
Dear Andrew,
Dear referees,

as suggested we changed the focus of the publication and concentrated purely on simulation,
which better suits the title.
We skipped all parts that refer to optimization (Section 7.7, including WOA data, 
twinexperiments
etc) in the updated version.
We added remarks that the intended purpose of the „simulation package“ is a later
optimitazion (to motivate the „O“ in the abbreviation METOS3D for the software).
To emphasize the focus „simulation“, we additionally implemented and included results for six
biogeochemical models in total now.

Please find our detailed answers to the referees’ letters below:

# Anonymous Referee #1
# Received and published: 13 July 2015
#
# General comments
# ----------------
# In this paper the authors present a newly assembled toolkit (Metos3D) for the imple-
# mentation of two solvers based on PETSc library. I understand Metos3D is meant to
# generalize the coupling of transport matrices and source/sink models with the possibil-
# ity to use a Newton solver as well as a fixed point iteration (spin-up). This should
# save the user the effort to develop a coding interface every time a new source/sink
# model is introduced.
# However, my understanding outlined above (if at all correct) comes from a lot of guess-
# work. The authors do not explain clearly what the objective of the work is. There is a
# paragraph that was meant for this (page 4404, lines 18-26) but it should be improved.
# I think the Introduction before that paragraph did a fair job in introducing the problem,
# outlining the three components put together here to tackle it but then from line 10 of
# page 4404 it gets a bit confused and the first sentence of the objective paragraph
# (Lines 18-19) sounds oddly out of place to me.

We have re-written the mentioned paragraph of the introduction and emphasized the objectives
of our work.

To improve the introduction we added the following paragraph before
(page 4404, line 10, a reference in parenthesis refers to the
gmdd-8-4401-2015.pdf discussion paper), where it got confusing.
See: metos3d-simpack-jpits-diff.pdf, lines 73-89.
'''
Optimization methods usually require hundreds of model evaluations.
As a consequence, an environment for optimization of marine ecosystems
that is intended by (and mentioned in the name of)  our software Metos3D 
has to provide a fast and flexible simulation framework at first.
On this pre-requisite for an optimization environment we concentrate in this paper,
always keeping in mind its later intended usage. 
As a consequence, we impose a high standard of flexibility w.r.t.
interchange of models and solvers.
'''

Then we repeated the components of metos3d again.
See: metos3d-simpack-jpits-diff.pdf, lines 95-100.
'''
In this work we combine three of them in our software,
namely the so-called off-line simulation, 
the option for the use  of Newton's method for the computation of steady annual
cycles (as an alternative to a spin-up) 
and spatial parallelization with high scalability.
'''

We refined the paragraph about steady annual cycles and the Newton solver.
See: metos3d-simpack-jpits-diff.pdf, lines 112-126.
'''
From the mathematical point of view,
a steady annual cycle is a periodic solution of  a system of 
(in this case) nonlinear parabolic partial differential equations.
This periodic solution is a fixed-point 
of the mapping that  integrates the model variables over one year model time.
In this sense, a spin-up is a fixed-point iteration.
By a straighforward procedure, this fixed-point problem can be equivalently 
transformed into the problem of finding the root(s) of a nonlinear mapping.
For this kind of problem,
Newton-type methods \citep[cf.][Chapter 6]{DenSch96} are
well known for their superlinear convergence.
'''

Then we emphasized the importance of a geometry-adapted load balancing algorithm.
See: metos3d-simpack-jpits-diff.pdf, lines 132-144.
'''
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No matter whether fixed-point or Newton iteration is used,
the necessary multiply repeated simulation of one model year for
the marine ecosystem in 3-D is still subject to high performance computing.
Parallel software that
employs transport matrices and
targets a multi-core distributed-memory architecture
requires appropriate data types and linear algebra operations.
Additionally, the special ocean geometry with different numbers of vertical
layers in different regions is a challenge for standard load balancing algorithms --
and a chance for the development of adapted versions with
improved overall simulation performance.
'''

Next, we emphasized the objectives of our work
as was intended on (page 4404, lines 18-26).
See: metos3d-simpack-jpits-diff.pdf, lines 151-165.
'''
The objective of this work is to  unite the mentioned three
performance-enhancing techniques (off-line computation via 
transport matrices, Newton method, and highly scalable parallelization) 
in a software environment with rigorous modularity and
complete open-source accessibility.
Here, modularity refers to the separation of data pre-processing and
simulation and the flexibility of coupling any water column-based
biogeochemical model with minimized implementation effort.
For this purpose,
we defined a model interface that permits any number of tracers,
parameters as well as boundary and domain data.
Its flexibility we show by using both an available biogeochemical
model \citep[][]{DuSoScSt05}, 
taken from the MITgcm ocean model, as well as a suite of more complex ones, 
which is included in our software package.
'''

# In general, I think the paper requires a better structural organization in order to
# improve its readability. Furthermore, it needs to highlight better what is the novelty
# here and why should a user use this toolkit and what for. What is the contribution with
# respect to the work of Khatiwala (Ocean Modelling 23 (2008) 121–129) where a matrix-free
# Newton– Krylov solver was applied to a similar framework?

This is now mentioned in the introduction (in the last but one paragraph) as well as in the
Section 7.

They are four main differences to the TMM software provided by Samar Khatiwala:
1. Open source: TMM uses Matlab — we purely rely on open source software
2. Modularity: TMM combines the extraction of matrices and their application, for the former
Matlab is needed — we decoupled both, provide software for the latter
3. Newton solver convergence: TMM was only used (or results were published) for one model —
we applied it for six, we studied and compared the convergence, moreover studied model and
solver parameters’ effect on performance, we discussed solver tuning options in the case of
poor convergence
4. Improved load balancing: see speed-up figure, our software scales much better than TMM on
parallel machines

Subsequent, we made clear what is the novelty of our approach compared to Samars TMM.
See: metos3d-simpack-jpits-diff.pdf, lines 168-187
'''
As a result, the work of \citet[][]{Kha08}
could be extended by numerically showing convergence for all six
abovementioned models without applying preconditioning. 
Moreover, a detailed profiling analysis for the simulation with
the different biogeochemical models  shows how the  number of tracers
impacts the overall performance.
Finally, an adapted load balancing method is presented.
It shows nearly optimal scalability up to 128 processes,
and in this respect  superiority over other approaches,
including the one used in \citet[][]{TMMweb13}.
'''

# In its present form I’m afraid the manuscript wouldn’t be able to encourage a model user
# to download and get acquainted with Metos3D.
#
# Specific comments
# -----------------
# Sections 2 and 3 could be shortened or maybe moved to supplement material or to an
# appendix. Section 4 seems to get to the core of the novel contribution of this work and
# I think it could be merged with Section 6. This merged section would benefit from
# schematics or a flowcharts to help the reader to better understand how Metos3D works.
# The description of the implementation of the toolkit in layers (section 6.1) is an
# example of something that would probably be better explained in a schematic.
# In Section 5 it would help to give 5.3.2 the same title as 5.2 (aren’t they the same

Page 2



# thing?).

From here, in our opinion,
the 'latexdiff'-document explains the differences best.

Sectons 2 and 3 were not put in appendix.
We use them to introduce the notation and explain the discretization
as well as the resulting off-line transport by matrices.
See comments below on comments of Referee #2.

To the achieve 'a better structural organization' 
old sections (page 4410, line 1 to page 4413, line 23), namely
5 Periodic solutions
5.1 Spin-up
5.2 Newton
5.3 Convergence
5.3.1 Spin-up
5.3.2 Newton
were removed.
See: metos3d-simpack-jpits-diff.pdf, lines 606-725.

They were replaced by
4 Steady annual cycles
4.1 Computation by spin-up
4.2 Computation by inexact Newton method
See: metos3d-simpack-jpits-diff.pdf, lines 358-537.

The next sections must be read in the new context anyway.

7.2 Solver, rewritten (due to new models).
See: metos3d-simpack-jpits-diff.pdf, lines 1028-1090.

8 Conclusions, rewritten (due to new focus).
See: metos3d-simpack-jpits-diff.pdf, lines 1298-1495.

Appendix, new (description of model hierarchy).
See: metos3d-simpack-jpits-diff.pdf, lines 1521-1598.

Former Sections 4 and 5 have been interchanged.
Old Section 4 (new Section 5) and Section 6 are now followed by each other.
Sections 2, 3, 5 old (= 4 new) have been shortened and reformulated.
We added a schematic figure in Section 6.

# Section 6.2: I know PETSc has its own load balancing algorithm. How is your
# procedure different?

Our procedure is a load balancing algorithm for vector parts (i.e. vertical profiles) with
different length. 
We are not aware of such an algorithm in PETSc (3.3).

# In Section 7 results are presented. In Section 7.1.1 (Model) at
# lines 2-3 of page 4420, it is said that a model wrapper of the original source code is
# implemented. Is this something that the user of Metos3D will have to do for every
# source/sink model?

If the model conforms to the biogeochemical interface, no.

# Is some sort of guidance or template provided?

We think that the description of the interface and the (now newly included) model suite will
be helpful.

# Figure 3 compares the initial state of the converged annual cycle with WOA. I don’t see
# the point of this comparison. Your solution should be compared with the solution coming
# from the spinup of the MITgcm coupled with the same biogeochemical model, if available,
# of course. I don’t believe the skill of the model in reproducing real-world observations
# is the point here. It does not say anything about Metos3D.

We omitted all comparison to data now. We compare the results of the spin-up with the results
of the Newton solver now.

# Technical corrections
# ---------------------
# page 4403, line 12: ...is often TOO high, even at LOW resolutions,...

Corrected.

# page 4410, line 2: “With those two building blocks”. It does not hurt to remind which
# two blocks you mean.

Sections have been revised basically.

Page 3



# Page 4411, line 5: k=1,....?

Sections have been revised basically.

# Page 4414, line 5: “The latter includes (?)”

Corrected.

# Page 4414, line 23: “The next TWO layers”

Corrected.

# Page 4415, lines 6-7: this last sentence is confusing. Consider reformulating it.

We did.

# Page 4418, line 1-2: “We compare the simulation results with others” others what?

Obsolete. We compare solver results now.

# Page 4424, lines 11-12: consider rephrasing this one.

Section has been revised basically.

# Page 4426, lines 5-6: consider explaining why it is so interesting.

We considered this, but without any further experiments we don't want to speculate.

# Page 4428, lines 2: what was the “intended purpose”? Remind it here.

Obsolete.

# —————————————————————————————————————————————
# Anonymous Referee #2
# Received and published: 15 July 2015
#
# This manuscript presents a steady state offline solver for marine biogeochemical mod-
# els using two alternative approaches: a iterative procedure towards the fixed point
# solution or a Newtonian equation solver of the residual norm. While the subject of the
# work is generally relevant to the journal presenting a novel tool with a high potential
# for application in the scientific community, it falls short on a couple of important
# points that need addressing if it was to be considered for a full GMD publication.
# My main concern is the lack of clarity on what the purpose of the tool in its current
# state is and what it actually delivers.
# The abstract promotes it as a tool for parameter
# identification and a lot of the intrudctory and final discussion mention optimisation.
# However, it is not stated what is intended by parameter identification and how the tool
# would achieve it. I assume from the discussion that the intention of the authors is the
# indentification of an optimal parameter set for a given biogeochemical model, while what
# the tool actually delivers is a periodic steady state solver for biogeochemical models
# using offline ocean physics.

This was misleading in the first version. We now omitted the optimization as mentioned 
earlier.

# This can without doubt be a valuable element for a parameter
# optimisation toolkit, but is nevertheless only one element of it and moreover it doesn’t
# address the core of the actual optimisation problem, e.g. what should a model be op-
# timised against. In addition, it doesn’t give a benchmark that would allow compariso
# against other optimistation tools. (The work does give some permformance indications for
# the steady state solver, but no generalised performance indications for the optimi-
# sation process.) Moreover, the authors demonstrate themselves in their example that
# the application within the optimisation process is still premature. On this background,
# I would suggest to change the pitch of the manuscript towards what the tool actually is
# done for (at least to my understanding), and what it actually delivers successfully and
# reliably, i.e. the periodic steady state solution of the biogeochemical model. I see no
# reason to limit the tool to a specific application in optimisation that is then treated
# only superficially and insufficiently if this is given as the main purpose of the tool.
# On the contrary I can see a series of other valuable applications to any form of large
# ensemble experiment and examples may be given in the discussions to highlight the utility
# of such a tool beyond optimisation.

In this respect, we cleaned up the manuscript basically.

The new abstract states now clearly that we present
a comprehensive high-performace toolkit for the computation
of steady annual cycles with a general programming interface
for water column models.
See: metos3d-simpack-jpits-diff.pdf, lines 1-51.
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# As a second point the manuscript lacks generally in
# clarity (some examples below) and requires a considerable review in grammar and style.
# For future submissions, I would strongly suggests the authors to review their manuscripts
# before initial submission on these terms (maybe with the help of a native speaker) as I
# believe a lot of the points given below could have been addressed in this process lead-
# ing to a much more beneficial review. Reviewing the work in its current form required a
# considerable amount of assumptions of what was actually intended.

We improve the text.

# Some comments in detail:
# ------------------------
# pg 4402 line 2: what is intended with parameter indentification?
# pg 4403 line 8: when talking about biogeochemical models and their validation in generic
# term, the obvious question concerning the estimation of an optimal model parametrisation
# forehand, is what the model should be optimised against? I believe this will be highly
# application dependent.

This becomes obsolete since we changed the focus of the paper.

# pg 4403 line 23: "acceptable loss of accuracy" involved in the
# splitting of ocean physics and biogeochemical processes: any references?

Khatiwala et al. 2005

# pg 4404 line 4-10: I’d suggest to move this to the later section where residual and norm
# are introduced, it becomes much clearer then, particularly to modellers with a less
# numerical background.
# pg 4406, line 15: the dimensionless time "1" here refers to one intra-annual time step,
# while in the above section (lines 4,6) it refers to one periodic step, i.e. one year.
# These should be distinct by or using different variables for time within the annual cycle
# and in the iteration procedure, or by explicitly using time units.
# pg 4406, line 24 onwards: I’d suggest to introduce necessity for the split explicit and
# implicit treatment of physical processes first and then specify it’s application to the
# offline solver in order to facilitate understanding for readers that are unfamiliar with
# the problem.

In this regard, Sections 2 - 4 have been revised basically.

# pg 4407 eq 2, lines 16,17: difference between A and A’ should be clarified.

Different notation was used:
A’ became L now, but the whole section was shortended and clarified.

# pg 4407 line 22 - pg4408, line 1: I’d expect the sufficient resolution of the tracer
# transport process on monthly time steps to be highly configuration and application
# dependent, rather than hold generically.

We agree, but did not want to elaborate on this here. Anyway, the text is formulated more
generally now.

# pg 4408, lines 11-15: "Generally, we assume
# that a tracer model is implemented for a single water column, synonymously called profile
# in the following. This assumption does not constrain the interface for the future and,
# it actually simplifies the current software implementation." The interface to the
# biogeochemical models is the main point of the tool and being clear here is essential to
# encourage potential users. I’d suggest spending a couple of words here stating assumptions
# and limitations clearer, i.e. - any "client" model must be able to take-up its states from
# the interface in water column format. - no geometrical information on horizontal vicinity
# of the vertical profiles is preserved in the interface. - any model that requires
# horizontal structure in it’s internal computation requires modification in the internals
# of the tool. I realise that the vast majority of biogeochemical models currently used will
# fullfill these requirements, but they should be explicit.

The remarks have been incorporated.
# pg 4409 eq 3, where have the indices y,k gone?
This seems to be a missunderstanding. n_{y,k} as the length of a profile has been fixed.
We tried to make this clear.

# pg 4409, last paragraph, what’s the purpose
# of the initialisation and finalisation routines.

Added to Section 6.1: 'The former are responsible for memory allocation and
storage of data used at run time. The latter are employed to
free memory as well as delete the used vectors and matrices.'

# pg 4410 lines 3,4: confusion in the use of 1 in the time dimension, see above

This sections have been revised basically.

# pg 4412 line 16: Why is the unweighted norm used?
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It is equivalent to the weighted norm. We clarified this in the present manuscript.

# pg 4414 line 13 "repository of the simulation package"

Corrected.

# pg 4414 line 23 "The next both layers" -> next two layers

Corrected.

# pg 4416 lines 12-15 "Thus, the matrices and vectors are linearly interpolated to the cur-
# rent time step during the iteration. The files of a specific data set are interpreted as
# averages of the time intervals they represent. Consequently, we interpolate in between the
# associated centers of these intervals." If linear interpolation is used the result will be
# non-conservative, which should be noted.

At the end of the last paragraph of section 3 the sources of errors of the transport matrix
approach are summarized.

# pg 4416 line 25: how are the weights alpha and beta determined, i.e. is this a linear
# interpolation?

Yes, see Section 3.

# pg. 4419 lines 19-23: so the effective state variables are two, all others are
# diagnostics? Should be made clearer.

Yes, that is right.

# pg. 4419, line25,26: what is the "introduced convention for directory structure"?

Made explicit now.

# pg. 4420 line 20: You may want to consider hosting the binary data outside the git
# repository.

In this regard, we considered alot. However, the data will stay at github.
But, we will use GitHub Large File Support in the future.

# pg. 4421 line 27: again, wouldn’t this number be application and configuration dependent?

Yes, whole section was revised.

# pg. 4423 line 27 ratio of what?

Section was revised.

# pg. 4426 line 12 state the origin of the reference solution and its purpose
# pg. 4427 lines 15-21 are unclear to me. Maybe the figure would
# help, but unfortunately the labels are unreadable at this scale.

Section has been removed.

# pg 4428 line 2 "intended purpose", what is the intended purpose?

Obsolete.

# pg 4428 line 22 "was somehow "natural"" what’s meant by this?

Reference omitted.

# pg 4428 line 28 "computationally still too complex", I suppose the authors intend
# too expensive?

Yes.

# pg 4429 line 3-6 I fail to see why a suitable choice of the time step
# would have complicated the verification.

For a different time step new matrices must be *prepared*.
This processes must be explained.
As it is part of the matrix preparation process
We decided this should not be part of this manussript.

# pg 4429 lines 9-13 Here the authors clearly state that the solver tool in its current
# form fails to deliver the intended purpose, i.e. parameter identification, see general
# comments above.

Reference omitted.
# pg 4429 lines 20-21 what’s the expected flexibility?
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# pg 4429 lines 24-25 not a sentence

Corrected.

# Figures 3,4,6,7,8,9,10 are unreadable and require larger labels.

Figures 3 (surface), 6 (speedup), 7 (convergence control), 8 (samples): labels have been
enlarged. Figures 4 (slices), 9 (twin) and 10 (twin) have been removed.
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Abstract. A general programming interface for parameter
identification for

:::
We

::::::::
designed

:::
and

:::::::::::
implemented

::
a
:::::::
modular

:::::::
software

::::::::::
framework

:::
for

:::
the

:::::::
off-line

::::::::::
simulation

::
of

::::::
steady

:::::
cycles

:::
of

::::
3-D marine ecosystem models is introduced. A

comprehensive solver software for periodic steady-states is5

implemented that includes a fixed point iteration (spin-up)
and a Newton solver. The software is based on the
Portable, Extensible Toolkit for Scientific Computation
(PETSc) library and uses transport matrices for efficient
off-line simulation in 3-D

:::::::
transport

::::::
matrix

:::::::::
approach. In10

addition to the usage of PETSc’s parallel data structures and
PETSc’s Newton solver, an own load balancing algorithm is
implemented.

A simple verification is carried out using a well
investigated biogeochemical model for phosphate (PO4) and15

dissolved organic phosphorous (DOP) with 7 parameters
:
It

:
is
:::::::::

intended
::
to
::::

be
:::::
used

::
in
::::::::::

parameter
:::::::::::

optimization
::::

and

:::::
model

::::::::::
assessment

:::::::::::
experiments. The model is coupled

via the interface to transport matrices that correspond
to a longitudinal and latitudinal resolution of 2.8125◦20

and 15 vertical layers
:::
We

:::::::
defined

::
a

:::::::
software

::::::::
interface

:::
for

::
the

:::::::::
coupling

::
of

::
a
::::::::

general
:::::
class

::
of

::::::
water

::::::::::::
column-based

:::::::::::::
biogeochemical

:::::::
models,

:::::
with

:::
six

:::
of

:::::
them

:::::
being

:::::
part

::
of

::
the

::::::::
package. Initial tests show that both solvers and the

load balancing algorithm work correctly
:::
The

::::::::::
framework25

:::::
offers

::::
both

::::::::::::::::
spin-up/fixed-point

::::::::
iteration

::::
and

:::::::::::
Jacobian-free

::::::
Newton

:::::::
method

:::
for

::
the

:::::::::::
computation

::
of

::::::
steady

:::::
states. Further

experiments demonstrate the robustness of the Newton solver
with respect to parameter variations

:::
The

:::::::
Newton

:::::::
method

::::::::
converged

:::::
with

:::::::
standard

::::::
setting

:::
for

::::
four

:::::::
models,

::::
and

::::
with30

:
a
::::::
change

::
in

::::
one

:::::
solver

:::::::::
parameter

::
or

:::
the

:::::
initial

:::::
guess

:::
for

:::
two

::::
more

::::::::
complex

::::
ones. Moreover,

:::
For

:::
all

:::::::::
considered

:::::::
models,

::::
both

:::::::
methods

:::::::::
delivered

:::
the

::::::
same

::::::
steady

:::::
state

::::::
(within

::
a

:::::::::
reasonable

::::::::
precision)

:::
on

::::::::::::
convergence,

::::
with

:
the numerical

tests reveal that, with optimal control settings, the Newton35

solver converges at least 6 times fastertowards a solution than
the spin-up.

However, additional twin experiments reveal differences
between both solvers regarding a derivative-based black-box
optimization

::::::
Newton

::::::::
iteration

::::
being

::
in
:::::::
general

:
6
:::::
times

:::::
faster.40

Whereas an optimization run with spin-up-based model
evaluations is capable to identify model parameters of a
reference solution, Newton-based model evaluations result
in an inaccurate gradient approximation

:::
For

:::
one

:::::::::
exemplary

::::::
model,

:::
we

::::::::::
investigated

:::
the

:::::
effect

::
of

::::
both

:::
the

:::::::::::::
biogeochemical45

:::
and

:::
the

:::::::
Newton

::::::
solver

:::::::::
parameters

:::
on

:::
the

:::::::::::
performance.

::
We

::::::::
performed

::
a
:::::::
profiling

:::::::
analysis

:::
for

:::
all

:::::::::
considered

:::::::
models,

::
in

:::::
which

:::
the

:::::::
number

::
of

::::::
tracers

::::
had

:
a
::::::::
dominant

:::::::
impact

::
on

:::
the

:::::
overall

::::::::::::
performance.

:::
We

:::::::::::
implemented

::
a
:::::::::::::::
geometry-adapted

:::
load

:::::::::
balancing

::::::::::
procedure

::::::
which

:::::::
showed

::::::
nearly

:::::::
optimal50

::::::::
scalability

:::
up

::
to

:
a
::::
high

:::::::
number

::
of

::::::
parallel

::::::::::
processors.

1 Introduction

In the field of climate research, simulation of marine ecosys-
tem models is used to investigate the carbon uptake and stor-
age of the oceans. The aim is to identify those processes that55

are involved with the global carbon cycle. This requires a
coupled simulation of ocean circulation and marine biogeo-
chemistry. In this context, marine ecosystems are understood
as extensions of the latter (cf. Fasham, 2003; Sarmiento and
Gruber, 2006). Consequently, we will use both terms synony-60

mously below. However, whereas the equations and variables
of ocean dynamics are well known, descriptions of biogeo-
chemical or ecological sinks and sources still entail uncer-
tainties concerning the number of components and parame-
terizations (cf. Kriest et al., 2010).65

A wide range of marine ecosystem models needs to
be validated, i.e. assessed regarding their ability to re-
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produce the real world system
:::
real

:::::
world

:::::
data. This in-

volves a professional discussion of simulation results and,
preferably

::::::::
moreover, an estimation of optimal model parame-70

ters
:::
for

::::::::
preferably

:::::::::::
standardized

:::
data

::::
sets beforehand (cf. Fen-

nel et al., 2001; Schartau and Oschlies, 2003).

:::::::::::
Optimization

::::::::
methods

::::::::
usually

:::::::
require

:::::::::
hundreds

:::
of

:::::
model

::::::::::
evaluations.

:::
As

::
a
::::::::::::
consequence,

::
an

:::::::::::
environment

:::
for

::::::::::
optimization

::
of

:::::::
marine

:::::::::
ecosystems

::::
that

::
is

::::::::
intended

::
by

::::
(and75

::::::::
mentioned

:::
in

:::
the

:::::
name

::::
of)

:::
our

::::::::
software

::::::::
Metos3D

::::
has

::
to

::::::
provide

::
a
::::
fast

::::
and

::::::
flexible

::::::::::
simulation

:::::::::
framework

:::
at

::::
first.

::
On

::::
this

:::::::::::
pre-requisite

:::
for

:::
an

:::::::::::
optimization

:::::::::::
environment

:::
we

:::::::::
concentrate

:::
in

:::
this

::::::
paper,

::::::
always

:::::::
keeping

:::
in

::::
mind

:::
its

::::
later

::::::
intented

::::::
usage.

:::
As

:
a
:::::::::::
consequence,

:::
we

::::::
impose

:
a
::::
high

:::::::
standard80

::
of

::::::::
flexibility

::::
w.r.t.

::::::::::
interchange

::
of

:::::::
models

:::
and

:::::::
solvers.

The computational effort of a fully coupled simulation,
i.e. a simultaneous and interdependent computation of ocean
circulation and tracer transport in three spatial dimensions,
however, is often to

:
is
:::::

very high, even at lower resolution,85

considering optimization methods that may require hundreds
of model evaluations

:::
low

::::::::
resolution. Moreover, the complex-

ity increases additionally if annual cycles are investigated, in
which one model evaluation involves a long time integration
(the so-called spin-up) until an equilibrium state under given90

forcing is reached (cf. Bernsen et al., 2008).
Individual strategies have been developed to accelerate

the computation of periodic steady-states of biogeochemi-
cal models driven by a 3-D ocean circulation (cf. Bryan,
1984; Danabasoglu et al., 1996; Wang, 2001). In this work95

we combine three of them in a single
:::
our software, namely

the so-called off-line simulation, the usage
::::::
option

::
for

:::
the

:::
use

of Newton’s method for annual cycles and parallelization
::
the

::::::::::
computation

::
of

::::::
steady

::::::
annual

::::::
cycles

:::
(as

::
an

::::::::::
alternative

::
to

:
a

:::::::
spin-up)

:::
and

::::::
spatial

::::::::::::
parallelization

::::
with

::::
high

:::::::::
scalability.100

Off-line simulation offers a fundamentally reduced com-
putational cost compared to an acceptable loss of accuracy.
The principle idea is to pre-compute transport data for pas-
sive tracers. Such an approach has been adopted by Khati-
wala et al. (2005) to introduce the so-called Transport Ma-105

trix Method (TMM; Khatiwala, 2013). The authors make use
of matrices to store results from a general circulation model
and to apply them later on to arbitrary variables. This method
proved to be sufficiently accurate to gain first insights into the
behavior of biogeochemical models at global basin-scale (cf.110

Khatiwala, 2007).
From the mathematical point of view, an

:
a
::::::
steady

:
an-

nual cycle is obtained by solving a time dependent, periodic
system of nonlinear

:
a
:::::::
periodic

::::::::
solution

::
of

::
a

::::::
system

::
of

:::
(in

:::
this

:::::
case)

::::::::
nonlinear

::::::::
parabolic

:
partial differential equations.115

The
:::
This

::::::::
periodic

:
solution is a sequence of states and its

initial is a fixed point of a mapping that is used to integrate
given variables over a model year

:::::::::
fixed-point

::
of

:::
the

:::::::
mapping

:::
that

:::::::::
integrates

:::
the

::::::
model

::::::::
variables

:::::
over

::::
one

::::
year

::::::
model

::::
time. This fixed point is a zero of an equivalent nonlinear120

residual as well (cf. Kelley, 2003)
:
In

::::
this

:::::
sense,

::
a
::::::
spin-up

::
is

:
a
:::::::::
fixed-point

::::::::
iteration.

:::
By

::
a
::::::::::::
straighforward

::::::::::
procedure,

:::
this

:::::::::
fixed-point

:::::::
problem

::::
can

:::
be

:::::::::::
equivalently

::::::::::
transformed

::::
into

::
the

::::::::
problem

::
of

:::::::
finding

:::
the

::::::
root(s)

::
of

::
a
::::::::
nonlinear

::::::::
mapping.

In that case
:::
For

::::
this

::::
kind

::
of

:::::::
problem, Newton-type methods125

:::::::::::::::::::::::::::::::::::
(cf. Dennis and Schnabel, 1996, Chapter 6) are well known
for their superlinear convergencetowards a solution. In com-
bination with a Krylov subspace approach,

:
a Jacobian-free

scheme can be realized that is based only on evaluations
of one model year (cf. Knoll and Keyes, 2004; Merlis and130

Khatiwala, 2008; Bernsen et al., 2008).
However, realistically, simulation of marine ecosystem

models
::
No

::::::
matter

:::::::
whether

::::::::::
fixed-point

::
or

:::::::
Newton

:::::::
iteration

:
is
:::::

used,
:::

the
:::::::::

necessary
::::::::
multiply

:::::::
repeated

:::::::::
simulation

:::
of

:::
one

:::::
model

::::
year

::::
for

:::
the

::::::
marine

::::::::::
ecosystem in 3-D is still sub-135

ject to high performance computing. A parallel
::::::
Parallel

:
soft-

ware that employs transport matrices and targets a multi-core
distributed-memory architecture requires appropriate data
types and linear algebra operations. Additionally, a Newton
solver and a load balancing algorithm are needed

::
the

::::::
special140

:::::
ocean

::::::::
geometry

::::
with

:::::::
different

::::::::
numbers

::
of

:::::::
vertical

:::::
layers

::
in

:::::::
different

::::::
regions

::
is
::

a
::::::::
challenge

:::
for

::::::::
standard

::::
load

::::::::
balancing

:::::::::
algorithms

:
–
::::

and
::
a

::::::
chance

:::
for

:::
the

:::::::::::
development

::
of

:::::::
adapted

:::::::
versions

::::
with

::::::::
improved

::::::
overall

:::::::::
simulation

::::::::::
performance. Ex-

cept for the latter, an adequate basis for an implementation is145

made
::
the

:::::
basis

:::
for

:::
our

:::::::::::::
implementation

::
is freely available by

the Portable, Extensible Toolkit for Scientific Computation
library (PETSc; Balay et al., 1997, 2012b), which in turn
is based on the Message Passing Interface standard (MPI;
Walker and Dongarra, 1996).150

The main objective of our work , though, is to stay focused
on a general coupling for biogeochemical models and its
embedment into an optimization context

::::::::
objective

::
of

::::
this

::::
work

::
is

::
to

::::
unite

:::
the

:::::::::
mentioned

:::::
three

:::::::::::::::::::
performance-enhancing

:::::::::
techniques

:::::::
(off-line

::::::::::::
computation

:::
via

:::::::::
transport

::::::::
matrices,155

::::::
Newton

::::::::
method,

::::
and

:::::::
highly

:::::::
scalable

::::::::::::::
parallelization)

::
in

:
a
::::::::

software
::::::::::::

environment
:::::

with
::::::::

rigorous
::::::::::

modularity
::::

and

:::::::
complete

:::::::::::
open-source

:::::::::::
accessibility.

:::::
Here,

:::::::::
modularity

:::::
refers

::
to

:::
the

::::::::::
separation

::
of

:::::
data

:::::::::::::
pre-processing

::::
and

:::::::::
simulation

:::
and

:::
the

:::::::::
flexibility

:::
of

::::::::
coupling

::::
any

::::::
water

::::::::::::
column-based160

:::::::::::::
biogeochemical

::::::
model

:::::
with

::::::::::
minimized

::::::::::::::
implementation

::::
effort. Thus, we define a general programming

::
For

::::
this

:::::::
purpose,

:::
we

:::::::
defined

::
a
::::::

model
:

interface that permits any
number of tracers, parameters as well as boundary and
domain data. We implement a comprehensive, transport165

matrix based solver software around the method call and
map its arguments onto a flexible option system of the
final executable

::
Its

:::::::::
flexibility

:::
we

:::::
show

:::
by

::::::
using

::::
both

:::
an

:::::::
available

::::::::::::::
biogeochemical

::::::
model

:::::::::::::::::::::
(Dutkiewicz et al., 2005),

::::
taken

::::::
from

:::
the

:::::::::
MITgcm

::::::
ocean

:::::::
model,

:::
as

:::::
well

:::
as

::
a170

::::
suite

:::
of

:::::
more

::::::::
complex

:::::
ones,

::::::
which

:::
is

::::::::
included

:::
in

:::
our

:::::::
software

::::::::
package.

:::
Our

::::::::
software

::::::
allows

::
for

::::::::
choosing

::::::
among

:::::::::::::::
spin-up/fixed-point

::::::::
iteration

::::
and

::::::::
Newton

:::::::
method,

::::::
where

::
for

::::
the

:::::
latter

::::::
tuning

:::::::
options

:::
are

:::::::
studied.

:::
As

::
a
::::::

result,
:::
the

::::
work

::
of

::::::::::::::::::::
Khatiwala (2008) could

::
be

::::::::
extended

::
by

::::::::::
numerically175

:::::::
showing

:::::::::::
convergence

:::
for

:::
all

:::
six

:::::::::::::::
abovementioned

::::::
models

::::::
without

::::::::
applying

::::::::::::::
preconditioning. Moreover, for purposes
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of usability we provide an install script for the toolkit and
all the material we used to perform the presented numerical
experiments

:
a

:::::::
detailed

:::::::
profiling

::::::::
analysis

:::
for

:::
the

:::::::::
simulation180

::::
with

:::
the

::::::::
different

:::::::::::::
biogeochemical

:::::::
models

::::::
shows

::::
how

:::
the

::::::
number

::
of

::::::
tracers

:::::::
impacts

:::
the

::::::
overall

::::::::::::
performance.

::::::
Finally,

::
an

:::::::
adapted

:::
load

:::::::::
balancing

::::::
method

::
is

::::::::
presented. This includes

data preparation, result parsing and visualization scripts
:
It

:::::
shows

:::::
nearly

:::::::
optimal

:::::::::
scalability

::
up

:::
to

:::
128

:::::::::
processes,

:::
and

::
in185

:::
this

::::::
respect

:::::::::
superiority

::::
over

:::::
other

::::::::::
approaches,

::::::::
including

:::
the

:::
one

::::
used

::
in

:::::::::::::::
Khatiwala (2013).

The remainder of this paper is organized as follows. In
Sections 2–4

:
2
:::
and

::
3
:
we describe the marine ecosystem dy-

namics , shortly
:::
and

:
recapitulate the transport matrix ap-190

proachand define the biogeochemical model interface. In
Sections 5–7 we discuss

:
4
:::
we

::::::::::
summarize

:::
the

::::
two

::::::
options

::
for

:::
the

:::::::::::
computation

:::
of

:::::
steady

:::::::
cycles/periodic solutions, go

into details of the implementation
::::::
namely

::::
the

:::::::::
fixed-point

:::
and

:::::::
Newton

::::::::
iteration,

::::::
where

:::
for

:::
the

:::::
latter

:::
we

::::
also

::::::
discuss195

:::::
tuning

:::::::
options

::
to

:::::::
achieve

:::::
better

:::::::::::
convergence.

::
In

::::::::
Sections

:
5

and present
::
6,

:::
we

::::::::
describe

::::::
design

:::
and

::::::::::::::
implementation

::
of

:::
our

:::::::
software

::::::::
package,

:::
and

:::::::
Section

::
7

:::::
shows

:::
ist

::::::::::
applicability

:::
and

::::::::::
performance

::
in
::::::
several

:::::::::
numerical results. Finally,

:
In

:
Sec-

tion 8 concludes our work and
::
we

:::::
draw

::::::::::
conclusions

:::
and

::
in200

Section 9 describes
:::::::
describe how to obtain the source code.

::
In

:::
the

:::::::::
Appendix,

:::
we

:::::::::
summarize

:::
the

::::::
model

::::::::
equations

:::
and

::::::::
parameter

:::::::
settings

::
of

:::
the

::::::
model

::::
suite

:::
we

::::
used

:::
for

::::
this

::::
work

:::
and

:::
that

::
is
::::::::
available

:::::::
together

::::
with

:::
the

:::::::::
simulation

::::::::
software.

2 Marine ecosystem dynamics205

We consider the following off-line tracer transport model,
which is described

::::::
defined

:
by a system of nonlinear

parabolic differential equations defined on the unit
time interval I = [0,1[⊂ R,

::::::::
semilinear

:::::::::
parabolic

::::::
partial

:::::::::
differential

::::::::
equations

::::::
(PDEs)

:::
of

::
the

:::::
form210

∂yi
∂t
:::

=∇ · (κ∇yi)−∇ · (v yi) + qi(y,u,b,d), i= 1, . . . ,ny,
::::::::::::::::::::::::::::::::::::::::::::

(1)

::
on

::
a

::::
time

:::::::
interval

:::::::::
I := [0,T ]

:::
and

:
a spatial domain Ω⊂ R3

and its
::::
with

:
boundary Γ = ∂Ω. Throughout this work, the

time interval is associated with one model year. For n tracers
the system generally reads215

∂yi
∂t

=∇ · (κ∇yi)−∇ · (v yi) + qi(y,u, b,d),

where yi is a tracer concentrations with yi : I ×Ω→ R and
y = (yi)

n
i=1 is a

:::
Here

::::::::::::::
yi : I ×Ω→ R

:::::::
denotes

::::
one

:::::
single

:::::
tracer

:::::::::::
concentration

::::
and

::::::::::
y = (yi)

ny
i=1:::

the
:
vector of all trac-

ers. Here, we neglect the
::::
Since

:::
we

:::
are

::::::::
interested

::
in

::::::::
long-time220

:::::::
behavior

:::
and

::::::
steady

::::::
annual

::::::
cycles,

:::
we

:::::::
assume

:::
that

:::
the

::::
time

::::::
variable

:::
is

:::::
scaled

:::
in

:::::
years.

::::
We

::::
omit

:::
the

:
additional depen-

dency on the time and space coordinates (t,x)
::::
(t,x)

:
in the

notation for brevity.

The transport of tracers in marine waters is depicted by a225

diffusion and an advection term
:::::::::
determined

::
by

::::::::
diffusion

:::
and

::::::::
advection

:::::
which

::
is
::::::::
reflected

::
in

:::
the

::::
first

:::
two

::::::
linear

:::::
terms

::
on

::
the

::::::::::
right-hand

::::
side

::
of

:
(2). The diffusion

::::::::
Diffusion

:
mixing

coefficient κ : I×Ω→ R and the advection velocity field v :
I ×Ω→ R3 are

:::
may

:::
be

:
regarded as given (cf. Section 3).230

:::
data

:::
or

::::
have

::
to

:::
be

::::::::
simulated

::::::::
together

::::
with (2)

::
by

:::
an

:::::
ocean

::::::
model.

:
Note that both operators effect each tracer separately.

::::::::
Molecular

::::::::
diffusion

::
of

::::
the

::::::
tracers

::
is

:::::::
regarded

:::
as

::::::::
negligible

::::::::
compared

::
to

:::
the

::::::::
turbulent

::::::
mixing

::::::::
diffusion.

::::
Thus

::
κ
:::
and

::::
both

:::::::
transport

:::::
terms

:::
are

:::
the

:::::
same

::
for

:::
all

:::
yi.235

:::
The

::::::::::::::
biogeochemical

:::::::::
processes

:::
in

::::
the

::::::::::
ecosystem

:::
are

:::::::::
represented

:::
by

:::
the

::::
last

::::
term

:::
on

:::
the

:::::::::
right-hand

::::
side

:::
of

:
(2),

::
i.e.

:

qi(y,u,b,d)
:::::::::

= qi(y1, . . . ,yn,u,b,d), i= 1, . . . ,ny.
:::::::::::::::::::::::::::::::

In contrast, a single component of
:::::
Often,

:::
the

:::::::
functions

::
qi:::

are240

::::::::
nonlinear

:::
and

:::::::
depend

::
on

::::::
several

:::::::
tracers,

:::::
which

:::::::
couples

:::
the

::::::
system.

:::
We

::::
will

:::::
refer

::
to

:::
the

:::
set

::
of

::::::::
functions

::::::::::
q = (qi)

ny
i=1::

as

:
”the biogeochemical modelqi may generally depend on all
tracers

::
”.

::::
This

::::::
model

:::::::
typically

::::::::
depends

::::
also

::
on

::::::::::
parameters.

::
In

:::
the

:::::::
software

:::
we

::::::
present

::
in

:::
this

:::::
paper

:::::
these

:::
are

:::::::
assumed

::
to245

::
be

:::::::
constant

::
w.

::
r.
:
t.
:::::
space

::::
and

::::
time, i.e.

qi(y,u, b,d) = qi(y1, . . . ,yn,u, b,d) .

::
we

:::::::
have

::::::::::::::
u= u ∈ Rnu .

:::
Here, b= (bi)

nb
i=1 with

bi : I ×Γs→ R is a vector of boundary forcing data like
:
In

::
the

:::::::
general

::::::
setting

:::
of

:
(2)

:::
this

::
is
::::

not
:::::::::
necessary.

::::::::
Boundary250

::::::
forcing

::::
(e.g.

:
insolation or wind speed, which is defined on

the ocean surface Γs ⊂ Γ. Additionally, d= (di)
nd
i=1 with

di : I ×Ω→ R is a vector of domain forcing data like )

:::
and

:::::::
domain

::::::
forcing

:::::::::
functions

::::
(e.g.

:
salinity or temperature

of the ocean water(cf. Section 5) )
::::

my
:::::

also
:::::
enter

:::
the255

:::::::::::::
biogeochemical

::::::
model. As mentioned in the introduction,

the modelalso includes parameters that are optionally
subject to optimization (cf. Table 19 as an example). They
are summarized in the vector u ∈ Rm and kept temporally as
well as spatially constant during the computation of a model260

year
:::::
These

:::
are

::::::::
denoted

::
by

::::::::::::::::::::::::
b= (bi)

nb
i=1 , bi : I ×Γs→ R

:::
and

:::::::::::::::::::::::
d= (di)

nd
i=1 ,di : I ×Ω→ R,

::::::::::
respectively.

Additionally, homogeneous Neumann boundary
conditions on the entire Γ

::
A

::::::::::
reasonable

::::::
setting

::::
are

:::::::::::
homogeneous

:::::::::
Neumann

:::::::::
conditions

:
for all tracers yi are265

imposed
::
on

:::
the

::::::
entire

:::::::::
boundary

:::
Γ. An initial condition

(t0,y0) with t0 ∈ [0,1[ and y0 = (yi(t0,x))ni=1 is provided .

::::::::
Moreover,

::
a
:::::::
function

::::::::::::::::::::::::::
y0(x) = (yi(0,x))

ny
i=1 ,x ∈ Ω,

:::
has

::
to

::
be

::::::::
provided

::
to

:::::
solve

::
an

:::::::::::::::::::
initial-boundary-value

:::::::
problem

:::
for

(2)
:
.270

3
:::::::::
Transport

::::::
matrix

::::::::
approach

:::
The

:::::::::
transport

:::::::
matrix

:::::::
method

::::::::::::::::::::::
(Khatiwala et al., 2005) is

:
a
:::::::
method

::::
that

::::::
allows

::::
fast

::::::::::
simulation

:::
of

:::::
tracer

::::::::
transport
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::::::::
assuming

:::
that

::::
the

:::::::
forcing

::::
data

::::::::
diffusion

::
κ

::::
and

::::::::
advection

::::::
velocity

::
v
:::
are

::::::
given.

:
Overall, we assume the given forcing275

data κ,v,b and d is periodic, i. e. κ(t+ 1,x) = κ(t,x) for
example

:::
The

::::::
method

::
is
::::::

based
::
on

:::
the

::::::::::
discretized

:::::::::
counterpart

::
of (2).

:::
We

::::::::
introduce

:::
the

:::::::::
following

:::::::
notation:

::::
Let

:::
the

::::::
domain

:
Ω
:::
be

:::::::::
discretized

::
by

:
a
::::
grid

::::::::::::
(xk)

nx
k=1 ⊂ R3

:::
and

::::
one

:::
year

::
in
::::
time

::
by

::::::::::::::::::::::::::::::::::::::::::::::
0 = t0 < .. . < tj < tj + ∆tj =: tj+1 < .. . < tnt = 1.280

::::
This

:::::
means

:::
that

:::::
there

:::
are

::
nt::::

time
::::
steps

:::
per

::::
year. Accordingly,

we solve the model equations by computing an annual cycle,
which is

::
At

::::
time

::::::
instant

:::
tj , :::

we
:::::
denote

:::
by

–
::::::::::::::::::
yji = (yi(tj ,xk))nxk=1 :::

the
::::::
vector

::
of

::::
the

::::::
values

::
of

:::
the

:::
i-th

:::::
tracer

::
at

::
all

::::
grid

::::::
points,

:
285

–
:::::::::::::::::::
yj = (yji)

ny
i=1 ∈ Rnynx

:::
a vector of tracer

concentrations with y(t+ 1,x) = y(t,x) (cf. Section 4).

::
the

::::::
values

::
of

:::
all

:::::
tracers

::
at

::
all

::::
grid

::::::
points,

:::::::::::
appropriately

:::::::::::
concatenated.290

:::
We

:::
use

:::::::::
analogous

:::::::
notations

::::::
bj ,dj ,::::

and
::
qj:::

for
:::
the

::::::::
boundary

:::
and

::::::
domain

::::
data

:::
as

::::
well

::
as

:::
the

:::::::::::::
biogeochemical

:::::
terms

::
in

:::
the

:::
j-th

::::
time

::::
step.

:

4 Transport matrices

:::
For

:::
the

::::::::
boundary

:::::
data

::::
only

::::::::::::
corresponding

::::
grid

::::::
points

:::
are295

:::::::::::
incorporated.

The idea of transport matrices is based on the fact that
diffusion and advection are linear mappings at every point in
time. Hence, the model equations can be written as

:::::::
transport

:::::
matrix

:::::::
method

:::::::::::
approximates

::::
the

:::::::::
discretized

::::::::::
counterpart

::
of300

(2)
::
by

∂yi
∂t

(t) = L(t)yi(t) + qi(t,y(t),u, b(t),d(t)),

yj+1
::::

= Limp,j(Lexp,jyj + ∆tjqj(yj ,u,bj ,dj))
:::::::::::::::::::::::::::::::::::

(2)

=: ϕj(yj ,u,bj ,dj), j = 0, . . . ,nt− 1.
::::::::::::::::::::::::::::::::

305

where L(t) comprises both and represents a timedependent
linear operator

:::
The

:::::
linear

::::::::
operators

::::::::::::
Lexp,j ,Limp,j::::::::

represent

::
the

:::::
parts

:::
of

:::
the

::::::::
transport

:::::
term

::
in

:
(2)

:::
that

::::
are

:::::::::
discretized

::::::::
explicitly

:::
and

::::::::
implicitly

:::
w.

:
r.
::
t.
:::::
time,

::::::::::
respectively. Formally,

its fully discrete equivalent is a sequence of matrices (Lj)
nt
j=1310

with Lj = L(tj):::::::::::
Consequently,

:::::
these

:::::::::
operators

::::::
depend

:::
on

::
the

::::::
given

:::::::
transport

::::
data

::::
κ,v

::::
and

::::
thus

:::
on

::::
time. Here, nt is

the number of time steps and tj = t0 + (j− 1)∆t denotes
a specific point in time with ∆t= 1/nt:::

The
:::::::::::::
biogeochemical

::::
term

:
is
::::::
treated

::::::::
explicitly

:::
in (5)

::
by

::
an

:::::
Euler

::::
step.

:
315

::::
Since

:::::
the

:::::::::
transport

:::::::
effects

:::::
each

::::::
tracer

::::::::::
separately

:::
and

:::
is

::::::::
identical

::::
for

:::
all

:::
of

::::::
them,

:::::
both

:::::::::::::
Lexp,j ,Limp,j

::
are

::::::::::::::
block-diagonal

::::::::
matrices

:::::
with

::::
ny:::::::::

identical
::::::

blocks

:::::::::::::::::::::
Aexp,j ,Aimp,j ∈ Rnx×nx ,

:::::::::::::
respectively. Note that

throughout this work an equidistant time step will be320

used.
However, the matrices that we use here represent the

effect of an entire time step
::
In

:::::::::::::::::::
Khatiwala et al. (2005),

::
it
::

is

::::::::
described

::::
how

:::::
these

:::::::
matrices

::::
can

::
be

:::::::::
computed

::
by

:::::::
running

:::
one

::::
step

::
of

:::
an

:::::
ocean

::::::
model

::
for

:::
an

:::::::::::
appropriately

:::::::
chosen

::
set325

::
of

::::
basis

::::::::
functions

:::
for

:
a
:::::
tracer

::::::::::
distribution.

:::
As

:
a
:::::::::::
consequence,

::
the

::::::::
partition

::
of

:::
the

::::::::
transport

:::::::
operator

::
in

:
(2)

:::
into

:::
the

::::::
explicit

:::
and

:::::::
implicit

:::::
matrix

:::::::
depends

:::
on

:::
the

:::::::
operator

:::::::
splitting

::::::
scheme

::::
used

::
in

:::
the

:::::
ocean

:::::::
model.

::::::
Usually

::::::::
diffusion

:::
(or

::
a
::::
part

::
of

::
it)

:
is
::::::::::

discretized
::::::::
implicitly,

:::
in

:::
our

::::
case

:::::::
vertical

::::::::
diffusion

::::
only.330

They are extracted from a sophisticated general circulation
model that implements a combination of an operator splitting
scheme and an implicit and explicit time step approach
(cf. Temam, 1979)

::
By

::::
this

:::::::::
procedure,

::
a
:::
set

:::
of

::::::
matrix

::::
pairs

::::::::::::::::::
(Aexp,j ,Aimp,j)

nt−1
j=0 :

is
::::::::

obtained,
::::::

which
::::::
usually

:::
are

::::::
sparse.335

This requires code knowledge and implies a technical effort
that is described by Khatiwala et al. (2005) for instance.

::
To

:::::
reduce

::::::
storing

:::::
effort

::::
and

::
to

:::::
make

:::
the

::::::
method

:::::::
feasible

::
at
:::
all,

::::
only

:
a
:::::::

smaller
:::::::
number

::
of

:::
(in

::::
our

::::
case

::::::::
monthly)

::::::::
averaged

:::::::
matrices

::
is

::::::
stored. As a general rule, once the discretization340

parameters are chosen,
:::::
From

:::::
these,

:::
an

:::::::::::::
approximation

::
of

::
the

::::::
matrix

::::
pair

:::
at

:
a
:::::

time
::::::
instant

::
tj::

is
:::::::::

computed
:::
by

:::::
linear

:::::::::::
interpolation.

:::
The

::::::::::
integration

::
of

::::
the

::::::
tracers

:::::
over

::
a

::::::
model

::::
year

::::
thus

:::
just

:::::::
consists

:::
of

::::::
sparse

::::::::::::
matrix-vector

:::::::::::::
multiplications

::::
and345

:::::::::
evaluations

::
of
::::

the
:::::::::::::
biogeochemical

:::::::
model.

::::::::::
Specifically,

:
the

arrangement of the
::::::
implicit

::::
part

::
of

:::
the

:::::
time

:::::::::
integration

::
is

:::
now

::::::::::::
pre-computed

::::
and

::::::::
contained

:::
in

:::::::
Aimpl,j ,::::::

which
::
is
:::
the

:::::
benefit

:::
of

:::
the

:::::::
method.

:::
The

:::::::::::
interpolation

::
of

:::
the

:
transport ma-

trices, the boundary and domain data and the tracer vectors350

are determined for further usage
::::::::::
linearization

::
of

:::::::::
eventually

::::
used

::::::::
nonlinear

:::::::::::
discretization

:::::::
schemes

::::
(e.g.

:::
flux

::::::::
limiters),

:::
and

::::::::::
disregarding

:::
the

::::::::
influence

::
of

:::
the

::::::::::::::
biogeochemistry

::::
back

::::
onto

::
the

::::::::::
circulation

:::::
fields

:::::::::
determine

:::
the

::::::::::::
approximation

:::::
error

::
of

::
the

:::::::
method

::::::::
compared

::
to
::
a
:::::
direct

:::::::
coupled

::::::::::
computation.355

The splitting scheme is reflected by the corresponding
implicit and explicit matrices, respectively

4
::::::
Steady

::::::
annual

::::::
cycles

:::
The

:::::::
purpose

:::
of

:::
the

:::::::
software

:::::::::
presented

::
in

::::
this

:::::
paper

::
is
:::
the

:::
fast

:::::::::::
computation

::
of

::::::
steady

::::::
annual

:::::
cycles

:::
of

:::
the

:::::::::
considered360

::::::
marine

:::::::::
ecosystem

::::::
model. Formally, an implicit transport

matrix can be understood as the solution of the implicit time
step and an explicit transport matrix as the application of
the explicit time step, i. e.

:
A
::::::
steady

::::::
annual

:::::
cycle

::
is

::::::
defined

::
as

:::::::
periodic

:::::::
solution

::
of

:
(2)

:::
with

::::::
period

::::::
length

:
1
::::::

(year),
::::

thus365

::::::::
satisfying

y(t+ 1)
::::::

= y(t), t ∈
::::::::::

[0,1
::

[.

:::::::::
Obviously,

:::
the

::::::
forcing

::::
data

::::::::
functions

:::
b,d

:::
are

::::::::
required

::
to

::
be

:::::::
periodic

::
as

::::
well.

:
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:::
For

:::
the

::::::::::
application

::
of

::::
the

::::::::
transport

::::::
matrix

:::::::
method,

:::
we370

::::::
assume

:::
that

::
a
:::
set

::
of

:::::::
matrices

:::
for

::::
one

:::::
model

::::
year

:::::::::
(generated

::::
with

::::
such

::::
kind

::
of

:::::::
periodic

::::::
forcing)

::
is
::::::::
available,

:::
and

::::
that

::::
these

::
are

:::::::::::
interpolated

::
to

::::
pairs

:::::::::::::::
(Aexp,j ,Aimp,j):::

for
::
all

:::::
time

::::
steps

::::::::::::::
j = 0, . . . ,nt− 1.

::
In

:::
the

:::::::
discrete

:::::::
setting,

:
a
:::::::
periodic

:::::::
solution

::::::
satisfies

:
375

ynt+j
::::

= yj j = 0, . . . ,nt− 1.
::::::::::::::::::::

::::::::
Assuming

:::::
that

:::::
the

::::::::
discrete

::::::::
model

:::
is
:::::::::::

completely

:::::::::::
deterministic,

::
it
:::::::

suffices
:::

to
::::::
satisfy

::::
this

::::::::
equation

::::
just

:::
for

:::
one

::
j.

:::::
Here,

::::
we

:::::::
compare

:::::::::
solutions

::
of

:::
the

:::::::::
respective

::::
first

::::
time

::::::
instants

::
of

::::
two

:::::::::
succeeding

::::::
model

:::::
years.

:::::::
Defining

:
380

y`
::

:= y(`−1)nt ∈ Rnynx , `= 1,2, . . .
::::::::::::::::::::::::::::

::
as

:::
the

:::::
vector

::
of

:::::
tracer

::::::
values

::
at

::
the

::::
first

::::
time

::::::
instant

::
of

:::::
model

:::
year

::̀
,
::
a

:::::
steady

::::::
annual

:::::
cycle

:::::::
satisfies

y`+1

::::
= φ(y`) = y` in Rnynx for some ` ∈ N,
:::::::::::::::::::::::::::::::::

(3)

:::::
where

:::::::::::::::::
φ := ϕnt−1 ◦ · · · ◦ϕ0::

is
:::
the

:::::::
mapping

::::
that

:::::::
performs

:::
the385

:::::
tracer

:::::::::
integration (5)

:::
over

::::
one

::::
year.

::::
Here

:::
we

::::::
omitted

:::
all

::::
other

::::::::
arguments

::::::
except

::
of

::
y

::
in

:::
the

::::::::
notation.

:::::
Thus,

:
a
::::::
steady

:::::
annual

::::
cycle

::
is

:
a
::::::::::
fixed-point

::
of

:::
the

::::::::
nonlinear

:::::::
mapping

:::
φ.

::::
Since

:::::::::
condition

:
(10)

:::
will

::::::
never

:::
be

:::::::
satisfied

:::::::
exactly

::
in

:
a
::::::::::
simulation,

:::
we

:::::::
measure

::::
the

:::::::::
periodicity

::::::
using

:::::
norms

:::
on390

:::::
Rnynx

::::
for

::::
the

:::::::
residual

:::
of

:
(10).

::::
We

::::
use

::::
the

::::::::
weighted

::::::::
Euclidean

:::::
norm

Aimp,j = (I−∆tLimp,j)
−1

Aexp,j = (I+ ∆tLexp,j) .

395

‖z‖2,w
:::::

:=

(
ny∑
i=1

nx∑
k=1

wkz
2
ik

) 1
2

,wk > 0,k = 1, . . . ,nx,

::::::::::::::::::::::::::::::::::::

(4)

Here,
:::
for

:::::::::
z ∈ Rnynx

::::::::
indexed

::
as

:::::::::::::::::
z = ((zik)

nx
k=1)

ny
i=1

.
::::
This

::::::::::
corresponds

::
to

:::
our

::::::::
indexing

::
of

:::
the

:::::::
tracers,

:::
see

::::::
Section

::
3.
::

If

::::::
wk = 1

:::
for

::
all

:::
k,

:::
we

:::::
obtain

:::
the

:::::::::
Euclidean

:::::
norm

:::::::
denoted

::
by

:::::
‖z‖2.

::
A

:::::
norm

::::
that

:::::::
stronger

::::::::::
corresponds

:::
to

:::
the

:::::::::
continuous400

:::::::
problem (2)

:
is
:
the transport is split as Lj = Limp,j +Lexp,j

and I represents the identity.
:::::::::
discretized

::::::::::
counterpart

::
of

:::
the

::::::::::::::

(
L2(Ω)

)ny -norm,
::::::

where
:::
wk::

is
:::
set

::
to

:::
the

::::::
volume

::
of

:::
the

::::
k-th

:::
grid

::::
box.

::::
This

:::::
norm

:::
we

::::::
denote

::
by

:::::::
‖z‖2,Ω.

::::::
Orther

::::::
settings

::
of

::
the

:::::::
weights

:::
are

::::::::
possible.

:::
All

::::
these

::::::
norms

:::
are

::::::::
equivalent

::::
with405

min
1≤k≤nx

√
wk ‖z‖2

::::::::::::::

≤ ‖z‖2,w ≤ max
1≤k≤nx

√
wk ‖z‖2.

:::::::::::::::::::::::::

4.1
:::::::::::

Computation
::
by

:::::::
spin-up

:::::::::::
(fixed-point

::::::::
iteration)

:::::::::
Repeatedly

::::::::
applying

:::::::
iteration

::::
step

:
(10)

:
or

::
–
::
in

:::::
other

:::::
words

:
–
:::::::::
integrating

:::
in

::::
time

:::::
with

::::
fixed

:::::::
forcing

:::::
until

::::::::::
convergence410

:
is
::::::::

reached,
:::

is
:::::::

termed
::::::::

spin-up.
::

Throughout this work,
both matrix types are sparse

:
It

::
is

::::
well

::::::
known

:::
by

::::::::
Banach’s

:::::::::
fixed-point

:::::::::
theorem

::::::::::::::::::::::::::::::
(cf. Stoer and Bulirsch, 2002) that,

::::::::
assuming

:
φ
::
is

:
a
::::::::::
contractive

:::::::
mapping

:::::::::
satisfying

‖φ(y)−φ(z)‖
::::::::::::

≤ L‖y− z‖ for all y,z ∈ Rnynx
::::::::::::::::::::::::::::

415

::::
with

:::::
L < 1

:::
in

:::::
some

:::::
norm,

::::
this

::::::::
iteration

::::
will

::::::::
converge

::
to

::
the

:::::::
unique

:::::::::
fixed-point

:::
for

::
all

::::::
initial

:::::
values

:::
y0. The implicit

matrix Limp,j comprises vertical diffusion only ,
:::
This

::::
result

::::
still

::::::
holds

:::
on

::::::
weaker

:::::::::::
assumptions

::::::::::::::
(cf. Ciric, 1974).

:::
The

:::::::
method

::
is
:::::

quite
::::::
robust,

::::
but

:::
on

:::
the

:::::
other

:::::
hand

:::::
shows420

::::
only

::::::
linear

:::::::::::
convergence

::::::
which

:::
is

:::::::::
especially

::::::
slow

:::
for

:::::
L≈ 1.

::::
An

:::::::::
estimation

:::
of

:::::::::::::::::
L= maxy ‖φ′(y)‖

::
is
::::::::

difficult,

::::
since

::
it
::::::::

involves
::::

the
:::::::::
Jacobians

::::::
q′j(yj):::

of
::::

the
::::::::
nonlinear

:::::::::::::
biogeochemical

::::::
model

::
at
::::

the
:::::::

current
:::::::

iterates.
:::::::::

Typically,

::::::::
thousands

:::
of

:::::::
iteration

:::::
steps

:
(i.e. a process within a water425

column that is computed and inverted independently of its
vicinity.

:::::
model

::::::
years)

:::
are

::::::
needed

::
in

:::::
order

::
to

:::::
reach

::
a

:::::
steady

::::
cycle

:::::::::::::::::::::
(cf. Bernsen et al., 2008).

:
The explicit matrix Lexp,j

represents a (local) differential operator, which naturally
has a sparse discrete representation.

:::
The

::::::::
method

:::::
offers430

::::
only

::::::::
restricted

:::::::
options

:::
for

::::::::::::
convergence

::::::
tuning,

::::
the

::::
only

::::::::::::
straightforward

::::
one

:::::
being

::
the

::::::
choice

::
of

::
a

:::::::
different

::::
time

::::
steps

::::
∆tj .:::

To
::
to

:::
so,

:::
the

::::::::
transport

::::::::
matrices

::::
have

:::
to

::
be

::::::::
re-scaled

::::::::::
accordingly.

::::
The

::::::
natural

:::::::
stopping

::::::::
criterion

::
is

:::
the

::::::::
reduction

::
of

:::
the

::::::::
difference

::::::::
between

:::
two

::::::::::
succeeding

::::::
iterates

::::::::
measured435

::
by

:

ε` := ‖y`−y`−1‖2,w
:::::::::::::::::

::
in

::::
some

::
–

::::::::
optionally

::::::::
weighted

::
–

:::::
norm.

Overall, the fully discrete iteration scheme for n tracers
results in a block diagonal system440

4.2
:::::::::::

Computation
::
by

:::::::
inexact

:::::::
Newton

:::::::
method

::
By

::::::::
defining

:::::::::::::::::
F (y) := y−φ(y),

:::
the

::::::::::
fixed-point

::::::::
problem

(10)
:::
can

:::
be

::::::::::
equivalently

:::::::::::
transformed

::::
into

:::
the

::::::::
problem

::
of

::::::
finding

:
a
:::::

root
::
of

::::::::::::::::::
F : Rnynx → Rnynx . The integration of

state variables over a model yearconsists of sparse matrix445

vector multiplications and evaluations of the biogeochemical
model.

::::
This

::::::::
problem

:::
can

:::
be

::::::
solved

:::
by

::::::::
Newton’s

:::::::
method

:::::::::::::::::::::::::::::::::::::::::::::
(cf. Dennis and Schnabel, 1996; ?; Bernsen et al., 2008).

:::
We

::::
apply

::
a
:::::::
damped

:::
(or

::::::::::
globalized)

::::::
version

::::
that

:::::::::::
incorporates

:
a

:::
line

::::::
search

::
(or

::::::::::::
backtracking)

::::::::
procedure

::::::
which

:::::
(under

::::::
certain450

:::::::::::
assumptions)

::::::::
provides

::::::::::
superlinear

::::
and

:::::::
locally

::::::::
quadratic

::::::::::
convergence.

:
For a fixed time index j it reads

::::::
Starting

::::
from

::
an

:::::
initial

:::::
guess

:::
y0,

::
in

:::::
every

::::
step

:::
the

:::::
linear

::::::
system

yj+1 = A′imp,j(A
′
exp,j yj + ∆tqj(yj ,u,bj ,dj))

= ϕj(yj ,u,bj ,dj) ,455
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F ′(ym)sm
:::::::::

=−F (ym)
:::::::::

(5)

where yj = (yi(tj))
n
i=1 combines all discrete tracer

vectors
::
has

::::
to

::::
be

::::::::
solved,

:::::::::
followed

::::
by

::::
an

:::::::
update

::::::::::::::::
ym+1 = ym + %sm. Accordingly, A′imp,j and A′exp,j
denote block diagonal matrices with Aimp,j and460

Aexp,j as their identical blocks, respectively
::::
Here

:::::
% > 0

:
is
:::

a
::::::::

step-size
:::::

that
:::

is
:::::::

chosen
:::::::::

iteratively
:::::

such
:::::

that
::

a

:::::::
sufficient

::::::::::
reduction

:::
in

::::::::::::::::
‖F (ym + ρsm)‖2::::

is
::::::::

achieved

::::::::::::::::::::::::::::::::::::
(cf. Dennis and Schnabel, 1996, Section 6.3).

:

:::
The

::::::::
Jacobian

:::::::
F ′(ym)

::
of

::
F

::
at

:::
the

:::::::
current

:::::
iterate

:::::::
includes465

::
the

:::::::::
derivative

:::
of

:::
one

::::::
model

:::::
year,

::::
thus

::
it
:::

is
:::
not

::
as
::::::

sparse

::
as

:::
the

::::::::
transport

::::::::
matrices

::::::::::
themselves.

:::
As

::
a

:::::::::::
consequence,

:
a
::::::::::

matrix-free
:::::::

version
::::

of
::::::::
Newton’s

::::::::
method

:::
is

:::::::
applied:

:::
The

::::::
linear

:::::::
system

:
(10)

::::
itself

:::
is

::::::
solved

:::
by

:::
an

::::::::
iterative,

:::::::
so-called

:::::::
Krylov

::::::::
subspace

::::::::
method,

::::::
which

:::::
only

:::::::
requires470

::
the

::::::::::
evaluation

::
of

::::::::::::
matrix-vector

::::::::
products

:::::::::
F ′(ym)s.

:::::
Since

::::::
F ′(ym)

:::::::
cannot

:::
be

::::::::
expected

::
to

:::
be

::::::
neither

::::::::::
symmetric

:::
nor

::::::
definite,

::::
we

:::
use

::::
the

::::::::::
generalized

:::::::
minimal

:::::::
residual

:::::::
method

::::::::::::::::::::::::::::
(GMRES, Saad and Schultz, 1986).

:
The components of the

tracer model are depicted by qj with475

qj(yj ,u,bj ,dj) = (qi(tj ,yj ,u,bj ,dj))
n
i=1 ,

::::::
needed

::::::::::::
matrix-vector

:::::::::
products

::::
can

::::
be

::::::::::
interpreted

:::
as

:::::::::
directional

:::::::::
derivatives

::
of

::
F
:::

at
:::
the

:::::
point

:::
ym

::
in

::::::::
direction

::
s.

::::
They

:::
can

:::
be

:::::::::::
approximated

:::
by

:
a
:::::::
forward

:::::
finite

:::::::::
difference:

F ′(ym)s
:::::::

≈ F (ym + δs)−F (ym)

δ
, δ > 0.

::::::::::::::::::::::::::::

(6)480

where the discrete boundary respectively domain data
is represented by bj = (bi(tj))

nb
i=1 and dj = (di(tj))

nd
i=1.

:::
The

:::::
finite

:::::::::
difference

::::::::
step-size

::
δ
:::

is
::::::
chosen

::::::::::::
automatically

::
as

::
a

:::::::
function

:::
of

::::
ym

::::
and

::
s
:::::::::::::::::::::

(cf. Balay et al., 2012a).
:::
An

::::::::
alternative

::::
here

::::::
would

::
be

::
an

:::::
exact

::::::::
evaluation

::
of

:::
the

::::::::
derivative485

::::
using

::::
the

::::::::
forward

::::::
mode

:::
of

:::::::::::
algorithmic

::::::::::::
differentiation

:::::::::::::::::::::::::::
(cf. Griewank and Walther, 2008).

:

Actually, only 12 implicit and 12 explicit matrices are
extracted and stored, when the TMM data is prepared

:::
The

:::::
above

::::::::::::
approximation

::
of

:::
the

:::::::
Jacobian

::
or

:::::::::
directional

::::::::
derivative490

:
is
::::

one
:::::::

reason
:::

for
::::

this
::::::::

method
::
to

:::
be

::::::
called

:::
an

:::::::
inexact

:::
one. They represent monthly averaged ocean circulation,
but provide a sufficient accuracy at minimal storage
requirements as shown by Khatiwala et al. (2005).

:::
The

::::::
second

:::::
reason

::
is

:::
that

:::
the

:::::
inner

:::::
linear

:::::
solver

:::
has

::
to
:::
be

::::::
stopped495

:::
and

::::
thus

:::
is

::::
also

::::
not

:::::
exact.

:::::
Here

::::
we

:::
use

::
a
:::::::::::

convergence

::::::
control

:::::::::
procedure

::::::
based

:::
on

:::
the

:::::::::
technique

:::::::::
described

:::
by

:::::::::::::::::::::::
Eisenstat and Walker (1996).

:::::
They

::::
stop

::::::
when

:::
the

:::::::
Newton

::::::
residual

::
at
:::
the

::::::
current

:::::
inner

:::::
iterate

::
s
:::::::
satisfies

‖F ′(ym)s+F (ym)‖2
::::::::::::::::::

≤ ηm‖F (ym)‖2.
:::::::::::::

(7)500

:::
The

:::::
factor

:::
ηm::

is
::::::::::
determined

::
as

ηm
::

= γ

(
‖F (ym)‖2
‖F (ym−1)‖2

)α
, m≥ 2, η1 = 0.3.

:::::::::::::::::::::::::::::::::::::

(8)

::::
This

::::::::
approach

::::::
avoids

::::::::
so-called

::::::::::::
over-solving,

:::
i.e.

:::::::
wasting

::::
inner

:::::
steps

:::::
when

::::
the

:::::::
current

:::::::
Newton

::::
step

::::
was

::::
not

::::
very

:::::::::
successful.

:
The same applies for the given forcing

::::
latter

::
is505

:::::::
typically

:::
the

:::::
case

::
in

:::
the

:::::::::
beginning

:::
of

:
a
:::::::

Newton
::::::::

iteration.
The matrices as well as the boundary and domain data are
interpolated later on to the current time step during the
computation of a model year (cf. Section 6).

::::::::
parameters

::
γ

:::
and

::
α
::::

can
:::
be

::::
used

:::
to

::::::::
influence

::::
this

::::::::
behavior

::
in

::
a
:::::
linear510

:::
and

::::::::
nonlinear

::::
way,

:::::::::::
respectively.

:::::::::
Moreover,

::::
they

:::
are

:
a
:::::
subtle

:::
way

::
to
:::::

tune
:::
the

:::::
solver.

:::
In

:::::::
contrast

::
to

:
a
::::::::::
fixed-point

:::::::
iteration,

::::::::
Newton’s

:::::::
method

::::
also

:::
in

:::
its

:::::::
damped

:::::::
version

:::::
may

::::
only

:::::::
converge

:::::
with

::
an

::::::::::::
appropriately

::::::
chosen

:::::
initial

::::::
guess

:::
y0.

::
In

:
a
::::::::::::::
high-dimensional

::::::::
problem

::
as

:::
our

:::::::::
application

:::
(in

:::::::
Rnynx ),

:
it515

:
is
::

a
:::::::::
non-trivial

::::
task

::
to

::::
find

::::
such

::::::
initial

:::::
guess

::
if

:::
the

::::::
method

::::
with

:::
the

:::::::
standard

::::
one

::::
(e.g.

:::
the

:::
one

:::::
used

::
in

:::
the

::::::::
literature)

::
is

:::
not

:::::::::
successful.

:::::
Thus,

::
if

::
an

:::::::
Newton

::::::::
iteration

:
is
:::::

slow
:::
and

:::
the

:::::
above

:::::::
criterion

::::
may

::::::::::::
consequently

::::
lead

::
to

::::
only

::
a
::::
few

::::
inner

::::::::
iterations,

::
it

::::::
makes

:::::
sense

::
to

:::::::
increase

::::
this

::::::
number

:::
by

:::::
either520

:::::::::
decreasing

:
γ
::
or

:::::::::
increasing

::
α.

:::
We

::::
will

::::
give

::::::::
examples

::::
later

::
on

:::::
where

::::::
exactly

::::
this

::::::
strategy

:::::::
enables

::::::::::
convergence

::
at

:::
all.

:

:::::::::
Concerning

:::
the

:::::
total

:::::
effort

::
of

:::
the

:::::::
inexact

:::::::
Newton

:::::
solver

:::
and

::
in

:::::
order

::
to

::::::::
compare

::
its

:::::::::
efficiency

::::
with

:::
the

:::::::
spin-up,

:::
we

:::
first

::::
note

::::
that

:::
one

:::::::::
evaluation

:::
of

::
F

::::::::
basically

::::::::::
corresponds

::
to525

:::
one

:::::::::
application

::
of

:::
φ,

::
i.e.

::::
one

:::::
model

:::::
year.

::::
Thus,

:::::
each

::::::
Newton

:::
step

:::::::
requires

::::
one

:::::::::
evaluation

::
of

::
F

::
as

:::::::::
right-hand

::::
side

::
in

:
(10).

:::::
Within

::::
the

:::::
inner

:::::
linear

:::::
solver

::::::::
iteration,

::::
the

:::::
initial

:::::
guess

::
is

::::::
always

::::
taken

:::
as

:::::
s = 0.

:::::
Thus,

:::
no

::::::::::
computation

::
is
:::::::
required

:::
for

::
the

::::
first

:::::
step.

:::::
Each

:::::::::
following

:::::
inner

:::::::
iteration

:::::::
require

::::
sone530

::::::::
additional

:::::::::
evaluation

::
of

::
F

::
to

:::::::
compute

:::
the

::::::
second

::::
term

::
in
:::
the

::::::::
numerator

::
of

:::
the

:::::::::
right-hand

::::
side

::
of (6).

:::::::::::
Additionally,

:::
the

:::
line

:::::
search

::::
may

::::::
require

:::::::::
additional

::::::::::
eavluations

::
of

::
F .

:::
In

::::
total,

:::
the

:::::
overall

:::::::
number

:::
of

:::::
inner

::::::::
iterations

::::
plus

:::
the

::::::
overall

:::::::
number

::
of

:::::::::
evaluations

:::
in

:::
the

::::
line

::::::
search

:::::::::
determine

:::
the

:::::::
number

::
of535

::::::::
necessary

::::::::::
evaluations

::
of

:::
F

::::
that

::::
can

:::
be

::::::::
compared

:::
to

:::
the

::::::::
necessary

:::::
model

:::::
years

::
in

:::
the

:::::::
spin-up.

5 Biogeochemical model interface

In this context, our main objective is to specify a general
coupling between the transport that is induced by the ocean540

circulation and the biogeochemical tracer model. The aim is
to link any model implementation with any number of trac-
ers, parameters as well as boundary and domain data to the
driver software. The coupling must additionally fit into an
optimization context, and it must be compatible with Algo-545

rithmic Differentiation techniques (cf. Section 8).
Generally, we assume that a tracer model is implemented

for a single water column, synonymously called profile in
the following. This

:::::
means

:::
no

::::::::::
geometrical

::::::::::
information

:::
on

::::::::
horizontal

:::::::
vicinity

::
of

:::
the

:::::::
vertical

::::::
profiles

::
is

::::::::
preserved

::
in
:::
the550

:::::::
interface.

:::::::::
Moreover,

:::
any

:::::
client

::::::
model

::::
must

::
be

::::
able

::
to

::::
take

::
up

::
its

:::::
states

::::
from

::::
such

:::::::
profiles.

:::::::
Models

:::
that

::::::
require

::
a
::::::::
horizontal

:::::::
structure

:::
for

::
its

:::::::
internal

::::::::::
computation

::::::
require

::
a

:::::::::
redefinition

::
of

::
the

::::::::
interface

:::
and

::
a
::::::
change

::
of

:::
the

:::::::
internals

:::
of

::
the

:::::
tool.
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::::::::
However,

:::
this

:
assumption does not constrain the interface555

for the futureand, it actually simplifies the current software
implementation. Moreover, it reflects the fact that the

:
In

::::
fact,

::
the

:
most important non-local biogeochemical processes hap-

pen within a water column (cf. Evans and Garçon, 1997).
Thus

:::::::::::
Consequently, throughout this work, each discrete560

tracer vector is a collection of profiles. It can be understood
as a sparse representation of a land-sea cuboid including only
wet grid boxes. The geometry information is provided as a 2-
D land-sea mask with additional designation of the number
of vertical layers (cf. Figure 12). Hence, a vector length ny565

is a sum of non-equidistant profiles, i.e.

nyx
:

=

np∑
k=1

ny,kx,k
::
,

where np is the number of profiles and (ny,k)
np
k=1 ::::::::

(nx,k)
np
k=1

is a set of profile depths.
The evaluation of the whole n

::
ny tracer model for a fixed570

time index j consist then of separate model evaluations for
each profile. For a fixed profile index k with a depth of ny,k
we compute

∆t(qqi(tj ,(yyi)i=1
nny

:
,uu,(bbi)

nb
i=1,(ddi)

nd
i=1))i=1

nny
:
.

(9)

Here, (yi)
n
i=1 ::::::

(yi)
n
i=1:

is an input array of n profiles, u a575

vector of m parameters, (bi)
nb
i=1 ::

ny::::::::
profiles,

::::
each

:::::
with

:
a

:::::
length

::
or

:::::
depth

::
of

:::::
nx,k,

::
u

:
a
:::::
vector

::
of
:::
nu::::::::::

parameters,
::::::
(bi)

nb
i=1

a vector of nb boundary data values and (di)
nd
i=1 ::::::

(di)
nd
i=1 an

input array of nd domain data profiles. Both inputs are re-
garded as already interpolated. The result is stored in the the580

output array (qi)
n
i=1 ::::::

(qi)
ny
i=1:

that consist of n
:::
ny profiles as

well. Formally, the tracer model is scaled with the (ocean)
time step from the outside. However, we integrate ∆t into
the interface as a concession to the actual practice, where the
time step is often refined within the tracer model implemen-585

tation (cf. Kriest et al., 2010). Consequently, the responsibil-
ity to scale the result before returning it back to the transport
driver software rests with the model implementer.

Listing 1 shows a realization of the biogeochemical model
interface in Fortran 95 called metos3dbgc. The arguments590

are grouped by their data type. The list begins with variables
of type integer, i.e. n, ny,k, m

:::
ny ,

::::
nx,k,

:::
nu, nb and nd.

They are followed by real*8 (double precision) arguments,
i.e. ∆t, q

:
q, tj , y, u, b and d

::
y,

::
u,

::
b

:::
and

::
d. We neglected the

profile index k and the time index j in the notation for clarity.595

Moreover, we use dt as a textual representation of ∆t.
Additionally, a model initialization and finalization inter-

face is specified. The former is denoted metos3dbgcinit
and the latter metos3dbgcfinal. These routines are
called at the beginning of a model year, i.e. at t0, and af-600

ter the last step of the annual iteration, respectively. Both
have the same argument list as metos3dbgc and are not
shown here. All three routine names are arbitrary and can be

changed using pre-processor variables that are defined within
the Makefile.605

6 Periodic solution

With those two building blocks, a model evaluation for a
given parameter set u ∈ Rm is a calculation of an annual
periodic state that solves Equation with y(t+ 1) = y(t) for
every t ∈ [0,1[. This continuous solution translates after a610

spacial and temporal discretization to a sequence of states
(yj)

nt
j=1 with

φ(y1,u) = y1,

where φ= ϕnt ◦ · · · ◦ϕ1 is the mapping that integrates a
given tracer concentration over a model year (cf. Equation ).615

Hence, the initial state of the discrete solution that we seek is
a fixed point of φ.

Generally, we permit the integration to start at any
t0 ∈ [0,1[. Independently of this choice, by definition the
initial state is always depicted by y1. Howsoever, we omit620

the time index in the following for clarity.

5.1 Spin-up

In this context, assuming that φ is a contraction, a spin-up
is a fixed point iteration (Plato, 2003, pp. 109). It consist of
the recurrent application of φ on the result of the previous625

iteration step, i.e.

yl+1 = φ(yl,u),

where l = 1, . . . ,nl is the model year index, nl is the overall
number of model years and yl denotes the initial state of the
lth model year. It can be understood as the propagation of the630

overall initial state over (typically) thousands of model years
in order to reach an equilibrium (cf. Bernsen et al., 2008).

5.1 Inexact Jacobian-free Newton-Krylov

On the other hand, Equation can be transformed into a zero
finding problem on which Newton’s method can be applied635

(cf. Kelley, 2003; Bernsen et al., 2008). For this purpose, we
define F (y,u) = y−φ(y,u) and solve F (y,u) = 0 for a
given parameter set u. However, we omit the dependency of
F on u in the following for clarity.

Using a Newton iteration in every step we solve640

F ′(yk)sk =−F (yk) ,

where k = 1, . . . is the Newton step index, F ′ denotes the
Jacobian of F and sk is the state update to find that is
used to form the next iterate, i.e. yk+1 = yk + sk. For this,
the right-hand-side of Equation is computed first, which645

basically corresponds to one application of φ.
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To solve the system of linear equations for a fixed
k we use a Krylov subspace approach. It is a nested
iteration to construct successive approximations that
converge to the sought solution. These solvers require650

only the result of a matrix-vector product to proceed.
Here, we choose the generalized minimal residual method
(Saad and Schultz, 1986, GMRES), which is implemented as
part of the linear solver suite in PETSc. In this context,
the notion Jacobian-free refers to the fact that during the655

solving process the result of the Jacobian-vector product is
approximated by a forward finite difference quotient, i.e.

F ′(yk)sk,l ≈ F (yk+δ sk,l)−F (yk)
δ ,

where l = 1, . . . is the Krylov sub-index. The scaling
parameter δ ∈ R is chosen automatically as a function of y660

and s (cf. Balay et al., 2012a).
Within the inner loop the initial guess for the state update

is always a vector of zeros, i.e. sk,1 = 0 for every k.
Thus, no computation is required for the first step and the
initial Krylov residual is exactly the Newton residual, i.e.665

F ′(yk)sk,1 +F (yk) = F (yk). Consequently, we overlay
both points in a convergence plot. However, for the following
iterations F must be evaluated at yk + δsk,l to approximate
F ′(yk)sk,l. Here, again every evaluation is associated with
one model year.670

5.1 Convergence

Assuming there exist a unique solution of Equation , it can
be found in a subspace of the Cartesian product of L2

spaces over the time and space domain, i.e. L2(I ×Ω)n

(cf. Evans, 1998, pp. 500). This space is equipped with the675

following (squared) norm

‖y‖2L2(I×Ω)n =
∑n
i=1

∫
I

∫
Ω
|yi(t,x)|2 dxdt .

We denote the discrete counterpart by

‖y‖22,I×Ω =
∑n
i=1

∑nt
j=1 ∆t

∑ny
k=1wk |yi,j,k|2 ,

where wk is the relative volume of the partial grid box Ωk,680

assuming the domain is scaled to a unit cube. Here, we use
∆t instead of ∆tj due to the equidistant temporal resolution.
In general, we omit the designation of the Cartesian product
by the n in the norm notation for clarity.

However, the usage of the above norm involves the whole685

trajectory of all tracers and is thus expensive to compute. We
mostly test for convergence by using an unweighted norm
that only compares the initial states of consecutive model
years. For a fixed time index j we then denote

‖y‖22 =
∑n
i=1

∑ny
k=1 |yi,j,k|2 .690

5.0.1 Spin-up

The difference between consecutive iterates is determined for
a model year index l = 2, . . . ,nl as

εl = ‖yl−yl−1‖2 .

The spin-up solver is easy to operate. The user can either695

set a tolerance ε that should be reached or a number of model
years nl that the initial state should be spun-up for. If both are
set, the iteration stops at what is reached first.

5.0.1 Newton-Krylov

The Newton-Krylov solver is a more sophisticated approach700

than a spin-up. Various settings can be used to control the
solving process. This is shown in more detail in Section 7.5,
where results of numerical experiments are presented for a
simple biogeochemical model.

In a convergence plot, every Newton step k is associated705

with the evaluation of one model year and the corresponding
value is the norm of this so-called Newton residual, i.e.
‖F (yk)‖2. For the inner Krylov index l, every approximation
of the Jacobian-vector product is again associated with one
model year and the depicted value in a plot is the norm of the710

Krylov residual, i.e. ‖F ′(yk)sk,l +F (yk)‖2.
The number of inner iterations per Newton step depends

on the specified tolerance for the Krylov residual. For this,
we use an already implemented convergence control based
on a technique described by Eisenstat and Walker (1996).715

The inner tolerance is set in relation to the Newton residual
and the solver proceeds until

‖F ′(yk)sk,l +F (yk)‖2 ≤ ηk ‖F (yk)‖2

holds. This inexact approach avoids the so-called
over-solving and decreases, especially in the beginning,720

the number of evaluations of F . The scaling factor ηk is
determined from former Newton residuals as

ηk = γ
(
‖F (yk)‖2
‖F (yk−1)‖2

)α
with values set by default to η1 = 0.3, γ = 1 and
α= (1 +

√
5)/2.725

6 Software implementation

The toolkit is divided into four repositories, namely
metos3d, model, data and simpack. The first com-
prises the installation scripts, the second the biogeochemi-
cal model source codes and the third all the data preparation730

scripts as well as the data. The latter
::::::::
repository

:
consist of the

::::::::
simulation

:::::::::::
package,i.e.

:::
the transport driver, which is imple-

mented in C and based upon the PETSc library.
The simulation context is represented by a data type called

metos3d that gathers all variables. Regarding the biogeo-735

chemical models, C, C++ and Fortran implementations are
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accepted (cf. Section 7.1.1). Overall, whereas we
::::
often

:
used

1-indexed arrays within the text for convenience, within the
source code C arrays are 0-indexed and Fortran arrays are
1-indexed. Moreover, all data files are in PETSc format.740

6.1 Layers

The implementation is structured in layers according to
which the source files are named.

::
A

::::::::
schematic

::
is
::::::
shown

::
in

:::::
Figure

:::
11.

:
The bottom layer is the debug layer which imple-

ments output formatting and timing routines. Above resides745

the utilization layer. It provides basic routines for reading in
options, allocating memory as well as reading data from and
writing data to disc. The option system and the individual
options are described in the documentation that is located
in a subdirectory of the git repository of the simulation750

package. Moreover, the utilization layer comprises routines
to arrange profiles within a vector (cf. Section 6.4) and to
compute interpolation factors and indices (cf. Section 6.3) as
well. The 2-D land-sea mask is read in by the geometry layer
and the profiles are balanced by the work load layer (cf. Sec-755

tion 6.2).
The next both

:::
two

:
layers are the building blocks of the

simulation. The bgc model layer initializes tracer vectors, pa-
rameters as well as boundary and domain data. It is respon-
sible for the rearrangement of the profiles, the interpolation760

of the forcing data and the evaluation of the biogeochemi-
cal model using the interface (cf. Section 6.4). The transport
layer is responsible for reading in the transport matrices, their
interpolation to the current time step and their application to
the tracer vectors (cf. Section 6.5).765

The next layer is the time stepping layer, where the main
integration routine φ is located (cf. Algorithm 3). The New-
ton residual F is implemented here as well. On top resides
the solver layer, which consist of the spin-up implementa-
tion and the call to the Newton-Krylov solver provided by770

PETSc.
Additionally, all layer

::::
calls

::
to initialization respectively fi-

nalization routines are combined as one call within
:::::
located

::
at

the init source file.
:::
The

::::::
former

:::
are

::::::::::
responsible

:::
for

:::::::
memory

::::::::
allocation

:::
and

:::::::
storage

::
of

:::
data

:::::
used

::
at

:::
run

::::
time.

::::
The

::::
latter

:::
are775

::::::::
employed

::
to

::::
free

:::::::
memory

::
as

::::
well

::
as

::::::
delete

:::
the

::::
used

::::::
vectors

:::
and

::::::::
matrices.

6.2 Load balancing

Once the geometry information is read in, the profiles have
to be distributed among the available processes. However, a780

tracer vector is a collection of non
:::
non equidistant profiles

and the biogeochemical models that we couple to the trans-
port matrices operate on whole water columns. Thus, a pro-
file can not be split when the work load is distributed.

For this case, no suitable load balancing algorithm is pro-785

vided by the PETSc library. Here, we use an approach that
is inspired by the idea of space filling curves presented by

Zumbusch (1999). For every profile, we compute its mid in
relation to the vector length and scale this ratio by the num-
ber of processes. We round this figure down to an integer and790

use the result as the index of the process the profile belongs
to. This information is sufficient to consecutively assign the
profiles to the processes later on.

The calculation for 0-indexed arrays is depicted by Algo-
rithm 1. Its theoretical and actual performance is discussed in795

Section 7.4 where we show results of speedup tests that we
performed on two different hardware architectures.

6.3 Interpolation

The transport matrices as well as the boundary and domain
data vectors are provided as sets of files. Although, most of800

the data we use in this work represents a monthly mean, the
number of files in each set is arbitrary.

Regarding the transport, we have (Aimp,j)
nimp
j=1 and

(Aexp,j)
nexp
j=1 , where nimp and nexp specify the number of

implicit and explicit matrix files, respectively. Note, we will805

not assemble both (block diagonal) system matrices during
the simulation to avoid redundant storing. Instead, we use
the provided matrices to build only a block for each matrix
type. The transport is then applied as a loop over separate
tracer vectors as explained in Section 6.5.810

Concerning the boundary and domain forcing,
we denote the data files by ((bi,j)

nb,i
j=1)nbi=1 and

((di,j)
nd,i
j=1)ndi=1:::::::::::

((bi,j)
nb,i
j=1)nbi=1:::::

and
::::::::::::::

((di,j)
nd,i
j=1)ndi=1. Here,

nb is the number of distinct boundary data sets and nb,i is the
number of data files provided for the ith set. Accordingly,815

nd denotes the number of domain data sets and nd,i is the
number of data files of a particular set.

However, the time step count per model year is generally
much higher than the number of available data files. Thus,
the matrices and vectors are linearly

::::::
linearly interpolated to820

the current time step during the iteration. The files of a spe-
cific data set are interpreted as averages of the time intervals
they represent. Consenquently, we interpolate in between the
associated centers of these intervals. The appropriate weights
and indices are computed on the fly using Algorithm 2. Both825

building blocks of the simulation, i.e. the biogeochemical
model and the transport step access the interpolation routine
in every time step tj to form a linear combination of the user
provided data.

6.4 Biogeochemical model step830

During a simulation the BGCStep routine in Algorithm 4 is
responsible for the evaluation of the biogeochemical model.
For this, the boundary and the domain data must be inter-
polated first. Here, for every index i and the corresponding
boundary data set (bi,j)

nb,i
j=1 :::::::

(bi,j)
nb,i
j=1:

we compute the ap-835

propriate weights α, β as well as indices jα, jβ and form the
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linear combination as

bbi = αbbi,jα +βbbi,jβ .

The same applies for the domain data, i.e. for every domain
data set (di,j)

nd,i
j=1 :::::::

(di,j)
nd,i
j=1:

we compute840

ddi = αddi,jα +βddi,jβ .

Technically, we use the PETSc routines VecCopy,
VecScale and VecAXPY for this purpose, which is anal-
ogous to the interpolation of the transport matrices in Sec-
tion 6.5.845

Next, we rearrange the forcing data and the tracer vectors.
This is necessary since the combination of transport matrices
and water column models results in two different data align-
ments. For the application of a matrix to a tracer vector, all
profiles of a tracer are kept one behind the other. In contrast,850

to evaluate the tracer model the same profile of each tracer
must be kept in a contiguous piece of memory. Accordingly,
this has an effect on the forcing data as well. The routines for
rearrangement are provided within the softwares utilization
layer.855

Concerning the tracers, we need to copy from n separate
vectors to one (block diagonal) vector, where the profiles are
grouped by their index, i.e.[
(yy1,k)

np
k=1 . . . (yyn,k)

np
k=1

]
←→ ((yyi,k)ni=1)

np
k=1,

where yi,k :::
yi,k:denotes the kth profile of the ith tracer. More-860

over, after the evaluation of the biogeochemical model we
reverse the alignment for the transport step. The same situa-
tion occurs regarding the domain data. Again, we group the
domain data profiles by their profile index k, i.e.[
(dd1,k)

np
k=1 . . . (ddnd,k)

np
k=1

]
−→ ((ddi,k)ndi=1)

np
k=1865

where di,k ::::
di,k denotes a domain data profile. However, no

reverse copying is required here.
The boundary data is a slightly different case. Here, we

align boundary values, at which each is associated with the
surface of a water column, i.e.870 [
(b1,k)

np
k=1 . . . (bnb,k)

np
k=1

]
−→ ((bi,k)nbi=1)

np
k=1

where bi,k denotes a single boundary data value in contrast to
a whole profile. Analogously to the domain data, no reverse
copying is required in this case.

Subsequent, we loop over all profiles and evaluate the bio-875

geochemical model for every water column
:::::::
formally

:
using

the interface
::::::::
introduced

:::
in (9).

::::::
Within

::::
the

:::::::::::::
implementation,

::::
since

:::
we

::::
only

::::::
couple

::::::
models

::::
that

:::
are

::::::
written

::
in
:::::::

Fortran,
:::

we

:::
use

:::
the

:::::::::::
programming

::::::::::
counterpart

:
depicted in Listing 1. Fi-

nally, as already mentioned, we prepare the output for the880

transport step.

6.5 Transport step

The application of the transport matrices to tracer variables is
the second building block of the simulation. The individual
steps are combined in the TransportStep routine, which885

is applicable to both matrix types as shown in Algorithm 4.
On entry, we interpolate the user provided matrices to the
current point in time tj first, i.e. we assemble

A = αAjα +βAjβ

with the appropriate α, β and jα, jβ . Analogously to the in-890

terpolation of vectors we use the matrix variants MatCopy,
MatScale and MatAXPY for this purpose. The technical
details hereof has been already discussed at full length in
Siewertsen et al. (2013). Subsequent, we apply MatMult
to every tracer of the input variable yin:::

yin.895

In contrast to the interpolation of vectors, and generally to
all vector operations, each of the matrix operations has a sig-
nificant impact on the computational time. In Section 7.3 we
present results from profiling experiments that show detailed
information about the time usage of each operation.900

7 Results

In this section, we present results from numerical experi-
ments to verify the software. At first, we

:::
We use the intro-

duced interface to couple the transport matrix driver with
a well investigated biogeochemical model implementation.905

We compare the simulation results with others and
:::
suite

::
of

:::::::::::::
biogeochemical

:::::::
models.

:::
We

:
inspect the convergence be-

havior of both solvers included. Subsequently, we perform
speed-up tests to analyze the implemented load distribution.
A profiling of the main parts of the algorithm complements910

the initial verification.

::::::::::
Subsequent,

:::
we

:::::::
perform

:::::::::
speed-up

::::
tests

:::
to

:::::::
analyze

:::
the

::::::::::
implemented

::::
load

::::::::::
distribution

:::
and

:::::::
compare

::
it
::::
with

:::
the

:::::
TMM.

We continue by investigating the convergence control set-
tings of the Newton-Krylov solver and examine the solver’s915

behavior within parameter bounds. We finally present results
from optimization runs against a reference solution.

7.1 Setup

We assume the PETSc environment variables are set, the
toolkit is installed and the metos3d script is made available920

as a shell command.

7.1.1 Model
:::::::
Models

In order to test our interface, we decide to couple an

:::::
couple

:::
an

:::
N,

::::::::
N-DOP,

:::::::::
NP-DOP,

:::::::::
NPZ-DOP,

:::::::::::
NPZD-DOP

:::::
model

::::::::
hierarchy

::::
and

:::
an original implementation of a bio-925

geochemical model that is
::
to

:::
the

:::::::::
transport

::::::
driver.

::::
The

:::::
former

:::
is

:::::::::::
implemented

:::::
from

::::::
scratch

:::
for

::::
this

:::::::
purpose.

::::
The

::::::::
equations

:::
are

::::::
shown

::
in

:::::::::
Appendix

::
A.

::::
The

:::::
latter

::
is

:
used for
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the MIT General Circulation Model (cf. Marshall et al.,
1997, MITgcm) biogeochemistry tutorial and described in930

detail in Dutkiewicz et al. (2005). It has been widely
investigated, which gives us the possibility to easily compare
our results to those published by others. Moreover, we
assume the model is correctly implemented. In particular,
several experiments performed in (Kriest et al., 2010) and935

(Kriest et al., 2012) are based on its (slightly modified)
source code.

The model comprises five biogeochemical variables,
namely dissolved inorganic carbon (DIC), alkalinity (ALK),
phosphate (PO4), dissolved organic phosphorous (DOP) and940

oxygen (O2). In fact, we will use just PO4 and DOP here
since the concentrations of DIC, ALK and O2 are derived
from those two. The model introduces seven parameters
(cf. Table 19). We will denote it as the MITgcm-PO4-DOP
model.945

Generally, for every model implementation that is coupled
to the transport driver via the interface a new executable must
be compiled. Here, we follow the introduced

:::
use

:
a
:

conven-
tion for the directory structure to fit seamlessly into the

:
an

:
au-

tomatic compile scheme. Within the model directory of the950

model repository we create a folder named
:::
that

::
is
::::::

named

::::
after

:::
the

:::::::::::::
biogeochemical

::::::
model,

::::
i.e. MITgcm-PO4-DOP .

::
for

::::::::
instance. We implement a model wrapper for the original

source code and store it in a
:::::
Within

::::
this

::::::::
directory

:::
we

::::
store

::
the

::::::
source

:::::
code file named model.Fwithin that folder.

::
We955

:::
use

:::
this

::::::::
directory

:::::::
structure

:::
for

:::
all

::::::
models.

:
Overall, while the

file suffix implies a pre-processed Fortran fixed format, ev-
ery programming language that is supported by the PETSc
library will be accepted.

Finally, to compile all sources we invoke960

$> metos3d simpack MITgcm-PO4-DOP

::
for

:::::::
instance

:
and such create an executable named

metos3d-simpack-MITgcm-PO4-DOP.exe

that we use for all the following experiments. Specific set-
tings will be provided via option files.965

7.1.2 Data

All matrices and forcing data we use in this work are based
on the example material that is freely available at (Khati-
wala, 2013). This material originates from MITgcm simu-
lations and requires post-processing. We provide the prepa-970

ration scripts as well as the prepared data within the data
repository.

The surface grid of the used domain has a longitudinal and
latitudinal resolution of 2.8125◦, which results in 128× 64
grid points (cf. Figure 12). Note that the Arctic has been975

filled in. The depth is divided into 15 vertical layers that are
depicted in Table 17. This geometry translates to a (single)
tracer vector length of ny = 52749

:::::::::
nx = 52749

:
and the cor-

responding np = 4448 profiles. Moreover, the total volume

of the ocean is specified as V ≈ 1.174× 1018 m3, whereas980

the minimal and maximal volume of a grid box is Vmin ≈
8.357× 1011 m3 and Vmax ≈ 6.744× 1013 m3, respectively.
The temporal resolution is at ∆t= 1/2880, which is equiva-
lent to an (ocean) time step of 3 hours assuming that a year
consists of 360 days.985

The used MITgcm-PO4-DOP model determines the
number of tracers to n= 2 and the parameter count to m= 7
(cf. Table 19). The components of the combined tracer vector
are yPO4 and accordingly yDOP, i.e. y = (yPO4,yDOP). The

::::::::::
computation

::
of

::::
the photosynthetically available short wave990

radiation is
::
the

:::::
same

:::
for

:::
all

:::::::
models.

:
It
::

is
:

deduced from the
insolation, which is computed on the fly using the formula of
Paltridge and Platt (1976). Here, for the topmost layer lati-
tude and ice cover data is required, i.e. nb = 2. For the for-
mer we use a single latitude file, i.e. nb,1 = 1, and for the995

latter twelve ice cover files, nb,2 = 12.
Additionally, the depths and heights of the vertical lay-

ers are required, i.e. nd = 2 domain data sets. Each con-
sist of only one file, i.e. nd,1 = 1 and nd,2 = 1. The infor-
mation is used to compute the attenuation of light by wa-1000

ter, to determine the fluxes of particulate organic phosphorus
and to approximate a derivative with respect to depth. Note
that the order in which the data sets are provided is impor-
tant and must correspond to the order used within the model
implementation. For more information, an algorithm of a1005

very similar model can be found in Siewertsen et al. (2013).
Finally,

::::::::
Moreover, as previously mentioned, twelve implicit

transport matrices, i.e. nimp = 12, and twelve explicit trans-
port matrices, i.e. nexp = 12 are provided.

We always start a simulation at t0 = 0 and1010

perform nt = 2880 iterations per model year.
We initialize the variables with global mean
concentrations of y0, PO4 = 2.17 mmol P/m3 and
y0, DOP = 0.0001 mmol P/m3, respectively.

7.2 Solver1015

We begin our verification by computing a reference solution
for the parameter set ud that is depicted in Table 19.

:::::
steady

:::::
annual

:::::
cycle

:::
for

:::::
every

:::::
model

::::
with

::::
both

:::::::
solvers. Both solvers

are started with the same initial configuration.
Regarding the spin-up, we set no tolerance and1020

let the solver iterate for 10,000 model years, despite
the fact that usually 3,000 are regarded as sufficient
(cf. Bernsen et al., 2008). .

:
The Newton approach is set to a

line search variant and the Krylov subspace solver to GM-
RES. All other settings are left to default, in particular the1025

overall absolute tolerance is at 10−8 and the maximum num-
ber of inner iterations is 10,000.

Figure ?? shows the
:::
The

:::::::::
parameter

::::::
values

::::
we

:::
use

:::
for

::
the

:::::::::::::::::
MITgcm-PO4-DOP

::::::
model

:::
are

:::::::
depicted

::
in

:::::
Table

:::
18

:::
and

:::::
named

:::
ud::::::

therein.
:::::
Table

:::
19

::::::
depicts

::
the

:::::::::
parameter

:::::
values

::::
used1030

::
for

:::
the

:::
N,

:::::::
N-DOP,

::::::::
NP-DOP,

:::::::::
NPZ-DOP,

:::::::::::
NPZD-DOP

:::::
model

::::::::
hierarchy.

::
If

:::
not

::::::
stated

::::::::
otherwise

:::
the

::::::
initial

:::::
value

::
is

:::
set

::
to
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:::::::::::::::
2.17 m mol P m−3

:::
for

::
N
:::

or
::::
PO4

::::
and

:::::::::::::::::
0.0001 m mol P m−3

::
for

:::
the

:::::
other

::::::
tracers.

:

:::
For

:::
the

:::::::::::::::::
MITgcm-PO4-DOP

::::::
model

:
a
:::::::::::

comparison
::
of

:::
the1035

convergence towards a periodic steady state
:::::
steady

::::::
annual

::::
cycle

:::
for

:::::
both

::::::
solvers

::
is
::::::

shown
:::

in
::::::
Figure

::
13. Both solver

obviously converge towards the same solution
::
We

:::::::
observe

:::
that

:::
the

::::::::
solutions

:::::::
converge

::
to

:::
the

:::::
same

::::::::
difference

::
in

:::::::
between

:::::::::
consecutive

::::::::
iterations. The difference is generally measured1040

using the unweighted norm of initial states consecutive
model years

::::::::
Moreover,

::::::
Table

:::
16

:::::::
shows

::::
the

:::::::::
difference

:::::::
between

::::
both

::::::::
solutions

:::
in

:::::::::
Euclidean

::::::
norm.

:::::::::::
Additionally,

:::::
Figure

:::
19

::::::
depicts

:::
the

:::::::::
difference

:::::::
between

:::::
both

:::::::
solutions

:::
for

::
the

:::::::
surface

::::
layer.

::::::
Except

:::
for

:::
the

:::::::::
numerical

::::
error,

::::
both

::::::
solvers1045

::::::::
obviously

:::::::
compute

:::
the

:::::
same

:::::::
solution.

:

::::::
Figures

:::
14

:::
and

::
15

:::::
show

:::
the

:::::::::::
convergence

:::::::
behavior

::
of

::::
both

::::::
solvers

:::
for

:::
the

::
N
:::::::::::

respectively
:::::::
N-DOP

::::::
model.

:::::
There

:::
is

::
no

:::::::
essential

::::::::
difference

::
in

::::::::::
comparison

::
to

:::
the

::::::::::::::::
MITgcm-PO4-DOP

::::::
model.

::::
An

:::::::::
inspection

::
of

::::
the

::::::
surface

:::::::
Figures

::::
110

::::
and

:::
1111050

:::::::
confirms

::::
this

::::::::::
impression.

:::::
There

::
is

:::
no

:::::::::
peculiarity

::::::
shown

::
in

::::
Table

:::
16

:::::
either.

:

::::::::
However,

:::
for

::::
the

::::::::
NP-DOP

::::::
model

::::::
Figure

:::
16

::::::
shows

::
a

:::::::
different

::::::::
behavior

::
of

:::
the

::::::::::::::
Newton-Krylov

:::::
solver

::
at
::::

the
:::
end

::
of

:::
the

:::::::
solution

:::::::
process. Additionally, every 100 years we1055

computed the weighted norm between whole trajectories
for comparison.

:
A
::::::

closer
:::::::::
inspection

:::::::
reveals

:
a
:::::

peak
:::::

every

::
30

::::::
model

:::::
years,

::::::
which

:::::::::
obviously

::::::
results

::::
from

:::
the

:::::::
settings

::
of

:::::
inner

::::::
solver,

:::::
where

::::::::
GMRES

::
is
:::

set
:::

to
:::::::
perform

::
a

:::::
restart

::::
every

:::
30

:::::
years

::
by

:::::::
default.

:::::::
Surface

:::::
Figure

::::
112

:::
and

:::::
Table

:::
16,1060

:::::::
however,

:::
do

:::
not

:::::::
indicate

:::
any

:::::
effect

::
on

:::
the

::::::::
solution.

:::
The

:::::::::
NPZ-DOP

::::
and

::::::::::
NPZD-DOP

:::::::
models

::::
show

::
a
:::::::
different

:::::::
behavior

::::::::
regarding

:::
the

:::::::
Newton

::::::
solver.

:::
For

::::
both

:::::::
models,

:::
the

:::::
solver

::::
does

::::
not

:::::::
converge

:::::
with

::::::
default

:::::::
settings

::
as

::::::
shown

::
in

:::::
Figure

:::
17

:::::
(top)

::::
and

::::::
Figure

:::
18

:::::
(top).

::
It
::::

can
:::

be
::::
seen

::::
that1065

::
the

:::::::::
reduction

::
of

::::
the

:::::::
residual

:::
per

::::
step

:::
is

::::
quite

:::::
low,

:::::
which

:::::
results

::
in
::

a
::::
huge

:::::::
number

::
of
:::::::::

iterations.
:::::
Here,

:::
the

::::::
solver

:::
was

::::::
stopped

:::::
after

:::
50

::::::::
iterations

::::
(the

::::::::
default),

:::::
which

:::::::
already

::
is

:
a
::::
high

:::::::
number

::::
for

::::::::
Newton’s

::::::::
method.

::::
The

::::::
reason

::
is
::::

that

::::::::::
convergence

::
of

:::
the

:::::::
method

:
–
::::
even

::
in
:::
its

::::::::
so-called

::::::::
globalized1070

::
or

::::::
damped

:::::::
version

::::
used

::::
here

:
–
::::
still

::::
may

::::::
depend

::
on

:::
the

:::::
initial

::::
guess

::::
y0.

:::
We

:::::
used

::
a

:::::::
different

:::::
one,

:::::
which

::::
was

:::::::::
successful

::
for

:::
the

:::::::::::
NPZD-DOP

::::::
model,

:::
see

::::::
Figure

:::
18

::::::::
(middle).

:::
For

:::
the

::::::::
NPZ-DOP

::::::
model,

::
it
::::
still

:::
was

::::
not,

:::
see

:::::
Figure

:::
17

::::::::
(middle).

However,
:
a

::::::
second

::::
and

::::::
much

::::::
easier

::::
way

:::
to

:::::::
achieve1075

::::::::::
convergence

::::
can

::
be

::::::::
deduced

::::::
already

:::::
from

::::::
Figure

:::
17

::::
(top)

:::
and

::::::
Figure

:::
18

:::::
(top).

:::::
The

:::::::
stopping

::::::::
criterion

:::
of

:::
the

:::::
inner

:::::::
iterations

:::
of

:::
the

:::::::
Newton

:::::
solver

:::
is

:::
less

:::::::::
restrictive

::
if

:::
the

:::
last

::::::
Newton

:::::::
iteration

::::
was

:::
not

::::
very

:::::::::
successful,

:::::
which

::
is

::::::::
obviously

::
the

:::::
case

::::
here.

::::
The

:::::::
number

::
of

:::::
inner

::::::::
iterations

::::
and

::::
thus

:::
the1080

:::::::
accuracy

:::
of

:::
the

:::::::
Newton

:::::::::
direction

::
is

:::::::::
improved

:::::
when

:::
the

::::
inner

:::::::
criterion

:
(10)

::
is

:::::::::
sharpened,

:::
thus

::::::::
somehow

:::::::::::
contradicting

::
the

::::
idea

:::::::::
formulated

::
in
::::::::::::::::::::::::
Eisenstat and Walker (1996).

::::
This

:::
can

::
be

:::::
easily

::::::::
achieved

:::
by

:::::::::
decreasing

:::
γ,

::::
here

:::
to

:::::::
γ = 0.3.

::::
This

:::::
tuning

:::::
now

:::
led

:::
to

:::::::::::
convergence,

::::
see

::::::
Figure

:::
17

::::::::
(bottom)1085

:::
and

::::::
Figure

:::
18

::::::::
(bottom).

:::::
With

::::
this

:::::::
settings,

:::
the

:::::::::
respective

:::::::
solutions

:::
are

:::
the

:::::
same

:::
as

:::
the

::::
ones

:::::::
obtained

:::
by

:::
the

:::::::
spin-up,

::::
when

:::::::::
numerical

::::::
errors

:::
are

::::::::
neglected

::::
(see

:::::::
Figures

::::
113

:::
and

::::
114).

::::
This

::
is
::::
also

:::::::::
confirmed

::
by

:::::::::
evaluating

:::
the

:::::::::
differences

::
in

::
the

::::::
norm,

:::
see

:::::
Table

:::
16.1090

::::::
Overall,

:
we observe that the Newton-Krylov solver does

not reach the default tolerance and iterates unnecessarily
for 10,000 model years within the last Newton step. Thus,
we limit the inner Krylov iterations to 200 in the follow-
ing experiments. Moreover,

::
for

::::::
further

::::::::::::
investigations

::::
with1095

::
the

:::::::::::::::::
MITgcm-PO4-DOP

::::::
model

:
we change the convergence

settings to get rid of the over-solving that we observe at the
beginning. Referring to this, more detailed experiments are
presented in Section 7.5.

Nevertheless, the results resemble the observational data1100

taken from the World Ocean Database (Boyer et al., 2013),
which were mapped onto a 2.8125◦ grid and interpolated
in space and time for comparison. Figure ?? shows the
concentration of phosphate within the first layer. Here,
the data is shifted to show Greenwich (0◦) at the center.1105

Moreover, Figure ?? depicts slices through the Pacific,
Atlantic and Indian. Consequently, we assume the coupling
of the biogeochemical model to the transport driver was
successful.

7.3 Profiling1110

Confident that the compiled executable produces correct
results,

::
In

::::::::
following

::::
two

:::::::
sections we investigate some tech-

nical aspects of the implementation more closely. First of all,
we are interested in the distribution of the computational time
among the main operations of a model year.1115

For this, we perform a profiled sequential run
::
for

::::
each

:::::
model at which we iterate for 10 model years. The analysis of
the profiling results is shown in Figure ??

::::::
Figures

:::
117

:
-
::::
115.

We
:::::::::
Regarding

:::
the

:::::::::::::::::
MITgcm-PO4-DOP

:::::
model

::::
for

:::::::
instance,

::
we

:
observe that the biogeochemical model takes up 40%1120

of the computational time. The interpolation of matrices
(MatCopy, MatScale and MatAXPY) amounts to approx-
imately a third. The matrix vector multiplication (MatMult)
takes up a quarter of the computations and all other opera-
tions amount to 1.5%

::::
0.5%.1125

::::::::
Moreover,

:::
we

::::::::
recognize

::::
that

:::
the

::::
more

::::::
tracers

:::
are

:::::::
involved

::
the

:::::
more

:::
the

:::::
matrix

::::::
vector

:::::::::::
multiplication

::::::::
becomes

::::::::
dominant.

:::
For

:::
the

:
N
::::::
model

:
it
:::::
takes

::
up

::::::
19,8%

::
of

:::
the

::::::::::::
computational

::::
time,

:::::::
whereas

::
for

:::
the

:::::::::::
NPZD-DOP

:::::
model

:::
the

:::::::::
MatMult

:::::::
operation

:::::::
amounts

::
to

:::::::
56,7%.

:::
The

:::::::
possible

:::::::::::
implications

:::
are

::::::::
discussed1130

::
in

::::::
Section

::
8.

:

This profiling capability was also used as the software was
ported by Siewertsen et al. (cf. 2013) to an NVIDIA graphics
processing unit (GPU). The authors investigated the impact
of the accelerator’s hardware on the simulation of biogeo-1135

chemical models. The work comprises a detailed discussion
on peak performance as well as memory bandwidth and in-
cludes a counting of floating point operations.
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7.4 Speed-up

Regarding the solver experiment, we have chosen the number1140

of processes as such that the computations become feasible.
In this section, we investigate the performance of the load
balancing algorithm in detail .

::
and

::::::::
compare

::::
the

::::::
results

::::
with

:::
the

:::::::
parallel

:::::::::::
performance

:::
of

:::
the

::::::
TMM.

::::
We

:::::::
compile

::::
both

::::::
drivers

::::
with

:::
the

:::::
same

:::::::::::::
biogeochemical

::::::
model.

::::
For

:::
this1145

::::::
purpose

:::
we

::::::
choose

:::::::::::::::::
MITgcm-PO4-DOP

::::
since

::
it

::
is

:::
part

::
of

:::
the

:::::
TMM

::
as

::::
well

::::
and,

:::::::::::
consequently,

:::
we

::::
have

:::
the

:::::
same

:::::
setup.

:

We run tests on two different hardware platforms. The first
hardware is an (older) AMD® Barcelona architecture that
consists of Opteron® 2352 CPUs with 4 cores running at1150

2.1 GHz
::
the

::::
tests

:::
on

:
a
::::::::
hardware

:::
that

:::::::
located

:
at
:::
the

:::::::::
computing

:::::
center

::
of

::::
Kiel

:::::::::
University. The second

::
It is an Intel® Sandy

Bridge EP architecture with Intel Xeon® E5-2670 CPUs that
consist of 8

::
16 cores running at 2.6 GHz. Both are integrated

into a computer cluster located at the computing center of the1155

university of Kiel.
On each hardware,

:::::::::
Regarding

:::
our

::::::::::::::
implementation

:
we

perform 10 tests with respect to a specific number of
processes. Regarding the AMD Barcelona hardware we use
1 to 184 cores, on the Intel Sandy Bridge EP hardware each1160

simulation run is performed using 1 to 256 cores. Each test
consists of running simulations

:
a
:::::::::
simulation

::::
run

:
of three

model years, at which each year is timed separately. For the

:::::
TMM

:::
we

:::
use

::
1
::
to

::::
192

:::::
cores

:::
and

::::
run

:
5
:::::

tests
::
on

:::::
each

::::
core.

::::
Here,

:::
we

::::
use

:::
the

:::::
given

::::::
output,

::::::
which

::
is

:::
the

::::::
timing

:::
for

:::
the1165

:::::
whole

::::
run.

::::::
Overall,

:::
for

:::
the

:
calculation of the speed-up and efficiency

results we use the smallest measured time of these 30 tests,
i.e. the best performance per number of processes.

All
:::::::
minimum

:::::::
timings

::::
for

::
a

:::::::
specific

:::::::
number

:::
of

:::::
cores.1170

::::::::
Moreover,

:::
all

:
timings are related to

::
the

::::::
timing

:::
of

:
a se-

quential run. The absolute sequential minimum timings
are t1 = 646.592s (AMD) and t1 = 153.038s (Intel),
respectively. For a set of measured computational times
(ti)

N
i=1 with N = 184

:::::::
N = 192

:
or N = 256 we calculate the1175

speedup as si = t1/ti and the efficiency as ei = 100 ∗ si/i.
Additionally, referring to the implemented load distribu-

tion
::
(cf.

:::::::
Section

::::
6.2), we compute the best possible ratio be-

tween a sequential and a parallel run. For all number of pro-
cesses, i.e. i= 1, . . . ,260, we compute the load distribution1180

using Algorithm 1 and retrieve the maximum (local) length
ni,max. For the speed-up we divide the vector length by this
value, i.e. si = ny/ni,max, and for the efficiency we again
calculate ei = 100 ∗ si/i.

Figure 118 depicts the ideal, best possible
::::::::
theoretical1185

and actual speedup respectively efficiency. Regarding the
implemented load distribution a good

::::::::::
(theoretical)

:
perfor-

mance over the whole range of processes can be observed.
However

::::::::
Moreover, we recognize that on the AMD hardware

a parallel run never reaches the theoretically possible1190

speed-up. The best performance is achieved between 90
and 100 processes, at which the speed-up is at 70 and

the efficiency slightly over 70%. Thereafter the speed-up
remains the same but the efficiency decreases.

In contrast, a parallel run
::
of

::::::::
Metos3D

:
on the Intel hard-1195

ware reaches between 100 and 140 processes
::::
cores

:
almost

best performance. In this range the efficiency is about 95%
and the speed-up nearly corresponds to the number of pro-
cesses. After that, the efficiency drops constantly as observed
for the AMD architecture. Indeed, the speed-up still rises to1200

slightly over 160 but requires at least 200 processes to reach
this factor.

::
In

:::::::
contrast,

::::
the

:::::::::::
performance

::
of

::::
the

:::::
TMM

::
is
:::::

poor.
::::

The

::::::::
efficiency

:::::
drops

:::::
from

:::
the

:::::::::
beginning

:::
and

::
a
:::::::
speedup

::::::
higher

:::
than

:::
40

::
is
::::::

never
:::::::
reached.

:::::
From

::::
120

:::::
cores

:::
up

::::::::
Metos3D

::
is1205

:
at
:::::

least
::
4
:::::
times

::::::
faster.

:
Interestingly, there is a significant

drop in performance at the beginning on both architectures
::
for

::::
both

::::::
drivers. In particular, each hardware shows a different

pattern. The possible implications are shortly discussed in
Section 8. However, since the results give us a good orienta-1210

tion anyway this effect is not investigated further. Overall, as
already indicated by the sequential runs, the Intel hardware
is the obvious choice for subsequent experiments.

7.5 Convergence control

After a basic verification and a review of technical aspects1215

of our implementation, we investigate the settings to control
the convergence of the Newton-Krylov solver.

:::::
Again,

:::
we

:::
use

::
the

:::::::::::::::::
MITgcm-PO4-DOP

:::::
model

:::::
only. Our intention is to elim-

inate the over-solving that we observe during the first 200
iterations in Figure ??

::
13. This effect occurs, if the accuracy1220

of the inner solver is significantly higher than the resulting
Newton residual (cf. Eisenstat and Walker, 1996). The re-
lation between those two is controlled by the γ and the α
parameter depicted in Equation (10).

Hence, we compute the reference solution from Sec-1225

tion 7.2 with different values of γ and α to investigate their
influence on the convergence behavior. We set the overall tol-
erance to the measured difference of consecutive states after
3,000 model years of spin-up, i.e. approximately 9.0×10−4.
We let the value of γ vary from 0.5 to 1.0 in steps of 0.1 and1230

α is chosen from 1.1 to 1.6 in steps of 0.1 as well. This is a
total of 36 model evaluations.

Figure 119 depicts the required model years and Newton
steps as a function of γ and α. We observe that the overall
number of years decreases, as both parameters tend to 1.01235

and 1.1, respectively. In contrast, the number of Newton steps
increases, i.e. the Newton residual is computed more often
and the inner steps become shorter.

Consequently, since the computation of a residual is neg-
ligible in comparison to the simulation of a model year, we1240

focus on decreasing the overall number of model years. A
detailed inspection of the results reveals that for γ = 1.0 and
α= 1.2 the solver reaches the set tolerance after approxi-
mately 450 model years, which is significantly less than 600
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if using the default settings. Thus, we use these values for the1245

next experiments
:::::::::
experiment.

7.6 Parameter samples

As mentioned in the introduction, one of the strategies to
accelerate the computation of periodic steady-states was
to utilize a Newton approach. After an initial verification,1250

we are confident that the Newton-Krylov solver is working
correctly and, with optimal settings, at least 6 times faster
than the spin-up (fixed point iteration).

However, until
::::
Until

:
now we solved the given model

equations for the referenceparameter set ud :::
one

:::::::::
(reference)1255

::::::::
parameter

:::
set

:
only. During an optimization a solution must

be computed for various parameter sets. Thus, we perform
the next experiments in order to study the solver’s behavior
with regard to other model parameters.

::::::
Again,

:::
we

:::
use

:::
the

::::::::::::::::
MITgcm-PO4-DOP

::::::
model

::::
only.

:
For this purpose, using the1260

MATLAB® routine lhsdesign, we create 100 Latin Hy-
percube (cf. McKay et al., 1979) samples within the bounds
that are depicted in Table 19.

:::
18. We set the overall tolerance

again to a value that is comparable with 3,000 spin-up itera-
tions and let the Newton solver compute a solution for each1265

parameter sample
Figure 120 shows histograms of the total number of model

years respectively Newton steps required to solve the model
equations. We observe that most computations converge in
between 400 to 550 model years and require 10 to 30 New-1270

ton steps. Interestingly, regarding the latter there is a high
peak around 15 and a smaller peak around 12. Moreover,
we recognize some outliers in both graphs. Nevertheless, all
started model evaluation converged towards a solution within
the desired tolerance. Thus prepared, we carry out the last1275

experiment.

7.7 Twin Experiment

8 Conclusions

Finally, after a verification of the spin-up and the Newton
approach, we perform a twin experiment with each1280

solver. We separately compute a reference solution with
specific settings and start an optimization run (using the
same settings) against it

::
We

::::::::
designed

::::
and

::::::::::::
implemented

:
a

::::::::
simulation

::::::::::
framework

:::
for

:::
the

::::::::::
computation

:::
of

:::::
steady

::::::
annual

:::::
cycles

:::
for

::
a
:::::::
general

::::
class

:::
of

::::::
marine

:::::::::
ecosystem

:::::::
models

::
in1285

::::
3-D,

:::::
driven

::
by

::::::::::::
pre-computed

::::::::
transport

:::::::
matrices

::
in

::
an

::::::
off-line

::::
mode. Regarding the

::::
The

:::::::::
framework

::::::
allows

::::::::::
computation

::
of

::
the

::::::
steady

::::::::
cycle(s)

:::
by

:
a
:

spin-up we let the solver iterate
for 3,000 model years and set no tolerance once again

::
or

:
a

::::::::
globalized

:::::::
Newton

:::::::
method. The Newton solver is set up as1290

described in Section 7.5
:::::::
software

::
is

:::::::::
completely

:::::::
realized

::
as

::
(or

::::
using

:::::::::
available)

::::
open

::::::
source

::::
code.

We consider the following optimization problem:

min
u∈U

J(u) ,

:::::::::
introduced

::
a

::::::::
software

::::::::
interface

:::
for

::::::
water

::::::::::::
column-based1295

:::::::::::::
biogeochemical

::::::
models.

:
where

J(u) = 1
2 ||y(u)−yd||22,I×Ω

and the admissible set is defined as

U = {u ∈ Rm : bl ≤ u≤ bu} .

Here, yd = y(ud) is the reference solution computed before1300

and bl respectively bu are the lower and upper bounds we
impose during the optimization

:::
On

::::
one

:::::
hand,

:::
we

:::::::
showed

::
the

:::::::::::
applicability

::::
and

::::::::
flexibility

::
of

::::
this

:::::::
interface

:::
by

:::::::
coupling

::
the

::::::::::::::
biogeochemical

:::::::::
component

::::
used

::
in

:::
the

::::::::
MITgcm

::::::
general

:::::::::
circulation

:::::
model

::
to

:::
the

:::::::::
simulation

::::::::::
framework. The norm is1305

computed using the whole trajectory and both optimization
runs are started with u0 (cf. Table 19)

::
On

:::
the

:::::
other

:::::
hand,

::
we

::::::
coupled

::::
own

::::::::::::::
implementations

:::
of

:::
five

:::::
other

:::::::::::::
biogeochemical

::::::
models

:::::
(also

:::::
used

:::
in

:::::::::::::::::
Kriest et al. (2010))

::::
with

::::::::
different

:::::::::
complexity

::
to

:::::
show

:::
the

:::::::::
interface’s

:::::::::
generality.

::::
Their

::::::
source1310

::::
code

::
is

:::
also

::::::::
available

::::::
within

:::
the

::::::::
software,

:::
and

::::
may

:::::
serve

::
as

::::::::
templates

::
for

::::::::::::::
implementation

::
or

:::::::
adaption

::
of

:::::
other

:::::::
models.

To solve the problem we use MATLAB’s
fmincon routine for constraint nonlinear
optimization, where we set the algorithm to active-set1315

(cf. Nocedal and Wright, 2000, pp. 308)
:::
We

:::::::::::::
implemented

:
a
::::::::
transient

:::::
solver

::::::
based

::
on

::::
the

::::::::
transport

::::::
matrix

::::::::
approach,

:::::
where

:::
all

:::::::
matrix

:::::::::
operations

::::
and

::::
the

::::::::::
evaluation

:::
of

:::
the

:::::::::::::
biogeochemical

::::::::
models

::::
are

::::::::::
performed

::::::
with

:::::::
spatial

:::::::::::
parallelization

::::
via

:::::
MPI

::::::
using

:::
the

:::::::
PETSc

:::::::
library. It is1320

:::
The

:::::::
needed

::::::::
transport

::::::::
matrices

:::
are

:::::::
directly

::::::::
available

::::
and

::::::
require

::
no

:::::::::::::
pre-processing.

:::
We

:::::::
realized

::::
both a quasi-Newton approach, at which the

inverse of the Hessian is approximated using Broyden’s
method (cf. Dennis and Schnabel, 1996, pp. 169)

::::::
spin-up

:::
(or1325

:::::::::
fixed-point

::::::::
iteration)

:::
and

:
a
:::::::::
globalized

:::::::
Newton

::::::
solver

::
for

:::
the

::::::::::
computation

::
of

::::::
steady

::::::
cycles. In both twin experiments we

approximate the gradients with forward finite differences
and a step size that equals the square root of the
machine precision.

::
We

:::::::::
compared

::::
these

::::::
solvers

::::
and

::::
made

:::
the1330

::::::::
following

:::::::::::
observations:

:
Regarding the Newton solver, one

additional experiment is carried out with a relative step size
of 10−4

::::
Both

::::::
deliver

:::
the

:::::
same

::::::
results

::::
(up

::
to

::
a
:::::::::
reasonable

::::::::
precision)

::
on

:::::::::::
convergence.

Figure ?? shows the result of the optimization run(s)1335

using the
:::
The

:
spin-up solver

::::::::
converges

:::::
with

:::::::
standard

::::
sets

::
of

::::::::::
parameters,

:::::
taken

:::::
from

::::::::::::::::
Kriest et al. (2010),

::::
for

::::::
equally

:::::::::
distributed

:::::
values

:::
for

::::
each

:::::
tracer. Due to the time limitation

of the used batch system, we had to restart the first run, which
has been stopped after 200 hours

::::
The

::::::
Newton

::::::
solver

::::::
showed1340

::
the

:::::
same

::::::::
behavior

:::
for

:::
the

::::
four

::::::
models

::
of

:::::
lower

::::::::::
complexity.
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Thereby, the approximation information about the Hessian
was lost, which explains the different path that is taken by the
second run.

:::
For

:::
the

:::::
other

::::
two,

::
it

:::
did

:::
not

::::::::
converge

::::
with

:::
the

:::::::
standard

::::::
setting

::
of

:::
its

:::::::::
parameters

::::
and

:::
the

:::::::::
mentioned

:::::
initial1345

:::::::::
distribution

:::
of

::::::
tracers.

:
However, we observe a convergence

of the parameters towards their reference values. At the
last optimization step they are u = (0.499

:::
For

::::
both

:::
of

::::
these

:::
two

:::::
more

::::::::
complex

:::::::
models,

:::::::::::
convergence

::::
was

::::::::
achieved

::
by

::::::::
increasing

::::
the

:::::::
number

::
of
::::::

inner
::::::::
iterations

:::
in

:::
the

:::::::
Newton1350

:::::
solver, 2.016, 0.670, 0.502, 30.461, 0.019, 0.858).

::::
which

::
is

::::::
realized

:::
by

:::::::::
decreasing

:::
the

::::::::
parameter

::
γ

::
in (10). Here,

:::
For

:::
one

::
of

:::::
these

:::::::
models, the values are round off to three decimal

places.
::::
same

:::::
could

::
be

::::::::
achieved

::
by

::::::::
choosing

:
a
:::::::
different

:::::
initial

:::::
guess.1355

Figure ?? depicts the attempt to minimize the cost
function using the Newton solverfor model evaluation. Both
optimization runs finish because the predicted change in the
objective function is less than 10−6, which is

:::::::::
Concerning

:::::::::::
performance,

:
the default value of the function tolerance.1360

They need about 430 respectively 470 model evaluations,
which corresponds to slightly more than 210,000 overall
model years each. However, both attempts obviously fail
to identify the reference parameter set

:::::::
Newton

:::::
solver

::::
was

::::
about

::
6
:::::
times

:::::
faster

:::
for

:::
all

::::::
models. Here, based on the two1365

experiments, a detailed analysis is hardly possible.
::
It

:::
can

::
be

::::::::
concluded

::::
that

:::
the

:::::::
Newton

:::::::
method

:::::::
requires

::::
more

::::::::
thorough

:::::
solver

:::::::::
parameter

::::::
setting

:::
for

::::::::
complex

:::::::
models,

::::
but

::::
then

::
is

:::::::
superior

::
in

::::
any

::::
case,

::
at
:::::

least
:::
for

:::
the

::::::::::
considered

::::::::
parameter

:::
sets.

:
They provide only first clues (cf. Section 8).1370

In order to fundamentally tackle the problem of parameter
identification for marine ecosystem models in 3-D, we
introduced a general biogeochemical programming interface
that fits into the optimization context. Moreover, we
implemented a comprehensive parallel solver software for1375

periodic steady-states that uses the interface to couple marine
ecosystem modelsto a transport matrix driver.

We validated the new implementation using a simple
biogeochemical model knowing full well that the model
is too simple for the intended purpose. Referring to this,1380

preliminary experiments with more complex descriptions of
the marine ecosystem, as the O2-NPZD-DOP model used by
Kriest et al. (2010) for instance, did not provide new insights
regarding a basic verification. On the contrary, they further
complicated the investigation and were thus not described1385

here.
We primary focused on the technical aspects of the

software, the employed solvers and, finally, the usage of each
solver for parameter identification

:::::
studied

::::
the

::::::::::
dependency

::
of

:::
the

:::::::
Newton

:::::::::::
performance

::::
with

:::::::
respect

::
to

:::
the

::::
two

:::::
solver1390

:::::::::
parameters

::::
α,γ

:::
in

:
(10)

::
for

::::
one

:::::::::
exemplary

::::::
model. Here,

we have seen how useful the inherited profiling capability
can be to access the computational complexity of a new
model implementation

::::
With

:::
an

::::::
optimal

::::::
choice

:::::::
derived

::::
from

::::
these

:::::::::::
experiments

:::
(for

::::
one

::::::
model

:::::::::
parameter

::::
set),

:::
we

::::
then1395

::::::::::
investigated

::
the

::::::::::
dependency

:::
of

:::
the

::::::
needed

::::::
Newton

::::::::
iterations

:::
and

::::::
overall

:::::::
model

:::::
years

:::
for

::::
100

:::::
latin

:::::::::
hypercube

::::::
model

::::::::
parameter

:::::::
samples. Moreover, the performed speed-up tests

revealed that a parallel hardware needs to be carefully
inspected before it is used for numerical experiments. For1400

instance, using the Intel architecture, it would unfavorable
to split 128 available processes into 8 separate experiments.
Despite a perfectly working load balancing this would result
in only 50% of the possible performance.

Furthermore, regarding the Newton solver, model1405

evaluations with different parameter samples and control
settings confirmed what has already been stated by
Kelley (2003) for instance

::::
This

:::::
test

:::
is
::::::::::

important
::::

for

::
the

:::::::::
usability

::
of
::::

the
::::::::

Newton
:::::::
method

:::
for

::::::::
example

:::
in

::
a

::::::::::
optimization

:::
run

::::::
where

::::::
model

:::::::::
parameters

:::
are

::::::
varied

::
by

:::
the1410

::::::::
optimizer. The PETSc library provides a flexible and robust
solver implementation that, in our case, solves the given
nonlinear equations at least 6 times

:
It

::::::
turned

:::
out

::::
that

::::
there

:
is
::
a
:::::::
variance

::
in

:::
the

:::::::
needed

::::
steps

::::
and

::::
thus

:::
the

::::::
overall

:::::
effort,

:::
but

:::
that

:::::
there

:::
are

::
no

:::::::
extreme

::::::::
outliers.

:::
We

::::::::
conclude

:::
that

:::
the1415

::::::
Newton

:::::::
method

::
–
::
at

:::::
least

:::
for

::::
this

:::::
model

::
–
::

is
::::::::::

appropriate

::
for

::::::::::::
optimization,

::::
and faster than the fixed point iteration.

::::::
usually

:::::
robust

:::::::
spin-up.

:

However, concerning the twin experiments, we must
recognize that both solving approaches have their own1420

specific difficulties with regard to a derivative based
black-box optimization

::
We

:::::::
further

:::::::
analyzed

:::
the

::::::::::
proportions

::
in

::::
time

:::::
that

::::
the

::::::::
different

::::::
pieces

:::
of

::::
the

:::::::::
simulation

:::
in

:::
one

::::::
model

:::::
year

::::
need. Note thatthe chosen optimization

approach was somehow ”natural”
::
It

::::::
turned

:::
out

:::::
that,

::::
with1425

::::::::
increasing

:::::::
number

:::
of

::::::
tracers,

::::
the

:::::::::::
matrix-vector

:::::::::
operations

:::::::
dominate

:::::
and

::::
thus

:::::
have

::::
the

:::::
most

::::::::
potential

::::
for

::::::
further

::::::::::
performance

::::::
tuning. This work focused on the computation

of periodic steady-states, i.e. mere model evaluations, and
we used a model that is smooth enough, i.e. for which1430

derivative information is available
:
is
:::::::

despite
:::
the

::::
fact

::::
that

::
the

:::::::::
transport

:::::::
operator

::::
for

:::::
every

::::::
tracer

::
is

::::
the

:::::
same. The

intention was to avoid a whole survey of optimization
methods including a variety of derivative-free approaches
(cf. Rios and Sahinidis, 2013).1435

Howsoever, although a finite differences approximation
of gradients works fine with the fixed point iteration, it
is computationally still too complex. Overall, more than
951,000 model years were simulated during the spin-up twin
experiment. The approach may be easy to realize, but it1440

clearly consumes to many computational resources. At least,
it shows that the model parameters can be recognized.

Here, the obvious idea would be to take coarser time steps
as implied by (Khatiwala, 2007). However, new transport
matrices need to constructed for this purpose.

:
it

::::
still

:::
has1445

::
to

::
be

:::::::::
evaluated,

::::::
whose

:::::
effort

::
is

::::::::::
proportional

::
to
::::

the
::::::
number

::
of

::::::
tracers

::
in

:::
the

::::::
model.

:
Indeed, the appropriate scripts are

provided in the data repository of Metos3D, but once again,
not to further complicate a basic verification the approach
was not discussed here

:
In

:::::::::
contrary,

:::
the

::::::::::::::
biogeochemical1450
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:::::::::
interactions

:::
in

:::
the

::::::::
nonlinear

::::::::
coupling

:::::
terms

:::
qj ,::::::

which
:::
are

:::::
mostly

::::::::
spatially

:::::
local,

::::::
become

::::
less

:::::::::::::::::
performance-relevant.

Moreover, due to the fact that a coarser time step may
lead to inaccurate results, a Newton solver was integrated
into the software

::::::
Finally,

:::
we

:::::::::::
implemented

::
a
::::
load

::::::::
balancing1455

:::
that

:::::::
exploits

:::
the

:::::::
different

::::::
depths

::
of

:::
the

:::::
water

:::::::
columns

::
in
:::
the

:::::
ocean

:::
that

::::::
result

::
in

::::::::
different

::::::
lengths

:::
of

:::
the

::::::::::::
corresponding

:::
data

:::::::
vectors. And, as it turned out, a model evaluation using

a Newton approach is much faster
:::
With

::::
this

::::::::::
balancing,

:
a

:::::
nearly

:::::::
optimal

:::::::
speed-up

:::
by

:::::
spatial

::::::::::::
parallelization

:::
up

::
to

::::
about1460

:
a
::::::::::
comparably

::::
high

:::::::
number

:::
of

:::
128

:::::::::
processes

::::
was

:::::::
possible.

However, the employed optimizer apparently struggles with
the approximation of gradients by finite differences using this
solving approach. A closer inspection of the results reveals
that the computed gradients differ from those using a fixed1465

point iteration. Here, a separate investigation is necessary.

::::
This

::
is

:
a
:::::
huge

::::::::
difference

:::
to

:::
the

:::::::::::
performance

::::
with

:::::::
standard

:::
load

:::::::::
balancing.

:

Furthermore, usually the employment of pre-conditioners
must be taken into account, as has already been discussed1470

by Khatiwala (2008)
:::::::::::
Summarizing,

::::
the

::::::::
presented

::::::::
software

:::::::::
framework

::
is

:::
an

::::::::::
appropriate

::::
tool

::
to

:::
be

::::
used

:::
in

::::::::
parameter

::::::::::
optimization

::::
and

::::::
model

::::::::::
assessment

::::
runs. Indeed, PETSc

offers several own pre-conditioner implementations or at
least the possibility to interact with the inner solver at the1475

appropriate location
:
It
::::

has
::::
high

:::::::::
flexibility

::::
w.r.t.

:::::::
models

:::
and

:::::
steady

:::::
cycle

:::::::
solvers,

:::::
offers

:::::::::
improved

::::::
parallel

:::::::::::
performance

:::
and

:::
can

:::
be

:::::
easily

:::::::::
combined

::::
with

:::
any

:::::::::::
optimization

:::::::
method.

However, none of the included PETSc pre-conditioner nor
the presented approach by Khatiwala (2008) is matrix-free.1480

:::
The

::::::
option

::
for

::::::::
effective

::::
high

:::::
spatial

::::::::::::
parallelization

::::::
allows

::
the

:::
use

::
of

:::::::
gradient

:::::
based

:::::::::::
optimization

:::::::
methods,

:::::
since

::::
they

:::
are

:
–

::
in

:::::::
contrast

::
to

:::::::::::
evolutionary

:::::::::
algorithms

::
–

:::
less

::::::::::::
parallelizable.

Thus, once again, in order to not further complicate the basic
verification this has not been considered here.

:::
Our

::::::
results1485

::::
show

::::
that

:::
the

:::::::::::::
parallelization

:::::
effort

::
is

::::::::::::
well-invested

::
in

:::
the

::::::::
simulation

:::::
itself.

:

Finally, we would like to note that introduced
programming interface showed the expected flexibility
with regard to a model coupling on source code level.1490

Though, we realized a 1-D (water column) interface only,
this is no restriction for future development. Moreover,
preliminary experiments showed that, regarding Algorithmic
Differentation, and an interface for a forward and/or reverse
mode, can easily be derived.1495

9 Code availability

Name of software: Metos3D (Simulation Package v0
::
.3.2)

Developer: Jaroslaw Piwonski
Year first available: 2012
Software required: PETSc 3.31500

Program language: C, C++, Fortran
Size of installation: 1.6 GB

Availability and Cost: free software, GPLv3
Software homepage: https://metos3d.github.com/metos3d

The toolkit is maintained using the distributed revision con-1505

trol system git. All source codes are available at GitHub
(https://github.com). The current version has been tagged as

:::::::
versions

::
of

:::::::::
simpack

:::
and

::::::
model

:::
are

::::::
tagged

::
as

::::::::
v0.3.2.

:::
The

:::::
data

::
is

:::::::::
repository

:::
is

::
at
:::::::

version
::
v0.2. All experi-

ments presented in this work were carried out using this1510

version
::::::
versions. The associated material is stored in the

verification
::::::::::::::::::::
2016-GMD-Metos3D repository.

To install the software, the user should visit the homepage
and follow the instructions. Whereas in the future an installa-
tion will always reflect the current state of development, the1515

user can always invoke git checkout tags/v0
::
.3.2

in the simpack ,
:::
and model ,

::::::::
repository

:::
as

::::
well

::
as

::::
git

::::::::::
checkout

::::::
v0.2

:
in
::::

the
::
data and verification

repository , respectively,
::::::::
repository

:
to retrieve the version

:::::::
versions used in this work.1520

Appendix A:
:::::
Model

:::::::::
equations

:::
The

:::::
here

::::::::
presented

:::
N,

::::::::
N-DOP,

::::::::
NP-DOP,

:::::::::
NPZ-DOP

::::
and

::::::::::
NPZD-DOP

::::::
model

::::::::
hierarchy

::
is
::::::

based
:::
on

:::
the

::::::::::
descriptions

::::
used

::
by

:::::::::::::::::
Kriest et al. (2010).

:::
The

::::::::::
introduced

:::::::::
parameters

:::
are

:::::
shown

::
in

:::::
Table

:::
19.

:
1525

A1
:::::
Short

:::::
wave

::::::::
radiation

::
As

:::::::::
mentioned

:::::::
Section

:::::
7.1.2,

:::
the

::::
short

:::::
wave

::::::::
radiation

::
for

:::
the

::::::
topmost

::::
layer

:
is
::::::::
deduced

::::
from

:::
the

::::::::
insolation

:::
that

::
is

::::::::
computed

::
on

:::
the

:::
fly

:::::
using

::::
the

:::::::
formula

::
of

::::::::::::::::::::::
Paltridge and Platt (1976).

::::
Here,

:::::::
latitude

::
φ
::::

and
::::

ice
:::::
cover

::::
σice::::

data
:::

is
::::::::
required.

:::
We1530

:::::
denote

:::
the

:::::::::
computed

:::::
value

:::
by

::::::::::::::::::::
ISWR = ISWR(φ,σice).

:::
For

::
the

::::::
lower

:::::
layers

:::::
their

:::::
depths

:::::::
(zj)

nx
j=1::::

and
::::::
heights

::::::::
(dzj)

nx
j=1

::
are

:::::::::
required.

::::::::::::
Additionally,

::::
the

::::::::::
attenuation

:::
of

::::::
water

::
is

::::::::
described

::
by

:::
the

:::::::::
coefficient

:::
kw:::::::::::

respectively
:::
the

:::::::::
attenuation

::
of

::::::::::::
phytoplankton

:::::::::::
(chlorophyll)

::
by

:::
kc.:1535

A1.1
:::::::
Implicit

:::::::::::::
phytoplankton

:::
For

:::
the

::
N

:::
and

:::
the

:::::::
N-DOP

::::::
model

:::
the

::::
short

:::::
wave

:::::::
radiation

::
is

::::::::
computed

::::::
without

::::::::::::
phytoplankton,

:::
i.e.

Ij
:

= ISWR

{
I ′j j = 1

I ′j
∏j−1
k=1 Ik else

::::::::::::::::::::::::::

:::::
where

:::::::::::::::::::
I ′j = exp(−kw dzj/2),

:::::::::::::::::
Ik = exp(−kw dzk)

:::
and

::
j
::

is1540

::
the

::::::
actual

::::
layer

::::::
index.

A1.2
:::::::
Explicit

:::::::::::::
phytoplankton

https://metos3d.github.com/metos3d
https://github.com
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:::
For

:::
the

:::::::::
NP-DOP,

:::::::::
NPZ-DOP

::::
and

:::::::::::
NPZD-DOP

::::::
model

:::
the

::::
short

::::::
wave

:::::::
radiation

::
is

::::::::
computed

::::
with

::::::::::::
phytoplankton,

:::
i.e.

IP,j
:::

= ISWR

{
I ′P,j j = 1

I ′P,j
∏j−1
k=1 IP,k else

:::::::::::::::::::::::::::::

1545

:::::
where

::::::::::::::::::::::::::::::::::
I ′P,j = exp(−(kw + kc yP,j)dzj/2)

:::::::::
and

:::::::::::::::::::::::::::
I ′P,k = exp(−(kw + kc yP,k)dzk).

:

A2
::
N

::::::
model

:::
The

::::::::
simplest

::::::
model

::::::::
consists

:::
of

::::::::
nutrients

::::
(N)

:::::
only,

:::
i.e.

:::::::::
y = (yN ).

:::::
Table

:::
A1

:::::::
depicts

:::
the

::::::::
equation.

::::
The

:::::::::
biological1550

:::::
uptake

::
is
:::::::::
computed

::
as

fP (yN , I)
::::::::

= µP y
∗
P

yN
KN +yN

I

KI + I
,

::::::::::::::::::::::

:::::
where

:::::::::::::::
phytoplankton

:::::
is
::::::::::::

implicitly
::
set

:::::
to

::::::::::::::::::::::
y∗P = 0.0028 mmol P/m3.

:::::
The

::::
N

:::::::
model

::::::::::
introduces

::::::
nu = 5

:::::::::
parameters,

::::::
where

:::::::::::::::::::::
u = (kw,µP ,KN ,KI , b).1555

A3
:::::::
N-DOP

:::::
model

:::
The

:::::::
N-DOP

::::::
model

:::::::
consists

::
of

::::::::
nutrients

:::
(N)

::::
and

::::::::
dissolved

::::::
organic

:::::::::::::
phosphorous

::::::::
(DOP),

:::::
i.e.

::::::::::::::::
y = (yN ,yDOP ).

:::
The

::::::::::::
computation

::::
of

::::
the

::::::::::
biological

:::::::
uptake

::::::::
remains

::
the

:::::::
same.

:::::::
Table

::::
A2

::::::::
depicts

:::::
the

::::::::::
equations.

:::::
The1560

::::::
N-DOP

:::::::
model

::::::::::
introduces

::::::::
nu = 7

:::::::::::
parameters,

::::::
where

::::::::::::::::::::::::::::::::
u = (kw,µP ,KN ,KI ,σDOP ,λDOP , b).

:

A4
::::::::
NP-DOP

::::::
model

:::
The

:::::::::
NP-DOP

:::::::
consists

:::
of

:::::::::
nutrients

::::
(N),

:::::::::::::
phytoplankton

::
(P)

:::::
and

::::::::::
dissolved

:::::::
organic

::::::::::::
phosphorous

::::::::
(DOP),

::::
i.e.1565

::::::::::::::::::
y = (yN ,yP ,yDOP ).

:::::
Here,

:::
the

::::::
nutrient

::::::
uptake

:::
by

:::::::
(explicit)

::::::::::::
phytoplankton

:
is
:::::::::
computed

::
as

fP (yN ,yP , IP )
::::::::::::

= µP yP
yN

KN +yN

IP
KI + IP

.
::::::::::::::::::::::::

:::
The

:::::::::::
computation

::
of
:::::

short
:::::

wave
::::::::

radiation
::::::::

changes
::
as

::::
well

:::
(see

:::::::
Section

::::::
A1.2).

:::::::::::
Additionally,

::
a
::::::::
quadratic

::::
loss

::::
term

:::
for1570

::::::::::::
phytoplankton

:
is
:::::::::
introduced

::::
and

:
a
:::::::
grazing

:::::::
function

fZ(yP )
::::::

= µZ y
∗
Z

y2
P

K2
P +y2

P

,

::::::::::::::::

:::::
where

::::::::::::::
zooplankton

:::::
is
::::::::::::

implicitly
:::::::

set
:::::

to

::::::::::::::::::::
y∗Z = 0.01 mmol P/m3.

:::::
Table

::::
A3

::::::
depicts

::::
the

:::::::::
equations.

:::
The

::::::::
NP-DOP

::::::
model

:::::::::
introduces

:::::::
nu = 13

::::::::::
parameters,

:::::
where1575

::::::::::::::::::::::::::::::::::::::::::::::::::::
u = (kw,kc,µP ,µZ ,KN ,KP ,KI ,σDOP ,λP ,κP ,λ

′
P ,λDOP , b).

A5
:::::::::
NPZ-DOP

::::::
model

:::
The

:::::::::
NPZ-DOP

:::::::
consists

:::
of

:::::::
nutrients

::::
(N),

::::::::::::
phytoplankton

:::
(P)

::::::::::
zooplankton

:::
(Z)

:::
and

:::::::::
dissolved

::::::
organic

:::::::::::
phosphorous

::::::
(DOP),1580

::
i.e.

:::::::::::::::::::::::
y = (yN ,yP ,yZ ,yDOP ).

:::::
The

::::::::::
production

::::::::
function

::::::
remains

:::
the

:::::
same.

::::
The

:::::::::::
computation

::
of

::::::
grazing

:::::
takes

::::::
explicit

::::::::::
zooplankton

::::
into

::::::::
account,

:::
i.e.

fZ(yP ,yZ)
:::::::::

= µP yZ
y2
P

K2
P +y2

P

.

::::::::::::::::

::::
Table

:::::
A4

::::::::
depicts

:::::
the

::::::::::
equations.

::::::
The

::::::::::
NPZ-DOP1585

:::::
model

::::::::::::
introduces

::::::::::
nu = 16

:::::::::::::
parameters,

::::::::
where

:::::::::::::::::::::::::::::::::::::::::::::::
u = (kw,kc,µP ,µZ ,KN ,KP ,KI ,σZ ,σDOP ,λP ,λZ ,κZ ,

:::::::::::::::
λ′P ,λZ ,λDOP,b).

:

A6
:::::::::::
NPZD-DOP

:::::
model

:::
The

::::::::::
NPZ-DOP

:::::::
consists

:::
of

::::::::
nutrients

:::::
(N),

::::::::::::
phytoplankton1590

::
(P)

:::::::::::
zooplankton

:::::
(Z),

:::::::
detritus

::::
(D)

::::
and

::::::::
dissolved

:::::::
organic

::::::::::
phosphorous

::::::::
(DOP),

::::
i.e.

::::::::::::::::::::::::::
y = (yN ,yP ,yZ ,yD,yDOP ).

:::
The

::::::::::
equations

:::::::
mainly

::::::::
remains

::::
the

:::::::
same,

:::::::
except

::
a

::::
depth

::::::::::
dependent

:::::::
linear

::::::::
sinking

::::::
speed

:::
is

::::::::::
introduced

::
for

:::::::::
detritus.

::::::
Table

::::
A5

::::::::
depicts

::::
the

::::::::::
equations.

:::::
The1595

::::::::::
NPZD-DOP

::::::
model

:::::::::
introduces

:::::::
nu = 16

:::::::::::
parameters,

:::::
where

:::::::::::::::::::::::::::::::::::::::::::::::::::::
u= (kw,kc,µP ,µZ ,KN ,KP ,KI ,σZ ,σDOP ,λP ,λZ ,κZ ,λP ,λZ ,

::::::::::::::::
λD,λDOP ,aD, bD).

:
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Figure 11.
::::::::
Schematic

::
of

::
the

::::::::::::
implementation

:::::::
structure

::
of

:::::::
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Figure 12. Land-sea mask (geometric data) of the used numerical model. Shown are the number of layers per grip point. Note that the Arctic
has been filled in.
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Figure 13.
::::::::::::::
MITgcm-PO4-DOP

:::::
model: Convergence towards an annual cycle. Spin-up: norm of difference between initial states of consec-

utive model years (solid line)and trajectories every hundred model years (dots with dashed line). Newton-Krylov: residual norm at a Newton
step (diamond) and norm of the GMRES residual during solving (solid line in-between).
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Figure 14. Concentration of phosphate (yPO4) at the first layer (0 – 50 m)
:

N
:::::
model:

:::::::::
Convergence

::::::
towards

::
an

::::::
annual

::::
cycle

::::
using

::
a
::::::
spin-up

:::
and

:
a
::::::::::::
Newton-Krylov

::::
solver. Left: Shown is the initial state (1st of January, 00:00 am) of the converged
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Figure 15.
:::::
N-DOP

::::::
model:

:::::::::
Convergence

::::::
towards

:::
an annual cycle presented in Figure ??

:::
using

::
a
::::::
spin-up

:::
and

:
a
::::::::::::
Newton-Krylov

::::
solver. Right:

Interpolated World Ocean Database observational data for the same point in time
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Figure 16.
:::::::
NP-DOP

:::::
model:

:::::::::
Convergence

::::::
towards

:::
an

:::::
annual

::::
cycle

:::::
using

:
a
::::::
spin-up

:::
and

::
a

:::::::::::
Newton-Krylov

:::::
solver. The dashed lines depict

locations of slices shown in Figure ??.
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Figure 17. Slices corresponding to Figure ??: the Pacific (153.2815◦ W), the Atlantic (29.53125◦ W)
::::::::
NPZ-DOP

::::::
model:

::::::::::
Convergence

::::::
towards

::
an

:::::
annual

:::::
cycle

::::
using

::
a
::::::
spin-up and the Indian (91.40625◦ E)

:
a
::::::::::::
Newton-Krylov

:::::
solver. Left: Simulated tracer concentration

::::
Top:

:::::
Default

:::::::::::::
Newton-Krylov

:::::
setting. Right: Observational data from the World Ocean Database 2013.

::::::
Middle:

::::::
Changed

::::::
initial

::::
value

:::
to

::::::::::::::::
0.5425 m mol P m−3

::
for

:::
all

:::::
tracers.

:::::::
Bottom:

::::::
Changed

:::::
inner

::::::
accuracy

::
to
:::::::
γ = 0.3.
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Figure 18. Distribution of the computational time among main operations during the integration of
:::::::::
NPZD-DOP

:::::
model:

::::::::::
Convergence

::::::
towards

::
an

:::::
annual

::::
cycle

::::
using

:
a model year

::::::
spin-up

:::
and

:
a
::::::::::::
Newton-Krylov

::::
solver.

::::
Top:

:::::
Default

::::::::::::
Newton-Krylov

::::::
setting.

::::::
Middle:

:::::::
Changed

::::
initial

:::::
value

:
to
:::::::::::::::::
0.0434 m mol P m−3

::
for

::
all

::::::
tracers.

::::::
Bottom:

::::::
Changed

::::
inner

:::::::
accuracy

::
to

:::::::
γ = 0.3.
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Figure 19.
::::::::::::::
MITgcm-PO4-DOP
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model:

::::::::
Difference
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between
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the

::::::
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and
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Newton

::::::
solution

::
at

::
the

::::
first
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layer
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(0

:
–
:::

50
::
m)
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the
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Euclidean
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:

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

8.3e-07

2.3e-03

4.6e-03

7.0e-03

9.3e-03

1.2e-02

1.4e-02

1.6e-02

1.9e-02

Figure 110.
:
N
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model:

:::::::
Difference

:::::::
between

::
the

::::::
spin-up

:::
and

::::::
Newton

:::::::
solution

:
at
:::
the

:::
first

::::
layer

::
(0
::
–

::
50

::
m)

::
in
:::
the

::::::::
Euclidean

::::
norm.
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Figure 111.
:::::
N-DOP

::::::
model:

::::::::
Difference

::::::
between

:::
the

::::::
spin-up

:::
and

::::::
Newton

::::::
solution

::
at

::
the

::::
first

::::
layer

::
(0

:
–
::
50

:::
m)

::
in

::
the

::::::::
Euclidean

:::::
norm.
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Figure 112.
::::::
NP-DOP

::::::
model:

::::::::
Difference

::::::
between

:::
the

::::::
spin-up

:::
and

::::::
Newton

::::::
solution

::
at

::
the

::::
first

::::
layer

::
(0

:
–
::
50

:::
m)

::
in

::
the

::::::::
Euclidean

:::::
norm.
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and
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solution
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at

::
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Figure 114.
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::::::
model:

::::::::
Difference

::::::
between

:::
the

::::::
spin-up

:::
and

::::::
Newton

::::::
solution

::
at
:::
the

:::
first

::::
layer

::
(0

:
–
:::
50

::
m)

::
in

:::
the

:::::::
Euclidean

:::::
norm.
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Figure 115.
:::::::::
Distribution

::
of

:::
the

::::::::::
computational

::::
time

:::::
among

::::
main

::::::::
operations

:::::
during

:::
the

::::::::
integration

::
of

:
a
:::::
model

::::
year.

::::
Left:

:::::::::::::::
MITgcm-PO4-DOP

:::::
model.

:::::
Right:

::
N

:::::
model.
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Figure 116.
:::::::::
Distribution

::
of

:::
the

::::::::::
computational

::::
time

::::::
among

::::
main

::::::::
operations

:::::
during

:::
the

::::::::
integration

:::
of

:
a
:::::
model

::::
year.

::::
Left:

:::::
N-DOP

::::::
model.

:::::
Right:

::::::
NP-DOP

::::::
model.



28 Piwonski and Slawig: Metos3D

BGCStep

14.1 %

MatCopy

13.5 %

MatScale

8.2 %
MatAXPY

15.6 %

MatMult

47.5 %

Other1.0 %

BGCStep
6.5 %

MatCopy

12.9 %

MatScale

7.8 %

MatAXPY

14.9 %

MatMult

56.7 %

Other1.2 %

Figure 117.
::::::::
Distribution

::
of
:::
the

:::::::::::
computational

::::
time

:::::
among

::::
main

::::::::
operations

:::::
during

:::
the

::::::::
integration

::
of

:
a
:::::
model

::::
year.

::::
Left:

:::::::
NPZ-DOP

::::::
model.

:::::
Right:

:::::::::
NPZD-DOP

:::::
model.
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Twin experiment using the spin-up solver.
Bullets on the black line depict the steps of the optimization
process. The gray line shows all model evaluations including
gradient computation and line search step. The dashed line
depicts a restart after 157 model evaluations. Vertical limits1745

of the figures are also parameter bounds (except cost function
and second parameter).

Twin experiment using the Newton solver.
The black line depicts the steps taken by the optmizer using a
absolute finite difference step that equals to the square root of1750

the machine precision. The gray line refers to a relative finite
difference step of 10−4. Intermediate model evaluations are
not shown here.
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Figure 118.
:::::::::::::::
MITgcm-PO4-DOP

:::::
model: Ideal and actual speedup factor as well as efficiency of parallelized computations. Here, best possible

::
the

:::::
notion

::::::::
theoretical

:
refers to the used load distribution introduced in Section 7.4,

:
i.
:
e.

:
a
::::::::
simulation

:::
run

::
on

:::
an

:::::::
idealized

:::::::
hardware.

:
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Figure 119.
::::::::::::::
MITgcm-PO4-DOP

:::::
model: Number of model years and Newton steps required for the computation of the annual cycle y(ud)

:::::
y(ud) as a function of different convergence control parameters α and γ (cf. Equation (10)).
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Figure 120. Distribution of number of model years and Newton steps required for the computation of a annual cycle using 100 random
parameter samples (cf. Section 7.6).
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Table 16. Difference in the Euclidean norm between the spin-up (yS) and the Newton (yN ) solution. Regarding the NPZ-DOP and NPZD-
DOP model a solution from the experiment with a different inner accuracy respectively a different initial value is used.

Model ‖yS −yN‖2 ‖yS −yN‖2,V

MITgcm-PO4-DOP 1.460e-01 7.473e+05
N 4.640e-01 2.756e+06
N-DOP 2.421e-01 1.199e+06
NP-DOP 7.013e-02 3.633e+05
NPZ-DOP 1.421e-02 8.514e+04
NPZD-DOP 3.750e-02 2.062e+05

Table 17. Vertical layers of the numerical model. Units are meters.

Layer Depth of Thickness of
layer bottom layer (∆z)

1 50 50
2 120 70
3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690

Table 18. Parameters implemented in the MITgcm-PO4-DOP model. Specified are the location within the parameter vector, the symbol
used by Dutkiewicz et al. (2005) and the value used for the computation of the reference solution (ud). Shown are furthermore the lower (bl)
and upper (bu) boundaries used for the parameter samples experiment.

u Symbol ud bl bu Unit

u1 κremin 0.5 0.25 0.75 1/y
u2 α 2.0 1.5 200.0 mmolP/m3/y
u3 fDOP 0.67 0.05 0.95 1
u4 κPO4 0.5 0.25 1.5 mmolP/m3

u5 κI 30.0 10.0 50.0 W/m2

u6 k 0.02 0.01 0.05 1/m
u7 aremin 0.858 0.7 1.5 1
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Table 19. Parameter values used for the solver experiments with the N, N-DOP, NP-DOP, NPZ-DOP and NPZD-DOP model hierarchy.

Parameter N N-DOP NP-DOP NPZ-DOP NPZD-DOP Unit

kw 0.02 0.02 0.02 0.02 0.02 m−1

kc 0.48 0.48 0.48 (m mol P m−3)−1m−1

µP 2.0 2.0 2.0 2.0 2.0 d−1

µZ 2.0 2.0 2.0 d−1

KN 0.5 0.5 0.5 0.5 0.5 m mol P m−3

KP 0.088 0.088 0.088 m mol P m−3

KI 30.0 30.0 30.0 30.0 30.0 W m−2

σZ 0.75 0.75 1
σDOP 0.67 0.67 0.67 0.67 1
λP 0.04 0.04 0.04 d−1

κP 4.0 (m mol P m−3)−1d−1

λZ 0.03 0.03 d−1

κZ 3.2 3.2 (m mol P m−3)−1d−1

λ′P 0.01 0.01 0.01 d−1

λ′Z 0.01 0.01 d−1

λ′D 0.05 d−1

λ′DOP 0.5 0.5 0.5 0.5 y−1

b 0.858 0.858 0.858 0.858 1
aD 0.058 d−1

bD 0.0 d−1m
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Algorithm 1: Load balancing
Input : vector length: nx, number of profiles: np, profile lengths: (nx,k)

np
k=1, number of processes: N

Output: profiles per process: (np,i)
N
i=1

1 w = 0 ;
2 np,1...N = 0 ;
3 for k = 1, . . . ,np do
4 i= floor(((w+ 0.5 ∗nx,k)/ny) ∗N) ;
5 np,i = np,i + 1 ;
6 w = w+nx,k ;
7 end

Algorithm 2: Interpolation
Input : point in time: t ∈ [0,1[, number of data points: ndata
Output: weights: α,β, indices: jα, jβ

1 w = t ∗ndata + 0.5 ;
2 β = mod(w,1.0) ;
3 jβ = mod(floor(w),ndata) ;
4 α= (1.0−β) ;
5 jα = mod(floor(w) +ndata− 1,ndata) ;

Algorithm 3: Phi (φ)

Input : initial condition: (t0,y0), time step: ∆t, number of time steps: nt, implicit matrices: Aimp, explicit matrices: Aexp,
parameters: u ∈ Rm, boundary data: b, domain data: d

Output: final state: yout

1 yin = y0:::::::
yin = y0:

;
2 for j = 1, . . . ,nt do
3 tj = mod (t0 + (j− 1)∆t,1.0) ;
4 yout = PhiStep(tj ,∆t,Aimp,Aexp,yin,u,b,d) ;
5 yin = yout ;
6 end

Algorithm 4: PhiStep (ϕ)

Input : point in time: tj , time step: ∆t, implicit matrices: Aimp, explicit matrices: Aexp, current state: yin, parameters: u ∈ Rm,
boundary data: b, domain data: d

Output: next state: yout

1 q = BGCStep(tj ,∆t,yin,u,b,d)
:::::::::::::::::::::::::
q = BGCStep(tj ,∆t,yin,u,b,d)

:
;

2 yw = TransportStep(tj ,Aexp,yin)
::::::::::::::::::::::::::::::
yw = TransportStep(tj ,Aexp,yin)

:
;

3 yw = yw +q
::::::::::
yw = yw +q ;

4 yout = TransportStep(tj ,Aimp,yw)
:::::::::::::::::::::::::::::::
yout = TransportStep(tj ,Aimp,yw)

:
;
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Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.
subroutine metos3dbgc(ny, nx, nu, nb, nd, dt, q, t, y, u, b, d)

integer :: ny, nx, nu, nb, nd
real*8 :: dt, q(nx, ny), t, y(nx, ny), u(nu), b(nb), d(nx, nd)

end subroutine
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