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Abstract. We designed and implemented a modular software
framework for the off-line simulation of steady cycles of 3-D
marine ecosystem models based on the transport matrix ap-
proach. It is intended for parameter optimization and model
assessment experiments. We defined a software interface for5

the coupling of a general class of water column-based bio-
geochemical models, with six models being part of the pack-
age. The framework offers both spin-up/fixed-point iteration
and Jacobian-free Newton method for the computation of
steady states.10

The simulation package has been tested with all six mod-
els. The Newton method converged for four models when us-
ing standard settings, and for two more complex models af-
ter alteration of a solver parameter or the initial guess. Both
methods delivered the same steady states (within a reason-15

able precision) on convergence for all models employed, with
the Newton iteration generally operating 6 times faster. The
effects on performance of both the biogeochemical and the
Newton solver parameters were investigated for one model.
A profiling analysis was performed for all models used in this20

work, demonstrating that the number of tracers had a dom-
inant impact on overall performance. We also implemented
a geometry-adapted load balancing procedure which showed
close to optimal scalability up to a high number of parallel
processors.25

1 Introduction

In the field of climate research simulations of marine ecosys-
tem models are used to investigate the carbon uptake and
storage of earth’s oceans. The aim is to identify those pro-
cesses that play a role in the global carbon cycle. For this30

purpose coupled simulations of ocean circulation and marine
biogeochemistry are required. In this context, marine ecosys-

tems are treated as extensions of biogeochemical systems (cf.
Fasham, 2003; Sarmiento and Gruber, 2006). Both terms are
therefore used synonymously in this paper. The equations35

and variables of ocean dynamics are well understood. How-
ever, descriptions of biogeochemical or ecological sinks and
sources still contain uncertainties with regard to the num-
ber of components and to parameterization (cf. Kriest et al.,
2010).40

To improve this situation a wide range of marine ecosys-
tem models need to be validated, i.e. assessed as to their abil-
ity to reproduce real world data. This involves a thorough dis-
cussion of simulation results and, before this, an estimation
of optimal model parameters for preferably standardized data45

sets (cf. Fennel et al., 2001; Schartau and Oschlies, 2003).
As a rule hundreds of model evaluations are required for

optimization. Therefore any optimization environment for
marine ecosystems, which our software framework is in-
tended to supply (as suggested by its name), first and fore-50

most has to provide a fast and flexible simulation framework.
In this paper we will concentrate on this prerequisite and
present the simulation package of Metos3D. An optimization
package will be released subsequently.

For any fully coupled simulation, i.e. simultaneous and in-55

terdependent computations of ocean circulation, tracer trans-
port and the biogeochemical sources and sinks in three spa-
tial dimensions, very high computational efforts are needed
even at low resolution. Computational complexity increases
still more if annual cycles are investigated, since each model60

evaluation then involves long-time integration (the so-called
spin-up) until an equilibrium state is reached under given
forcing (cf. Bernsen et al., 2008).

Several strategies have been developed to accelerate com-
putation of periodic steady states in biogeochemical models65

driven by a 3-D ocean circulation (cf. Bryan, 1984; Danaba-
soglu et al., 1996; Wang, 2001). We have combined three of
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them in our software, namely so-called off-line simulation,
optional use of Newton’s method for computing steady an-
nual cycles (as an alternative to spin-ups) and spatial paral-70

lelization with high scalability.
Off-line simulation affords fundamentally reduced com-

putational costs combined with an acceptable loss of ac-
curacy. The principle is to pre-compute transport data for
passive tracers. This approach was adopted by Khatiwala75

et al. (2005) when introducing the so-called Transport Matrix
Method (TMM). The authors used matrices to store the re-
sults of a general circulation model, which were then applied
to biogeochemical tracer variables. This method proved to be
sufficiently accurate to gain first insights into the behavior of80

biogeochemical models at global basin-scale (cf. Khatiwala,
2007). The software implementation used therein we denote
as the TMM framework from now on. It is available at Khati-
wala (2013).

From the mathematical point of view a steady annual cy-85

cle is a periodic solution of a system of (in this case) non-
linear parabolic partial differential equations. This periodic
solution is a fixed-point in the mapping that integrates the
model variables over one year of model time. Seen in this
light a spin-up is a fixed-point iteration. Using an uncompli-90

cated procedure this fixed-point problem can be transformed
equivalently into the problem of finding the root(s) of a non-
linear mapping.

Newton-type methods (cf. Dennis and Schnabel, 1996,
Chapter 6) are well-known for their superlinear convergence95

when applied to problems of this kind. When combined with
a Krylov subspace approach a Jacobian-free scheme can be
realized that is based on evaluations of just one model year
(cf. Knoll and Keyes, 2004; Merlis and Khatiwala, 2008;
Bernsen et al., 2008).100

Whether fixed-point or Newton iteration is used, high per-
formance computing will be needed for running multiple
simulations over one year of model time of a 3-D marine
ecosystem. Parallel software employing transport matrices
and targeting a multi-core distributed-memory architecture105

requires appropriate data types and linear algebra operations.
The specific geometry of oceans with their varying num-
bers of vertical layers poses an additional challenge for stan-
dard load-balancing algorithms – but also offers a chance of
developing adapted versions that will improve overall sim-110

ulation performance. Except for these adaptations our im-
plementation is based on the freely available Portable, Ex-
tensible Toolkit for Scientific Computation library (PETSc;
Balay et al., 1997, 2012b), which in turn is based on the Mes-
sage Passing Interface standard (MPI; Walker and Dongarra,115

1996).
The objective of this work is to combine three

performance-enhancing techniques (off-line computation via
transport matrices, Newton method, and highly scalable
parallelization) in order to produce a software environ-120

ment which offers rigorous modularity and complete open-
source accessibility. Modularity entails separating data pre-

processing and simulation as well as the possibility of im-
plementing any water column-based biogeochemical model
with minimal effort. For this purpose we have defined a125

model interface that permits the use of any number of trac-
ers, parameters, and boundary and domain data. To demon-
strate its flexibility we employed an existing biogeochem-
ical model (Dutkiewicz et al., 2005), part of the MITgcm
ocean model, as well as a suite of more complex models,130

which is included in our software package. Our software of-
fers optional use of spin-up/fixed-point iteration or Newton
method; for the latter some tuning options were studied. As
a result the work of Khatiwala (2008) could be extended by
numerically showing convergence for all six models men-135

tioned above without applying preconditioning. Moreover, a
detailed profiling analysis of the simulation when using dif-
ferent biogeochemical models demonstrated how the number
of tracers impacts overall performance. Finally an adapted
load balancing method is presented. It shows scalability that140

is close to optimal and in this respect is superior to other ap-
proaches, including the TMM framework (Khatiwala, 2013).

This paper is structured as follows: In Sections 2 and 3,
model equations are described, and the transport matrix ap-
proach is recapitulated. In Section 4 both options for comput-145

ing steady cycles/periodic solutions (fixed-point and New-
ton iteration) are summarized, and for the latter some tun-
ing options to achieve better convergence are discussed. In
Sections 5 and 6, design and implementation of our software
package are described, while Section 7 offers a number of150

numerical results to demonstrate its applicability and perfor-
mance. Section 8 presents our conclusions, and Section 9 ex-
plains how to obtain the source code. The Appendix contains
all model equations as well as the parameter settings used
for this work; these are available at the same location as the155

simulation software.

2 Model equations for marine ecosystems

We will consider the following tracer transport model, which
is defined by a system of semilinear parabolic partial differ-
ential equations (PDEs) of the form160

∂yi
∂t

=∇ · (κ∇yi)−∇ · (v yi) + qi(y,u,b,d), i= 1, . . . ,ny,

(1)

on a time interval I := [0,T ] and a spatial domain Ω⊂
R3 with boundary Γ = ∂Ω. yi : I ×Ω→ R denotes a single
tracer concentration, and y = (yi)

ny
i=1 is the vector of all trac-

ers. Since we are interested in long-time behavior and steady165

annual cycles, we will assume that the time variable is scaled
in years. For brevity’s sake we have omitted the dependency
on time and space coordinates (t,x) in our notation.

The transport of tracers in marine waters is determined by
diffusion and advection, which are reflected in the first two170

linear terms on the right-hand side of (1). Diffusion mix-
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ing coefficient κ : I ×Ω→ R and advection velocity field
v : I ×Ω→ R3 may either be regarded as given data, or else
have to be simulated by an ocean model along with (1).
Molecular diffusion of tracers is regarded as negligible com-175

pared to turbulent mixing diffusion. Thus κ and both trans-
port terms are the same for all yi.

Biogeochemical processes within the ecosystem are repre-
sented by the last term on the right-hand side of (1), i.e.

qi(y,u,b,d) = qi(y1, . . . ,yn,u,b,d), i= 1, . . . ,ny.180

The functions represented by qi will often be nonlinear and
depend on several tracers, thereby coupling the system. We
will refer to the set of functions q = (qi)

ny
i=1 as ”the biogeo-

chemical model”. Typically this model will also depend on
parameters. In the software presented in this paper these pa-185

rameters are assumed to be constant w. r. t. space and time,
i.e. we have u= u ∈ Rnu . For the general setting of (1) this
assumption is not necessary. Boundary forcing (e.g. insola-
tion or wind speed, defined on the ocean surface as Γs ⊂ Γ)
and domain forcing functions (e.g. salinity or temperature190

of the ocean water) may also enter into the biogeochemical
model. These are denoted by b= (bi)

nb
i=1 , bi : I×Γs→ R and

d= (di)
nd
i=1 ,di : I ×Ω→ R, respectively.

For tracer transport models, Neumann conditions for the
tracers yi on the boundary Γ are appropriate. They may be195

either homogeneous (when no tracer fluxes on the bound-
ary are present) or inhomogeneous (to account for flux inter-
actions with atmosphere or sediment, e.g. deposition of nu-
trients and riverine discharges). In the inhomogeneous case,
the necessary data have to be provided as boundary data in200

b. In Khatiwala (2007, Sect. 3.5) it is shown how the case
of tracers with prescribed surface boundary conditions (i.e.
Dirichlet conditions) can be treated using the TMM. Then,
an appropriate change of the transport matrices is necessary
and an additional boundary vector has to be added in every205

time step.

3 Off-line simulation using transport matrices

The Transport Matrix Method (Khatiwala et al., 2005) allows
fast simulation of tracer transport, assuming that forcing data
diffusivity κ and advection velocity v are given. This method210

is based on a discretized counterpart of (1). We introduce
the following notation: Let the domain Ω be discretized by
a grid (xk)

nx
k=1 ⊂ R3 and one year in time by 0 = t0 < .. . <

tj < tj +∆tj =: tj+1 < .. . < tnt = 1. This means that there
are nt time steps per year. For time instant tj ,215

– yji = (yi(tj ,xk))nxk=1 denotes the vector of the values
of the i-th tracer at all grid points,

– yj = (yji)
ny
i=1 ∈ Rnynx denotes a vector of the values

of all tracers at all grid points, appropriately concate-
nated.220

We use analogous notations bj ,dj , and qj for boundary and
domain data and for the biogeochemical terms at the j-th
time step. Only corresponding grid points are incorporated
for boundary data.

The transport matrix method approximates the discretized225

counterpart of (1) by

yj+1 = Limp,j(Lexp,jyj + ∆tjqj(yj ,u,bj ,dj)) (2)
=: ϕj(yj ,u,bj ,dj), j = 0, . . . ,nt− 1.

The linear operators Lexp,j ,Limp,j represent those parts of
the transport term in (1) that are discretized explicitly or im-230

plicitly w. r. t. time. These operators therefore depend on the
given transport data κ,v and thus on time. The biogeochem-
ical term is treated explicitly in (2) using an Euler step.

Since transport affects each tracer individually and is iden-
tical for all of them, both Lexp,j ,Limp,j are block-diagonal235

matrices with ny identical blocks Aexp,j ,Aimp,j ∈ Rnx×nx ,
respectively. Khatiwala et al. (2005) describes how these ma-
trices can be computed by running one step of an ocean
model employing an appropriately chosen set of basis func-
tions for tracer distribution. The operator splitting scheme240

used in this ocean model therefore determines the partition-
ing of the transport operator in (1) into an explicit and an
implicit matrix. Diffusion (or some part of it) is usually dis-
cretized implicitly; in our case this applies only to vertical
diffusion. By this procedure we obtain a set of matrix pairs245

(Aexp,j ,Aimp,j)
nt−1
j=0 , which usually are sparse. To reduce

storing efforts and increase feasibility only a small number
of averaged matrices are stored; in our case monthly aver-
ages were used. Starting from these matrices, for any time
instant tj an approximation of the matrix pair is computed250

by linear interpolation.
Thus integration of tracers over one model year only in-

volves sparse matrix-vector multiplications and evaluations
of the biogeochemical model. In fact the implicit part of time
integration is now pre-computed and contained in Aimpl,j ,255

which is the benefit of this method. The approximation error
of this method when compared to direct coupled computa-
tion is determined by the interpolation of transport matrices,
the linearization of possibly nonlinear discretization schemes
(e.g. flux limiters), and by discounting the reverse influence260

of ocean biogeochemistry onto circulation fields.

4 Steady annual cycles

The purpose of the software presented in this paper is to al-
low fast computation of steady annual cycles for the marine
ecosystem model under consideration. A steady annual cycle265

is defined as a periodic solution of (1) with a period length of
1 (year), thus satisfying

y(t+ 1) = y(t), t ∈ [0,1[.

Obviously, the forcing data functions b,d need to be periodic
as well.270
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To apply the transport matrix method we assume that a set
of matrices for one model year (generated using this kind of
periodic forcing) is available, and that these have been in-
terpolated to obtain pairs (Aexp,j ,Aimp,j) for all time steps
j = 0, . . . ,nt− 1. In the discrete setting, a periodic solution275

will satisfy

ynt+j = yj j = 0, . . . ,nt− 1.

Assuming that the discrete model is completely determinis-
tic, it is sufficient if this equation is satisfied for just one j. In
this section we will compare the solutions for the first time280

instants of two succeeding model years. Defining

y` := y(`−1)nt ∈ Rnynx , `= 1,2, . . .

as the vector of tracer values at the first time instant of model
year `, a steady annual cycle satisfies

y`+1 = φ(y`) = y` in Rnynx for some ` ∈ N, (3)285

where φ := ϕnt−1 ◦ · · · ◦ϕ0 is the mapping that performs the
tracer integration (2) over one year. All arguments except for
y have been omitted in the notation. A steady annual cycle
therefore is a fixed-point of the nonlinear mapping φ.

Since condition (3) will never be satisfied exactly in a sim-290

ulation, we measure periodicity, using norms on Rnynx for
the residual of (3) . We use the weighted Euclidean norm

‖z‖2,w :=

(
ny∑
i=1

nx∑
k=1

wkz
2
ik

) 1
2

,wk > 0,k = 1, . . . ,nx, (4)

with z ∈ Rnynx indexed as z = ((zik)
nx
k=1)

ny
i=1. This corre-

sponds to our indexing of tracers, see Section 3. If wk =295

1 for all k, we obtain the Euclidean norm denoted by
‖z‖2. A stronger correspondence to the continuous problem
(1) is achieved by using the discretized counterpart of the(
L2(Ω)

)ny -norm, where wk is set to the volume Vk of the k-
th grid box. We denote this norm by ‖z‖2,V . Other settings300

of weights are possible. All these norms are equivalent in the
mathematical sense, i.e. it holds

min
1≤k≤nx

√
wk ‖z‖2 ≤ ‖z‖2,w ≤ max

1≤k≤nx

√
wk ‖z‖2

for all z ∈ Rnynx and all weight vectors w = (wk)nxk=1 satis-
fying the positivity condition in Eq. (4).305

4.1 Computation by spin-up (fixed-point iteration)

Spin-up signifies repeated application of iteration step (3), in
other words, integration in time with fixed forcing until con-
vergence is reached. Based on Banach’s fixed-point theorem
(cf. Stoer and Bulirsch, 2002) it is well-known that, assuming310

φ is a contractive mapping satisfying

‖φ(y)−φ(z)‖ ≤ L‖y− z‖ for all y,z ∈ Rnynx

with L < 1 in some norm, this iteration will converge to
a unique fixed-point for all initial values y0. This result
holds for weaker assumptions as well (cf. Ciric, 1974).315

This method is quite robust, but shows only linear conver-
gence which is especially slow for L≈ 1. An estimation of
L= maxy ‖φ′(y)‖ is difficult, since it involves the Jacobian
q′j(yj) of the nonlinear biogeochemical model at the cur-
rent iterate. Typically, thousands of iteration steps (i.e. model320

years) are needed in order to reach a steady cycle (cf. Bernsen
et al., 2008). Moreover, this method offers only restricted op-
tions for convergence tuning, the only straightforward one
being to choose different time steps ∆tj . For this all trans-
port matrices have to be re-scaled accordingly. The obvious325

stopping criterion is reduction of the difference between two
succeeding iterates measured by

ε` := ‖y`−y`−1‖2,w
in some – optionally weighted – norm.

4.2 Computation by inexact Newton method330

By defining F (y) := y−φ(y), the fixed-point problem (3)
can be equivalently transformed into the problem of finding
a root of F : Rnynx → Rnynx . This problem can be solved
by Newton’s method (cf. Dennis and Schnabel, 1996; Kelley,
2003; Bernsen et al., 2008). We apply a damped (or global-335

ized) version that incorporates a line search (or backtracking)
procedure which (under certain assumptions) provides super-
linear and locally even quadratic convergence. Starting from
an initial guess y0, in each step the linear system

F ′(ym)sm =−F (ym) (5)340

has to be solved, followed by an update ym+1 = ym + %sm.
% > 0 here denotes the step-size, which is chosen iteratively
in such a way that a sufficient reduction in ‖F (ym+ρsm)‖2
is achieved (cf. Dennis and Schnabel, 1996, Section 6.3).
Note that regarding the Newton solver the Euclidean norm345

is used. This is determined by the PETSc implementation.
The Jacobian F ′(ym) of F at any current iterate contains

the derivative of one model year, thus it is not as sparse as the
transport matrices themselves. Therefore a matrix-free ver-
sion of Newton’s method is applied: The linear system (5)350

is solved by an iterative, so-called Krylov subspace method,
which only requires the evaluation of matrix-vector products
F ′(ym)s. Since F ′(ym) cannot be expected to be symmetric
or definite, we use the generalized minimal residual method
(GMRES, Saad and Schultz, 1986). The matrix-vector prod-355

ucts needed for this can be interpreted as directional deriva-
tives of F at point ym in the direction of s. They may be
approximated by a forward finite difference:

F ′(ym)s≈ F (ym + δs)−F (ym)

δ
, δ > 0. (6)

The finite difference step-size δ is chosen automatically as a360

function of ym and s (cf. Balay et al., 2012a). An alterna-
tive method would be an exact evaluation of the derivative
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using the forward mode of Algorithmic Differentiation (cf.
Griewank and Walther, 2008).

This approximation of the Jacobian or directional deriva-365

tive is one reason to call this method inexact. The second rea-
son is the fact that the inner linear solver has to be stopped
and therefore also is not exact. We use a convergence con-
trol procedure based on the technique described by Eisenstat
and Walker (1996) for this purpose. Stopping occurs when370

the Newton residual at the current inner iterate s satisfies

‖F ′(ym)s+F (ym)‖2 ≤ ηm‖F (ym)‖2. (7)

The factor ηm is determined by

ηm = γ

(
‖F (ym)‖2
‖F (ym−1)‖2

)α
, m≥ 2, η1 = 0.3. (8)

This approach avoids so-called over-solving, i.e. wasting in-375

ner steps if the current outer Newton residual F (ym) is still
relatively big. The latter typically occurs at the beginning of
Newton iterations. Parameters γ and α can be used to avoid
over-solving by adjusting inner accuracy depending on outer
accuracy in a linear or nonlinear way, respectively. More-380

over, both parameters provide a subtle way to tune the solver.
In contrast to a fixed-point iteration, Newton’s method even
in its damped version may possibly converge only with an
appropriately chosen initial guess y0. In a high-dimensional
problem such as ours (in Rnynx ), it is a non-trivial task to find385

such an initial guess if the standard one used for the spin-
up (i.e. a constant tracer distribution) proves unsuccessful.
In cases where the Newton iteration proceeds slowly and the
criterion described above yields only a few inner iterations, it
may be advisable to increase their number by either decreas-390

ing γ or increasing α. Below we will give some examples of
how convergence may be made possible using this strategy.

In order to estimate the total computational effort needed
for the inexact Newton solver and to compare its efficiency
with the spin-up method, it must be noted that one evaluation395

of F basically corresponds to one application of φ, i.e. to
one model year. Each Newton step requires one evaluation
of F as the right-hand side of (5). The initial guess for the
inner linear solver iteration is always set at s = 0. Thus no
computation is required for the first step. For each following400

inner iteration some evaluation of F is required to compute
the second term in the numerator of the right-hand side of (6).
The line search may also require additional evaluations of F .
Taken together, the overall number of inner iterations plus the
overall number of evaluations for the line search determine405

the number of evaluations of F necessary for this method,
which may then be compared to the number of model years
needed for the spin-up.

5 Software description

Our software is divided into four repositories, namely410

metos3d, model, data and simpack. The first com-

prises the installation scripts, the second the biogeochemical
model source codes and the third all data preparation scripts
as well as the data themselves. The last repository contains
the simulation package, i.e. the transport driver, which is im-415

plemented in C and based upon the PETSc library. While we
have often used 1-indexed arrays within this text for conve-
nience, within the source code C arrays are 0-indexed and
Fortran arrays are 1-indexed. All data files are in PETSc for-
mat.420

5.1 Implementation structure

The implementation of the simulation package is structured
in layers as is shown in Figure 21. The layers are organized
hierarchically, i.e. each layer provides routines for the layers
above. The foundation of the implementation is the PETSc425

library with its data types and the implementation of the
Newton-Krylov solver.

The bgc model layer initializes tracer vectors, parameters
and boundary and domain data. It is responsible for the in-
terpolation of forcing data and the evaluation of the biogeo-430

chemical model (cf. Section 5.3). The transport layer is re-
sponsible for reading in the transport matrices, interpolating
them to the current time step and applying them to the tracer
vectors. The main integration routine φ (cf. Algorithm 1, 2)
is located at the time stepping layer. On top resides the solver435

layer, which contains the spin-up implementation and the call
to the Newton-Krylov solver.

A call graph for the computation of a steady annual cy-
cle is shown in Figure 22. Note that loops are not explicitly
shown therein. Calls to initialization and finalization routines440

are gathered at the beginning respectively end of a simulation
run. The former are responsible for memory allocation and
storage of data used at run time. The latter are employed to
free memory and delete all vectors and matrices.

The dimensions of the used vectors and matrices depend445

on the underlying geometry (cf. Section 5.2). The distribu-
tion of the work load for a parallel run is determined during
initialization of the work load (cf. Section 5.5).

5.2 Geometry information and data alignment

Geometry information is provided as a 2-D land-sea mask450

plus a designation of the number of vertical layers, i.e. the
depth of the different water columns (or profiles, cf. Fig-
ure 23). This can be understood as a sparse representation
of a land-sea cuboid including only wet grid boxes. Hence,
the length nx of a single tracer vector (at fixed time) is the455

sum of the lengths of all profiles, i.e.

nx =

np∑
k=1

nx,k ,

where np is the total number of profiles in the ocean and
(nx,k)

np
k=1 the set of profile lengths. Each profile corresponds

to a horizontal gridpoint. Due to the locally varying ocean460
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depth, the profile lengths depend on the horizontal coordi-
nate, i.e. on the index k.

We denote by yi,k ∈ Rnx,k the values of the i-th tracer
corresponding to the k-th profile at fixed time step. Then the
vector of all tracers at a fixed time, here denoted by y omit-465

ting the time index, can be represented in two ways: Either
by first collecting all profiles for each tracer and then con-
catenating all tracers, namely

y =
[
(y1,k)

np
k=1 . . . (yn,k)

np
k=1

]
, (9)

or vice versa, i.e.470

y = ((yi,k)
ny
i=1)

np
k=1. (10)

In order to multiply matrices with tracer vectors, the first
variant is preferable. In order to evaluate a water-column
based biogeochemical model, the second one is appropriate.

As a result, all tracers need to be copied from representa-475

tion (9) to (10) after a transport step. After evaluation of the
biogeochemical model we reverse the alignment for the next
transport step.

The situation is similar for domain data. Again, we group
all domain data profiles by their profile index k, i.e.480 [
(d1,k)

np
k=1 . . . (dnd,k)

np
k=1

]
−→ ((di,k)ndi=1)

np
k=1

where di,k denotes a single domain data profile. However, no
reverse copying is required here.

Boundary data have to be treated in a slightly different
way. Here we align boundary values, which are associated485

with the surface of one water column each,[
(b1,k)

np
k=1 . . . (bnb,k)

np
k=1

]
−→ ((bi,k)nbi=1)

np
k=1

where bi,k denotes a single boundary data value as opposed
to a whole profile. As with domain data, no reverse copying
is required.490

5.3 Biogeochemical model interface

One of our main objective in this work is to specify a general
coupling interface between the transport induced by ocean
circulation and the biogeochemical tracer model. We wish to
provide a method to couple any biogeochemical model im-495

plementation using any number of tracers, parameters and
boundary and domain data to the software that computes the
ocean transport. Despite the fact that we consider off-line
simulation using transport matrices in this paper only, the in-
terface shall not be restricted to this case. This coupling shall500

furthermore fit into an optimization context, and it shall be
compatible with Algorithmic Differentiation techniques (cf.
Section 7).

The only restriction we make for the tracer model is that
it operates on each single water column (or profile) sepa-505

rately. This means that information on exactly one profile is
exchanged via the coupling interface. For models that require

information on other profiles (e.g. in the horizontal vicinity)
for internal computations, a redefinition of the interface and
some internal changes would be necessary. In fact, most of510

the relevant non-local biogeochemical processes take place
within a water column (cf. Evans and Garçon, 1997).

The evaluation of a water-column based biogeochemical
model for any fixed time t consists of separate model evalu-
ations for each profile (corresponding to a horizontal spatial515

coordinate), i.e. for profile index k:

∆t(qi(t,(yi,k)
ny
i=1,u,(bi,k)nbi=1,(di,k)ndi=1))

ny
i=1 . (11)

Here, (yi,k)
ny
i=1 is an input array of ny tracer profiles accord-

ing to (10), each with a length or depth of nx,k. The vector
u contains nu parameters. Boundary data (bi,k)nbi=1 are given520

as a vector of nb values, and domain data (di,k)ndi=1 as input
array of nd profiles. Results of the biogeochemical model are
stored in the output array (qi,k)

ny
i=1 which also consists of ny

profiles.
Formally speaking this tracer model is scaled from the out-525

side by the (ocean circulation) time step. However, we have
integrated ∆t into the interface as a concession to the com-
mon practice of refining the time step within the tracer model
implementation (cf. Kriest et al., 2010). As a consequence,
the responsibility for scaling results before returning them530

to the transport driver software rests with the model imple-
menter.

Listing 1 shows a realization of the biogeochemical model
interface in a Fortran 95 subroutine called metos3dbgc.
The arguments are grouped by data type. The list begins with535

variables of the type integer, i.e. ny , nx,k, nu, nb and
nd. These are followed by real*8 (double precision) ar-
guments, i.e. ∆t, q, tj , y, u, b and d. For clarity we have
omitted the profile index k and the time index j in our nota-
tion. Moreover, we have used dt as a textual representation540

of ∆t.
A model initialization and finalization interface is also

specified. The former is named metos3dbgcinit and the
latter metos3dbgcfinal. These routines are called at the
beginning of each model year, i.e. at t0, and after the last545

step of the annual iteration, respectively. Both routines em-
ploy the same argument list as metos3dbgc. They are not
shown here. The names of all three routines are arbitrary and
can be altered using pre-processor variables that are defined
within Makefile.550

5.4 Interpolation

Transport matrices as well as boundary and domain data vec-
tors are provided as sets of files. The number of files in each
set is arbitrary, although most of the data we use in this work
represent a monthly mean.555

However, time step counts per model year are generally
much higher than the number of available data files. For this
reason matrices and vectors are linearly interpolated to the
current time step during iteration. All files of a specific data
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set are interpreted as averages of the time intervals they rep-560

resent. We therefore interpolate between the centers of as-
sociated intervals. The appropriate weights and indices are
computed on the fly using Algorithm 4.

With regard to boundary and domain forcing, we denote
data files by ((bi,j)

nb,i
j=1)nbi=1 and ((di,j)

nd,i
j=1)ndi=1. Here, nb is565

the number of distinct boundary data sets, and nb,i is the
number of data files provided for the i-th set. In the same
way, nd denotes the number of domain data sets and nd,i the
number of data files of a particular set.

For every index i and its corresponding boundary data set570

(bi,j)
nb,i
j=1 we compute the appropriate weights α, β as well

as indices jα, jβ and then form a linear combination

bi = αbi,jα +β bi,jβ .

The same applies to domain data, i.e. for every domain data
set (di,j)

nd,i
j=1 we compute575

di = αdi,jα +βdi,jβ .

We use PETSc routines VecCopy, VecScale and
VecAXPY for this process.

With regard to transport we have (Aimp,j)
nimp
j=1 and

(Aexp,j)
nexp
j=1 as data files, where nimp and nexp specify the580

number of implicit and explicit matrix files, respectively.
Analogous to the interpolation of vectors we first interpolate
all user-provided matrices to the current point in time tj , i.e.
we assemble

A = αAjα +βAjβ585

using the appropriate α, β and jα, jβ . We use the matrix vari-
ants MatCopy, MatScale and MatAXPY for this purpose.
The technical details of this process have been discussed in
depth in Siewertsen et al. (2013).

To avoid redundant storing we do not assemble both (block590

diagonal) system matrices during simulation. We use the ma-
trices provided to build just one block for each matrix type
instead. The transport step is then applied as a loop over in-
dividual tracer vectors.

Unlike vector interpolation and vector operations in gen-595

eral, each matrix operation has a significant impact on com-
putational time. In Section 6.2 we will present results from
profiling experiments showing detailed information on the
time usage of each operation.

5.5 Load balancing for spatial parallelization600

For spatial parallelization, the discrete tracer vectors have to
be distributed to the available processes. Since biogeochem-
ical models operate on whole water columns, profiles cannot
be split without message passing. But due to the locally vary-
ing ocean depth, a tracer vector is a collection of profiles with605

different length. Thus a load balancing that takes into account
only the number of profiles, but not their respective length,
would be sub-optimal.

The PETSc library provides no load balancing algorithm
suitable for this case. We therefore use an approach that was610

inspired by the idea of space filling curves presented by Zum-
busch (1999).

For each profile we compute its ’computational weight’,
i.e. its mid, in relation to the overall computational effort, i.e.
the vector length. We then project this ratio to the available615

number of processes, i.e we round this figure down to an in-
teger and use the result as the index of the process the profile
belongs to. By using this information the profiles can then be
assigned consecutively to the processes involved.

For 0-indexed arrays this calculation is described by Algo-620

rithm 3. Its theoretical and actual performance is discussed in
Section 6.3, where a comparison between Metos3D and the
TMM framework is shown.

6 Results

In this section we will present results from our numerical ex-625

periments to verify the software. For these experiments the
interface described in this paper has been used to couple the
transport matrix driver with a suite of biogeochemical mod-
els. We will also inspect the convergence behavior of both
solvers included in the software. A profiling of the main parts630

of the algorithm will complement the verification.
In a second step we have performed speed-up tests to an-

alyze the load distribution implemented in our software and
compared it with the TMM framework. We will also investi-
gate the convergence control settings of the Newton-Krylov635

solver and examine the solver’s behavior within parameter
bounds.

The experimental setup is described in Appendix A in
more detail.

6.1 Solver640

We begin our verification by computing a steady annual cycle
for every model, using both solvers. When using the spin-up
we set no tolerance and let the solver iterate for 10,000 model
years. The Newton approach is set to a line search variant and
the Krylov subspace solver to GMRES. All other settings are645

left at default, so overall absolute tolerance is at 10−8 and the
maximum number of inner iterations is 10,000.

The parameter values used for the MITgcm-PO4-DOP
model are listed in Table 27 under the heading ud. Table 28
lists the parameter values used for the N, N-DOP, NP-DOP,650

NPZ-DOP, NPZD-DOP model hierarchy. If not stated oth-
erwise the initial value is set to 2.17 m mol P m−3 for N or
PO4 and 0.0001 m mol P m−3 for all other tracers.

A comparison of convergence towards a steady annual
cycle for both solvers, applied to the MITgcm-PO4-DOP655

model, is shown in Figure 24. We observe that both solvers
reach the same difference between consecutive iterations at
the end. Table 29 shows the differences between both solu-
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tions in Euclidean and volume-weighted norms, cf. Eq. (4).
Figure 25 depicts the difference between both solutions for660

one tracer at the surface layer. Except for numerical error
both solvers obviously compute the same solution.

Figures 26 and 27 show the convergence behavior of both
solvers for the N and the N-DOP model, respectively. Again
both solvers end with approximately the same accuracy and665

produce similar results. This impression is confirmed by an
inspection of Figures 28 and 29 as well as Table 29.

However, in Figure 210 a different behavior can be ob-
served for the Newton-Krylov solver at the end of the solu-
tion process, applied to the NP-DOP model. Closer inspec-670

tion reveals a peak every 30 model years, which results from
the settings of the inner solver, where GMRES is set to per-
form a restart every 30 years. This option is chosen to reduce
the internal storage requirement, but may lead to stagnation
for indefinite matrices, cf. Saad (2003, Sect. 6.5.6). It is likely675

that the Jacobian at some Newton step becomes indefinite,
and thus we assume that this is the case here. Figure 211 and
Table 29 do not indicate any influence on the solution, how-
ever.

For the NPZ-DOP or the NPZD-DOP model the Newton680

solver shows a different behavior. For both models the solver
does not converge if default settings are used, as depicted
in Figure 212 (top) and Figure 213 (top). Reduction of the
residual per step is quite low, which results in a huge number
of iterations. In this case the solver was stopped after 50 iter-685

ations (the default setting), which is quite high for Newton’s
method. This behavior was caused by the fact that conver-
gence of this method – even in its so-called globalized or
damped version used here – at times still depends on the ini-
tial guess y0. We therefore used a different one, which was690

successful with the NPZD-DOP model, see Figure 213 (mid-
dle). With the NPZ-DOP model, this procedure still did not
work, see Figure 212 (middle).

However, the result of a second and much easier way to
achieve convergence can be seen in Figure 212 (top) and Fig-695

ure 213 (top). If the last Newton iteration step did not lead
to a big reduction of the residual, which was obviously the
case here, the stopping criterion (8) for the inner iterations of
the Newton solver becomes less restrictive. If this criterion is
sharpened the number of inner iterations increases and thus700

the accuracy of the Newton direction improve. This some-
what contradicts the idea formulated in Eisenstat and Walker
(1996). Sharpening can easily be achieved by decreasing γ,
in this case to γ = 0.3. This tuning led to convergence, see
Figure 212 (bottom) and Figure 213 (bottom). When using705

these settings the same solutions are obtained as with the
spin-up, if numerical errors are neglected (see Figures 214
and 215). This result is confirmed by evaluating the differ-
ences in the norm, see Table 29.

It can be observed that as a rule the Newton-Krylov solver710

does not reach default tolerance within the last Newton step
and iterates unnecessarily for 10,000 model years. From now
on we will therefore limit the inner Krylov iterations to 200.

For our next investigations using the MITgcm-PO4-DOP
model we will alter the convergence settings as well to get715

rid of the over-solving observed before. More detailed exper-
iments on this subject are presented in Section 6.4.

6.2 Profiling

In the next two sections we will investigate more closely
some technical aspects of the implementation. We will first720

look at the distribution of computational time among the
main operations of one model year.

For this purpose we perform a profiled sequential run
for each model, iterating for 10 model years. An analy-
sis of our profiling results is shown in Figures 216 - 218.725

When using the MITgcm-PO4-DOP model, for instance,
the biogeochemical model takes up 40% of computational
time. Interpolation of matrices (MatCopy, MatScale and
MatAXPY) amounts to approximately one third. Matrix vec-
tor multiplication (MatMult) takes up a quarter of all com-730

putations and all other operations amount to 0.5%.
Our data also suggest that the greater the number of tracers

involved, the more dominant matrix vector multiplication be-
comes. The MatMult operation takes up 19,8% of compu-
tational time for the N model, but 56,7% for the NPZD-DOP735

model. In Table 210 the absolute timings and the comput-
ing time per tracer versus number of tracers are shown. The
figures confirm the growing dominance of the matrix vector
multiplication. The computing time per tracer converges to-
wards 22 s, which is the absolute time spent by the MatMult740

operation per tracer in each model. The absolute timings of
the biogeochemical model and the interpolation stay (more
or less) constant. They are split among all tracers and thus
become less significant. The implications of these results are
discussed in Section 7.745

Siewertsen et al. (cf. 2013) also made use of this profiling
capacity when porting the software to an NVIDIA graphics
processing unit (GPU). The authors investigated the impact
of the accelerator’s hardware on the simulation of biogeo-
chemical models. Their work comprises a detailed discussion750

of peak performance and memory bandwidth and includes a
counting of floating point operations.

6.3 Speed-up

In this section we will investigate in detail the performance
of the load balancing algorithm and compare our results with755

the scalability provided by the TMM framework. We com-
pile both drivers using the same biogeochemical model. We
choose the MITgcm-PO4-DOP model using the same time
step, initial condition as well as boundary and domain data.

Our tests are run on hardware located at the computing760

center of Kiel University: an Intel® Sandy Bridge EP archi-
tecture with Intel Xeon® E5-2670 CPUs that consist of 16
cores running at 2.6 GHz. We perform 10 tests for our imple-
mentation, using 1 to 256 cores.
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Each test consists of a simulation run of three model years,765

where each year is timed separately. For the TMM frame-
work we use 1 to 192 cores and run 5 tests on each core. We
use the given output here, which shows the timing for one
whole run.

To calculate speed-up and efficiency we use the minimum770

timings for a specific number of cores. All timings are related
to the timing of a sequential run. For a set of computational
times (ti)

N
i=1 measured during our experiments, with N =

192 or N = 256, respectively, we calculate speed-up as si =
t1/ti and efficiency as ei = 100 ∗ si/i.775

To investigate the load distribution implemented by us (cf.
Section 5.5) we compute the best ratio possible between a se-
quential and a parallel run. Using Algorithm 3 we first com-
pute the load distribution for all numbers of processes, i.e.
i= 1, . . . ,260, and then retrieve the maximum (local) length780

ni,max. To calculate speed-up we divide the vector length by
this value, i.e. si = ny/ni,max, and to calculate efficiency we
again use ei = 100 ∗ si/i.

Figure 219 depicts ideal, theoretical and actual data for
speed-up and efficiency. Here, the term ’ideal’ refers to a785

perfectly parallelizable program and a perfect hardware with
no delay on memory access or communication. Regarding
the load distribution implemented by us a good (theoretical)
performance can be observed over the whole range of pro-
cesses. This refers again to a perfect hardware except that we790

distribute a collection of profiles of different length here.
The data also show that a parallel run of Metos3D on the

Intel hardware achieves close to perfect performance when
using between 100 and 140 cores. Efficiency is at about 95%
in this range and speed-up nearly corresponds to the num-795

ber of processes. In fact speed-up may rise still further up to
slightly over 160, but a minimum of 200 processes are re-
quired to achieve this.

In comparison, the scalability of the TMM framework is
not optimal. Efficiency drops off immediately and speed-up800

never rises above 40. For 120 cores and above Metos3D is
at least 4 times faster. Interestingly, for low numbers of pro-
cesses a significant drop in performance can be observed for
both drivers. The implications of this are discussed briefly in
Section 7. We did not investigate this effect any further, how-805

ever, since the results presented here already provide a good
guideline.

6.4 Convergence control

After this basic verification and the review of some tech-
nical aspects of our implementation, we will now investi-810

gate those settings that control convergence of the Newton-
Krylov solver. Once again we use only the MITgcm-PO4-
DOP model. Our intention here is to eliminate the over-
solving we observed during the first 200 iterations as shown
in Figure 24. This effect occurs if the accuracy of the inner815

solver is significantly higher than the resulting Newton resid-
ual (cf. Eisenstat and Walker, 1996). The relation between

these two is controlled by the parameters γ and the α used in
Equation (8).

To investigate the influence of these parameters on con-820

vergence we compute the reference solution described in
Section 6.1 using different values of γ and α. We set over-
all tolerance to the difference measured between consecutive
states after 3,000 model years of spin-up, i.e. approximately
9.0× 10−4. γ is varied from 0.5 to 1.0 in steps of 0.1 and α825

from 1.1 to 1.6, also in steps of 0.1. This makes for a total of
36 model evaluations.

Figure 220 depicts the number of model years and Newton
steps required as a function of γ and α. We observe that the
overall number of years decreases as the two parameters tend830

towards 1.0 and 1.1, respectively. In contrast, the number of
Newton steps increases, i.e. the Newton residual is computed
more often and the inner steps become shorter.

Consequently, since the computation of one residual is
negligible in comparison to the simulation of one model year,835

we focus on decreasing the overall number of model years.
A detailed inspection of the results reveals that for γ = 1.0
and α= 1.2 the solver reaches the tolerance set above after
approximately 450 model years, which is significantly less
than the 600 years needed when using the default settings.840

We therefore use these values for our next experiment.

6.5 Parameter samples

So far we have solved the model equations for one (ref-
erence) set of parameters only. During optimization, how-
ever, solutions must be computed for various parameter845

sets. Our next experiments therefore investigate the solver’s
behavior with regard to different model parameters. Once
again we only use the MITgcm-PO4-DOP model. Using the
MATLAB® routine lhsdesign, we create 100 Latin Hy-
percube (cf. McKay et al., 1979) samples within the bounds850

described in Table 27. As before we set overall tolerance to a
value comparable to 3,000 spin-up iterations and let the New-
ton solver compute a solution for each parameter sample.

Figure 221 shows histograms of the total number of model
years or Newton steps required to solve the model equations.855

We observe that most computations converge after 400 to 550
model years and require 10 to 30 Newton steps. Interestingly,
there is a high peak around 15 and a smaller one around 12
for the Newton method. We also find some outliers in both
graphs. Nevertheless all model evaluations we started con-860

verged towards a solution within the desired tolerance.

7 Conclusions

We designed and implemented a simulation framework for
the computation of steady annual cycles for a generalized
class of marine ecosystem models in 3-D, driven by trans-865

port matrices pre-computed in an off-line mode. Our frame-
work allows computation of steady cycles by spin-up or by a
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globalized Newton method. The software has been realized
as open source code throughout.

We also introduced a software interface for water column-870

based biogeochemical models. We demonstrated the appli-
cability and flexibility of this interface by coupling the bio-
geochemical component used in the MITgcm general circu-
lation model to the simulation framework. To test the general
usability of the interface we then coupled our own imple-875

mentations of five different biogeochemical models of vary-
ing complexity (already used in Kriest et al. (2010)) to the
framework. The source code of these models is also available
as part of the software package, and may serve as template
for the implementation or adaption of other models.880

We implemented a transient solver based on the transport
matrix approach, where all matrix operations and evaluations
of biogeochemical models are performed by spatial paral-
lelization via MPI using the PETSc library. The transport
matrices needed for this process are available directly and885

require no pre-processing.
We realized both a spin-up (or fixed-point iteration) and

a globalized Newton solver for the computation of steady
cycles. We compared the performance of both solvers and
made the following observations: Both delivered the same re-890

sults (up to a reasonable precision) on convergence. The spin-
up converged when using standard sets of parameters, which
were taken from Kriest et al. (2010), and equally distributed
values for all tracers. The Newton solver did the same for
the four models of lower complexity. It did not converge for895

the other two models when using standard parameter settings
and an initial distribution of tracers as described above. For
both of these more complex models convergence could be
achieved by increasing the number of inner iterations in the
Newton solver, which is realized by decreasing the parame-900

ter γ in (8). For one of these models convergence could also
be achieved by choosing a different initial guess.

With regard to performance, the Newton solver was about
6 times faster for all models. It can be concluded that for
complex models the Newton method requires more attention905

to solver parameter settings, but then is superior to the spin-
up, at least when using parameter sets as described above.

In a next step we investigated how performance of the
Newton method is influenced by the two solver parame-
ters α,γ in (8), using one model as an example. Employing910

the optimal choice derived from these experiments (and one
model parameter set), we then studied the number of Newton
iterations and overall model years needed for 100 latin hyper-
cube model parameter samples. This is an important test for
the usability of the Newton method in various kinds of opti-915

mization runs, for example if model parameters are varied by
the optimizer. As it turned out there was a certain variance
in the number of steps needed and thus in the overall effort,
but there were no extreme outliers. Our conclusion is that the
Newton method is appropriate for optimization, at least for920

this model, and faster than the usually robust spin-up.

We further analyzed which proportion of computational
time is utilized by different parts of our software during sim-
ulation of one model year. Our experiments showed that with
an increase in the number of tracers the matrix-vector op-925

erations started to dominate the process, thus offering the
greatest potential for further performance tuning. This was
the case even though the transport operator was the same
for every tracer. In contrast all biogeochemical interactions
contained in the nonlinear coupling terms qj , which mostly930

are spatially local, become less performance-relevant as the
number of tracers increases.

Finally, we implemented a load balancing mechanism
which exploits the fact that water columns in the ocean vary
in depth, resulting in data vectors of variable length. Using935

this balancing method a close to optimal speed-up by spatial
parallelization was achieved up to the relatively high num-
ber of 140 processes. This results in an acceleration factor of
four compared to the TMM framework. The factor increases
even to five, if 200 processes are used. However, here already940

20 % of computational resources are wasted.
To summarize, the software framework presented here of-

fers high flexibility w.r.t. models and steady cycle solvers.
The implemented load balancing scheme results in signif-
icant improvement in parallel performance. Especially, the945

apllied Newton solver can be tuned to converge for all six
biogeochemical models.

8 Code availability

Name of software: Metos3D (Simulation Package v0.3.2)
Developer: Jaroslaw Piwonski950

Year first available: 2012
Software required: PETSc 3.3
Program language: C, C++, Fortran
Size of installation: 1.6 GB
Availability and costs: free software, GPLv3955

Software homepage: https://metos3d.github.com/metos3d

The toolkit is maintained using the distributed revision con-
trol system git. All source codes are available at GitHub
(https://github.com). The current versions of simpack and
model are tagged as v0.3.2. The data repository is tagged960

as version v0.2. All experiments presented in this work
were carried out using these versions. Associated material
is stored in the 2016-GMD-Metos3D repository.

To install the software users should visit the homepage
and follow instructions. Future installations will reflect the965

state of development at that point of time, but users may
still retrieve the versions used in this work by invoking git
checkout v0.3.2 in the simpack and model reposi-
tory as well as git checkout v0.2 in the data repos-
itories.970

https://metos3d.github.com/metos3d
https://github.com


Piwonski and Slawig: Metos3D 11

Appendix A: Experimental setup

We assume that all PETSc environment variables have been
set, the toolkit has been installed and the metos3d script
has been made available as a shell command.

A1 Models975

In order to test our interface we couple an N, N-DOP, NP-
DOP, NPZ-DOP, NPZD-DOP model hierarchy as well as an
implementation of Dutkiewicz et al. (2005)’s original bio-
geochemical model. The former has been implemented from
scratch for this purpose. The corresponding equations are980

shown in Appendix B. The latter is the model used for the
MIT General Circulation Model (cf. Marshall et al., 1997,
MITgcm) biogeochemistry tutorial. We will denote it as the
MITgcm-PO4-DOP model.

For every model implementation that is coupled to the985

transport driver via the interface a new executable must be
compiled. We have established naming conventions for the
directory structure so that it fits seamlessly into an automatic
compile scheme. We create a folder that is named after the
biogeochemical model, for instance MITgcm-PO4-DOP,990

within the model directory of the model repository.
Within this folder the source code file named model.F

is stored. This directory structure is used for all models. Al-
though the file suffix used here implies a pre-processed For-
tran fixed format, any programming language supported by995

the PETSc library will be accepted.
To compile all sources (still using the same example) we

invoke

$> metos3d simpack MITgcm-PO4-DOP

and obtain an executable named1000

metos3d-simpack-MITgcm-PO4-DOP.exe

which we will use for all experiments described below. Spe-
cific settings will be provided via option files.

A2 Data

All matrices and forcing data used in this work are based1005

on the example material available at (Khatiwala, 2013). This
material originates from MITgcm simulations and requires
some post-processing. The corresponding preparation scripts
are provided along with the processed data in the data
repository.1010

The surface grid of the domain used has a longitudinal and
latitudinal resolution of 2.8125◦, which produces 128× 64
grid points (cf. Figure 23). Note that the Arctic has been filled
in, i.e. set to land. This originates in the data provided at the
TMM webpage (cf. Khatiwala, 2013). The depth is divided1015

into 15 vertical layers as described in Table 26. This geome-
try translates to a (single) tracer vector length of nx = 52749
and to np = 4448 corresponding profiles. Temporal resolu-
tion is at ∆t= 1/2880, which is equivalent to an (ocean)

time step of 3 hours, assuming that one year consists of 3601020

days.
The method of computing photosynthetically available

short wave radiation is the same for all models. It is de-
duced from insolation, which is computed on the fly using
the formula of Paltridge and Platt (1976). For this purpose1025

latitude and ice cover data are required for the topmost layer,
i.e. nb = 2. We use a single latitude file for the former, i.e.
nb,1 = 1, and twelve ice cover files for the latter, nb,2 = 12.

The depths and heights of all vertical layers are required
as well, so we have nd = 2 domain data sets. Each set con-1030

sists of only one file, i.e. nd,1 = 1 and nd,2 = 1. This infor-
mation is used to compute the attenuation of light by wa-
ter to determine the fluxes of particulate organic phosphorus
and to approximate a derivative with respect to depth. Note
that these data sets have to be provided in a specific order,1035

which must correspond to the order used within the model
implementation. In addition, twelve implicit transport matri-
ces, i.e. nimp = 12, and twelve explicit transport matrices,
i.e. nexp = 12, are provided as mentioned previously. Each
simulation starts at t0 = 0 and performs nt = 2880 iterations1040

per model year.

Appendix B: Model equations

The N, N-DOP, NP-DOP, NPZ-DOP and NPZD-DOP model
hierarchy presented here is based on the descriptions used by
Kriest et al. (2010). All parameters introduced are shown in1045

Table 28.

B1 Short wave radiation

As mentioned in Section A2, short wave radiation for the
topmost layer is deduced from insolation, which is com-
puted on the fly using the formula of Paltridge and Platt1050

(1976). For this purpose latitude φ and ice cover σice data
are required. We denote the computed value by ISWR =
ISWR(φ,σice). For all lower layers data on depth (zj)

nx
j=1

and height (dzj)
nx
j=1 are required. Attenuation by water is de-

scribed by the coefficient kw and attenuation by phytoplank-1055

ton (chlorophyll) by kc.

B1.1 Implicit phytoplankton

For models N and N-DOP short wave radiation is computed
without phytoplankton, i.e.

Ij = ISWR

{
I ′j j = 1

I ′j
∏j−1
k=1 Ik else

1060

where I ′j = exp(−kw dzj/2), Ij = exp(−kw dzj), and j is
the index of the individual layers.



12 Piwonski and Slawig: Metos3D

B1.2 Explicit phytoplankton

For models NP-DOP, NPZ-DOP and NPZD-DOP short wave
radiation is computed with phytoplankton included, i.e.1065

IP,j = ISWR

{
I ′P,j j = 1

I ′P,j
∏j−1
k=1 IP,k else

where I ′P,j = exp(−(kw + kc yP,j)dzj/2) and I ′P,k =
exp(−(kw + kc yP,k)dzk).

B2 N model

The simplest model used here consists of nutrients (N) only,1070

i.e. y = (yN ). The equation is presented in Table B1. Bio-
logical uptake is computed as

fP (yN , I) = µP y
∗
P

yN
KN +yN

I

KI + I
,

where the implicitly prescribed concentration of phyto-
plankton is set to y∗P = 0.0028 mmol P m−3. Note that y∗P1075

could be a free model parameter as well. However, we
stick to this formulation to be consistent with Kriest et al.
(2010). The N model introduces nu = 5 parameters, with
u = (kw,µP ,KN ,KI , b).

B3 N-DOP model1080

The N-DOP model consists of nutrients (N) and dissolved
organic phosphorus (DOP), i.e. y = (yN ,yDOP ). Compu-
tation of biological uptake remains the same. The equations
are shown in Table B2. The N-DOP model introduces nu = 7
parameters, with u = (kw,µP ,KN ,KI ,σDOP ,λDOP , b).1085

B4 NP-DOP model

The NP-DOP model consists of nutrients (N), phytoplank-
ton (P), and dissolved organic phosphorus (DOP), i.e. y =
(yN ,yP ,yDOP ). Here nutrient uptake by (explicit) phyto-
plankton is computed as1090

fP (yN ,yP , IP ) = µP yP
yN

KN +yN

IP
KI + IP

.

Computation of short wave radiation is altered as well (see
Section B1.2). In addition a quadratic loss term for phyto-
plankton is introduced, as is a grazing function

fZ(yP ) = µZ y
∗
Z

y2
P

K2
P +y2

P

,1095

where the implicitly prescribed concentration of zoo-
plankton is set to y∗Z = 0.01 mmol P m−3. Again, we
stick to this formulation to be consistent with Kriest
et al. (2010), though y∗Z could be a free model param-
eter. The equations are shown in Table B3. The NP-1100

DOP model introduces nu = 13 parameters, with u =
(kw,kc,µP ,µZ ,KN ,KP ,KI ,σDOP ,λP ,κP ,λ

′
P ,λDOP , b).

B5 NPZ-DOP model

The NPZ-DOP model consists of nutrients (N), phytoplank-
ton (P) zooplankton (Z) and dissolved organic phosphorus1105

(DOP), i.e. y = (yN ,yP ,yZ ,yDOP ). The production func-
tion remains the same. For the computation of grazing, zoo-
plankton is dealt with explicitly, i.e.

fZ(yP ,yZ) = µP yZ
y2
P

K2
P +y2

P

.

The equations are shown in Table B4. The NPZ-1110

DOP model introduces nu = 16 parameters, with
u = (kw,kc,µP ,µZ ,KN ,KP ,KI ,σZ ,σDOP ,λP ,λZ ,κZ ,
λ′P ,λ

′
Z ,λ

′
DOP , b).

B6 NPZD-DOP model

The NPZD-DOP model consists of nutrients (N), phyto-1115

plankton (P) zooplankton (Z), detritus (D) and dissolved or-
ganic phosphorus (DOP), i.e. y = (yN ,yP ,yZ ,yD,yDOP ).
Most equations are unchanged, except that a depth-
dependent linear sinking speed is introduced for detritus.
The equations are shown in Table B5. The NPZD-1120

DOP model introduces nu = 16 parameters, with u =
(kw,kc,µP ,µZ ,KN ,KP ,KI ,σZ ,σDOP ,λP ,λZ ,κZ ,λ

′
P ,λ

′
Z ,

λ′D,λ
′
DOP ,aD, bD).
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Figure 21. Implementation layers of the Metos3D simulation package (cf. Section 5.1).
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Figure 22. Call graph for the computation of a steady annual cycle(cf. Section 5.1).
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Figure 23. Land-sea mask (geometric data) of the used numerical model. Shown are the number of layers per grip point. Note that the Arctic
has been filled in.
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Figure 24. MITgcm-PO4-DOP model: Convergence towards an annual cycle. Spin-up: norm of difference between initial states of consec-
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Figure 26. N model: Convergence towards an annual cycle using spin-up and Newton-Krylov solver.
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Figure 27. N-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.
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Figure 28. N model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0 – 50 m) in
the Euclidean norm. Units are mmol P m−3.
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Figure 29. N-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0 – 50
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Figure 210. NP-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

2.4e-06

1.1e-04

2.3e-04

3.4e-04

4.5e-04

5.6e-04

6.7e-04

7.8e-04

9.0e-04

1.0e-03

Figure 211. NP-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0 –
50 m) in the Euclidean norm. Units are mmol P m−3.
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Figure 212. NPZ-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver. Top: Default Newton-
Krylov setting. Middle: Initial value altered to 0.5425 mmol P m−3 for all tracers. Bottom: Inner accuracy altered to γ = 0.3.
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Figure 213. NPZD-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver. Top: Default Newton-
Krylov setting. Middle: Initial value altered to 0.0434 mmol P m−3 for all tracers. Bottom: Inner accuracy altered to γ = 0.3.
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Figure 214. NPZ-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0
– 50 m) in the Euclidean norm. Units are mmol P m−3.
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Figure 215. NPZD-DOP model: Difference between the phosphate concentration of the spin-up and the Newton solution at the first layer (0
– 50 m) in the Euclidean norm. Units are mmol P m−3.
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Figure 216. Distribution of computational time among main operations during integration of one model year. Left: MITgcm-PO4-DOP
model. Right: N model.
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Figure 217. Distribution of computational time among main operations during integration of one model year. Left: N-DOP model. Right:
NP-DOP model.
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NPZD-DOP model.
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Figure 219. MITgcm-PO4-DOP model: Ideal and actual speed-up factors and efficiency of parallelized computations. The term ’theoretical’
here refers to the use of load distribution as introduced in Section 6.3.

Algorithm 1: Phi (φ)

Input : initial condition: (t0,y0), time step: ∆t, number of time steps: nt, implicit matrices: Aimp, explicit matrices: Aexp,
parameters: u ∈ Rm, boundary data: b, domain data: d

Output: final state: yout

1 yin = y0 ;
2 for j = 1, . . . ,nt do
3 tj = mod (t0 + (j− 1)∆t,1.0) ;
4 yout = PhiStep(tj ,∆t,Aimp,Aexp,yin,u,b,d) ;
5 yin = yout ;
6 end
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Figure 220. MITgcm-PO4-DOP model: Number of model years and Newton steps required for the computation of the annual cycle y(ud)
as a function of different convergence control parameters α and γ (cf. Equation (8)).

Algorithm 2: PhiStep (ϕj)

Input : point in time: tj , time step: ∆t, implicit matrices: Aimp, explicit matrices: Aexp, current state: yin, parameters: u ∈ Rm,
boundary data: b, domain data: d

Output: next state: yout

1 q = BGCStep(tj ,∆t,yin,u,b,d) ;
2 yw = TransportStep(tj ,Aexp,yin) ;
3 yw = yw + q ;
4 yout = TransportStep(tj ,Aimp,yw) ;
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Figure 221. Distribution of number of model years and Newton steps required for the computation of one annual cycle using 100 random
parameter samples (cf. Section 6.5).

Algorithm 3: Load balancing
Input : vector length: nx, number of profiles: np, profile lengths: (nx,k)

np
k=1, number of processes: N

Output: profiles per process: (np,i)
N
i=1

1 w = 0 ;
2 np,1...N = 0 ;
3 for k = 1, . . . ,np do
4 i= floor(((w+ 0.5 ∗nx,k)/ny) ∗N) ;
5 np,i = np,i + 1 ;
6 w = w+nx,k ;
7 end
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Table 26. Vertical layers of the numerical model, in meters.

Layer Depth of Thickness of
layer bottom layer (∆z)

1 50 50
2 120 70
3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690

Table 27. Parameters implemented in the MITgcm-PO4-DOP model. Specified are the location within the parameter vector, the symbol
used by Dutkiewicz et al. (2005) and the value used for the computation of the reference solution (ud). Shown are furthermore the lower (bl)
and upper (bu) boundaries used for the parameter samples experiment.

u Symbol ud bl bu Unit

u1 κremin 0.5 0.25 0.75 y−1

u2 α 2.0 1.5 200.0 mmol P m−3

u3 fDOP 0.67 0.05 0.95 1
u4 κPO4 0.5 0.25 1.5 mmol P m−3

u5 κI 30.0 10.0 50.0 W m−1

u6 k 0.02 0.01 0.05 m−1

u7 aremin 0.858 0.7 1.5 1

Algorithm 4: Interpolation
Input : point in time: t ∈ [0,1[, number of data points: ndata
Output: weights: α,β, indices: jα, jβ

1 w = t ∗ndata + 0.5 ;
2 β = mod(w,1.0) ;
3 jβ = mod(floor(w),ndata) ;
4 α= (1.0−β) ;
5 jα = mod(floor(w) +ndata− 1,ndata) ;

Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.
subroutine metos3dbgc(ny, nx, nu, nb, nd, dt, q, t, y, u, b, d)

integer :: ny, nx, nu, nb, nd
real*8 :: dt, q(nx, ny), t, y(nx, ny), u(nu), b(nb), d(nx, nd)

end subroutine
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Table 28. Parameter values used for the solver experiments with the N, N-DOP, NP-DOP, NPZ-DOP and NPZD-DOP model hierarchy.

Parameter N N-DOP NP-DOP NPZ-DOP NPZD-DOP Unit

kw 0.02 0.02 0.02 0.02 0.02 m−1

kc 0.48 0.48 0.48 (mmol P m−3)−1m−1

µP 2.0 2.0 2.0 2.0 2.0 d−1

µZ 2.0 2.0 2.0 d−1

KN 0.5 0.5 0.5 0.5 0.5 mmol P m−3

KP 0.088 0.088 0.088 mmol P m−3

KI 30.0 30.0 30.0 30.0 30.0 W m−2

σZ 0.75 0.75 1
σDOP 0.67 0.67 0.67 0.67 1
λP 0.04 0.04 0.04 d−1

κP 4.0 (mmol P m−3)−1d−1

λZ 0.03 0.03 d−1

κZ 3.2 3.2 (mmol P m−3)−1d−1

λ′P 0.01 0.01 0.01 d−1

λ′Z 0.01 0.01 d−1

λ′D 0.05 d−1

λ′DOP 0.5 0.5 0.5 0.5 y−1

b 0.858 0.858 0.858 0.858 1
aD 0.058 d−1

bD 0.0 m d−1

Table 29. Difference in the Euclidean (‖ · ‖2) and volume-weighted (‖ · ‖2,V , cf. Eq. (4)) norms between the spin-up (yS) and the Newton
(yN ) solution for all models. The total volume of the ocean used here is V ≈ 1.174×1018 m3. Solutions for models NPZ-DOP and NPZD-
DOP were produced by experiments with altered inner accuracy or initial value, respectively.

Model ‖yS −yN‖2 ‖yS −yN‖2,V

MITgcm-PO4-DOP 1.460e-01 7.473e+05
N 4.640e-01 2.756e+06
N-DOP 2.421e-01 1.199e+06
NP-DOP 7.013e-02 3.633e+05
NPZ-DOP 1.421e-02 8.514e+04
NPZD-DOP 3.750e-02 2.062e+05

Table 210. Minimum, maximum, average and standard deviation of computational time for one model year as well as the computing time
per tracer is shown. All computations were performed on a single core Intel Xeon® E5-2670 CPU at 2.6 GHz.

Min Max Avg StdDev Min per tracer

N 112.53 s 112.87 s 112.79 s 0.09 112.53 s
N-DOP 142.96 s 143.30 s 143.12 s 0.11 71.48 s
NP-DOP 160.32 s 161.28 s 160.86 s 0.30 53.44 s
NPZ-DOP 185.46 s 185.70 s 185.53 s 0.07 46.37 s
NPZD-DOP 193.99 s 194.63 s 194.09 s 0.19 38.80 s


