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Abstract

An integrated method of advanced anisotropic hr-adaptive mesh and discretization numeri-
cal techniques has been, for first time, applied to modelling of multi-scale advection-diffusion
problems, which is based on a discontinuous Galerkin/control volume discretization on un-
structured meshes. Over existing air quality models typically based on static-structured5

grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model
has the ability to adapt the mesh according to the evolving pollutant distribution and flow
features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant
transport process accurately and effectively. To illustrate the capability of the anisotropic
adaptive unstructured mesh model, three benchmark numerical experiments have been10

setup for two-dimensional (2D) advection phenomena. Comparisons have been made be-
tween the results obtained using uniform resolution meshes and anisotropic adaptive res-
olution meshes. Performance achieved in 3D simulation of power plant plumes indicates
that this new adaptive multiscale model has the potential to provide accurate air quality
modeling solutions effectively.15

1 Introduction

It is well known that the interaction of multiscale physical processes in atmospheric phenom-
ena poses a formidable challenge for numerical modelling (Kühnlein, 2011). Large scale
processes can trigger small scale features that again have an important influence/feed-
back to the large scale (Behrens, 2007). For example, the processes of tropical cyclone20

involve a range over a continuous spectrum of scales from the large-scale flow environment
∼O(106–107)m, tropical cyclone itself ∼O(105–106)m, embedded eyewall and rainbands
∼O(103–104)m, down to microscales of the boundary layer turbulence ∼O(10–102)m
(Kühnlein, 2011). For air pollution, the dynamic and chemical processes also involve a wide
range of scales. The initial transformation of emissions from urban and industrial centers25

or dispersion of plumes from large power plant stacks occur on relatively small scales, but
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would be engaged to much larger scales after long range transport. It is a gargantuan com-
putational challenge to modeling large regions with uniform resolution at the finest relevant
scale. Therefore, mesh adaptation may be the only effective way to encompass different
scales (e.g. local, urban, regional, global) in a unified modeling system to better capture the
interactions among the processes relevant at each scale. (Garcia-Menendez and Odman,5

2011; Kühnlein, 2011; Weller et al., 2010; Nikiforakis, 2009).
So far, the accurate numerical modelling of advection (or transport) remains a central

problem for many applications such as air pollution, atmospheric chemistry, meteorology
and other physical sciences. There have been many studies on the numerical advection
schemes (e.g. PPM, Bott and Walcek etc.) which have been used in many air quality mod-10

els (e.g. CMAQ, CMAx, NAQPMS etc.) (Colella and Woodward, 1984; Bott, 1989; Walcek
and Aleksic, 1998). These advection algorithms were implemented based on a fixed uniform
mesh system. The successive global refinement can be used to capture the details of small
scale flow features, but is prohibitively expensive and not feasible for practical applications.
Alternatively, the nesting technique, placing finer meshes within coarser meshes, is often15

used for achieving local higher resolution in many air quality models (Garcia-Menendez and
Odman, 2011; Frohn et al., 2002; Wang, 2001). In static mesh nesting, the solutions ob-
tained from the global coarse mesh model provide the boundary conditions for the nested
mesh regional model, in turn, the solutions in the global model are updated with the high
resolution solutions. However this may lead to spurious oscillations at the interface between20

the coarse mesh and nested fine mesh, especially when concentration gradients is large
cross the interface. Although the numeral techniques such as blending, nudging, and selec-
tive damping approaches can be used to remove these oscillations, the small scale features
on the fine meshes may be damped (Garcia-Menendez and Odman, 2011; Zhang et al.,
1986; Debreu and Blayo, 2008; Alapaty et al., 1998). Moreover, due to highly unsteady at-25

mospheric flows, it is almost impossible to construct a static optimal nested mesh suitable
for an accuracy simulation over a long time period. The use of dynamically adaptive mesh
techniques can therefore be considered so that the mesh resolution can be adjusted locally

3
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in response to the evolution of the flow and passive tracer (Piggott et al., 2009; Behrens,
2007).

In contrast to locally nested mesh techniques, adaptive mesh techniques not only can re-
solve multiscale processes in a consistent way, but also can enable to follow and capture the
features of flows as time evolves. Dynamic mesh adaptation can be achieved, either by re-5

locating mesh nodes or by locally increasing (and decreasing) the number of nodes in time
and space. The former, known as mesh movement (i.e. r-adaptivity), can be used to improve
the accuracy of solutions by optimally re-locating mesh nodes to resolve the small scale fea-
tures of interest (Garcia-Menendez and Odman, 2011; Srivastava et al., 2000; Lagzi et al.,
2009; Kühnlein et al., 2012; Nikiforakis, 2009). However, the accuracy of solutions using10

r-adaptivity is restricted by a priori for achieving an optimal dynamic mesh (where the total
number of nodes is fixed). The latter, known as mesh enrichment (i.e. h-adaptivity), can
guarantee a minimum solution accuracy level by providing sufficient resolution where and
when it is needed (Baker et al., 2013; Constantinescu et al., 2008; Piggott et al., 2005).
Various h-adaptive techniques based on structured meshes as well as the r-adaptive tech-15

niques on unstructured/structured meshes have been explored in atmospheric modeling.
And some of these techniques have been applied to air quality models (Garcia-Menendez
and Odman, 2011). Recently, significant research efforts have been focused on application
of this new adaptive mesh techniques in ocean modeling (Pain et al., 2005; Piggott et al.,
2009, 2008a, b).20

This article applies a new anisotropic hr-adaptive mesh technique into air quality trans-
port(advection) modelling. This adaptive unstructured mesh technique provides the dy-
namic spatial and temporal resolution to capture moving features, e.g. moving fronts or
power plant plumes. Using the hr-adaptive technique, existing elements can be split (h-
adaptive) or element vertices can be moved (r-adaptive), to periodically modify the mesh25

geometry. Hence, the purpose of this article is to demonstrate, through example problems,
the capability of anisotropic mesh adaptivity for modelling of multiscale transport phenom-
ena.

4
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The remaining structure of this article is as follows: Sect. 2 describes numerical meth-
ods, including discontinuous Galerkin (DG) and control volume (CV) methods based on
unstructured meshes. Section 3 covers the topics of mesh adaptivity, error measures and
interpolation. Section 4 introduces 3D unstructured anisotropic adaptive mesh model (Flu-
idity). Section 5 discusses its performance in three benchmark advection problems and a5

model problem for dispersion of power plant plumes. Conclusions are drawn in Sect. 6.

2 Numerical methods for transport equation

As a model problem, we consider the generic transport equation for a scalar quantity c, is
given in conservative form by:

∂c

∂t
+∇ · (uc)−∇ · (κ∇c) = s, (1)10

where u = (u,v,w)T is the velocity vector, κ is the diffusivity (tensor) and s represents any
source or reaction terms. If κ= 0 and s= 0, Eq. (1) reduces to the advection equation:

∂c

∂t
+∇ · (uc) = 0, (2)

2.1 Spatial discretization

Integrating Eq. (2) by part over the computational domain Ω, its weak form can be written:15 ∫
Ω

(
φ
∂c

∂t
−∇φ ·

(
uc−κ∇c

)
−φs

)
dΩ +

∫
∂Ω

(
φn̂ ·uc−φn̂ ·κ∇c

)
d∂Ω = 0. (3)

2.1.1 Discontinuous Galerkin discretization

As a locally conservative, stable and high-order accurate method, the discontinuous
Galerkin methods can easily construct discontinuous approximations on unstructured

5
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meshes to capture highly complex solutions and are well suited for hr-adaptivity and paral-
lelization (Cockburn et al., 2000; Cockburn and Shu, 2001; Flaherty et al., 2002; Hesthaven
and Warburton, 2007). Moreover DG methods, as a generalization of finite volume meth-
ods, can directly make numerical fluxes and slope limiters available in the finite element
framework (Burbeau et al., 2001; Hoteit et al., 2004; Krivodonova, 2007; Krivodonova et al.,5

2004).
Integrating Eq. (2) over a single element and summing over all elements, we obtain:

∑
e


∫
e

(
φ
∂c

∂t
−∇φ ·

(
uc−κ∇c

)
−φs

)
de+

∫
∂e

(
φn̂ ·uc−φn̂ ·κ∇c

)
d∂e

= 0, (4)

where, the hatted term represents fluxes across the element facets. If κ= 0 and s= 0,
equation (4) becomes a pure advection equation:10

∑
e


∫
e

(
φ
∂c

∂t
−∇φ · uc

)
de+

∫
∂e

φn̂ ·uc d∂e

= 0, (5)

Due to the discontinuous nature of fields, there is no unique value for the flux term, however
the requirement that c is a conserved quantity, does demand that adjacent elements make
a consistent choice for the flux between them. In this work, two advective flux schemes,
the upwind and local Lax-Friedrichs flux methods, are used to represent n̂ ·u c for DG15

methods (AMCG, 2014). In n̂ ·u c, the advecting velocity u can be calculated by either
averaging it on each side of the face or applying a Galerkin projection to project the velocity
onto a continuous basis.

In the upwind flux formulation, the value of c at each quadrature point on the face is taken
to be the upwind value, that is, if fluid is into/out of the element then it is the value on the20

exterior/interior side of the face. Integrating the advection term by parts twice, then Eq. (5)

6
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becomes (AMCG, 2014):

∑
e

{∫
e

(
φ
∂c

∂t
−φ û · ∇c

)
de+

∫
∂e∩∂Ω

n · û (cb− cint)d∂e

+

∫
∂e\∂Ω

n · û (cext− cint)d∂e

}
= 0, (6)

where, û represents the flux velocity and a weakly imposed boundary condition c= cb is
applied on the inflow part of boundaries; cext and cint are the values on the exterior and5

interior side of the face respectively.
In local Lax–Friedrichs flux formulation, the tracer advection is given by:

n̂ ·u c=
1

2
n · û(cint + cext)−

C

2
(cint− cext) , (7)

where for each facet s⊂ ∂e:

C = sup
x∈s
|û ·n|. (8)10

Here, "sup" is the abbreviation of supremum.
To ensure nonlinear stability and effectively suppress spurious oscillations, the slope lim-

iting techniques are used here (Kuzmin, 2010; Cockburn and Shu, 2001; Luo et al., 2007).

2.1.2 Control volume discretization

The control volume discretization uses a dual mesh constructed around the nodes of the15

parent finite element mesh. Once the dual control volume mesh has been defined, it is
possible to discretise the transport Eq. (1) using piecewise constant shape functions within

7
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each volume, v. Integrating Eq. (1) by parts within a volume, v and summing over all vol-
umes, we obtain:

∑
v


∫
v

(
∂c

∂t
− s
)

dv+
∑
k

∫
∂vk

(
n̂ ·u c− n̂ ·κ∇c

)
d∂vk

= 0. (9)

For the flux term n̂ ·u c , the velocity is well-defined since the control volume facets are
in the center of the elements of the parent mesh where it is continuous. The face value of5

ck is computed at each quadrature point of the facet k using the finite element interpolation
approach, i.e. interpolating it using the finite element basis functions on the parent mesh.
Usually the first order quadrature is performed on the control volume facets, however if
higher order control volume facet quadrature is selected then k refers to each quadrature
point on the facet. To avoid spurious oscillations, the CV-TVD limiter is used to make the10

solutions total variation diminishing (Sweby, 1984; AMCG, 2014).

For diffusion term n̂ ·κ∇c , ∇c is treated with control volumes-element based gradients,
equal order Bassi-Rebay and staggered mesh Bassi-Rebay discretization (for details, see
(AMCG, 2014)).

2.2 Time discretization15

The semi-discrete matrix form of Eq. (3) can be written as

M
dc

dt
+A(u)c+Kc = r, (10)

in which the vector c = (c1, . . . , cN )T contains the solution of variable c at nodes (N is the
number of nodes), M is the mass matrix, A(u) is the advection operator, K is the diffusion
operator, and r is the right-hand side vector containing boundary, source and absorption20

terms, where for continuous Galerkin discretization:

Mij =

∫
Ω

φiφj , Aij =−
∫
Ω

∇φi ·uφj , Kij =−
∫
Ω

∇φi ·κ∇φj , i, j ∈ (1,2, . . . ,N ). (11)

8
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The time derivative term at time level n+ 1 is treated using the θ-method to yield

M
cn+1− cn

∆t
+A(un)cn+θ +Kcn+θ = rn+θ. (12)

where θ ∈ [0,1] and the terms cn+θ are given by,

cn+θ = θcn+1 + (1− θ)cn. (13)

Equation (12) can be rearranged for unknown vector cn+1:5

(M+ θ∆t(A(un) +K))cn+1 = (M− (1− θ)∆t(A(un) +K))cn + rn+θ. (14)

Equation (14) can be solved in two stages:

M
c∗− cn

∆t
+A(un)cn+θ = rn+θ

D (15)

M
cn+1− c∗

∆t
+Kcn+θ = rn+θ

N + rn+θ
s , (16)

where r in Eq. (14) is split into Dirichlet rD and Neumann boundary components rN , and10

a source component rs.
For discontinuous Galerkin discretization, the explicit Euler scheme (θ = 0) is used in

Eq. (15). An advection subcycling method based upon a CFL criterion or a fixed number
of subcycles is adopted in modelling advection flows, that is, the timestep ∆t is split to N
subtimestep ∆tsub = ∆t

N to satisfy the specified Courant number:15

Mcnew =

(
M− ∆t

N
A(un)

)
cold + rn+θ

D . (17)

To guarantee a bounded solution, the slope limiter is applied to cnew after each subtimestep.
Note that the matrix M− (∆t/N)A(un) is constant within one timestep. Therefore the pro-
cess of solving eq.(17) only involves the matrix-vector multiplication, thus reducing a large

9
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amount of the CPU time required for assembling the matrices, especially when unstructured
meshes are used.

For control volume discretization, an explicit scheme is simple but strictly limited by the
CFL number which can be restrictive on adaptive meshes as the minimum mesh size
can be very small. Here, we adopt a new timestepping θ scheme based on traditional5

Crank–Nicolson scheme (θaim = 1/2) because of its robustness, unconditional stability and
second-order accurate in time (Pavlidis et al., 2015; Versteeg and Malalasekera, 2007;
Donea and Huerta, 2003). For the given time step, the value of θmin can be estimated
at each CV face based on the satisfaction of a total variation diminishing (TVD) criterion.
Therefore, for each control volume v, we can choose θv ∈ [θmin,1] to be as close to θaim10

as possible. That is, θv = max{θmin,θaim}. In this way, it can eliminate the local time step
restriction for physically realistic and bounded solution although it may be in cost of losing
some local accuracy. (for details, see (Pavlidis et al., 2015)).

3 Mesh adaptivity

The optimization-based adaptivity technique developed by the Applied Modelling and Com-15

putation Group (AMCG) at Imperial College London (AMCG, 2014), is introduced in this
section. It utilizes dynamic adaptation of a fully unstructured triangular (or tetrahedral) mesh
in two (or three)-dimensions, as presented in (Pain et al., 2001, 2005; Piggott et al., 2009).
The unstructured and adaptive meshes allow computational effort to resolve important fluid
dynamics at diverse scales. The key objective of using adaptive mesh methods is to reduce20

the overall computational cost in achieving an error goal; thus ensuring that fine resolution
is used only when and where it is needed (Fang et al., 2010; Pain et al., 2001). A error
metric tensor to guide an adaptive meshing algorithm can be defined (Pain et al., 2001):

M̄e =
γ

ε
|H|, (18)

10
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where, ε is the required level of errors and γ a scalar constant (here, γ = 1), H is the
Hessian matrix of variable fields (here, the tracer concentration c):

H =


∂2c
∂x2

∂2c
∂x∂y

∂2c
∂x∂z

∂2c
∂y∂x

∂2c
∂y2

∂2c
∂x∂z

∂2c
∂z∂x

∂2c
∂z∂y

∂2c
∂z2

 .
The absolute value of the symmetric Hessian matrix is defined as (Pain et al., 2001):

|H|= VΛVT, (19)5

where, the matrices V and Λ contain the eigenvectors ei and eigenvalues λi of the Hessian
matrix H respectively. The required edge length in the direction ei to achieve the required
level of errors ε can be obtained (Piggott et al., 2009):

hi =
1√
ελi

. (20)

The rotation matrix V in combination with Λ can be used to adapt the original element10

to an anisotropic element required for the given level of errors. To bound the aspect ratio
of elements in physical space, the eigenvalues of the metric can be modified (Pain et al.,
2001):

λ̂j = max

{
λ′j ,

1

a2

3
max
i=1

λi

}
, j = 1,2,3, (21)

where15

λ′j = min

{
1

h2
min

,max

{
|λj | ,

1

h2
max

}}
, j = 1,2,3, (22)

where, a is the a given aspect ratio of elements, hmin and hmax are the minimum and
maximum sizes of elements respectively.

11
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To represent small-scale dynamics, a relative error metric formulation is suggested:

Me =
γ |H|

max(ε · |c| , εmin)
, (23)

where, c is the field under consideration, ε is now a relative tolerance, and εmin is the mini-
mum tolerance used to ensure that the denominator never becomes zero.

To guide refinement/coarsening of the mesh, the maximum and minimum mesh sizes5

are set to allow one to impose different limits in different directions (for details, see AMCG,
2014). Assuming that these directions are aligned with the coordinate axes allows one
to define diagonal tensors. The maximum and minimum number of nodes are also set for
mesh adaptivity. This is effected by computing the expected number of nodes from the given
metric. If the expected number of nodes is greater than the maximum number of nodes, the10

metric resolution is homogeneously decreased so that the expected number of nodes is the
maximum number of nodes.

Another key issue of mesh adaptivity is to interpolate any necessary data from the pre-
vious mesh to the adapted one. The consistent interpolation is often adopted in mesh
adaptivity. However, the consistent interpolation can introduce a suboptimal interpolation15

error, unsuitability for discontinuous fields, and lack of conservation. An alternative conser-
vative interpolation approach, the Galerkin projection is proposed for discontinuous fields.
A supermeshing algorithm (Farrell et al., 2009) is used for implementation of the Galerkin
projection.

4 Introduction of a 3D unstructured anisotropic adaptive mesh model (Fluidity,20

::::::::
version

::::::
4.1.9)

The new multiscale air quality transport model has been developed with a 3D unstructured
and adaptive mesh model (Fluidity, developed by the Applied Modelling and Computation
Group (AMCG) at Imperial College London). Fluidity, an open source LGPL model, nu-
merically solves the 2D/3D Navier–Stokes equation (being non-hydrostatic, to model dense25

12
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water formation and flows over steep topography) and field equations with a range of control
volume and finite element discretization methods. It includes a number of novel, advanced
methods based upon adapting and moving anisotropic unstructured meshes, advanced fi-
nite element and control volume discretization, and a range of numerical stabilization and
Large Eddy Simulation (LES) turbulence models. Among existing unstructured mesh mod-5

els, Fluidity is the only model that can simultaneously resolve both small- and large-scale
fluid flows while smoothly varying resolution and conforming to complex topography. The
model employs 3D anisotropic mesh adaptivity to resolve and reveal fine scale features as
they develop while reducing resolution elsewhere. A number of interpolation methods (e.g.,
non conservative point-wise and conservative methods) are available for mesh-to-mesh in-10

terpolations between adaptations.
Fluidity is parallelized using MPI and is capable of scaling to many thousands of

processors. It has a user-friendly GUI and a python interface which can be used to
calculate diagnostic fields, set prescribed fields or set user-defined boundary condi-
tions (for details, see https://www.imperial.ac.uk/engineering/departments/earth-science/15

research/research-groups/amcg/).
:
It
::
is
:::::::
noted

::::
that

::::::::
version

:::::
4.1.9

:::
of

::::::::
Fluidity

::
is

::::
not

::::::::::::
necessarily

:::::::::
required,

::::
but

:::::
older

:::::::::
versions

:::::::
might

:::::
work

:::
as

:::::
well.

:

5 Numerical examples

To illustrate the efficiency and accuracy of anisotropic adaptive schemes, Four benchmark
problems have been adopted which are representative and challenging enough to predict20

how the new adaptive multiscale model would behave in future real-life applications (LeV-
eque, 1996; Kuzmin, 2009; Staniforth et al., 1987; Walcek and Aleksic, 1998; Bott, 1989,
1993, 2010).

In the following comparative study, we consider FEM_Fix and FEM_Adapt schemes (FEM
represents CV or DG) based on the control volume and discontinuous Galerkin discretiza-25

tion. The CV_Fix_L and DG_Fix_L schemes use fixed uniform triangular meshes while the
CV_Adapt_L and DG_Adapt_L schemes use adaptive meshes (where L represents the

13
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different mesh schemes, as shown in Table 1). For CV discretization, a finite element inter-
polation is used at the control volume faces with a CV-TVD limiter to bound the solution.
The time discretization used here is the new timestepping θ scheme based on the Crank–
Nicolson scheme. For DG discretization, the upwind flux is chosen in combination with
vertex-based slope limiter. The slope limiter used with the discontinuous Galerkin formula-5

tion only guarantee a bounded solution in conjunction with an explicit advection scheme.
Therefore, advection subcycling based upon a CFL criterion is necessary for DG discretiza-
tion (AMCG, 2014). Equation (14) is solved by the generalized minimum residual method
(Saad, 1993). The successive over-relaxation preconditioned is invoked to speed up con-
vergence at large time steps.10

To assess the difference between the analytical solution c and its numerical approxima-
tion ch, we introduce the error norms:

E1 =

∫
Ω

|c− ch|dΩ = ‖c− ch‖1, (24)

E2 =

√√√√∫
Ω

|c− ch|2dΩ = ‖c− ch‖2. (25)

The order of accuracy in modelling is used to assess the numerical convergence rate:15

p= log2(E1(h)/E1(h/2)), (26)

where h is the mesh size.
All computations were performed on a workstation using the Gfortran Compiler for Linux.

The simulation workstation has 8 processors and a 4GB random-access memory (RAM).
The processor used in workstation is Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz. A single20

processor with frequency of 3.40GHz was used since the test cases were simulated in
serial.

14
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5.1 Case one: solid body revolution

A standard test problem applied to the advection equation (2) in 2D is solid body revolution
(LeVeque, 1996; Kuzmin, 2009). The incompressible velocity field in the domain Ω = [0,1]×
[0,1] is represented by

u(x,y) = (0.5− y,x− 0.5), (27)5

which corresponds to a counterclockwise rotation around the center (0.5,0.5) of Ω. Follow-
ing LeVeque (1996), we consider a slotted cylinder, a sharp cone, and a smooth hump as
the initial solid bodies defined within the circle centered at each reference point (x0,y0):

r(x,y) =
1

r0

√
(x−x0)2 + (y− y0)2 ≤ 1, (28)

where r0 = 0.15. After each full revolution (t= 2πk), the exact solution return to the initial10

distribution as depicted in Fig. 1. For the slotted cylinder, the reference point is (x0,y0) =
(0.5,0.75) and

c(x,y,0) =

{
1 if |x−x0| ≥ 0.03 or y ≥ 0.85,

0 otherwise.
(29)

The cone is centered at (x0,y0) = (0.5,0.25) and its geometry is given by

c(x,y,0) = 1− r(x,y). (30)15

The peak of the smooth hump is located at (x0,y0) = (0.25,0.5) and the shape function is

c(x,y,0) =
1 + cos(πr(x,y))

4
. (31)

In the rest of the domain Ω, the solution of Eq. (2) is initialized by zero. The challenge of
this numerical test case is to preserve the shape of the rotating bodies as time evolves.
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The mesh size used for the FEM_Fix_L schemes and the FEM_Adapt_L schemes are
listed in Table 1. The time step is set to ∆t= 0.01 for all different mesh schemes. For
DG discretization, the explicit advection subcycling scheme with a tight CFL criterion (here
0.1) is used to make sure that the simulation is converging as the mesh is refined. For CV
discretization, although the timestepping θ scheme based on the Crank–Nicolson scheme5

can maintain high accuracy, the subcycling number is set to be {2,4} for h= {1/400,1/800}
respectively such that the sub-time step is small enough to guarantee convergence and
higher accuracy.

Figure 2 shows the errors of results at t= 2π (one full revolution) and the CPU time re-
quired. It can be seen that compared with the CV method, the DG method is more accurate10

but requires more computer memory and CPU time. For the CV method, the accuracy of
results using the adaptive mesh scheme is very close to that using the fixed mesh (global
mesh refinement) scheme while the CPU time required by the adaptive mesh scheme is
reduced by 75% . For the DG method, to achieve a given level of accuracy of results, for
example, E1 = 0.0055 and E2 = 0.035, by using adaptive meshes, the CPU time can be15

reduced by 45% of that required using fixed meshes. With increasing mesh resolution the
CPU time for the adaptive schemes increase at a much slower rate than those for the fixed
(global mesh refinement) approach (see Fig. 3 and Table 1). Compared with that in the
fixed mesh (global mesh refinement) schemes, the problem size is reduced by 68–97.7 %
using the adaptive mesh schemes. Hence, the use of adaptive meshes provides an effi-20

cient approach to lower the storage requirement, thus leading to the reduction of the overall
computing time while remaining the accuracy of numerical results. To estimate the rate of
convergence, the order of accuracy is calculated in Eq. (26 (here, h= 1/200). The order of
accuracy is {0.83, 0.54, 0.95, 0.72} for {CV_Fix, CV_Adapt, DG_Fix, DG_Adapt} schemes
respectively. It is argued that no-smooth profiles in the complex problems presented here,25

lead to a low order of accuracy, that is, a low convergence rate. If we only consider the
hump-smooth profile as the initial data, the order of accuracy can increase to be {1.98,
1.52, 1.54, 1.13}.

16
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Figure 4 shows the numerical results at t= 2π (after one full revolution) using the adap-
tive and fixed mesh schemes. For comparison purpose, the FEM_Fix_1 and FEM_Adapt_4
schemes are chosen since the number of nodes in these two mesh schemes are al-
most same, where N = 10201 for FEM_Fix_1 scheme while N ≈ 11500 for FEM_Adapt_4
scheme. The solutions of CV_Fix_1 and DG_Fix_1 are computed on a structured uniform5

mesh of triangular elements with mesh size h= 1/100 and ∆t= 0.01. It can be seen that
there is severe erosion of the slotted cylinder when the fixed mesh scheme is adopted. The
adaptive mesh scheme provides an improvement in accuracy of results. It is shown that
with use of adaptive meshes (especially DG Adapt_Adapt_4), the initial shape of bodies is
preserved well.10

5.2 Case two: swirling flow

The capability of the adaptive mesh model has been further demonstrated in modelling
swirling flow phenomena. The set up of the simulation in this case is similar with case one,
however the velocity field is provided by the formula (LeVeque, 1996; Kuzmin, 2009):

u(x,y, t) = (sin2(πx)sin(2πy)g(t),−sin2(πy)sin(2πx)g(t)) (32)15

where g(t) = cos(πt/T ) on the time interval 0≤ t≤ T (here T = 1).
The initial mass distribution will be deformed by the time-dependent velocity field which

gradually slows down to zero and reverses its direction at t= T/2. Thus, the initial profile
will be reproduced at the final time t= T as depicted in Fig. 1. Due to the flow here is
time-variable, the time step is set small enough to be ∆t= 0.00125 for all different mesh20

schemes.
A comparison of results using fixed and adaptive meshes is illustrated in Figs. 5–8. Again,

it can be observed that by using the adaptive mesh scheme in the model, both the CPU
time and number of nodes required are significantly reduced for a given level of accuracy
of results (see Fig. 6). To improve the stability of solutions when the mesh resolution is25

increased, the explicit advection subcycling based upon a CFL criterion is used for DG
discretization while the Crank–Nicolson scheme for CV discretization. In this case, the order

17
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of accuracy is {0.81, 0.68, 0.92, 0.79} for {CV_Fix, CV_Adapt, DG_Fix, DG_Adapt} schemes
respectively. Again the convergence rate is low due to non-smooth profiles in solutions.

The numerical solutions in Figs. 7 and 8 (at time levels t= T/2 and T ) were computed
by different fixed and adaptive mesh schemes. Again adaptive mesh modelling is able to
present better deformation of shapes at t= T/2 (Fig. 7) and preserve the initial shape after5

one full revolution (t= T ) much better than fixed mesh modelling Fig. 8.
Figure 9 displays the change of adaptive meshes as time evolves. It is observed the

dynamic mesh adaptation algorithm is capable of following the evolution details of transient
flows. As the simulation progresses, the mesh has to be adapted not only to the current
solution profile but also to its expected shape in the future. It can be seen that the mesh10

is adapted to capture the details of local flows, i.e, increasing the resolution around the
shape’s boundary with anisotropic elements and then capturing the shape of deformed
bodies.

5.3 Case three: swirling deformation

A comparison of the anisotropic adaptive mesh schemes with the Walcek (or Bott) scheme15

(Walcek and Aleksic, 1998; Bott, 2010) adopted by many air quality models has been un-
dertaken in this section. The case used here was described in Staniforth et al. (1987). In
this case, we only focus on the subdomain [0.24,0.76]× [0.12,0.88] of Ω. A cone is initially
centered at (x0,y0) = (0.5,0.5) with a negative (−0.2) background as shown in Fig. 10 and
its geometry is given by20

c(x,y,0) = 1.2(1− r(x,y))− 0.2. (33)

The velocity field defined by the following stream function (Staniforth et al., 1987):

ψ(x,y) =Asin(kx)cos(ky) (34)

with

u(x,y) = (−ψy,ψx) = (Ak sin(kx)sin(ky), Ak cos(kx)cos(ky)) (35)25
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where A= 0.08,k = 4π.
Staniforth et al. (1987) defined two flow regimes (short time periods and long time pe-

riods) that have different evaluation criteria for the numerical advection schemes. Here,
we focus on the evaluation of the first regime (short time periods) so that the numerical
solutions should be compared with the analytical solutions in a qualitative manner. Fig-5

ures 11 and 12 show the comparison of three different schemes’ results with the analytical
solution at time t= 3T/20 and t= T/5, where T = 2.6376. The solutions of the Walcek
scheme were computed on a structured uniform mesh with h= 1/200 and ∆t= 0.003297.
For FEM_Adapt_128 schemes (see Table 1), they were computed on dynamic adaptive
mesh with constant ∆t= 0.006594. The minimum mesh size is 7.8125× 10−6 while the10

maximum mesh size is 0.2.
It can be observed the initial c field is splited into two rotations within the areas of the

two central vertices as time evolves. Since the spatial gradient of solutions increases as
time evolves especially at the boundaries of the central vortices, high resolution of meshes
around the boundaries is needed to present the sharp shape accurately. Due to lack of15

high resolution of meshes, the solutions using the Walcek scheme fail to represent the
analytical one and maintain the shape distribution. For the Walcek scheme, at time t=
3T/20 (see Fig. 11), the gradients of numerical distribution begin to disappear at the upper
and middle boundaries of the central vortices and nearly completely disappear at time t=
T/5 (Fig. 12). By adapting the mesh in time and space, the mesh resolution increases20

around the boundaries of each vertice, thus improving the accuracy of results. There is
close agreement between the adaptive mesh modelling results and the analytical ones
although the gradients for CV_Adapt_128 scheme are not as strong as the exact solution.

The sequence of triangulations presented in Fig. 13 demonstrates that the dynamic mesh
adaptation algorithm succeeds in locally refining the mesh in the vicinity of steep fronts so25

as to reduce the amount of numerical diffusion and follow steep fronts as time evolves.
To further reduce the number of elements, the anisotropic adaptive algorithm has been
used for all the above adaptive mesh scheme, allowing the mesh is adapted along different
directions. As shown in Fig. 14 which depicts a closeup view of locally adapted mesh,
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the adapted mesh size across the boundaries is small enough to capture the sharp fronts
while large along the boundaries since the c field does not change much. Therefore, the
mesh sizing desired in anisotropic adaptive algorithm is not only a function of space, it is
also a function of direction. At a given point, the desired mesh sizing differs in different
directions.5

Figure 15 shows the number of nodes required for CV_Adapt_128 scheme is less than
the node number (15 808) for fixed Walcek scheme during most of the simulation pe-
riod. However, as local mesh resolution increases with time, the max CFL number of
CV_Adapt_128 scheme exceeds 10 and even reach 80. To keep the stabilization of so-
lutions, the timestepping θ scheme is used to eliminate the time-step restrictions and main-10

tain high accuracy as far as possible, where θv (1/2≤ θv ≤ 1) is chosen to 0.5 for most
of elements while big enough(close to 1) for a small fraction of individual elements with
a large CFL number (see Fig. 16). In this way, the use of a large time step is acceptable
when applying adaptive mesh techniques into comprehensive air quality models, which can
make the computation much more efficient. As shown in Fig. 11–12, in combination with the15

timestepping scheme, the adaptive mesh CV modelling solutions can maintain stable and
accurate without reducing the time step size even if the max CFL number of CV_Adapt_128
exceeds 80. All of these can further illustrate the efficiency and the potential of dynamic
mesh adaptation for future real applications in air quality model.

5.4 Case four: power plant plumes20

In this case, the anisotropic adaptive mesh model is applied to an advection-diffusion prob-
lem (Eq. (2)): atmospheric dispersion of emissions from power plants. This is a first step
towards applying the adaptive mesh model to realistic cases. The SO2 emission of power
plants was obtained from the Regional Emission inventory in ASia (REAS 2.1) data devel-
oped by National Institute of Environmental Sciences of Japan. As shown in Fig. 17 (a), the25

simulated domain covers the whole Shanxi-Hebei-Shandong-Henan region of China with
1090km× 1060km, and there are about 100 power plants in this area. The meteorological
fields are provided by the mesoscale meteorological model WRF (v3.5) with a horizontal
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resolution of 5km×5km and 20 vertical sigma layers. The simulation started at 00:00 UTC
on 10 January 2013 and ran through to the 15 January 2013. In this case, the CV method
is used for simulation of power plant plumes.

We started with a numerical investigation of a simplified 2D test. The mixing layer height
is 600m and the turbulent horizontal diffusivity is 100m2/s. The horizontal wind fields are5

obtained by averaging the lowest five layers of WRF’s meteorological fields and stored at
hourly intervals during 5-day period. For fixed mesh schemes, three mesh resolution levels
in horizontal are used: 10km× 10km (level 1), 5km× 5km (level 2) and 2.5km× 2.5km
(level 3). For coarse meshes (level 1), there are 110×107 nodes and 23 108 elements. The
total number of fixed elements increases by a factor of 4 when doubling the horizontal mesh10

resolution. For adapt mesh schemes, the minimum (maximum) mesh size is set to be 2km
(30km), and the maximum number of nodes is set to be 12000 which is the same as that
of the fixed coarse mesh scheme (level 1). To represent the emission sources accurately,
the fixed mesh with a high resolution of 2km is used around the power plant points within
a radius of 6km (see Fig. 17 (b)).15

Figure 18 shows SO2 concentrations at 21:00 UTC on 12 January after spin-up of sim-
ulations. An artificial dilution effect can be seen when coarse meshes are used in mod-
elling. This can be improved by increasing the mesh resolution or applying an adaptive
mesh scheme. The results using adaptive meshes are in agreement with those using fixed
meshes with a high mesh resolution of 2.5km while the number of nodes decreases by a20

factor of 16 with use of adaptive meshes. The evolution of adaptive meshes displayed in
Fig. 19 illustrates that the adaptive algorithm is able to capture not only the detailed small-
scale plume structures near the point sources, but also the regional high concentrations at
large downwind distances.

To further demonstrate the adaptive mesh model’s ability in 3D modelling, we extended25

the above 2D case to 3D dispersion of plumes. According to the terrain data of the mod-
eling domain, the initial 2D adaptive mesh (see Fig. 17 (b)) can be extruded to create a
layered 3D mesh from the top 20km (above sea level) to the terrain surface, with 11 terrain-
following layers. There are seven layers within the lowest 1km above the terrain surface
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(see Fig. 20 (a)). The power plant emissions were injected into the third layer about 200m
above the surface. Similarly, the three-dimensional velocity fields produced by WRF were
interpolated from the fixed mesh in WRF onto the adaptive mesh. The vertical eddy diffusiv-
ity is parameterized based on a scheme by Byun and Dennis (1995). Figure 20 shows the
evolution of 3D SO2 concentrations visualization which includes surface concentrations and5

the corresponding adaptive mesh, as well as the 3D pollutant plumes defined as a constant
concentration surface for concentrations greater than 100µg/m3. It can be seen that full 3D
mesh adaptivity has been used to improve the ability of the model to capture the details of
flow dynamics and follow the evolution of power plant plumes.

6 Conclusions10

In this paper, a new anisotropic adaptive mesh technique has been introduced and ap-
plied to modelling of multi-scale transport phenomena, which is a central component in
air quality modelling systems. The first two benchmark test cases using the fixed mesh
and adapted mesh schemes have been setup to illustrate the efficiency and accuracy of
anisotropic adaptive mesh technique, which is an important means to improve the competi-15

tiveness of unstructured mesh air quality models. The third case presents the irreplaceable
advantage of this new adaptive mesh method to reveal detailed small scale plume structure
(large gradients) that cannot be resolved with static grids, using comparable computational
resources. Dispersion of power plant plumes, as a real model problem, has been simulated
in the last case to illustrate that the adaptive algorithm is able to capture the detailed small-20

scale plume structures near each point source as well as the regional high concentrations
at large downwind distances.

It is demonstrated that the dynamic anisotropic adaptive mesh technique can be used
to automatically adapt the mesh resolution to follow the evolving pollutant and transient
flow features in time and space, thus reducing the CPU time and memory requirement sig-25

nificantly. In combination with the timestepping θ scheme based on the Crank–Nicolson
method, the adaptive mesh air pollution model is able to maintain the stability and accu-
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racy of results without reducing the time step size when the minimum mesh size is getting
smaller. This is of great significance for the future applications in multiscale modeling.

The third test case serves as a proof-of-concept to further illustrate the capability of
anisotropic mesh adaptivity techniques. In this case, the swirling deformation flow exhibits
very high aspect ratios (1000, for example), which means that the pollutant distribution can5

possess very strong anisotropies as time evolves. Hence, the anisotropic mesh adaptation
provides a very useful and effective way to simulate and represent this special atmospheric
phenomena.

In summary, the results obtained in this work show the capability and potential of adaptive
mesh methods to simulate multiscale air pollutant transport problems (spanning a range of10

scales) with higher numerical accuracy. The mesh adaptation can be used to improve the
mesh resolution when and where it is needed without performing successive global refine-
ment which is prohibitively expensive, and therefore, not feasible for realistic applications.
Future work will consider chemical reactions to further demonstrate the capability of dy-
namic adaptive mesh techniques.15

Code availability

Fluidity code developed by the Applied Modelling and Computation Group (AMCG) at Im-
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Table 1. Basic configuration for FEM_Adapt_L and FEM_Fix_L schemes (where FEM represents
CV or DG; the maximum mesh size is set to be 0.2).

Mesh schemes (L) 1 2 4 8 128

Minimum mesh size (h) 0.01 0.005 0.0025 0.00125 7.8125× 10−6

The maximum number of nodes FEM_Adapt_L 3500 7500 15 000 25 000 15 000
The number of nodes FEM_Fix_L 10 201 40 401 160 801 641 601 163 865 601
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Mesh schemes (L) 1 2 4 8 128

Minimum mesh size (h) 0.01 0.005 0.0025 0.00125 7.8125× 10−6

The maximum number of nodes FEM Adapt L 3500 7500 15000 25000 45000

The number of nodes FEM Fix L 10201 40401 160801 641601 163865601
Table 1. Basic configuration for FEM Adapt L and FEM Fix L schemes (where FEM represents CV or DG;

the maximum mesh size is set to be 0.2).

(a) 2D (b) 3D

Fig. 1. Initial distribution / exact solution at t= 2π in 2D and 3D view.

16

Figure 1. Initial distribution/exact solution at t= 2π in 2D and 3D view.
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(a)E1 defined in (24) (b) E2 defined in (25)

(c) CPU time

Figure 2. Case one – solid body revolution: the errors in the c field solutions and the CPU time (as
a function of the mesh size h) required for one revolution (t= 2π), where h is the mesh size for
FEM_Fix_L schemes while the minimum mesh size for FEM_Adapt_L schemes.
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(a) CV_Adapt (b) DG_Adapt

Figure 3. Case one – solid body revolution: the evolution of number of nodes for (a) CV_Adapt, (b)
DG_Adapt.
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(a) CV Fix 1 (b) CV Adapt 4

(c) DG Fix 1 (d) DG Adapt 4

Fig. 4. Case one - solid body revolution: the results from the fixed and adaptive mesh schemes using almost

the same nodes number N , where N = 10201 for FEM Fix 1 scheme while N ≈ 11500 for FEM Adapt 4

scheme, at t= 2π.

18

Figure 4. Case one – solid body revolution: the results from the fixed and adaptive mesh schemes
using almost the same nodes number N , where N = 10201 for FEM_Fix_1 scheme while N ≈
11500 for FEM_Adapt_4 scheme, at t= 2π.
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(a) E1 defined in (24) (b) E2 defined in (25)

(c) CPU time

Figure 5. Case two – swirling flow: the errors in the c field solutions and the CPU time (as a function
of the mesh size h) required for one revolution, where h is the mesh size for FEM_Fix_L schemes
while the minimum mesh size for FEM_Adapt_L schemes, using the same ∆t= 0.00125.
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(a) CV_Adapt (b) DG_Adapt

Figure 6. Case two – swirling flow: the evolution of number of nodes for (a) CV_Adapt, (b)
DG_Adapt.
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(a) CV Fix 1 (b) CV Adapt 4

(c) DG Fix 1 (d) DG Adapt 4

.

Fig. 7. Case two - swirling flow: the results from the fixed and adaptive mesh schemes using almost the same

nodes number N , where N = 10201 for FEM Fix 1 scheme while N ≈ 12000 for FEM AdaptFigure 7. Case two – swirling flow: the results from the fixed and adaptive mesh schemes using
almost the same nodes number N , where N = 10201 for FEM_Fix_1 scheme while N ≈ 12000 for
FEM_Adapt_4 scheme, at t= T/2(= 0.5).
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(a) CV Fix 1 (b) CV Adapt 4

(c) DG Fix 1 (d) DG Adapt 4

Fig. 8. Case two - swirling flow: the results from the fixed and adaptive mesh schemes using almost the same

nodes number N , where N = 10201 for FEM Fix 1 scheme while N ≈ 12000 for FEM AdaptFigure 8. Case two – swirling flow: the results from the fixed and adaptive mesh schemes using
almost the same nodes number N , where N = 10201 for FEM_Fix_1 scheme while N ≈ 12000 for
FEM_Adapt_4 scheme, at t= T (= 1).
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(a) t= 0 (b) t= 0.5 (c) t= 1

Fig. 9. Case two - swirling flow: the evolution of the adaptive mesh colored with tracer value c, where

DG Adapt
Figure 9. Case two – swirling flow: the evolution of the adaptive mesh colored with tracer value c,
where DG_Adapt_4 scheme is used.
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(a) 2D (b) 3D

Figure 10. Case three – swirling deformation: initial distribution and velocity field.
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(a) Walcek (b) CV_Adapt_128

(c) DG_Adapt_128 (d) Exact Solution

Figure 11. Case three – swirling deformation: comparison of the analytical solution with the results
from different schemes using almost the same number of nodes N ≈ 15000, at t= 3T/20, where
T = 2.6376.
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(c) DG_Adapt_128 (d) Exact Solution

(a) Walcek (b) CV_Adapt_128

Figure 12. Case three – swirling deformation: comparison of the analytical solution with the results
from different schemes using almost the same number of nodes N ≈ 15000, t= T/5, where T =
2.6376.
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(a) t = T/20 (b) t = T/10

(c) t = 3T/20 (d) t = T/5

Figure 13. Case three – swirling deformation: the evolution of the adaptive mesh colored with tracer
value c, where DG_Adapt_128 scheme is used.
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(a) t = T/20 (b) t = T/10

(c) t = 3T/20 (d) t = T/5

Figure 14. Case three – swirling deformation: the evolution of the adaptive mesh colored with tracer
value c, in the subdomain [0.49,0.51]× [0.62,0.627], using DG_Adapt_128 scheme.
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(a) (b) (c)

Figure 15. Case three – swirling deformation: the evolution of (a) number of nodes, (b) max local
and (c) integral of CFL number for CV_Adapt_128 schemes.

43



D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Figure 16. Case three – swirling deformation: the distribution of CFLNumber for CV_Adapt_128
scheme at t= T/5, where T = 2.6376.
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(a) (b)

Figure 17. Case four – power plant plumes: (a) the distribution of power plants and (b) the corre-
sponding initial mesh.
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Figure 18. Case four – power plant plumes: simulated SO2 concentrations (µg/m3) at 21:00 UTC
12 January 2013 using the CV methods on different horizontal resolution of (a) 10km, (b) 5km,
(c) 2.5km and on the (d) adaptive mesh.
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(a) 20130110 18:00(UTC) (b) 20130111 18:00(UTC)

(c) 20130112 18:00(UTC) (d) 20130113 18:00(UTC)

Figure 19. Case four – power plant plumes: the evolution of the adaptive mesh colored with SO2

concentrations (µg/m3), using the CV_Adapt scheme.
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(a) 20130110 00:00(UTC) (b) 20130111 12:00(UTC)

(c) 20130113 00:00(UTC) (d) 20130114 12:00(UTC)

Figure 20. Case four – power plant plumes: the evolution of 3D plumes visualization, surface SO2

concentrations (µg/m3) and the corresponding adaptive mesh.
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