
Manuscript prepared for Geosci. Model Dev.
with version 2014/09/16 7.15 Copernicus papers of the LATEX class coperni-
cus.cls.
Date: 8 February 2016

Metos3D: A Marine Ecosystem Toolkit for Optimization and
Simulation in 3-D – Simulation Package v0.3.2 –
Jaroslaw Piwonski1 and Thomas Slawig1

1Institute for Computer Science and Kiel Marine Science – Centre for Interdisciplinary Marine Science, Cluster The Future
Ocean, Kiel University, 24098 Kiel, Germany. Email: {jpi, ts}@informatik.uni-kiel.de

Correspondence to: Jaroslaw Piwonski (jpi@informatik.uni-kiel.de)

Abstract. We designed and implemented a modular software
framework for the off-line simulation of steady cycles of 3-D
marine ecosystem models based on the transport matrix ap-
proach. It is intended to be used in parameter optimization
and model assessment experiments. We defined a software5

interface for the coupling of a general class of water column-
based biogeochemical models, with six of them being part of
the package. The framework offers both spin-up/fixed-point
iteration and Jacobian-free Newton method for the compu-
tation of steady states. The Newton method converged with10

standard setting for four models, and with a change in one
solver parameter or the initial guess for two more complex
ones. For all considered models, both methods delivered the
same steady state (within a reasonable precision) on conver-
gence, with the Newton iteration being in general 6 times15

faster. For one exemplary model, we investigated the effect
of both the biogeochemical and the Newton solver param-
eters on the performance. We performed a profiling analy-
sis for all considered models, in which the number of trac-
ers had a dominant impact on the overall performance. We20

implemented a geometry-adapted load balancing procedure
which showed nearly optimal scalability up to a high number
of parallel processors.

1 Introduction

In the field of climate research, simulation of marine ecosys-25

tem models is used to investigate the carbon uptake and stor-
age of the oceans. The aim is to identify those processes that
are involved with the global carbon cycle. This requires a
coupled simulation of ocean circulation and marine biogeo-
chemistry. In this context, marine ecosystems are understood30

as extensions of the latter (cf. Fasham, 2003; Sarmiento and
Gruber, 2006). Consequently, we will use both terms synony-

mously below. However, whereas the equations and variables
of ocean dynamics are well known, descriptions of biogeo-
chemical or ecological sinks and sources still entail uncer-35

tainties concerning the number of components and parame-
terizations (cf. Kriest et al., 2010).

A wide range of marine ecosystem models needs to be val-
idated, i.e. assessed regarding their ability to reproduce real
world data. This involves a professional discussion of simu-40

lation results and, moreover, an estimation of optimal model
parameters for preferably standardized data sets beforehand
(cf. Fennel et al., 2001; Schartau and Oschlies, 2003).

Optimization methods usually require hundreds of model
evaluations. As a consequence, an environment for optimiza-45

tion of marine ecosystems that is intended by (and men-
tioned in the name of) our software Metos3D has to provide
a fast and flexible simulation framework at first. On this pre-
requisite for an optimization environment we concentrate in
this paper, always keeping in mind its later intented usage.50

As a consequence, we impose a high standard of flexibility
w.r.t. interchange of models and solvers.

The computational effort of a fully coupled simulation, i.e.
a simultaneous and interdependent computation of ocean cir-
culation and tracer transport in three spatial dimensions, is55

very high, even at low resolution. Moreover, the complex-
ity increases additionally if annual cycles are investigated, in
which one model evaluation involves a long time integration
(the so-called spin-up) until an equilibrium state under given
forcing is reached (cf. Bernsen et al., 2008).60

Individual strategies have been developed to accelerate
the computation of periodic steady-states of biogeochemical
models driven by a 3-D ocean circulation (cf. Bryan, 1984;
Danabasoglu et al., 1996; Wang, 2001). In this work we com-
bine three of them in our software, namely the so-called off-65

line simulation, the option for the use of Newton’s method for

2 Piwonski and Slawig: Metos3D

the computation of steady annual cycles (as an alternative to
a spin-up) and spatial parallelization with high scalability.

Off-line simulation offers a fundamentally reduced com-
putational cost compared to an acceptable loss of accuracy.70

The principle idea is to pre-compute transport data for pas-
sive tracers. Such an approach has been adopted by Khati-
wala et al. (2005) to introduce the so-called Transport Ma-
trix Method (TMM; Khatiwala, 2013). The authors make use
of matrices to store results from a general circulation model75

and to apply them later on to arbitrary variables. This method
proved to be sufficiently accurate to gain first insights into the
behavior of biogeochemical models at global basin-scale (cf.
Khatiwala, 2007).

From the mathematical point of view, a steady annual cy-80

cle is a periodic solution of a system of (in this case) non-
linear parabolic partial differential equations. This periodic
solution is a fixed-point of the mapping that integrates the
model variables over one year model time. In this sense, a
spin-up is a fixed-point iteration. By a straighforward pro-85

cedure, this fixed-point problem can be equivalently trans-
formed into the problem of finding the root(s) of a nonlin-
ear mapping. For this kind of problem, Newton-type methods
(cf. Dennis and Schnabel, 1996, Chapter 6) are well known
for their superlinear convergence. In combination with a90

Krylov subspace approach, a Jacobian-free scheme can be
realized that is based only on evaluations of one model year
(cf. Knoll and Keyes, 2004; Merlis and Khatiwala, 2008;
Bernsen et al., 2008).

No matter whether fixed-point or Newton iteration is used,95

the necessary multiply repeated simulation of one model year
for the marine ecosystem in 3-D is still subject to high perfor-
mance computing. Parallel software that employs transport
matrices and targets a multi-core distributed-memory archi-
tecture requires appropriate data types and linear algebra op-100

erations. Additionally, the special ocean geometry with dif-
ferent numbers of vertical layers in different regions is a chal-
lenge for standard load balancing algorithms – and a chance
for the development of adapted versions with improved over-
all simulation performance. Except for the latter, the basis for105

our implementation is freely available by the Portable, Ex-
tensible Toolkit for Scientific Computation library (PETSc;
Balay et al., 1997, 2012b), which in turn is based on the Mes-
sage Passing Interface standard (MPI; Walker and Dongarra,
1996).110

The objective of this work is to unite the mentioned three
performance-enhancing techniques (off-line computation via
transport matrices, Newton method, and highly scalable par-
allelization) in a software environment with rigorous mod-
ularity and complete open-source accessibility. Here, mod-115

ularity refers to the separation of data pre-processing and
simulation and the flexibility of coupling any water column-
based biogeochemical model with minimized implementa-
tion effort. For this purpose, we defined a model interface
that permits any number of tracers, parameters as well as120

boundary and domain data. Its flexibility we show by using

both an available biogeochemical model (Dutkiewicz et al.,
2005), taken from the MITgcm ocean model, as well as a
suite of more complex ones, which is included in our soft-
ware package. Our software allows for choosing among spin-125

up/fixed-point iteration and Newton method, where for the
latter tuning options are studied. As a result, the work of
Khatiwala (2008) could be extended by numerically show-
ing convergence for all six abovementioned models with-
out applying preconditioning. Moreover, a detailed profiling130

analysis for the simulation with the different biogeochemical
models shows how the number of tracers impacts the overall
performance. Finally, an adapted load balancing method is
presented. It shows nearly optimal scalability up to 128 pro-
cesses, and in this respect superiority over other approaches,135

including the one used in Khatiwala (2013).
The paper is organized as follows. In Sections 2 and 3

we describe the marine ecosystem dynamics and recapitulate
the transport matrix approach. In Sections 4 we summarize
the two options for the computation of steady cycles/peri-140

odic solutions, namely the fixed-point and Newton iteration,
where for the latter we also discuss tuning options to achieve
better convergence. In Sections 5 and 6, we describe design
and implementation of our software package, and Section 7
shows ist applicability and performance in several numerical145

results. In Section 8 we draw conclusions and in Section 9
describe how to obtain the source code. In the Appendix,
we summarize the model equations and parameter settings
of the model suite we used for this work and that is available
together with the simulation software.150

2 Marine ecosystem dynamics

We consider the following tracer transport model, which is
defined by a system of semilinear parabolic partial differen-
tial equations (PDEs) of the form

∂yi
∂t

=∇ · (κ∇yi)−∇ · (v yi) + qi(y,u,b,d), i= 1, . . . ,ny,

(1)

155

on a time interval I := [0,T] and a spatial domain Ω⊂ R3

with boundary Γ = ∂Ω. Here yi : I×Ω→ R denotes one sin-
gle tracer concentration and y = (yi)

ny
i=1 the vector of all trac-

ers. Since we are interested in long-time behavior and steady
annual cycles, we assume that the time variable is scaled in160

years. We omit the additional dependency on the time and
space coordinates (t,x) in the notation for brevity.

The transport of tracers in marine waters is determined by
diffusion and advection which is reflected in the first two
linear terms on the right-hand side of (1). Diffusion mix-165

ing coefficient κ : I ×Ω→ R and advection velocity field
v : I ×Ω→ R3 may be regarded as given data or have to be
simulated together with (1) by an ocean model. Molecular
diffusion of the tracers is regarded as negligible compared

Piwonski and Slawig: Metos3D 3

to the turbulent mixing diffusion. Thus κ and both transport170

terms are the same for all yi.
The biogeochemical processes in the ecosystem are repre-

sented by the last term on the right-hand side of (1), i.e.

qi(y,u,b,d) = qi(y1, . . . ,yn,u,b,d), i= 1, . . . ,ny.

Often, the functions qi are nonlinear and depend on several175

tracers, which couples the system. We will refer to the set of
functions q = (qi)

ny
i=1 as ”the biogeochemical model”. This

model typically depends also on parameters. In the software
we present in this paper these are assumed to be constant w.
r. t. space and time, i.e. we have u= u ∈ Rnu . In the general180

setting of (1) this is not necessary. Boundary forcing (e.g.
insolation or wind speed, defined on the ocean surface Γs ⊂
Γ) and domain forcing functions (e.g. salinity or temperature
of the ocean water) my also enter the biogeochemical model.
These are denoted by b= (bi)

nb
i=1 , bi : I ×Γs→ R and d=185

(di)
nd
i=1 ,di : I ×Ω→ R, respectively.

A reasonable setting are homogeneous Neumann condi-
tions for all tracers yi on the entire boundary Γ. Moreover, a
function y0(x) = (yi(0,x))

ny
i=1 ,x ∈ Ω, has to be provided to

solve an initial-boundary-value problem for (1).190

3 Transport matrix approach

The transport matrix method (Khatiwala et al., 2005) is a
method that allows fast simulation of tracer transport assum-
ing that the forcing data diffusion κ and advection velocity
v are given. The method is based on the discretized coun-195

terpart of (1). We introduce the following notation: Let the
domain Ω be discretized by a grid (xk)

nx
k=1 ⊂ R3 and one

year in time by 0 = t0 < .. . < tj < tj+∆tj =: tj+1 < .. . <
tnt = 1. This means that there are nt time steps per year. At
time instant tj , we denote by200

– yji = (yi(tj ,xk))nxk=1 the vector of the values of the i-
th tracer at all grid points,

– yj = (yji)
ny
i=1 ∈ Rnynx a vector of the values of all

tracers at all grid points, appropriately concatenated.

We use analogous notations bj ,dj , and qj for the boundary205

and domain data as well as the biogeochemical terms in the
j-th time step. For the boundary data only corresponding grid
points are incorporated.

The transport matrix method approximates the discretized
counterpart of (1) by210

yj+1 = Limp,j(Lexp,jyj + ∆tjqj(yj ,u,bj ,dj)) (2)
=: ϕj(yj ,u,bj ,dj), j = 0, . . . ,nt− 1.

The linear operators Lexp,j ,Limp,j represent the parts of the
transport term in (1) that are discretized explicitly and im-
plicitly w. r. t. time, respectively. Consequently, these opera-215

tors depend on the given transport data κ,v and thus on time.

The biogeochemical term is treated explicitly in (2) by an
Euler step.

Since the transport effects each tracer separately and is
identical for all of them, both Lexp,j ,Limp,j are block-220

diagonal matrices with ny identical blocks Aexp,j ,Aimp,j ∈
Rnx×nx , respectively. In Khatiwala et al. (2005), it is de-
scribed how these matrices can be computed by running one
step of an ocean model for an appropriately chosen set of
basis functions for a tracer distribution. As a consequence,225

the partition of the transport operator in (1) into the explicit
and implicit matrix depends on the operator splitting scheme
used in the ocean model. Usually diffusion (or a part of it) is
discretized implicitly, in our case vertical diffusion only. By
this procedure, a set of matrix pairs (Aexp,j ,Aimp,j)

nt−1
j=0 is230

obtained, which usually are sparse. To reduce storing effort
and to make the method feasible at all, only a smaller number
of (in our case monthly) averaged matrices is stored. From
these, an approximation of the matrix pair at a time instant tj
is computed by linear interpolation.235

The integration of the tracers over a model year thus just
consists of sparse matrix-vector multiplications and evalua-
tions of the biogeochemical model. Specifically, the implicit
part of the time integration is now pre-computed and con-
tained in Aimpl,j , which is the benefit of the method. The240

interpolation of the transport matrices, the linearization of
eventually used nonlinear discretization schemes (e.g. flux
limiters), and disregarding the influence of the biogeochem-
istry back onto the circulation fields determine the approx-
imation error of the method compared to a direct coupled245

computation.

4 Steady annual cycles

The purpose of the software presented in this paper is the
fast computation of steady annual cycles of the considered
marine ecosystem model. A steady annual cycle is defined250

as periodic solution of (1) with period length 1 (year), thus
satisfying

y(t+ 1) = y(t), t ∈ [0,1[.

Obviously, the forcing data functions b,d are required to be
periodic as well.255

For the application of the transport matrix method, we as-
sume that a set of matrices for one model year (generated
with such kind of periodic forcing) is available, and that these
are interpolated to pairs (Aexp,j ,Aimp,j) for all time steps
j = 0, . . . ,nt− 1. In the discrete setting, a periodic solution260

satisfies

ynt+j = yj j = 0, . . . ,nt− 1.

Assuming that the discrete model is completely determinis-
tic, it suffices to satisfy this equation just for one j. Here, we
compare solutions of the respective first time instants of two265

4 Piwonski and Slawig: Metos3D

succeeding model years. Defining

y` := y(`−1)nt ∈ Rnynx , `= 1,2, . . .

as the vector of tracer values at the first time instant of model
year `, a steady annual cycle satisfies

y`+1 = φ(y`) = y` in Rnynx for some ` ∈ N, (3)270

where φ := ϕnt−1 ◦ · · · ◦ϕ0 is the mapping that performs the
tracer integration (2) over one year. Here we omitted all other
arguments except of y in the notation. Thus, a steady annual
cycle is a fixed-point of the nonlinear mapping φ.

Since condition (3) will never be satisfied exactly in a sim-275

ulation, we measure the periodicity using norms on Rnynx
for the residual of (3). We use the weighted Euclidean norm

‖z‖2,w :=

(
ny∑
i=1

nx∑
k=1

wkz
2
ik

) 1
2

,wk > 0,k = 1, . . . ,nx, (4)

for z ∈ Rnynx indexed as z = ((zik)
nx
k=1)

ny
i=1

. This corre-
sponds to our indexing of the tracers, see Section 3. Ifwk = 1280

for all k, we obtain the Euclidean norm denoted by ‖z‖2. A
norm that stronger corresponds to the continuous problem (1)
is the discretized counterpart of the

(
L2(Ω)

)ny -norm, where
wk is set to the volume of the k-th grid box. This norm we
denote by ‖z‖2,Ω. Orther settings of the weights are possible.285

All these norms are equivalent with

min
1≤k≤nx

√
wk ‖z‖2 ≤ ‖z‖2,w ≤ max

1≤k≤nx

√
wk ‖z‖2.

4.1 Computation by spin-up (fixed-point iteration)

Repeatedly applying iteration step (3) or – in other words –
integrating in time with fixed forcing until convergence is290

reached, is termed spin-up. It is well known by Banach’s
fixed-point theorem (cf. Stoer and Bulirsch, 2002) that, as-
suming φ is a contractive mapping satisfying

‖φ(y)−φ(z)‖ ≤ L‖y− z‖ for all y,z ∈ Rnynx

with L < 1 in some norm, this iteration will converge to the295

unique fixed-point for all initial values y0. This result still
holds on weaker assumptions (cf. Ciric, 1974). The method
is quite robust, but on the other hand shows only linear con-
vergence which is especially slow for L≈ 1. An estimation
of L= maxy ‖φ′(y)‖ is difficult, since it involves the Jaco-300

bians q′j(yj) of the nonlinear biogeochemical model at the
current iterates. Typically, thousands of iteration steps (i.e.
model years) are needed in order to reach a steady cycle (cf.
Bernsen et al., 2008). The method offers only restricted op-
tions for convergence tuning, the only straightforward one305

being the choice of a different time steps ∆tj . To to so, the
transport matrices have to be re-scaled accordingly. The nat-
ural stopping criterion is the reduction of the difference be-
tween two succeeding iterates measured by

ε` := ‖y`−y`−1‖2,w310

in some – optionally weighted – norm.

4.2 Computation by inexact Newton method

By defining F (y) := y−φ(y), the fixed-point problem (3)
can be equivalently transformed into the problem of finding
a root of F : Rnynx → Rnynx . This problem can be solved315

by Newton’s method (cf. Dennis and Schnabel, 1996; Kelley,
2003; Bernsen et al., 2008). We apply a damped (or global-
ized) version that incorporates a line search (or backtrack-
ing) procedure which (under certain assumptions) provides
superlinear and locally quadratic convergence. Starting from320

an initial guess y0, in every step the linear system

F ′(ym)sm =−F (ym) (5)

has to be solved, followed by an update ym+1 = ym + %sm.
Here % > 0 is a step-size that is chosen iteratively such that
a sufficient reduction in ‖F (ym + ρsm)‖2 is achieved (cf.325

Dennis and Schnabel, 1996, Section 6.3).
The Jacobian F ′(ym) of F at the current iterate includes

the derivative of one model year, thus it is not as sparse as the
transport matrices themselves. As a consequence, a matrix-
free version of Newton’s method is applied: The linear sys-330

tem (5) itself is solved by an iterative, so-called Krylov sub-
space method, which only requires the evaluation of matrix-
vector products F ′(ym)s. Since F ′(ym) cannot be expected
to be neither symmetric nor definite, we use the generalized
minimal residual method (GMRES, Saad and Schultz, 1986).335

The needed matrix-vector products can be interpreted as di-
rectional derivatives of F at the point ym in direction s. They
can be approximated by a forward finite difference:

F ′(ym)s≈ F (ym + δs)−F (ym)

δ
, δ > 0. (6)

The finite difference step-size δ is chosen automatically as a340

function of ym and s (cf. Balay et al., 2012a). An alternative
here would be an exact evaluation of the derivative using the
forward mode of algorithmic differentiation (cf. Griewank
and Walther, 2008).

The above approximation of the Jacobian or directional345

derivative is one reason for this method to be called an inex-
act one. The second reason is that the inner linear solver has
to be stopped and thus is also not exact. Here we use a con-
vergence control procedure based on the technique described
by Eisenstat and Walker (1996). They stop when the Newton350

residual at the current inner iterate s satisfies

‖F ′(ym)s+F (ym)‖2 ≤ ηm‖F (ym)‖2. (7)

The factor ηm is determined as

ηm = γ

(
‖F (ym)‖2
‖F (ym−1)‖2

)α
, m≥ 2, η1 = 0.3. (8)

This approach avoids so-called over-solving, i.e. wasting in-355

ner steps when the current Newton step was not very suc-
cessful. The latter is typically the case in the beginning of

Piwonski and Slawig: Metos3D 5

a Newton iteration. The parameters γ and α can be used to
influence this behavior in a linear and nonlinear way, respec-
tively. Moreover, they are a subtle way to tune the solver.360

In contrast to a fixed-point iteration, Newton’s method also
in its damped version may only converge with an appropri-
ately chosen initial guess y0. In a high-dimensional problem
as our application (in Rnynx), it is a non-trivial task to find
such initial guess if the method with the standard one (e.g.365

the one used in the literature) is not successful. Thus, if an
Newton iteration is slow and the above criterion may conse-
quently lead to only a few inner iterations, it makes sense to
increase this number by either decreasing γ or increasing α.
We will give examples later on where exactly this strategy370

enables convergence at all.
Concerning the total effort of the inexact Newton solver

and in order to compare its efficiency with the spin-up, we
first note that one evaluation of F basically corresponds to
one application of φ, i.e. one model year. Thus, each New-375

ton step requires one evaluation of F as right-hand side in
(5). Within the inner linear solver iteration, the initial guess
is always taken as s = 0. Thus, no computation is required
for the first step. Each following inner iteration require sone
additional evaluation of F to compute the second term in the380

numerator of the right-hand side of (6). Additionally, the line
search may require additional eavluations of F . In total, the
overall number of inner iterations plus the overall number of
evaluations in the line search determine the number of neces-
sary evaluations of F that can be compared to the necessary385

model years in the spin-up.

5 Biogeochemical model interface

In this context, our main objective is to specify a general
coupling between the transport that is induced by the ocean
circulation and the biogeochemical tracer model. The aim is390

to link any model implementation with any number of trac-
ers, parameters as well as boundary and domain data to the
driver software. The coupling must additionally fit into an
optimization context, and it must be compatible with Algo-
rithmic Differentiation techniques (cf. Section 8).395

Generally, we assume that a tracer model is implemented
for a single water column, synonymously called profile in the
following. This means no geometrical information on hori-
zontal vicinity of the vertical profiles is preserved in the in-
terface. Moreover, any client model must be able to take up400

its states from such profiles. Models that require a horizontal
structure for its internal computation require a redefinition of
the interface and a change of the internals of the tool.

However, this assumption does not constrain the interface
for the future. In fact, the most important non-local biogeo-405

chemical processes happen within a water column (cf. Evans
and Garçon, 1997).

Consequently, throughout this work, each discrete tracer
vector is a collection of profiles. It can be understood as a

sparse representation of a land-sea cuboid including only wet410

grid boxes. The geometry information is provided as a 2-D
land-sea mask with additional designation of the number of
vertical layers (cf. Figure 12). Hence, a vector length ny is a
sum of non-equidistant profiles, i.e.

nx =

np∑
k=1

nx,k ,415

where np is the number of profiles and (nx,k)
np
k=1 is a set of

profile depths.
The evaluation of the whole ny tracer model for a fixed

time index j consist then of separate model evaluations for
each profile. For a fixed profile index k we compute420

∆t(qi(tj ,(yi)
ny
i=1,u,(bi)

nb
i=1,(di)

nd
i=1))

ny
i=1 . (9)

Here, (yi)
n
i=1 is an input array of ny profiles, each with a

length or depth of nx,k, u a vector of nu parameters, (bi)
nb
i=1

a vector of nb boundary data values and (di)
nd
i=1 an input

array of nd domain data profiles. Both inputs are regarded425

as already interpolated. The result is stored in the the output
array (qi)

ny
i=1 that consist of ny profiles as well. Formally,

the tracer model is scaled with the (ocean) time step from
the outside. However, we integrate ∆t into the interface as a
concession to the actual practice, where the time step is often430

refined within the tracer model implementation (cf. Kriest
et al., 2010). Consequently, the responsibility to scale the re-
sult before returning it back to the transport driver software
rests with the model implementer.

Listing 1 shows a realization of the biogeochemical model435

interface in Fortran 95 called metos3dbgc. The arguments
are grouped by their data type. The list begins with variables
of type integer, i.e. ny , nx,k, nu, nb and nd. They are
followed by real*8 (double precision) arguments, i.e. ∆t,
q, tj , y, u, b and d. We neglected the profile index k and the440

time index j in the notation for clarity. Moreover, we use dt
as a textual representation of ∆t.

Additionally, a model initialization and finalization inter-
face is specified. The former is denoted metos3dbgcinit
and the latter metos3dbgcfinal. These routines are445

called at the beginning of a model year, i.e. at t0, and af-
ter the last step of the annual iteration, respectively. Both
have the same argument list as metos3dbgc and are not
shown here. All three routine names are arbitrary and can be
changed using pre-processor variables that are defined within450

the Makefile.

6 Software implementation

The toolkit is divided into four repositories, namely
metos3d, model, data and simpack. The first com-
prises the installation scripts, the second the biogeochemi-455

cal model source codes and the third all the data preparation
scripts as well as the data. The latter repository consist of the

6 Piwonski and Slawig: Metos3D

simulation package,i.e. the transport driver, which is imple-
mented in C and based upon the PETSc library.

The simulation context is represented by a data type called460

metos3d that gathers all variables. Regarding the biogeo-
chemical models, C, C++ and Fortran implementations are
accepted (cf. Section 7.1.1). Overall, whereas we often used
1-indexed arrays within the text for convenience, within the
source code C arrays are 0-indexed and Fortran arrays are465

1-indexed. Moreover, all data files are in PETSc format.

6.1 Layers

The implementation is structured in layers according to
which the source files are named. A schematic is shown in
Figure 11. The bottom layer is the debug layer which imple-470

ments output formatting and timing routines. Above resides
the utilization layer. It provides basic routines for reading in
options, allocating memory as well as reading data from and
writing data to disc. The option system and the individual
options are described in the documentation that is located475

in a subdirectory of the git repository of the simulation
package. Moreover, the utilization layer comprises routines
to arrange profiles within a vector (cf. Section 6.4) and to
compute interpolation factors and indices (cf. Section 6.3) as
well. The 2-D land-sea mask is read in by the geometry layer480

and the profiles are balanced by the work load layer (cf. Sec-
tion 6.2).

The next two layers are the building blocks of the simu-
lation. The bgc model layer initializes tracer vectors, param-
eters as well as boundary and domain data. It is responsible485

for the rearrangement of the profiles, the interpolation of the
forcing data and the evaluation of the biogeochemical model
using the interface (cf. Section 6.4). The transport layer is
responsible for reading in the transport matrices, their inter-
polation to the current time step and their application to the490

tracer vectors (cf. Section 6.5).
The next layer is the time stepping layer, where the main

integration routine φ is located (cf. Algorithm 3). The New-
ton residual F is implemented here as well. On top resides
the solver layer, which consist of the spin-up implementa-495

tion and the call to the Newton-Krylov solver provided by
PETSc.

Additionally, all calls to initialization respectively finaliza-
tion routines are located at the init source file. The former are
responsible for memory allocation and storage of data used500

at run time. The latter are employed to free memory as well
as delete the used vectors and matrices.

6.2 Load balancing

Once the geometry information is read in, the profiles have
to be distributed among the available processes. However, a505

tracer vector is a collection of non equidistant profiles and
the biogeochemical models that we couple to the transport

matrices operate on whole water columns. Thus, a profile can
not be split when the work load is distributed.

For this case, no suitable load balancing algorithm is pro-510

vided by the PETSc library. Here, we use an approach that
is inspired by the idea of space filling curves presented by
Zumbusch (1999). For every profile, we compute its mid in
relation to the vector length and scale this ratio by the num-
ber of processes. We round this figure down to an integer and515

use the result as the index of the process the profile belongs
to. This information is sufficient to consecutively assign the
profiles to the processes later on.

The calculation for 0-indexed arrays is depicted by Algo-
rithm 1. Its theoretical and actual performance is discussed in520

Section 7.4 where we show results of speedup tests that we
performed on two different hardware architectures.

6.3 Interpolation

The transport matrices as well as the boundary and domain
data vectors are provided as sets of files. Although, most of525

the data we use in this work represents a monthly mean, the
number of files in each set is arbitrary.

Regarding the transport, we have (Aimp,j)
nimp
j=1 and

(Aexp,j)
nexp
j=1 , where nimp and nexp specify the number of

implicit and explicit matrix files, respectively. Note, we will530

not assemble both (block diagonal) system matrices during
the simulation to avoid redundant storing. Instead, we use
the provided matrices to build only a block for each matrix
type. The transport is then applied as a loop over separate
tracer vectors as explained in Section 6.5.535

Concerning the boundary and domain forcing, we denote
the data files by ((bi,j)

nb,i
j=1)nbi=1 and ((di,j)

nd,i
j=1)ndi=1. Here, nb

is the number of distinct boundary data sets and nb,i is the
number of data files provided for the ith set. Accordingly,
nd denotes the number of domain data sets and nd,i is the540

number of data files of a particular set.
However, the time step count per model year is generally

much higher than the number of available data files. Thus,
the matrices and vectors are linearly interpolated to the cur-
rent time step during the iteration. The files of a specific data545

set are interpreted as averages of the time intervals they rep-
resent. Consenquently, we interpolate in between the associ-
ated centers of these intervals. The appropriate weights and
indices are computed on the fly using Algorithm 2. Both
building blocks of the simulation, i.e. the biogeochemical550

model and the transport step access the interpolation routine
in every time step tj to form a linear combination of the user
provided data.

6.4 Biogeochemical model step

During a simulation the BGCStep routine in Algorithm 4 is555

responsible for the evaluation of the biogeochemical model.
For this, the boundary and the domain data must be inter-
polated first. Here, for every index i and the correspond-

Piwonski and Slawig: Metos3D 7

ing boundary data set (bi,j)
nb,i
j=1 we compute the appropriate

weights α, β as well as indices jα, jβ and form the linear560

combination as

bi = αbi,jα +β bi,jβ .

The same applies for the domain data, i.e. for every domain
data set (di,j)

nd,i
j=1 we compute

di = αdi,jα +βdi,jβ .565

Technically, we use the PETSc routines VecCopy,
VecScale and VecAXPY for this purpose, which is anal-
ogous to the interpolation of the transport matrices in Sec-
tion 6.5.

Next, we rearrange the forcing data and the tracer vectors.570

This is necessary since the combination of transport matrices
and water column models results in two different data align-
ments. For the application of a matrix to a tracer vector, all
profiles of a tracer are kept one behind the other. In contrast,
to evaluate the tracer model the same profile of each tracer575

must be kept in a contiguous piece of memory. Accordingly,
this has an effect on the forcing data as well. The routines for
rearrangement are provided within the softwares utilization
layer.

Concerning the tracers, we need to copy from n separate580

vectors to one (block diagonal) vector, where the profiles are
grouped by their index, i.e.[
(y1,k)

np
k=1 . . . (yn,k)

np
k=1

]
←→ ((yi,k)ni=1)

np
k=1,

where yi,k denotes the kth profile of the ith tracer. Moreover,
after the evaluation of the biogeochemical model we reverse585

the alignment for the transport step. The same situation oc-
curs regarding the domain data. Again, we group the domain
data profiles by their profile index k, i.e.[
(d1,k)

np
k=1 . . . (dnd,k)

np
k=1

]
−→ ((di,k)ndi=1)

np
k=1

where di,k denotes a domain data profile. However, no re-590

verse copying is required here.
The boundary data is a slightly different case. Here, we

align boundary values, at which each is associated with the
surface of a water column, i.e.[
(b1,k)

np
k=1 . . . (bnb,k)

np
k=1

]
−→ ((bi,k)nbi=1)

np
k=1595

where bi,k denotes a single boundary data value in contrast to
a whole profile. Analogously to the domain data, no reverse
copying is required in this case.

Subsequent, we loop over all profiles and evaluate the bio-
geochemical model for every water column formally using600

the interface introduced in (9). Within the implementation,
since we only couple models that are written in Fortran, we
use the programming counterpart depicted in Listing 1. Fi-
nally, as already mentioned, we prepare the output for the
transport step.605

6.5 Transport step

The application of the transport matrices to tracer variables is
the second building block of the simulation. The individual
steps are combined in the TransportStep routine, which
is applicable to both matrix types as shown in Algorithm 4.610

On entry, we interpolate the user provided matrices to the
current point in time tj first, i.e. we assemble

A = αAjα +βAjβ

with the appropriate α, β and jα, jβ . Analogously to the in-
terpolation of vectors we use the matrix variants MatCopy,615

MatScale and MatAXPY for this purpose. The technical
details hereof has been already discussed at full length in
Siewertsen et al. (2013). Subsequent, we apply MatMult
to every tracer of the input variable yin.

In contrast to the interpolation of vectors, and generally to620

all vector operations, each of the matrix operations has a sig-
nificant impact on the computational time. In Section 7.3 we
present results from profiling experiments that show detailed
information about the time usage of each operation.

7 Results625

In this section, we present results from numerical experi-
ments to verify the software. We use the introduced interface
to couple the transport matrix driver with a suite of biogeo-
chemical models. We inspect the convergence behavior of
both solvers included. A profiling of the main parts of the630

algorithm complements the initial verification.
Subsequent, we perform speed-up tests to analyze the im-

plemented load distribution and compare it with the TMM.
We continue by investigating the convergence control set-
tings of the Newton-Krylov solver and examine the solver’s635

behavior within parameter bounds.

7.1 Setup

We assume the PETSc environment variables are set, the
toolkit is installed and the metos3d script is made available
as a shell command.640

7.1.1 Models

In order to test our interface, we couple an N, N-DOP, NP-
DOP, NPZ-DOP, NPZD-DOP model hierarchy and an origi-
nal implementation of a biogeochemical model to the trans-
port driver. The former is implemented from scratch for this645

purpose. The equations are shown in Appendix A. The lat-
ter is used for the MIT General Circulation Model (cf. Mar-
shall et al., 1997, MITgcm) biogeochemistry tutorial and de-
scribed in detail in Dutkiewicz et al. (2005). We will denote
it as the MITgcm-PO4-DOP model.650

Generally, for every model implementation that is coupled
to the transport driver via the interface a new executable must

8 Piwonski and Slawig: Metos3D

be compiled. Here, we use a convention for the directory
structure to fit seamlessly into an automatic compile scheme.
Within the model directory of the model repository we cre-655

ate a folder that is named after the biogeochemical model, i.e.
MITgcm-PO4-DOP for instance. Within this directory we
store the source code file named model.F. We use this di-
rectory structure for all models. Overall, while the file suffix
implies a pre-processed Fortran fixed format, every program-660

ming language that is supported by the PETSc library will be
accepted.

Finally, to compile all sources we invoke

$> metos3d simpack MITgcm-PO4-DOP

for instance and such create an executable named665

metos3d-simpack-MITgcm-PO4-DOP.exe

that we use for all the following experiments. Specific set-
tings will be provided via option files.

7.1.2 Data

All matrices and forcing data we use in this work are based670

on the example material that is freely available at (Khati-
wala, 2013). This material originates from MITgcm simu-
lations and requires post-processing. We provide the prepa-
ration scripts as well as the prepared data within the data
repository.675

The surface grid of the used domain has a longitudinal and
latitudinal resolution of 2.8125◦, which results in 128× 64
grid points (cf. Figure 12). Note that the Arctic has been
filled in. The depth is divided into 15 vertical layers that are
depicted in Table 17. This geometry translates to a (single)680

tracer vector length of nx = 52749 and the corresponding
np = 4448 profiles. Moreover, the total volume of the ocean
is specified as V ≈ 1.174× 1018 m3, whereas the minimal
and maximal volume of a grid box is Vmin ≈ 8.357×1011 m3

and Vmax ≈ 6.744×1013 m3, respectively. The temporal res-685

olution is at ∆t= 1/2880, which is equivalent to an (ocean)
time step of 3 hours assuming that a year consists of 360
days.

The computation of the photosynthetically available short
wave radiation is the same for all models. It is deduced from690

the insolation, which is computed on the fly using the for-
mula of Paltridge and Platt (1976). Here, for the topmost
layer latitude and ice cover data is required, i.e. nb = 2. For
the former we use a single latitude file, i.e. nb,1 = 1, and for
the latter twelve ice cover files, nb,2 = 12.695

Additionally, the depths and heights of the vertical lay-
ers are required, i.e. nd = 2 domain data sets. Each consist
of only one file, i.e. nd,1 = 1 and nd,2 = 1. The information
is used to compute the attenuation of light by water, to de-
termine the fluxes of particulate organic phosphorus and to700

approximate a derivative with respect to depth. Note that the
order in which the data sets are provided is important and

must correspond to the order used within the model imple-
mentation. Moreover, as previously mentioned, twelve im-
plicit transport matrices, i.e. nimp = 12, and twelve explicit705

transport matrices, i.e. nexp = 12 are provided. We always
start a simulation at t0 = 0 and perform nt = 2880 iterations
per model year.

7.2 Solver

We begin our verification by computing a steady annual cycle710

for every model with both solvers. Regarding the spin-up, we
set no tolerance and let the solver iterate for 10,000 model
years. The Newton approach is set to a line search variant and
the Krylov subspace solver to GMRES. All other settings are
left to default, in particular the overall absolute tolerance is at715

10−8 and the maximum number of inner iterations is 10,000.
The parameter values we use for the MITgcm-PO4-DOP

model are depicted in Table 18 and named ud therein. Ta-
ble 19 depicts the parameter values used for the N, N-DOP,
NP-DOP, NPZ-DOP, NPZD-DOP model hierarchy. If not720

stated otherwise the initial value is set to 2.17 m mol P m−3

for N or PO4 and 0.0001 m mol P m−3 for the other tracers.
For the MITgcm-PO4-DOP model a comparison of the

convergence towards a steady annual cycle for both solvers
is shown in Figure 13. We observe that the solutions con-725

verge to the same difference in between consecutive itera-
tions. Moreover, Table 16 shows the difference between both
solutions in Euclidean norm. Additionally, Figure 19 depicts
the difference between both solutions for the surface layer.
Except for the numerical error, both solvers obviously com-730

pute the same solution.
Figures 14 and 15 show the convergence behavior of both

solvers for the N respectively N-DOP model. There is no es-
sential difference in comparison to the MITgcm-PO4-DOP
model. An inspection of the surface Figures 110 and 111735

confirms this impression. There is no peculiarity shown in
Table 16 either.

However, for the NP-DOP model Figure 16 shows a dif-
ferent behavior of the Newton-Krylov solver at the end of the
solution process. A closer inspection reveals a peak every 30740

model years, which obviously results from the settings of in-
ner solver, where GMRES is set to perform a restart every 30
years by default. Surface Figure 112 and Table 16, however,
do not indicate any effect on the solution.

The NPZ-DOP and NPZD-DOP models show a different745

behavior regarding the Newton solver. For both models, the
solver does not converge with default settings as shown in
Figure 17 (top) and Figure 18 (top). It can be seen that the re-
duction of the residual per step is quite low, which results in
a huge number of iterations. Here, the solver was stopped af-750

ter 50 iterations (the default), which already is a high number
for Newton’s method. The reason is that convergence of the
method – even in its so-called globalized or damped version
used here – still may depend on the initial guess y0. We used
a different one, which was successful for the NPZD-DOP755

Piwonski and Slawig: Metos3D 9

model, see Figure 18 (middle). For the NPZ-DOP model, it
still was not, see Figure 17 (middle).

However, a second and much easier way to achieve con-
vergence can be deduced already from Figure 17 (top) and
Figure 18 (top). The stopping criterion of the inner iterations760

of the Newton solver is less restrictive if the last Newton it-
eration was not very successful, which is obviously the case
here. The number of inner iterations and thus the accuracy
of the Newton direction is improved when the inner crite-
rion (8) is sharpened, thus somehow contradicting the idea765

formulated in Eisenstat and Walker (1996). This can be eas-
ily achieved by decreasing γ, here to γ = 0.3. This tuning
now led to convergence, see Figure 17 (bottom) and Fig-
ure 18 (bottom). With this settings, the respective solutions
are the same as the ones obtained by the spin-up, when nu-770

merical errors are neglected (see Figures 113 and 114). This
is also confirmed by evaluating the differences in the norm,
see Table 16.

Overall, we observe that the Newton-Krylov solver does
not reach the default tolerance and iterates unnecessarily775

for 10,000 model years within the last Newton step. Thus,
we limit the inner Krylov iterations to 200 in the follow-
ing experiments. Moreover, for further investigations with
the MITgcm-PO4-DOP model we change the convergence
settings to get rid of the over-solving that we observe at the780

beginning. Referring to this, more detailed experiments are
presented in Section 7.5.

7.3 Profiling

In following two sections we investigate some technical as-
pects of the implementation more closely. First of all, we785

are interested in the distribution of the computational time
among the main operations of a model year.

For this, we perform a profiled sequential run for each
model at which we iterate for 10 model years. The analysis
of the profiling results is shown in Figures 117 - 115. Regard-790

ing the MITgcm-PO4-DOP model for instance, we observe
that the biogeochemical model takes up 40% of the com-
putational time. The interpolation of matrices (MatCopy,
MatScale and MatAXPY) amounts to approximately a
third. The matrix vector multiplication (MatMult) takes up795

a quarter of the computations and all other operations amount
to 0.5%.

Moreover, we recognize that the more tracers are involved
the more the matrix vector multiplication becomes dominant.
For the N model it takes up 19,8% of the computational time,800

whereas for the NPZD-DOP model the MatMult operation
amounts to 56,7%. The possible implications are discussed
in Section 8.

This profiling capability was also used as the software was
ported by Siewertsen et al. (cf. 2013) to an NVIDIA graphics805

processing unit (GPU). The authors investigated the impact
of the accelerator’s hardware on the simulation of biogeo-
chemical models. The work comprises a detailed discussion

on peak performance as well as memory bandwidth and in-
cludes a counting of floating point operations.810

7.4 Speed-up

In this section, we investigate the performance of the load
balancing algorithm in detail and compare the results with
the parallel performance of the TMM. We compile both
drivers with the same biogeochemical model. For this pur-815

pose we choose MITgcm-PO4-DOP since it is part of the
TMM as well and, consequently, we have the same setup.

We run the tests on a hardware that located at the comput-
ing center of Kiel University. It is an Intel® Sandy Bridge EP
architecture with Intel Xeon® E5-2670 CPUs that consist of820

16 cores running at 2.6 GHz. Regarding our implementation
we perform 10 tests using 1 to 256 cores. Each test consists
of a simulation run of three model years, at which each year
is timed separately. For the TMM we use 1 to 192 cores and
run 5 tests on each core. Here, we use the given output, which825

is the timing for the whole run.
Overall, for the calculation of the speed-up and efficiency

results we use the minimum timings for a specific number
of cores. Moreover, all timings are related to the timing of
a sequential run. For a set of measured computational times830

(ti)
N
i=1 with N = 192 or N = 256 we calculate the speedup

as si = t1/ti and the efficiency as ei = 100 ∗ si/i.
Additionally, referring to the implemented load distribu-

tion (cf. Section 6.2), we compute the best possible ratio be-
tween a sequential and a parallel run. For all number of pro-835

cesses, i.e. i= 1, . . . ,260, we compute the load distribution
using Algorithm 1 and retrieve the maximum (local) length
ni,max. For the speed-up we divide the vector length by this
value, i.e. si = ny/ni,max, and for the efficiency we again
calculate ei = 100 ∗ si/i.840

Figure 118 depicts the ideal, theoretical and actual
speedup respectively efficiency. Regarding the implemented
load distribution a good (theoretical) performance over the
whole range of processes can be observed. Moreover, we rec-
ognize that a parallel run of Metos3D on the Intel hardware845

reaches between 100 and 140 cores almost best performance.
In this range the efficiency is about 95% and the speed-up
nearly corresponds to the number of processes. Indeed, the
speed-up still rises to slightly over 160 but requires at least
200 processes to reach this factor.850

In contrast, the performance of the TMM is poor. The ef-
ficiency drops from the beginning and a speedup higher than
40 is never reached. From 120 cores up Metos3D is at least
4 times faster. Interestingly, there is a significant drop in per-
formance at the beginning for both drivers. The possible im-855

plications are shortly discussed in Section 8. However, since
the results give us a good orientation anyway this effect is
not investigated further.

10 Piwonski and Slawig: Metos3D

7.5 Convergence control

After a basic verification and a review of technical aspects of860

our implementation, we investigate the settings to control the
convergence of the Newton-Krylov solver. Again, we use the
MITgcm-PO4-DOP model only. Our intention is to eliminate
the over-solving that we observe during the first 200 itera-
tions in Figure 13. This effect occurs, if the accuracy of the865

inner solver is significantly higher than the resulting Newton
residual (cf. Eisenstat and Walker, 1996). The relation be-
tween those two is controlled by the γ and the α parameter
depicted in Equation (8).

Hence, we compute the reference solution from Sec-870

tion 7.2 with different values of γ and α to investigate their
influence on the convergence behavior. We set the overall tol-
erance to the measured difference of consecutive states after
3,000 model years of spin-up, i.e. approximately 9.0×10−4.
We let the value of γ vary from 0.5 to 1.0 in steps of 0.1 and875

α is chosen from 1.1 to 1.6 in steps of 0.1 as well. This is a
total of 36 model evaluations.

Figure 119 depicts the required model years and Newton
steps as a function of γ and α. We observe that the overall
number of years decreases, as both parameters tend to 1.0880

and 1.1, respectively. In contrast, the number of Newton steps
increases, i.e. the Newton residual is computed more often
and the inner steps become shorter.

Consequently, since the computation of a residual is neg-
ligible in comparison to the simulation of a model year, we885

focus on decreasing the overall number of model years. A
detailed inspection of the results reveals that for γ = 1.0 and
α= 1.2 the solver reaches the set tolerance after approxi-
mately 450 model years, which is significantly less than 600
if using the default settings. Thus, we use these values for the890

next experiment.

7.6 Parameter samples

Until now we solved the given model equations for one (ref-
erence) parameter set only. During an optimization a solu-
tion must be computed for various parameter sets. Thus, we895

perform the next experiments in order to study the solver’s
behavior with regard to other model parameters. Again, we
use the MITgcm-PO4-DOP model only. For this purpose,
using the MATLAB® routine lhsdesign, we create 100
Latin Hypercube (cf. McKay et al., 1979) samples within the900

bounds that are depicted in Table 18. We set the overall toler-
ance again to a value that is comparable with 3,000 spin-up
iterations and let the Newton solver compute a solution for
each parameter sample

Figure 120 shows histograms of the total number of model905

years respectively Newton steps required to solve the model
equations. We observe that most computations converge in
between 400 to 550 model years and require 10 to 30 Newton
steps. Interestingly, regarding the latter there is a high peak
around 15 and a smaller peak around 12. Moreover, we rec-910

ognize some outliers in both graphs. Nevertheless, all started
model evaluation converged towards a solution within the de-
sired tolerance.

8 Conclusions

We designed and implemented a simulation framework for915

the computation of steady annual cycles for a general class
of marine ecosystem models in 3-D, driven by pre-computed
transport matrices in an off-line mode. The framework allows
computation of the steady cycle(s) by a spin-up or a global-
ized Newton method. The software is completely realized as920

(or using available) open source code.
We introduced a software interface for water column-

based biogeochemical models. On one hand, we showed the
applicability and flexibility of this interface by coupling the
biogeochemical component used in the MITgcm general cir-925

culation model to the simulation framework. On the other
hand, we coupled own implementations of five other biogeo-
chemical models (also used in Kriest et al. (2010)) with dif-
ferent complexity to show the interface’s generality. Their
source code is also available within the software, and may930

serve as templates for implementation or adaption of other
models.

We implemented a transient solver based on the transport
matrix approach, where all matrix operations and the evalua-
tion of the biogeochemical models are performed with spatial935

parallelization via MPI using the PETSc library. The needed
transport matrices are directly available and require no pre-
processing.

We realized both a spin-up (or fixed-point iteration) and
a globalized Newton solver for the computation of steady940

cycles. We compared these solvers and made the following
observations: Both deliver the same results (up to a reason-
able precision) on convergence. The spin-up converges with
standard sets of parameters, taken from Kriest et al. (2010),
for equally distributed values for each tracer. The Newton945

solver showed the same behavior for the four models of lower
complexity. For the other two, it did not converge with the
standard setting of its parameters and the mentioned initial
distribution of tracers. For both of these two more complex
models, convergence was achieved by increasing the number950

of inner iterations in the Newton solver, which is realized by
decreasing the parameter γ in (8). For one of these models,
the same could be achieved by choosing a different initial
guess.

Concerning performance, the Newton solver was about 6955

times faster for all models. It can be concluded that the New-
ton method requires more thorough solver parameter setting
for complex models, but then is superior in any case, at least
for the considered parameter sets.

We studied the dependency of the Newton performance960

with respect to the two solver parameters α,γ in (8) for one
exemplary model. With an optimal choice derived from these

Piwonski and Slawig: Metos3D 11

experiments (for one model parameter set), we then investi-
gated the dependency of the needed Newton iterations and
overall model years for 100 latin hypercube model parameter965

samples. This test is important for the usability of the Newton
method for example in a optimization run where model pa-
rameters are varied by the optimizer. It turned out that there
is a variance in the needed steps and thus the overall effort,
but that there are no extreme outliers. We conclude that the970

Newton method – at least for this model – is appropriate for
optimization, and faster than the usually robust spin-up.

We further analyzed the proportions in time that the dif-
ferent pieces of the simulation in one model year need. It
turned out that, with increasing number of tracers, the matrix-975

vector operations dominate and thus have the most potential
for further performance tuning. This is despite the fact that
the transport operator for every tracer is the same. However,
it still has to be evaluated, whose effort is proportional to the
number of tracers in the model. In contrary, the biogeochemi-980

cal interactions in the nonlinear coupling terms qj , which are
mostly spatially local, become less performance-relevant.

Finally, we implemented a load balancing that exploits the
different depths of the water columns in the ocean that result
in different lengths of the corresponding data vectors. With985

this balancing, a nearly optimal speed-up by spatial paral-
lelization up to about a comparably high number of 128 pro-
cesses was possible. This is a huge difference to the perfor-
mance with standard load balancing.

Summarizing, the presented software framework is an990

appropriate tool to be used in parameter optimization and
model assessment runs. It has high flexibility w.r.t. models
and steady cycle solvers, offers improved parallel perfor-
mance and can be easily combined with any optimization
method. The option for effective high spatial parallelization995

allows the use of gradient based optimization methods, since
they are – in contrast to evolutionary algorithms – less par-
allelizable. Our results show that the parallelization effort is
well-invested in the simulation itself.

9 Code availability1000

Name of software: Metos3D (Simulation Package v0.3.2)
Developer: Jaroslaw Piwonski
Year first available: 2012
Software required: PETSc 3.3
Program language: C, C++, Fortran1005

Size of installation: 1.6 GB
Availability and Cost: free software, GPLv3
Software homepage: https://metos3d.github.com/metos3d

The toolkit is maintained using the distributed revision con-
trol system git. All source codes are available at GitHub1010

(https://github.com). The current versions of simpack and
model are tagged as v0.3.2. The data is repository is at
version v0.2. All experiments presented in this work were

carried out using this versions. The associated material is
stored in the 2016-GMD-Metos3D repository.1015

To install the software, the user should visit the home-
page and follow the instructions. Whereas in the future
an installation will always reflect the current state of de-
velopment, the user can always invoke git checkout
v0.3.2 in the simpack and model repository as well as1020

git checkout v0.2 in the data repository to retrieve
the versions used in this work.

Appendix A: Model equations

The here presented N, N-DOP, NP-DOP, NPZ-DOP and
NPZD-DOP model hierarchy is based on the descriptions1025

used by Kriest et al. (2010). The introduced parameters are
shown in Table 19.

A1 Short wave radiation

As mentioned Section 7.1.2, the short wave radiation for the
topmost layer is deduced from the insolation that is computed1030

on the fly using the formula of Paltridge and Platt (1976).
Here, latitude φ and ice cover σice data is required. We de-
note the computed value by ISWR = ISWR(φ,σice). For the
lower layers their depths (zj)

nx
j=1 and heights (dzj)

nx
j=1 are

required. Additionally, the attenuation of water is described1035

by the coefficient kw respectively the attenuation of phyto-
plankton (chlorophyll) by kc.

A1.1 Implicit phytoplankton

For the N and the N-DOP model the short wave radiation is
computed without phytoplankton, i.e.1040

Ij = ISWR

{
I ′j j = 1

I ′j
∏j−1
k=1 Ik else

where I ′j = exp(−kw dzj/2), Ik = exp(−kw dzk) and j is
the actual layer index.

A1.2 Explicit phytoplankton

For the NP-DOP, NPZ-DOP and NPZD-DOP model the1045

short wave radiation is computed with phytoplankton, i.e.

IP,j = ISWR

{
I ′P,j j = 1

I ′P,j
∏j−1
k=1 IP,k else

where I ′P,j = exp(−(kw + kc yP,j)dzj/2) and I ′P,k =
exp(−(kw + kc yP,k)dzk).

A2 N model1050

The simplest model consists of nutrients (N) only, i.e. y =
(yN). Table A1 depicts the equation. The biological uptake

https://metos3d.github.com/metos3d
https://github.com

12 Piwonski and Slawig: Metos3D

is computed as

fP (yN , I) = µP y
∗
P

yN
KN +yN

I

KI + I
,

where phytoplankton is implicitly set to y∗P =1055

0.0028 mmol P/m3. The N model introduces nu = 5
parameters, where u = (kw,µP ,KN ,KI , b).

A3 N-DOP model

The N-DOP model consists of nutrients (N) and dissolved or-
ganic phosphorous (DOP), i.e. y = (yN ,yDOP). The com-1060

putation of the biological uptake remains the same. Table A2
depicts the equations. The N-DOP model introduces nu = 7
parameters, where u = (kw,µP ,KN ,KI ,σDOP ,λDOP , b).

A4 NP-DOP model

The NP-DOP consists of nutrients (N), phytoplankton1065

(P) and dissolved organic phosphorous (DOP), i.e. y =
(yN ,yP ,yDOP). Here, the nutrient uptake by (explicit) phy-
toplankton is computed as

fP (yN ,yP , IP) = µP yP
yN

KN +yN

IP
KI + IP

.

The computation of short wave radiation changes as well (see1070

Section A1.2). Additionally, a quadratic loss term for phyto-
plankton is introduced and a grazing function

fZ(yP) = µZ y
∗
Z

y2
P

K2
P +y2

P

,

where zooplankton is implicitly set to y∗Z =
0.01 mmol P/m3. Table A3 depicts the equations. The1075

NP-DOP model introduces nu = 13 parameters, where u =
(kw,kc,µP ,µZ ,KN ,KP ,KI ,σDOP ,λP ,κP ,λ

′
P ,λDOP , b).

A5 NPZ-DOP model

The NPZ-DOP consists of nutrients (N), phytoplankton (P)
zooplankton (Z) and dissolved organic phosphorous (DOP),1080

i.e. y = (yN ,yP ,yZ ,yDOP). The production function re-
mains the same. The computation of grazing takes explicit
zooplankton into account, i.e.

fZ(yP ,yZ) = µP yZ
y2
P

K2
P +y2

P

.

Table A4 depicts the equations. The NPZ-DOP1085

model introduces nu = 16 parameters, where
u = (kw,kc,µP ,µZ ,KN ,KP ,KI ,σZ ,σDOP ,λP ,λZ ,κZ ,
λ′P ,λZ ,λDOP,b).

A6 NPZD-DOP model

The NPZ-DOP consists of nutrients (N), phytoplankton1090

(P) zooplankton (Z), detritus (D) and dissolved organic

phosphorous (DOP), i.e. y = (yN ,yP ,yZ ,yD,yDOP).
The equations mainly remains the same, except a
depth dependent linear sinking speed is introduced for
detritus. Table A5 depicts the equations. The NPZD-1095

DOP model introduces nu = 16 parameters, where u=
(kw,kc,µP ,µZ ,KN ,KP ,KI ,σZ ,σDOP ,λP ,λZ ,κZ ,λP ,λZ ,
λD,λDOP ,aD, bD).

Acknowledgements. The authors would like to thank S. Khatiwala
for providing support on the transport matrices and for providing1100

the whole TMM material freely on the internet. Furthermore, both
authors would like to thank I. Kriest and A. Oschlies for many fruit-
ful discussions. In particular, Jaroslaw Piwonski would like to thank
I. Kriest for teaching him patiently so much about biogeochemical
models. This work was partly funded by The Future Ocean cluster.1105

References

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient
Management of Parallelism in Object Oriented Numerical Soft-
ware Libraries, in: Modern Software Tools in Scientific Comput-
ing, edited by Arge, E., Bruaset, A. M., and Langtangen, H. P.,1110

pp. 163–202, Birkhäuser Press, Basel, 1997.
Balay, S., Brown, J., , Buschelman, K., Eijkhout, V., Gropp, W. D.,

Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and
Zhang, H.: PETSc Users Manual, Tech. Rep. ANL-95/11 - Revi-
sion 3.3, Argonne National Laboratory, Lemont, 2012a.1115

Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley,
M. G., McInnes, L. C., Smith, B. F., and Zhang, H.: PETSc Web
page, http://www.mcs.anl.gov/petsc/ (last access: 12 July 2013),
2012b.

Bernsen, E., Dijkstra, H. A., and Wubs, F. W.: A method to reduce1120

the spin-up time of ocean models, Ocean Modelling, 20, 380 –
392, doi:10.1016/j.ocemod.2007.10.008, 2008.

Bryan, K.: Accelerating the Convergence to Equilib-
rium of Ocean-Climate Models, Journal of Physi-
cal Oceanography, 14, 666–673, doi:10.1175/1520-1125

0485(1984)014<0666:ATCTEO>2.0.CO;2, 1984.
Ciric, L. B.: A Generalization of Banach’s Contraction Principle,

Proceedings of the American Mathematical Society, 45, 267–
273, 1974.

Danabasoglu, G., McWilliams, J. C., and Large, W. G.: Ap-1130

proach to Equilibrium in Accelerated Global Oceanic Mod-
els, Journal of Climate, 9, 1092–1110, doi:10.1175/1520-
0442(1996)009<1092:ATEIAG>2.0.CO;2, 1996.

Dennis, J. and Schnabel, R.: Numerical methods for unconstrained
optimization and nonlinear equations, Society for Industrial and1135

Applied Mathematics, Philadelphia, 1996.
Dutkiewicz, S., Sokolov, A. P., Scott, J., and Stone, P. H.: A three-

dimensional ocean-seaice-carbon cycle model and its coupling to
a two-dimensional atmospheric model: Uses in climate change
studies, Tech. Rep. 122, MIT Joint Program on the Science and1140

Policy of Global Change, Cambridge, 2005.
Eisenstat, S. C. and Walker, H. F.: Choosing the Forcing Terms in an

Inexact Newton Method, SIAM Journal on Scientific Computing,
17, 16–32, doi:10.1137/0917003, 1996.

Evans, G. T. and Garçon, V. C.: One-Dimensional Models of1145

Water Column Biogeochemistry, Report of a workshop held

http://dx.doi.org/10.1016/j.ocemod.2007.10.008
http://dx.doi.org/10.1175/1520-0485(1984)014%3C0666:ATCTEO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1984)014%3C0666:ATCTEO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1984)014%3C0666:ATCTEO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009%3C1092:ATEIAG%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009%3C1092:ATEIAG%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009%3C1092:ATEIAG%3E2.0.CO;2
http://dx.doi.org/10.1137/0917003

Piwonski and Slawig: Metos3D 13

Table A1. Equations for the N model with E = fP (yN , I).

Euphotic zone Sinking

qN (y) = −fP (yN , I) +Edzj ∂z(zk/zj)
−b

Table A2. Equations for the N-DOP model with E = σ̄DOP fP (yN , I).

Euphotic zone All layers Sinking

qN (y) = −fP (yN , I) +λ′DOP yDOP +Edzj ∂z(zk/zj)
−b

qDOP (y) = +σDOP fP (yN , I) −λ′DOP yDOP

Table A3. Equations for the NP-DOP model with E = σ̄DOP fZ(yP).

Euphotic zone All layers Sinking

qN (y) = −fP (yN ,yP , IP) +λ′DOP yDOP +Edzj ∂z(zk/zj)
−b

qP (y) = +fP (yN ,yP , IP) −fZ(yP) −λP yP −κP y2P −λ′P yP
qDOP (y) = +σDOP fZ(yP) +λP yP +κP y

2
P +λ′P yP −λ′DOP yDOP

Table A4. Equations for the NPZ-DOP model with E = σ̄DOP (σ̄Z fZ(yP ,yZ) +λP yP +κZ y
2
Z).

Euphotic zone All layers Sinking

qN (y) = −fP (yN ,yP , IP) +λZ yZ +λ′DOP yDOP +Edzj ∂z(zk/zj)
−b

qP (y) = +fP (yN ,yP , IP) −fZ(yP ,yZ) −λP yP −λ′P yP
qZ(y) = +σZ fZ(yP ,yZ) −λZ yZ −κZ y2Z −λ′Z yZ

qDOP (y) = +σDOP (σ̄Z fZ(yP ,yZ) +λP yP +κZ y
2
Z) +λ′P yP +λ′Z yZ −λ′DOP yDOP

Table A5. Equations for the NPZD-DOP model.

Euphotic zone All layers Sinking

qN (y) = −fP (yN ,yP , IP) +λZ yZ +λ′D yD +λ′DOP yDOP
qP (y) = +fP (yN ,yP , IP) −fZ(yP ,yZ) −λP yP −λ′P yP
qZ(y) = +σZ fZ(yP ,yZ) −κZ y2Z −λZ yZ −λ′Z yZ
qD(y) = +σ̄DOP (σ̄Z fZ(yP ,yZ) +λP yP +κZ y

2
Z) −λ′D yD +∂zw(zj)yD,j

qDOP (y) = +σDOP (σ̄Z fZ(yP ,yZ) +λP yP +κZ y
2
Z) +λ′P yP +λ′Z yZ −λ′DOP yDOP

14 Piwonski and Slawig: Metos3D

in Toulouse, France, November-December 1995. GOFS Report
N◦23/97, JGOFS Bergen, Norway, 1997.

Fasham, M. J. R., ed.: Ocean Biogeochemistry. The Role of the
Ocean Carbon Cycle in Global Change., Global Change – The1150

IGBP Series, Springer, Berlin et al., 2003.
Fennel, K., Losch, M., Schröter, J., and Wenzel, M.: Test-

ing a marine ecosystem model: sensitivity analysis and pa-
rameter optimization, Journal of Marine Systems, 28, 45–63,
doi:10.1016/S0924-7963(00)00083-X, 2001.1155

Griewank, A. and Walther, A.: Evaluating derivatives: principles
and techniques of algorithmic differentiation, Society for Indus-
trial and Applied Mathematics (SIAM), 2008.

Kelley, C. T.: Solving nonlinear equations with Newton’s method,
SIAM, Philadelphia, 2003.1160

Khatiwala, S.: A computational framework for simulation of bio-
geochemical tracers in the ocean, Global Biogeochemical Cy-
cles, 21, doi:10.1029/2007GB002923, 2007.

Khatiwala, S.: Fast spin up of Ocean biogeochemical models us-
ing matrix-free Newton-Krylov, Ocean Modelling, 23, 121–129,1165

doi:10.1016/j.ocemod.2008.05.002, 2008.
Khatiwala, S.: Transport Matrix Method Web page,

http://www.ldeo.columbia.edu/%7Espk/Research/TMM/ (last
access: 12 July 2013), 2013.

Khatiwala, S., Visbeck, M., and Cane, M.: Accelerated simulation1170

of passive tracers in ocean circulation models, Ocean Modelling,
9, 51–69, 2005.

Knoll, D. and Keyes, D.: Jacobian-free Newton–Krylov methods: a
survey of approaches and applications, Journal of Computational
Physics, 193, 357–397, 2004.1175

Kriest, I., Khatiwala, S., and Oschlies, A.: Towards an assess-
ment of simple global marine biogeochemical models of dif-
ferent complexity, Progress In Oceanography, 86, 337–360,
doi:10.1016/j.pocean.2010.05.002, 2010.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.:1180

A finite-volume, incompressible Navier Stokes model for stud-
ies of the ocean on parallel computers, Journal of Geophysical
Research, 102, 5753–5766, 1997.

McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of
three methods for selecting values of input variables in the analy-1185

sis of output from a computer code, Technometrics, 21, 239–245,
1979.

Merlis, T. M. and Khatiwala, S.: Fast dynamical spin-up of
ocean general circulation models using Newton–Krylov meth-
ods, Ocean Modelling, 21, 97–105, 2008.1190

Paltridge, G. W. and Platt, C. M. R.: Radiative Processes
in Meteorology and Climatology, Elsevier, New York,
doi:10.1002/qj.49710343713, 1976.

Saad, Y. and Schultz, M.: GMRES: A Generalized Minimal Resid-
ual Algorithm for Solving Nonsymmetric Linear Systems, SIAM1195

Journal on Scientific and Statistical Computing, 7, 856–869,
doi:10.1137/0907058, 1986.

Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics,
Princeton University Press, Princeton et al., 2006.

Schartau, M. and Oschlies, A.: Simultaneous data-based optimiza-1200

tion of a 1d-ecosystem model at three locations in the north At-
lantic: Part I - method and parameter estimates, Journal of Marine
Research 61, pp. 765–793, 2003.

Siewertsen, E., Piwonski, J., and Slawig, T.: Porting marine ecosys-
tem model spin-up using transport matrices to GPUs, Geosci-1205

entific Model Development, 6, 17–28, doi:10.5194/gmd-6-17-
2013, 2013.

Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis,
Springer, New York, 3rd edn., 2002.

Walker, D. W. and Dongarra, J. J.: MPI: A Standard Message Pass-1210

ing Interface, Supercomputer, 12, 56–68, 1996.
Wang, D.: A note on using the accelerated convergence method

in climate models, Tellus A, 53, 27–34, doi:10.1034/j.1600-
0870.2001.01134.x, 2001.

Zumbusch, G. W.: Dynamic Load Balancing in a Lightweight1215

Adaptive Parallel Multigrid PDE Solver., in: PPSC, SIAM,
Philadelphia, 1999.

http://dx.doi.org/10.1016/S0924-7963(00)00083-X
http://dx.doi.org/10.1029/2007GB002923
http://dx.doi.org/10.1016/j.ocemod.2008.05.002
http://dx.doi.org/10.1016/j.pocean.2010.05.002
http://dx.doi.org/10.1002/qj.49710343713
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.5194/gmd-6-17-2013
http://dx.doi.org/10.5194/gmd-6-17-2013
http://dx.doi.org/10.5194/gmd-6-17-2013
http://dx.doi.org/10.1034/j.1600-0870.2001.01134.x
http://dx.doi.org/10.1034/j.1600-0870.2001.01134.x
http://dx.doi.org/10.1034/j.1600-0870.2001.01134.x

Piwonski and Slawig: Metos3D 15

init

geometry

load

bgc

transport

time step

solver

solver

time stepping

bgc

transport

final

solver

time step

transport

bgc

load

geometry

1

Figure 11. Schematic of the implementation structure of Metos3D.

1 16 32 48 64 80 96 112 128
Longitudinal grid

1

16

32

48

64

La
tit

ud
in

al
gr

id

0

5

10

15

Figure 12. Land-sea mask (geometric data) of the used numerical model. Shown are the number of layers per grip point. Note that the Arctic
has been filled in.

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

Figure 13. MITgcm-PO4-DOP model: Convergence towards an annual cycle. Spin-up: norm of difference between initial states of consec-
utive model years (solid line). Newton-Krylov: residual norm at a Newton step (diamond) and norm of the GMRES residual during solving
(solid line in-between).

16 Piwonski and Slawig: Metos3D

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

Figure 14. N model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

Figure 15. N-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.

Piwonski and Slawig: Metos3D 17

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

Figure 16. NP-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver.

18 Piwonski and Slawig: Metos3D

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

Figure 17. NPZ-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver. Top: Default Newton-
Krylov setting. Middle: Changed initial value to 0.5425 m mol P m−3 for all tracers. Bottom: Changed inner accuracy to γ = 0.3.

Piwonski and Slawig: Metos3D 19

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

N
or

m
[m

m
ol

P
/m

3
]

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Model years

Spin-up
Newton-Krylov

Figure 18. NPZD-DOP model: Convergence towards an annual cycle using a spin-up and a Newton-Krylov solver. Top: Default Newton-
Krylov setting. Middle: Changed initial value to 0.0434 m mol P m−3 for all tracers. Bottom: Changed inner accuracy to γ = 0.3.

20 Piwonski and Slawig: Metos3D

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

7.3e-06

3.3e-04

6.4e-04

9.6e-04

1.3e-03

1.6e-03

1.9e-03

2.2e-03

2.6e-03

Figure 19. MITgcm-PO4-DOP model: Difference between the spin-up and Newton solution at the first layer (0 – 50 m) in the Euclidean
norm.

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

8.3e-07

2.3e-03

4.6e-03

7.0e-03

9.3e-03

1.2e-02

1.4e-02

1.6e-02

1.9e-02

Figure 110. N model: Difference between the spin-up and Newton solution at the first layer (0 – 50 m) in the Euclidean norm.

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

1.1e-06

8.0e-04

1.6e-03

2.4e-03

3.2e-03

4.0e-03

4.8e-03

5.6e-03

6.4e-03

7.2e-03

Figure 111. N-DOP model: Difference between the spin-up and Newton solution at the first layer (0 – 50 m) in the Euclidean norm.

Piwonski and Slawig: Metos3D 21

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

2.4e-06

1.1e-04

2.3e-04

3.4e-04

4.5e-04

5.6e-04

6.7e-04

7.8e-04

9.0e-04

1.0e-03

Figure 112. NP-DOP model: Difference between the spin-up and Newton solution at the first layer (0 – 50 m) in the Euclidean norm.

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

7.9e-08

7.2e-05

1.4e-04

2.2e-04

2.9e-04

3.6e-04

4.3e-04

5.0e-04

5.8e-04

6.5e-04

Figure 113. NPZ-DOP model: Difference between the spin-up and Newton solution at the first layer (0 – 50 m) in the Euclidean norm.

-180 -135 -90 -45 0 45 90 135 180
Longitude [degrees]

-90

-60

-30

0

30

60

90

La
tit

ud
e

[d
eg

re
es

]

3.1e-06

1.6e-04

3.1e-04

4.7e-04

6.2e-04

7.8e-04

9.4e-04

1.1e-03

1.2e-03

Figure 114. NPZD-DOP model: Difference between the spin-up and Newton solution at the first layer (0 – 50 m) in the Euclidean norm.

22 Piwonski and Slawig: Metos3D

BGCStep

40.4 %

MatCopy
13.1 %

MatScale

7.9 %

MatAXPY

15.1 %

MatMult

23.1 %

Other0.5 %

BGCStep

19.0 %

MatCopy

22.2 %

MatScale
13.3 %

MatAXPY

25.4 %
MatMult

19.8 %

Other0.4 %

Figure 115. Distribution of the computational time among main operations during the integration of a model year. Left: MITgcm-PO4-DOP
model. Right: N model.

BGCStep

19.8 %

MatCopy

17.6 %
MatScale

10.6 %

MatAXPY

20.3 %

MatMult

31.0 %

Other0.6 %

BGCStep

15.1 %

MatCopy

15.6 %

MatScale

9.4 %

MatAXPY 18.0 %

MatMult

41.0 %

Other0.9 %

Figure 116. Distribution of the computational time among main operations during the integration of a model year. Left: N-DOP model.
Right: NP-DOP model.

Piwonski and Slawig: Metos3D 23

BGCStep

14.1 %

MatCopy

13.5 %

MatScale

8.2 %
MatAXPY

15.6 %

MatMult

47.5 %

Other1.0 %

BGCStep
6.5 %

MatCopy

12.9 %

MatScale

7.8 %

MatAXPY

14.9 %

MatMult

56.7 %

Other1.2 %

Figure 117. Distribution of the computational time among main operations during the integration of a model year. Left: NPZ-DOP model.
Right: NPZD-DOP model.

24 Piwonski and Slawig: Metos3D

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Number of processes

0

20

40

60

80

100

120

140

160

180

200

220

240

260
S

pe
ed

up
fa

ct
or

Ideal
Theoretical

Metos3D (Intel® Sandy Bridge EP)

TMM (Intel® Sandy Bridge EP)

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Number of processes

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

E
ffi

ci
en

cy
[%

]

Figure 118. MITgcm-PO4-DOP model: Ideal and actual speedup factor as well as efficiency of parallelized computations. Here, the notion
theoretical refers to the used load distribution introduced in Section 7.4, i.e. a simulation run on an idealized hardware.

Piwonski and Slawig: Metos3D 25

Alpha (α)

1.11.21.31.41.51.6

Gamma (γ)

0.5
0.6

0.7
0.8

0.9
1.0

M
odel years

450

500

550

600

650

Alpha (α)

1.11.21.31.41.51.6

Gamma (γ)

0.5
0.6

0.7
0.8

0.9
1.0

N
ew

ton
steps

10

12

14

16

18

20

Figure 119. MITgcm-PO4-DOP model: Number of model years and Newton steps required for the computation of the annual cycle y(ud)
as a function of different convergence control parameters α and γ (cf. Equation (8)).

26 Piwonski and Slawig: Metos3D

300 400 500 600 700 800 900 1000
Model years

0

2

4

6

8

10

12

14

16
O

cc
ur

re
nc

e

5 10 15 20 25 30 35 40 45
Newton steps

0

2

4

6

8

10

12

14

O
cc

ur
re

nc
e

Figure 120. Distribution of number of model years and Newton steps required for the computation of a annual cycle using 100 random
parameter samples (cf. Section 7.6).

Piwonski and Slawig: Metos3D 27

Table 16. Difference in the Euclidean norm between the spin-up (yS) and the Newton (yN) solution. Regarding the NPZ-DOP and NPZD-
DOP model a solution from the experiment with a different inner accuracy respectively a different initial value is used.

Model ‖yS −yN‖2 ‖yS −yN‖2,V

MITgcm-PO4-DOP 1.460e-01 7.473e+05
N 4.640e-01 2.756e+06
N-DOP 2.421e-01 1.199e+06
NP-DOP 7.013e-02 3.633e+05
NPZ-DOP 1.421e-02 8.514e+04
NPZD-DOP 3.750e-02 2.062e+05

Table 17. Vertical layers of the numerical model. Units are meters.

Layer Depth of Thickness of
layer bottom layer (∆z)

1 50 50
2 120 70
3 220 100
4 360 140
5 550 190
6 790 240
7 1080 290
8 1420 340
9 1810 390
10 2250 440
11 2740 490
12 3280 540
13 3870 590
14 4510 640
15 5200 690

Table 18. Parameters implemented in the MITgcm-PO4-DOP model. Specified are the location within the parameter vector, the symbol
used by Dutkiewicz et al. (2005) and the value used for the computation of the reference solution (ud). Shown are furthermore the lower (bl)
and upper (bu) boundaries used for the parameter samples experiment.

u Symbol ud bl bu Unit

u1 κremin 0.5 0.25 0.75 1/y
u2 α 2.0 1.5 200.0 mmolP/m3/y
u3 fDOP 0.67 0.05 0.95 1
u4 κPO4 0.5 0.25 1.5 mmolP/m3

u5 κI 30.0 10.0 50.0 W/m2

u6 k 0.02 0.01 0.05 1/m
u7 aremin 0.858 0.7 1.5 1

28 Piwonski and Slawig: Metos3D

Table 19. Parameter values used for the solver experiments with the N, N-DOP, NP-DOP, NPZ-DOP and NPZD-DOP model hierarchy.

Parameter N N-DOP NP-DOP NPZ-DOP NPZD-DOP Unit

kw 0.02 0.02 0.02 0.02 0.02 m−1

kc 0.48 0.48 0.48 (m mol P m−3)−1m−1

µP 2.0 2.0 2.0 2.0 2.0 d−1

µZ 2.0 2.0 2.0 d−1

KN 0.5 0.5 0.5 0.5 0.5 m mol P m−3

KP 0.088 0.088 0.088 m mol P m−3

KI 30.0 30.0 30.0 30.0 30.0 W m−2

σZ 0.75 0.75 1
σDOP 0.67 0.67 0.67 0.67 1
λP 0.04 0.04 0.04 d−1

κP 4.0 (m mol P m−3)−1d−1

λZ 0.03 0.03 d−1

κZ 3.2 3.2 (m mol P m−3)−1d−1

λ′P 0.01 0.01 0.01 d−1

λ′Z 0.01 0.01 d−1

λ′D 0.05 d−1

λ′DOP 0.5 0.5 0.5 0.5 y−1

b 0.858 0.858 0.858 0.858 1
aD 0.058 d−1

bD 0.0 d−1m

Piwonski and Slawig: Metos3D 29

Algorithm 1: Load balancing
Input : vector length: nx, number of profiles: np, profile lengths: (nx,k)

np
k=1, number of processes: N

Output: profiles per process: (np,i)
N
i=1

1 w = 0 ;
2 np,1...N = 0 ;
3 for k = 1, . . . ,np do
4 i= floor(((w+ 0.5 ∗nx,k)/ny) ∗N) ;
5 np,i = np,i + 1 ;
6 w = w+nx,k ;
7 end

Algorithm 2: Interpolation
Input : point in time: t ∈ [0,1[, number of data points: ndata
Output: weights: α,β, indices: jα, jβ

1 w = t ∗ndata + 0.5 ;
2 β = mod(w,1.0) ;
3 jβ = mod(floor(w),ndata) ;
4 α= (1.0−β) ;
5 jα = mod(floor(w) +ndata− 1,ndata) ;

Algorithm 3: Phi (φ)

Input : initial condition: (t0,y0), time step: ∆t, number of time steps: nt, implicit matrices: Aimp, explicit matrices: Aexp,
parameters: u ∈ Rm, boundary data: b, domain data: d

Output: final state: yout

1 yin = y0 ;
2 for j = 1, . . . ,nt do
3 tj = mod (t0 + (j− 1)∆t,1.0) ;
4 yout = PhiStep(tj ,∆t,Aimp,Aexp,yin,u,b,d) ;
5 yin = yout ;
6 end

Algorithm 4: PhiStep (ϕ)

Input : point in time: tj , time step: ∆t, implicit matrices: Aimp, explicit matrices: Aexp, current state: yin, parameters: u ∈ Rm,
boundary data: b, domain data: d

Output: next state: yout

1 q = BGCStep(tj ,∆t,yin,u,b,d) ;
2 yw = TransportStep(tj ,Aexp,yin) ;
3 yw = yw +q ;
4 yout = TransportStep(tj ,Aimp,yw) ;

30 Piwonski and Slawig: Metos3D

Listing 1. Fortran 95 implementation of the coupling interface for biogeochemical models.
subroutine metos3dbgc(ny, nx, nu, nb, nd, dt, q, t, y, u, b, d)

integer :: ny, nx, nu, nb, nd
real*8 :: dt, q(nx, ny), t, y(nx, ny), u(nu), b(nb), d(nx, nd)

end subroutine

