0 — 50 m) in the Euclidean norm.
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Figure 111. N-DOP model: Difference between the spin-up and Newton solution at the first layer (0 — 50 m) in the Euclidean norm.
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NP-DOP model: Difference between the spin-up and Newton solution at the first layer (0 — 50 m) in the Euclidean norm.
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Figure 115. Distribution of the computational time among main operations during the integration of a model year. Left: MITgecm-PO4-DOP

model. Right: N model.
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Figure 116. Distribution of the computational time among main operations during the integration of a model year. Left: N-DOP model.
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Figure 117. Distribution of the computational time among main operations during the integration of a model year. Left: NPZ-DOP model.

Right: NPZD-DOP model.
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Figure 118. MITgcm-PO4-DOP model: 1deal and actual speedup factor as well as efficiency of parallelized computations. Here, bestpossible
the notion theoretical refers to the used load distribution introduced in Section@.f&W@M@x
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y(uq) as a function of different convergence control parameters « and +y (cf. Equation (10)).
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Table 16. Difference in the Euclidean norm between the spin-up (ys) and the Newton (y ) solution. Regarding the NPZ-DOP and NPZD-
DOP model a solution from the experiment with a different inner accuracy respectively a different initial value is used.

Model lys —ynll2 lys —ynll2,v
MITgcm-PO4-DOP 1.460e-01 7.473e+05
N 4.640e-01 2.756e+06
N-DOP 2.421e-01 1.199e+06
NP-DOP 7.013e-02 3.633e+05
NPZ-DOP 1.421e-02 8.514e+04
NPZD-DOP 3.750e-02 2.062e+05

Table 17. Vertical layers of the numerical model. Units are meters.

Layer Depth of Thickness of
layer bottom layer (Az)

1 50 50

2 120 70

3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690

Table 18. Parameters implemented in the MITgem-PO4-DOP model. Specified are the location within the parameter vector, the symbol
used by |Dutkiewicz et al.|(2005)) and the value used for the computation of the reference solution (ug). Shown are furthermore the lower (b;)
and upper (b,,) boundaries used for the parameter samples experiment.

u Symbol ug by b, | Unit

U1 Rremin 0.5 0.25 0.75 1/y

U2 a 2.0 1.5 200.0 mmolP/m?/y
u3 fpop 0.67 0.05 0.95 1

U4 KPO4 0.5 0.25 1.5 mmolP/m3
us K1 30.0 10.0 50.0 W /m?

ug k 0.02 0.01 0.05 1/m

ur Qremin 0.858 0.7 1.5 1
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Table 19. Parameter values used for the solver experiments with the N, N-DOP, NP-DOP, NPZ-DOP and NPZD-DOP model hierarchy.

Parameter N N-DOP NP-DOP NPZ-DOP NPZD-DOP | Unit
Ew 0.02 0.02 0.02 0.02 0.02 m~!
I 0.48 0.48 0.48 (mmolPm™3)"'m™*
wp 2.0 2.0 2.0 2.0 2.0 d-!
Wz 2.0 2.0 2.0 d-!
Kn 0.5 0.5 0.5 0.5 0.5 mmol Pm™3
Kp 0.088 0.088 0.088 mmol Pm~3
Kr 30.0 30.0 30.0 30.0 30.0 Wm™?2
oz 0.75 0.75 1
opop 0.67 0.67 0.67 0.67 1
Ap 0.04 0.04 0.04 d—!
Kp 4.0 (mmol Pm™3)~1d !
Az 0.03 0.03 d!
Kz 3.2 3.2 (mmolPm~3)~*d~!
[ 0.01 0.01 0.01 d-!
% 0.01 0.01 d-!
s 0.05 d!
Npop 0.5 0.5 0.5 0.5 y !
b 0.858 0.858 0.858 0.858 1
ap 0.058 d-!
bp 0.0 d™'m
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Algorithm 1: Load balancing

Input : vector length: n,, number of profiles: n,, profile lengths: (nLk)Zi 1, humber of processes: N
Output: profiles per process: (1)1,
w=0;
Np,1.N =0}
fork=1,...,n, do
i =floor(((w+0.5%ng k) /ny) * N) ;
Npi =Npi+1;
W=W+Ng kg
end

B I N B N S N

Algorithm 2: Interpolation

Input : point in time: ¢ € [0, 1], number of data points: n4qtaq
Output: weights: o, 3, indices: ja,js

1 w=1t*xngqta +0.5;

2 B =mod(w,1.0);

3 jg = mod(floor(w), ndata) ;

4 a=(1.0-7);

5 jo = mod(floor(w) + ngata — 1,Ndata) ;

Algorithm 3: Phi (¢)

Input : initial condition: (¢o,¥yo), time step: At, number of time steps: n, implicit matrices: A;,,p, explicit matrices: Aezp,
parameters: u € R™, boundary data: b, domain data: d
Output: final state: Yoyt
1 ¥Yom=YoYin = Y0
2 forj=1,...,n:do
3 t; = mod (to—i—(j—l)At,l.O) )
4 Yout = PhiStep (¢j,At, Aimp, Aczp, Yin,u,b,d) ;
5 Yin = Yout 5
6 end

Algorithm 4: PhiStep (p)

Input : pointin time: ¢;, time step: At, implicit matrices: A ;p,p, explicit matrices: Ac,p, current state: y;», parameters: u € R™,
boundary data: b, domain data: d
Output: next state: Yout

= BGCStep (t;,At,Yin,u,b.d) ;
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Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.

subroutine metos3dbgc (ny, nx, nu, nb, nd, dt, g, t, y, u, b, d)
integer :: ny, nx, nu, nb, nd
real«8 :: dt, g(nx, ny), t, y(nx, ny), u(nu), b(nb), d(nx, nd)
end subroutine
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