
Response to Referee 1

I would like to thank Referee 1 for the time they spent making these thorough com-
ments, which have been very helpful to me in improving the understandability, read-
ability, and presentation of this work.

MAJOR COMMENTS

1. The implementation is of course continuous. However, some users would wonder
to what extent they can model very steep gradients in flexural rigidity, and narrow
weak zones of very low elastic thickness (major fault zones or crustal discontinuities).
The application example contains such weak zone (ridge) but as the author clearly
states, it sorts of low pass filter this sharp boundary. It is important to explain to the
reader to what extent gflex can approximate major faults or zone of weakness inside
the plate and what their response would be. This is particularly important for the
non-modellers.

The low-pass filtering effect that was mentioned early in the paper, in the
section on the development of the theory, is a fundamental characteristic
of bending of plates of finite thickness. The equations always maintain
continuity, even for a plate of 0 thickness – in this case, the flexural
solution goes to full local isostatic equilibrium where plate thickness is 0,
and then responds accordingly where plate thickness is finite. This is an
important distinction between the treatment of a 0-thickness but continu-
ous plate and a true discontinuity, e.g., as given by the 0Moment0Shear
(“broken plate”) boundary condition. If the Te = 0 condition is in the
middle of the load, then the response to the load on either side of it will
be continuous with it, creating a cantilever-style condition at the edge of
the weak zone. If the Te = 0 condition is over a place in which there
is no load, then the solution in the rest of the region will be forced to
approach this. See the figures below for a better description. One final
note is that the finite difference solution requires that the zone of Te = 0
be at least 3 cells wide in order to be seen as an isolated block. This is
because of numerical diffusion inherent in the solution method and the
high order (4) of the PDE. At first glance, this does seem like a disadvan-
tage, or at least that there should be some more flexible way to include a
non-straight broken plate condition. However, there are very few (no?)
places on Earth’s surface where we truly reach a broken-plate solution,
as this implies absolutely no physical interaction between the crust on
opposite sides. The closest to this is a rift zone, but even if these have
no mantle lithosphere, they have some (thin) crust.

I have included a paragraph on this in the paper; see the last paragraph
in the a new section titled, “Limit as Te → 0”.
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Figure 1: 0 elastic thickness in N–S orientation in the in the middle (E–W) of the
array; 0Displacement0Slope boundary conditions elsewhere.
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Figure 2: Broken plate on the eastern edge; 0Displacement0Slope boundary conditions
elsewhere.
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Figure 3: 0 elastic thickness in N–S orientation on the eastern edge of the array with
a broken-plate b.c. on the East. The broken plate b.c. now only applies to
the 0-Te material, which responds to local isostatic equilibrium (here with
no load), and the rest of the block must respond to be continuous with this
0-displacement boundary. Essentially, the 0-Te section absorbs the effects of
the boundary condition locally, and then imposes a 0-displacement boundary
condition on the interior.
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2. Delta rho is included in equations 1, 2 and 4. However it is not clear what this term
is. It is only until pp. 4258/line 15 that rho f is mentioned. It would be important to
explain the meaning of rho delta (rho mantle - rho filling) and the way it can be used
to model different scenarios (marine vs. sedimentary basin, etc.).

This was part of a big oversight on my part! I rearranged some of the
paper before submitting, but did not add the descriptions of the variables
into the proper sections. I have added the following:

“ Here, w is vertical deflection of the plate, q is the applied surface
load, and ∆ρ = ρm − ρf is the density of the mantle minus the density
of the infilling material. This last term represents the feedback by which
flexural subsidence can lead a depression to be filled by material, which
leads to additional flexural subsidence. This can occur, for example, in
a system that is fully underwater (e.g., an underwater volcano load) or
one in which the depression is completely filled with sediments. If this
infilling material is not uniform in density and/or spatial extent—for
example, due to onlap or offlap of water along a shoreline—then one may
solve this feedback instead via iteration, by solving for ρf = ρair ≈ 0 and
adding water (or another load) to regions that match certain conditions
after every cycle of the iteration. ”

3. Can variable rho f (density of infilling) be modelled in gflex? Page 4260/line 15 says
yes, but it is not sure how this can be accomplished. Can variable rho f be defined as
input?

It can, but not explicitly so: the quantity ρf is a scalar. I have changed
the “As Part of a Python Script” section to explain this better than I
had before:

“ gFlex may also be imported as a Python module to be run either as
a standalone simulation or as a component in a multi-model integration
effort. This allows it, for example, to be a part of a flexural backstripping
toolchain or a model of glacial–isostatic adjustment. A programmatic
approach is also useful for scenarios in which material infills a depression,
but not over the whole domain and/or not with uniform density. While
the flexure equations require that ρf be constant, a more flexible way to
solve for the effect of infilling material is to compute flexural response
with ρf = ρair ≈ 0, add loads based on some set of rules, and then
re-calculate flexure iteratively until convergence is achieved. This can
occur in regions with a complex set of sedimentary deposits and/or to
be used for for seawater loading across a shoreline. ”

4. Figure 5 is rather confusing. It does not completely explain how the different
boundary conditions in Figure 4 can be related to different geological processes (line
5 of p. 4255). It is not clear also what the role of figure 5b is (”provides a contrived
field of variable elastic thickness”??). Is that the elastic thickness distribution used in
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5c and 5d? It does not seem so: for example in 5d the upper right mountain belt load
produces more deflection than the lower left one. One would expect the contrary for
the elastic thickness distribution in 5b.

I have updated the figure to include all of the available boundary condi-
tions. One of those in the figure had an old name from a development
version of the code, and that has been fixed. Panel D does include more
subsidence below the lower left mountain belt, as the reviewer noted would
be expected, but this was obscured by the shading for the mountain belt.
I have therefore replaced it with a pattern of lines that allows the under-
lying colors to be seen.

5. p. 4255/lines 25 to 29: This sentence is not clear.
The reason for the lack of clarity is because I somehow wrote a sentence

that spanned 15 lines! This has now been broken up and re-worded, see
the revised third paragraph in Section 2.3. “Boundary Conditions”

6. p. 4256/paragraph lines 13-24: Periodic boundary. Not clear. I read many times
this paragraph, but still I don’t understand how to model a continuous mountain belt
with the Periodic boundary.

I was concerned that many geologists might not understand what was
meant by a periodic boundary condition (I certainly didn’t until I started
using numerical methods), so I tried to explain it as a loop. I have
added additional words noting that you essentially connect the west and
east edges (or north and south edges), and hopefully this provides some
additional help. See the revised 6th paragraph in Section 2.3., “Boundary
Conditions”, and please let me know if this still is unclear.

MINOR COMMENTS
p. 4246/line 24: change ”of Earth” by ”of the Earth”

Not changed: generally still correct, and it is better to have it without the
article in the context of other planets (e.g., we would say “of Mercury”).

p. 4247/line 9: change ”Analytical” by ”The analytical”
There is more than one plate-bending theory, so can’t use the article,

but the word “analytical” isn’t needed (should just be implied), so I have
removed it instead.

p. 4248/line 15: change ”and may” by ”which could”
This change would imply that boundary conditions relate to the linear

response of the analytical solution, but I really want to say that the bound-
ary conditions are applied to the loading scenarios, meaning that I must
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keep the current wording.

p. 4249/line 8: remove ”greatly”
Done.

Eq. 5: What is kei?
It is a Kelvin function. I didn’t make this clear above, and in fact, I

found my description of it unsatisfactory. So I have added some more
background about what it actually is, and made clear that the Kelvin
function mentioned in the text is kei.

p. 4252-4253: Is the long sentence at the end of p. 4252 and ending at line 4 of p.
4253 necessary? It is rather confusing and in my opinion does not contribute much to
the discussion.

It explains the method for efficiently calculating the space-domain an-
alytical solution, so is necessary. I have re-ordered the concepts in the
sentence and broken it into multiple sentences for clarity. (It was or-
dered in a way that worked in my mind at the time, but probably wasn’t
the best explanation.) As a result of these changes, I have rewritten the
entire paragraph as follows:)

“ For a given elastic thickness, each flexural response to a line or
point load is similar in shape, but different in amplitude. Therefore,
I optimize solution speed by pre-calculating the flexural response to a
unit load in the center of a template array. This array has twice the
linear dimensions of the solution array, and is subsampled and re-scaled
to compute the distributed response to each cell in the grid that contains
a load. This technique works for all for rectilinear grids with uniform
x- and y-grid-spacing, though the x- and y-grid-spacing do not have
to be equal to one another. A similar optimization is possible for one-
dimensional solutions, but these are so rapid that this has not been found
to be necessary. Within gFlex, this solution type is termed “SAS”, which
stands for “Superposition of Analytical Solutions”. ”

p. 4260/line 13: ”use repeat forward modeling” is awkward. Please consider changing.
Also not clear how gflex can be used as a flexural backstripping tool.

In answer to the awkward phrase, I have removed this and rewritten the
paragraph to give the more general idea. In answer to the flexural
backstripping tool portion, I have included (1) a citation to a paper that
provides a general flexural backstripping method, for which gFlex and any
other flexural isostatic calculation tool or method would work, and (2) a
reference to a newly-accepted paper in which we use gFlex to backstrip a
foreland basin and reconstruct the loading history of a mountain belt.
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p. 4262/line 15: ”presents cause” is awkward.
It is, and so is much of the sentence. I have rewritten it as follows:

“ Earth’s crust at Iceland has been built by the unique intersection of
the Iceland hotspot and the Mid-Atlantic Ridge, which together produce
a weak lithosphere with spatially-variable elastic thickness, resulting in
short-wavelength variability in solid Earth response to loading. ”

Figure 5c: What is ”Dirichlet0” to the left of the scale bar?
This was an old and poorly-described name for the 0Displacement0Slope

boundary; this figure has been updated to fix that.

Figure 6: Caption: Clearly indicate a, b and c: a. before ”The ungridded”. b. before
”The gridded”. and c. before ”Finite difference”

Thanks for catching this! Done.

Figure 6: scales of x and y axes in a, b and c are quite different. This can be misleading.
They are not only different scales, but they are fundamentally different

axes because of the different drivers of compute time for each of the
different model runs. While it is nice to put fully-comparable plots above
and below each other, I think in this case, the reader will be left to read
the axis labels. Figure 7 has a comparison among the different solution
types. I have fixed an issue with transparency in both of these figures (6
and 7) and updated the axes labels to be more intuitive.

Figure 7: Put labels to the scale bars, including units (as in Figure 5).
I’m guessing that you mean Figure 8? In which case, done, and thanks

for noticing this!

Additional changes:
• Updated overview sketch (Figure 1) for better 3D perspective

• Defined Te and D and their relationship towards the beginning of
the paper

• Changed the left-handed coordinate system in the appendix schematic
to a right-handed one (oops!)
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Response to Referee 2

The author presents a new open source model (gFlex) that can produce analytical
and finite difference solutions for lithospheric flexure in 1D and 2D. The software is
well described and for sure it will be used by the scientific community. gFlex has been
applied to simulate the effects of spatially variable lithospheric thickness on a modelled
Iceland ice cup. My only reccommendation is to display the results of models having
different boundary conditions, since gFlex supports a number of them. In this way it
will be fully clear the potentiality of the software.

I appreciate the reviewer’s enthusiasm about this work. To the question
about different boundary conditions, I would point the reviewer to Figure
5, which has now been updated to include all available boundary condi-
tions, and now has a hatch pattern instead of a shading beneath loads to
better see the local effects on isostasy.
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Abstract

Isostasy is one of the oldest and most widely applied concepts in the geosciences, but the
geoscientific community lacks a coherent, easy-to-use tool to simulate flexure of a realistic
(i.e. laterally heterogeneous) lithosphere under an arbitrary set of surface loads. Such a
model is needed for studies of mountain-building, sedimentary basin formation, glaciation,5

sea-level change, and other tectonic, geodynamic, and surface processes. Here I present
gFlex, an open-source model that can produce analytical and finite difference solutions for
lithospheric flexure in one (profile) and two (map view) dimensions. To simulate the flexu-
ral isostatic response to an imposed load, it can be used by itself or within GRASS GIS for
better integration with field data. gFlex is also a component with the Community Surface Dy-10

namics Modeling System (CSDMS) and Landlab modeling frameworks for coupling with a
wide range of Earth-surface-related models, and can be coupled to additional models within
Python scripts. As an example of this in-script coupling, I simulate the effects of spatially
variable lithospheric thickness on a modeled Iceland ice cap. Finite difference solutions
in gFlex can use any of five types of boundary conditions: 0-displacement, 0-slope (i.e.15

clamped); 0-slope, 0-shear; 0-moment, 0-shear (i.e. broken plate); mirror symmetry; and
periodic. Typical calculations with gFlex require �1 second to ∼1 minute on a personal
laptop computer. These characteristics—multiple ways to run the model, multiple solution
methods, multiple boundary conditions, and short compute time—make gFlex an effective
tool for flexural isostatic modeling across the geosciences.20

1 Introduction

Flexure of the lithosphere is a frequently observed processes by which loads bend the elas-
tic outer shell of Earth or other planets (Watts, 2001; Watters and McGovern, 2006). The
sources of these loads are wide-ranging (Figure 1), encompassing volcanic islands and
seamounts (Watts, 1978; Watts and Zhong, 2000), mountain-belt-forming thrust sheets their25

associated subsurface loads (Karner and Watts, 1983; Stewart and Watts, 1997), sedimen-
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tary basins (Watts et al., 1982; Heller et al., 1988; Dalca et al., 2013), continental ice sheets
(Le Meur and Huybrechts, 1996; Gomez et al., 2013), lakes (Passey, 1981; May et al.,
1991), seas and oceans (Govers et al., 2009; Luttrell and Sandwell, 2010), extensional
tectonics (negative loads) (Wernicke and Axen, 1988), erosion (negative loads) (McMillan
et al., 2002), mantle plumes (basal buoyant and therefore negative loads) (D’Acremont5

et al., 2003), and more.
Theory to describe deflections of the lithosphere under loads has evolved significantly

over the past 160 years (Watts, 2001). The development of this theory started with simple
approximations of perfect buoyant compensation of loads by a lithosphere with no strength
overlying a mantle of known density (Airy, 1855; Pratt, 1855). These approximations al-10

lowed surveyors to explain the observed lack of significant gravity anomalies around large
mountain belts (cf., Göttl et al., 2009). While this theory, called isostasy, revolutionized the
way topography was viewed on the Earth, more realistic solutions for isostatic deflections
of the surface of Earth take into account the bending, or flexure, of a lithospheric plate of
nonzero but finite strength. This strength may be defined as the “elastic thickness”, the ef-15

fective thickness of a flawless plate of the equivalent strength, or as the “flexural rigidity” that
is characteristic of a plate of a given thickness (see Eq. A10). By bending over distances of
several 10’s to 100’s of km, the lithosphere low-pass filters a discontinuous surface loading
field into a smoothed solid-Earth response.

Even though the early geological theories of Pratt (1855) and Airy (1855) focused on20

simple buoyancy, the differential equation basis for solving lithospheric bending already ex-
isted at that time. Bernoulli (1789) and Germain (1826, and earlier work) developed the first
differential-equation-based theories for plate bending. Lagrange (1828) reviewed the prize
that Germain won in 1811 for her work on elastic plate flexure, and, on realizing an error in
the lumping of terms due to Germain’s incorporation of an incorrect formula by Euler (1764),25

corrected it and produced the first complete flexure equation (see reviews by Todhunter and
Pearson, 1886; Ventsel et al., 2002). Around the same time, Cauchy (1828) and Poisson
(1828) better connected elasticity theory to plate bending problems. These works predated
Kirchhoff (1850), who developed “classical” or “Kirchhoff” plate theory that remains in use
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today (Ventsel et al., 2002). While many further advances have been made (e.g., Love,
1888; Timoshenko et al., 1959) especially for structural and aeronautical engineering, it is
the classical Kirchhoff plate theory that has been used most widely for geological applica-
tions (e.g., Van Wees et al., 1994). Comer (1983) tested classical Kirchhoff plate theory,
which is a “thin-plate” theory that simplifies the plate geometry and therefore the mathe-5

matics required to solve for it, against a “thick-plate” theory of lithospheric flexure. While
this thick-plate theory relaxes several approximations, its solutions are very similar to those
for thin-plate flexure (Comer, 1983).

In the first half of the twentieth century, Vening Meinesz (1931, 1941, 1950) and Gunn
(1943) applied analytical solutions of the plate theory of Kirchhoff (1850) to geological prob-10

lems. They employed analytical solutions that relate the curvature of the bending moment of
a plate of uniform elastic properties to an imposed surface point load, line load, or sinusoidal
load. These load solutions could be used to compute flexural response to any arbitrary sum
of individual loads in either the spatial or spectral domain, due to the linear nature of the bi-
harmonic flexure equation (Eqs. 1 and 2), and may be combined with a variety of boundary15

conditions (Watts, 2001).
Computational advances allowed discretized models to replace purely analytical solu-

tions. These models fall into one of several categories. Many take advantage of the linear
nature of the flexure equation for constant elastic thickness to superimpose analytical solu-
tions of point loads (in the spatial domain) or sinusoidal loads (in the wavenumber domain)20

in order to produce the flexural response to an arbitrary load (Comer, 1983; Royden and
Karner, 1984). Other models produce numerical solutions to the thin plate flexure equation
by solving the local derivatives in plate displacement with numerical (mostly finite difference)
methods (e.g., Bodine et al., 1981; Van Wees et al., 1994; Stewart and Watts, 1997; Pel-
letier, 2004; Govers et al., 2009; Sacek et al., 2009; Wickert, 2012; Braun et al., 2013). This25

latter category of models allow for variations in the elastic thickness of the plate, a factor of
growing importance as variations in elastic thickness through space and time are increas-
ingly recognized, measured, and computed (e.g., Watts and Zhong, 2000; Watts, 2001; Van
der Lee, 2002; Flück, 2003; Pérez-Gussinyé and Watts, 2005; Tassara et al., 2007; Pérez-
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Gussinyé et al., 2007, 2009; Tesauro et al., 2009; Kirby and Swain, 2009, 2011; Lowry and
Pérez-Gussinyé, 2011; Tesauro et al., 2012b, a, 2013; Braun et al., 2013; Kirby, 2014). In
spite of these efforts, the community currently lacks a robust, easy-to-use, generalized tool
for flexural isostatic solutions that can be used by modelers and data-driven scientists alike.

Here I introduce a broadly implementable open-source package of solutions to flexu-5

ral isostasy. This package, called gFlex (for GNU flexure), advances and makes more ac-
cessible an earlier model, generically called “flexure” (Wickert, 2012). gFlex has been re-
leased under the GNU General Public License (GPL) version 3 and is made available to
the public at the University of Minnesota Earth-surface GitHub organizational repository, at
https://github.com/umn-earth-surface/gFlex, and through the Python Package Index (PyPI).10

This allows for rapid collaborative editing of the source code and easy automated installa-
tion. It is written in Python (e.g., Rossum et al., 2012) for easy interoperability with a range
of other programming languages, models, and geographic information systems (GIS) pack-
ages, and to take advantage of the numerical packages for Python that allow much more
rapid matrix solutions than would be typical with a more basic interpreted language (Jones15

et al., 2001; Davis, 2004; Oliphant, 2007; van der Walt et al., 2011). See Section 5 for
further information on obtaining and running gFlex.

gFlex can solve plate flexure in two major ways (Figure 2). First, it can produce analytical
solutions to flexural isostasy generated by superposition of local solutions to point loads in
the spatial domain (i.e. as a sum of Green’s functions) (e.g., Royden and Karner, 1984).20

These use biharmonic equation for plate flexure with uniform elastic properties (Eqs. 1 and
2) (Bodine et al., 1981). Second, it can compute finite difference solutions for both constant
and arbitrarily varying lithospheric elastic thickness structures. These solutions follow the
work of Van Wees et al. (1994), and hence Braun et al. (2013), except that gFlex does not
incorporate terms for end loads but does include a wider range of implementable boundary25

conditions (Table 1). gFlex can be run as a standalone program with an input file, as a
component of the in-development Landlab landscape modeling framework (Hobley et al.,
2013; Tucker et al., 2013) and by extension as a component within the Community Surface
Dynamics Modeling System (CSDMS) (Syvitski et al., 2011; Overeem et al., 2013), or as a

5
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pair of “add-ons” to GRASS GIS (Neteler et al., 2012). The GRASS GIS implementation is
particularly important, as it provides pre-built and standardized command-line and graphical
interfaces and the ability to directly pull inputs from and compare solutions against field data
in their native coordinate systems.

2 Methods and Model Development5

Two solution types for flexural isostasy are provided in gFlex, and these are formulated for
both one-dimensional (line load, assumed to extend infinitely in an orientation orthogonal
to the line along which the equation is solved) and two-dimensional (point load) cases.
The derivation that forms the basis for both of these is provided in Appendix A, and similar
approaches to this derivation may be found in the work of Timoshenko et al. (1959) and10

Turcotte and Schubert (2002). The analytical and finite difference approaches are compared
and shown to approximate each other well in Figure 3.

2.1 Superposition of Analytical Solutions

The first solution type takes advantage of the linear nature of the analytical solution for
flexure of a plate of constant thickness and elastic properties when subjected to a point or15

line load. These solutions may be superposed (i.e. summed) in space to compute the full
flexural response. The second approach is to solve the equation for lithospheric flexure as
a matrix equation by employing a finite difference scheme. This employs a sparse matrix
elimination solver (e.g., Davis, 2004). The primary gFlex finite difference solution follows the
approach of Van Wees et al. (1994) to permit computations with steep gradients in flexural20

rigidity (Appendix 2), but it also offers the discretization of Govers et al. (2009).
The analytical solution imposes the assumption that scalar flexural rigidity, D, is uniform.

This leads to biharmonic expressions for plate bending in one and two dimensions, respec-
tively:

D
d4w

dx4
+ ∆ρgw = q (1)25
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D∇4w =D
d4w

dx4
+D

d4w

dy4
+ 2D

d4w

dx2dy2
+ ∆ρgw = q (2)

Here, w is vertical deflection of the plate, q is the applied surface load, and ∆ρ= ρm−ρf is
the density of the mantle minus the density of the infilling material. This slat term represents
the feedback by which flexural subsidence can lead a depression to be filled by material,5

which leads to additional flexural subsidence. This can occur, for example, in a system
that is fully underwater (e.g., an underwater volcano load) or one in which the depression
is completely filled with sediments. If this infilling material is not uniform in density and/or
spatial extent—for example, due to onlap or offlap of water along a shoreline—then one may
solve this feedback instead via iteration, by solving for rhof = ρair ≈ 0 and adding water (or10

another load) to regions that match certain conditions after every cycle of the iteration.
The above equations are linearizable, and therefore can be solved by superposition of

analytical solutions. In gFlex, this is done in the spatial domain on both structured grids
and as a response to an arbitrarily placed set of point loads. Spectral solutions are possi-
ble (Stephenson, 1984; Stephenson and Lambeck, 1985) and efficient using fast Fourier15

transform algorithms (cf. Welch, 1967), but have not been implemented. The one- and two-
dimensional solutions for lithospheric flexure take the form of an exponentially damped
sinusoid. In one dimension, this is represented by the following expression:

wi = q
α3

1D

8D
e
(x−xi)
α1D

[
cos

(
x−xi
α1D

)
+ sin

(
x−xi
α1D

)]
(3)

Here, the i subscript indicates that this is the response to a line-load at a single x-position,20

xi. α1D is the one-dimensional flexural parameter, defined by Vening Meinesz (1931) (fol-
lowing Hertz, 1884):

α1D =

[
4D

(∆ρ)g

]1/4
(4)
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The significance of the flexural parameter is that the flexural wavelength, λα is related to
the flexural parameter as λα = 2πα. The distance from a point load to the first flexural
bulge (“forebulge”) that it creates around its local depression, for example, is a flexural half-
wavelength, πα. This nature of plate bending as an exponentially decaying periodic function
can be seen most easily in the one-dimensional analytical (constant Te) solution in Eq. 3.5

Brotchie and Silvester (1969) derived that the exponentially damped sinusoid due to a
point load in two dimensions should be expressed by kei (Abramowitz and Stegun, 1972),
which is the zeroth-order Kelvin function that satisfies the equation ker(r)+ikei(r) =K0

(
reπi/4

)
,

whereK0 is the zeroth-order modified Bessel function of the second kind. This function was
defined by Lord Kelvin to solve for electrical current density in a circular wire with an applied10

oscillating (alternating) current (Barron and Barron, 2012, Appendix 5), and its solution has
been broadly applied to the 2D bending of a plate (e.g., Timoshenko et al., 1959; Lambeck,
1981; McNutt and Menard, 1982; Watts, 2001).

wi,j = q
α2

2D

2πD
kei

(√
(x−xi)2 + (y− yj)2

α2D

)
(5)

15

α2D =

[
D

(∆ρ)g

]1/4
(6)

The subscripts i, j indicate that this is the flexural response to a single point load at the x-
and y-positions xi and yj . The two-dimensional flexural parameter, α2D, contains D instead
of 4D in the numerator because it does not need to include implicit loads and deflections
along the y-orientation that are required in the 1-D line load plate bending case.20

Lithospheric flexure calculated by superposition of analytical solutions can be repre-
sented as a simple sum across all line loads ql or point loads qp:

w =
∑
ql

wi (1D) (7)

w =
∑
qp

wi,j (2D) (8)
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For a given elastic thickness, each flexural response to a line or point load is similar in
shape, but different in amplitude. Therefore, I optimize solution speed by pre-calculating
the flexural response to a unit load in the center of a template array. This array has twice
the linear dimensions of the solution array, and is subsampled and re-scaled to compute the
distributed response to each cell in the grid that contains a load. This technique works for all5

for rectilinear grids with uniform x- and y-grid-spacing, though the x- and y-grid-spacing do
not have to be equal to one another. A similar optimization is possible for one-dimensional
solutions, but these are so rapid that this has not been found to be necessary. Within gFlex,
this solution type is termed “SAS”, which stands for “Superposition of Analytical Solutions”.

The analytical solution response to point or line loads can also be computed for a scat-10

tered set of loads and a scattered (and not necessarily the same) set of points at which
the flexural response is calculated. This solution type is termed “SAS_NG”, which stands
for, “superposition of Analytical Solutions: No Grid”. Because it lacks the grid uniformity that
permits the a solution template to be used, its computational time is not optimized in this
way (Section 2.5).15

2.2 Finite Difference Solutions

Finite difference solutions in one and two dimensions employ Eqs. A20 and A21, respec-
tively. For these solutions, dx and dy may differ from one another, but must be constant in
space. First, for the one-dimensional solution, the expansion of Eq. A20 is:

D
∂4w

∂x4
+ 2

∂D

∂x

∂3w

∂x3
+
∂2D

∂x2
∂2w

∂x2
+ ∆ρgw = q (9)20
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The two-dimensional solution is based on an expansion of Eq. A21 (Van Wees et al.,
1994):

D
∂4w

∂x4
+D

∂4w

∂y4
+ 2D

∂4w

∂x2∂y2
(10)

+2
∂D

∂x

∂3w

∂x3
+
∂2D

∂x2
∂2w

∂x2
+ 2

∂D

∂y

∂3w

∂y3
+
∂2D

∂y2
∂2w

∂y2

+ν
∂2D

∂y2
∂2w

∂x2
+ ν

∂2D

∂x2
∂2w

∂y2
+ 2

∂D

∂x

∂3w

∂x∂y2
+ 2

∂D

∂y

∂3w

∂x2∂y
5

+2(1− ν)
∂2D

∂x∂y

∂2w

∂x∂y
+ ∆ρgw = q

These equations are discretized using a second-order-accurate centered finite difference
approximation (Fornberg, 1988, Table 1).

Finite difference solutions in two dimensions may also be generated following the solution
and discretization of Govers et al. (2009), which produces solutions for a more limited range10

of flexural rigidity variations.
The finite difference solution is computed as a linear matrix equation,

AW = Q, (11)

where A is a sparse matrix of operators from a linear decomposition of Eq. A20 or A21, W
is a vector of deflections (typically unknown), and Q is a vector of imposed loads (typically15

known). It is solved directly by using the sparse LU factorization package UMFPACK (Davis,
2004) or, at the user’s choice, iteratively with one of the many solvers that are available with
the SciPy (Scientific Python) package (Jones et al., 2001).

2.3 Boundary Conditions

gFlex supports a number of boundary conditions, and these are summarized in Table 120

and schematically drawn in Figure 4. The finite difference (sparse matrix) numerical so-
10
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lutions can freely define any combination of no-displacement-and-no-slope (0Displace-
ment0Slope), no-bending-moment-and-no-shear (0Moment0Shear), no-slope-and-no-shear
(0Slope0Shear), and mirror boundaries. Periodic boundaries may be mixed with any com-
bination of the aforementioned boundary conditions, with the requirement that they exist on
both sides of the deflection array, as having (for example) deflections at the west end of the5

array sensitive to loading and deflections to the east but the east not be sensitive to the west
is nonsensical. Superposition of analytical solutions naturally produce a 0-displacement
boundary at infinite distance from each point load (NoOutsideLoads). This can be seen by
computing the solutions of Eqs. 3 and 5 as x→∞ and y→∞. Each of these boundary
conditions can be related to geological processes or locations that one may wish to model10

(Figure 5).
The “0Displacement0Slope” (or “clamped”) boundary condition (Figure 4A) may be used

to approximate a “NoOutsideLoads” case for the finite difference solutions (Figure 3). When
placed one flexural wavelength away from a point or line load, the surface displacement
should for a plate of constant elastic thickness be ∼0.2% of that at the point of maximum15

deflection, which is negligible compared to most sources of geological error. It is conceivable
that a difference in elastic thickness in a continuous plate may exist that is so great that the
thicker plate can be approximated to not bend; a 0Displacement0Slope boundary condition
may also be used to simulate this, though one must debate whether to do this or to compute
the flexural response across a plate with prescribed elastic thickness variability.20

The “0Moment0Shear” boundary condition (Figure 4B) means that the edge of the plate
is completely free to flex, like the cantilevered end of diving board. This is appropriate for
places in which the elastic thickness of the lithosphere goes to zero. Such “broken plate”
boundary conditions have been used in analytical solutions to simulate flexure of the litho-
sphere beneath the Hawaiian Volcanoes, where heating significantly weakens the litho-25

sphere (Wessel, 1993). This approximates the (0D) single point discontinuity of a hotspot
as a (1D) line boundary condition. A “broken plate” solution has also been used for zones
beneath mountain ranges where sufficient deformation may weaken the lithosphere (Stew-
art and Watts, 1997), and may be best-suited for continental rift zones (Burov et al., 1994),

11
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as these closely approximate a linear discontinuity in an otherwise thick lithosphere. In all
three of these cases, the lithosphere should lose strength as it approaches the boundary
condition. For this reason, “0Moment0Shear” is implemented only for the finite difference
solution.

is also a possible boundary condition in the analytical case, the difficulty in finding a5

place where the lithosphere suddenly breaks without a gradual thinning and the success
of the numerical solution in reproducing analytical solutions (Figure 3) have motivated the
decision to not include an analytical 0Moment0Shear boundary condition as part of gFlex
v1.0.

The “0Slope0Shear” boundary condition (Figure 4C) may be considered to be a flat clamp10

on the boundary of the plate that may be freely moved upwards or downwards. While it may
require creative thought to uncover a geological process that holds a plate edge flat but
allows it to move freely in the vertical, this boundary condition can also be used at an
appropriate distance away from the load(s) to approximate a “NoOutsideLoads” boundary
for a finite difference solution, though typically the 0Displacement0Slope boundary provides15

a closer match.
The “Periodic” boundary condition (Figure 4D) wraps one side of the model around to

the other side such that they form an infinite loop. To visualize this, one may imagine taking
a paper map and taping either the east and west sides together or the north and south
sides together, such that the flexure induced by loads on one edge is continuous with load-20

induced flexure on the opposite edge. Elastic thickness and loads both wrap around this
boundary, making it possible to, if one is not careful, create sudden jumps in elastic thick-
ness at the edge of the model. This takes somewhat longer to solve (Figure 6C), but can
be useful to compute a flexural response to the load of a long mountain belt by modeling
just a limited region perpendicular to the strike of the range crest and allowing this slice25

to infinitely repeat in the range-crest-parallel orientation; at the limit of a very narrow slice
of model space, this approaches the 1D line load solution. If a future model of lithospheric
flexure relaxes the current assumption in gFlex that dx and dy may be different but must be
constant in space, the periodic boundary condition should enable a finite difference flexural

12
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model to be employed on a closed surface, such as a sphere, enabling full global modeling.
This is, to the best knowledge of the author, the first time that a periodic boundary condition
has been implemented for lithospheric flexure.

The “Mirror” boundary condition (Figure 4E) reflects the elastic thickness and load struc-
ture across a plane of symmetry at the boundary. This may be used to speed a solution5

where a plane of mirror symmetry may be implied, which is important for large grids or
where gFlex is used as part of a coupled set of numerical models (e.g., through CSDMS:
Syvitski et al., 2011; Overeem et al., 2013; Peckham et al., 2013). Example usage cases
include topographic unloading by erosion of a symmetrical mountain range (Figure 5C, and
5D), isostatic adjustment under a symmetrical ice cap, and emplacement of a volcanic load.10

The latter two cases often have fully radial symmetry, and therefore may be placed at the
corner of the solution array with mirror boundary conditions on both adjacent sides to fur-
ther limit the needed computational area. This is also to the best knowledge of the author
the first application of a mirror boundary condition to modeling of lithospheric flexure, which
is surprising considering its potential utility.15

The names of the boundary conditions are based on their effects on deflections, w, but
solutions also require boundary conditions to be placed upon the flexural rigidity, D; these
are listed in Table 1. For the 0Displacement0Slope, 0Slope0Shear, and 0Moment0Shear
deflection boundary conditions, a 0-curvature flexural rigidity boundary condition has been
chosen. This allows near-boundary gradients in flexural rigidity to be assumed to continue20

outside the computational domain. As noted above, Mirror and Periodic boundary conditions
are applied to the rigidity field as well. For the analytical solutions, the approximation is an
infinite plate of constant elastic thickness.

In two-dimensional solutions, boundary conditions meet at corners. Where a boundary
condition meets another of the same boundary conditions at the corner, the two generate25

a continuous boundary condition that includes the corner of the array. This is always the
case for the analytical solutions with implicit NoOutsideLoads boundary conditions. Where
mirror or periodic boundary conditions meet themselves at corners, these produce dou-
bly reflecting or doubly periodic boundaries; if every boundary is mirror or periodic (nec-

13
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essary in the latter case as Periodic boundary conditions must always exist as pairs on
opposite sides), these generate an infinite tessellated plane of loads and elastic thick-
nesses. Some boundary conditions in gFlex can work harmoniously with others. Periodic
and Mirror boundary conditions propagate 0Moment0Shear, 0Slope0Shear, and 0Displace-
ment0Slope boundary conditions that exist orthogonally to them. Where mirror and periodic5

boundary conditions intersect at a corner, the periodic boundary condition will propagate
the mirror boundary to ±∞. Those boundary conditions that do not reflect or repeat the
effects of the other boundary conditions do not share the corners equally: In gFlex, 0Dis-
placement0Slope boundary conditions dictate all corners where they meet other boundary
conditions, forcing them to remain fixed at 0; physically, this means that the “clamp” of the10

0Displacement0Slope boundary condition continues through the edges of the perpendicular
boundaries. 0Moment0Shear boundary conditions were chosen control the corners where
they meet 0Slope0Shear boundary conditions, as the 0Moment0Shear boundary condition
has been recognized in geological work (e.g., Wessel, 1993; Burov et al., 1994; Stewart
and Watts, 1997), while the 0Slope0Shear boundary condition has not.15

2.4 Discontinuities and limit as Te → 0

Two notable issues inherent to the finite difference solutions and the treatment of a continu-
ous plate become apparent as Te→ 0. The first is that a region of Te = 0 must have a width
of at least three cells to produce the expected local isostatic equilibrium; this is a result of
numerical diffusion in the central difference discretization provided in Equations 9 and 10.20

The second is that because any region of 0 elastic thickness will enter isostatic equilibrium
with its local loads and not be affected by nonlocal effects, if this region lies along the edge,
it will ignore all boundary conditions. If a Te = 0 region along a boundary is ≥ 3 cells wide,
it imposes a 0Displacement0Slope boundary condition on the interior cells; smaller regions
of Te = 0 will allow some information on the ultimate boundary condition to leak through via25

numerical diffusion.
These issues are important to note, but unlikely to be important in most use cases of

gFlex. First, discontinuous transitions to zones of Te = 0 may also be modeled by segment-
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ing the inputs into multiple arrays, running gFlex for each array with a 0Moment0Shear
(broken plate) boundary condition applied to the model domain edges representing the dis-
continuities, and then recombining the outputs into a continuous displacement field. Sec-
ond, and more importantly, the conditions for broken plate or Te = 0 solutions to be required
are rare on Earth. Elastic thickness of 0 implies that there is no elastic lithosphere, and a5

broken plate solution implies that there is no shear between adjacent lithospheric blocks.
These conditions are most likely to be met in rift zones, though even these have some
nonzero thickness of brittle crust. End loads, which are not currently included in gFlex, could
be used in combination with a 0Moment0Shear boundary condition to better-parameterize
faults (e.g., Van Wees et al., 1994) and expand the utility of gFlex. However, the typical10

use case for which gFlex is designed involves glacial-isostatic adjustment, large-scale wa-
ter loads, sedimentary basin development, large-scale erosional unloading, and other pro-
cesses that extend across a swath of heterogeneous lithosphere that may contain many
faults. In these cases, it has been found to be sufficient to simply characterize a variable
field of finite elastic thickness across the domain, where elastic thickness falls around fault15

zones (e.g., Manŕiquez et al., 2013).

2.5 Model Benchmarking

A set of tests was performed to measure the speed at which gFlex computes solutions. In
these tests, an elastic plate that is 1000 km long (1D and 2D) and 1000 km wide (2D) is
subjected to a square load at its center that ranges from 100 km to the full 1000 km on20

each side. This load places a normal stress of 9702000 Pa on the surface, which is equal
to 300 m of mantle material (3300 kg m−3). In these scenarios, there is no assumed infilling
material (ρf = 0). gFlex computed solutions for uniform rectilinear grids of increasing size
using gridded and ungridded superposition of analytical solutions (SAS and SAS_NG, re-
spectively) and finite difference (FD) methods. All boundary conditions (Table 1 and Figure25

4) were tested, though not in combination. The finite difference solutions include scenarios
with both constant (25 km) and variable (10–40 km) effective elastic thickness, with the lat-
ter varying sinusoidally over a wavelength of 500 km such that the plate contains two full Te
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cycles. In the two-dimensional case, Te varies in both dimensions to produce a smoothed
checkerboard pattern of elastic thickness. Finite difference solutions reported employ the di-
rect solver UMFPACK (Davis, 2004), as it is better-tested in gFlex than the iterative solution
methods and is therefore the default solver. Figure 6 displays computation time for all of the
benchmarking tests, and Figure 7 is a comparison of the SAS_NG, SAS, and FD solution5

techniques for the case in which every point at which the solution is calculated also con-
tains a nonzero load. These solution times do not account for file input or output or graphics
generation. They do include the initialization time for the solution steps of gFlex, however,
so a number of the power-law fits to solution time do not include the times calculated with
the smallest arrays.10

The factors that determine computation time are solution method and inclusion of periodic
boundary conditions. While the SAS_NG method scales the best with increasing grid size, it
is so much slower than the other methods that it will not exceed their speed for any standard
model runs. The finite difference method is the fastest if every cell contains a load, but can
become slower than the analytical methods if only a few loads exist, as these latter methods15

must make one set of calculations across the grid per load. Standard runtimes are between
a fraction of a second and a few minutes on a personal laptop computer (Dell XPS 13
Developer Edition running Ubuntu 14.10) (Figures 6 and 7).

3 Model Interfaces and Coupling

Some users of gFlex may want to run a single calculation, while others may want to produce20

many solutions as part of a numerical model. Therefore, five different methods to use gFlex
have been prepared:

1. Standalone, with input files

2. As part of a Python script

3. Driven by GRASS GIS (Neteler et al., 2012) to simplify integration of geospatially25

registered data with the lithospheric flexure model
16
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4. As a component for the Community Surface Dynamics Modeling System (CSDMS)
framework (Syvitski et al., 2011; Overeem et al., 2013; Peckham et al., 2013), in-
cluding its tight integration into Landlab, a CSDMS-led Python-based Earth-surface
modeling framework that is currently being developed (Hobley et al., 2013; Tucker
et al., 2013)5

GRASS GIS integration is also possible for model coupling using Python, including efforts
that use the Landlab framework.

3.1 Standalone with Input Files

Some users may want to employ gFlex as a single calculation, for example to calculate the
flexural response to a set of loads generated by a sedimentary deposit that was measured10

in the field. The user prepares an input file of model settings, an input ASCII grid of loads,
and, should the elastic thickness be nonuniform, an input ASCII grid of lithospheric elastic
thicknesses. Outputs from this mode of running gFlex include an ASCII grid of surface
deflections and a set of plots of surface deflections and loads.

3.2 As Part of a Python Script15

gFlex may also be imported as a Python module to be run either as a standalone simulation
or as a component in a multi-model integration effort. This allows it, for example, to be a
part of a flexural backstripping toolchain or a model of glacial–isostatic adjustment. Back-
stripping calculations may be performed by simply removing the sedimentary load (Roberts,
1998), or, in the case of a foreland basin, by inverting for the mountain belt loading history20

and lithospheric elastic thickness that would be required to produce the basin (Ballato et al.,
2016). A programmatic approach is also useful for scenarios in which material infills a de-
pression, but not over the whole domain and/or not with uniform density. While the flexure
equations require that ρf be constant, a more flexible way to solve for the effect of infilling
material is to compute flexural response with ρf = ρair ≈ 0, add loads based on some set of25

rules, and then re-calculate flexure iteratively until convergence is achieved. This can occur
17
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in regions with a complex set of sedimentary deposits (see also Watts et al., 1982; Watts,
2001) and/or to be used for for seawater loading across a shoreline (see also Mitrovica and
Milne, 2003).

3.3 Driven by GRASS GIS

gFlex is also prepared for integration with the open-source geospatial software GRASS5

GIS (Neteler et al., 2012) as two “add-ons” or “extensions” named “r.flexure” and “v.flexure”,
which are raster and vector operations, respectively. As GRASS GIS is a map-based ap-
plication, r.flexure and v.flexure employ two-dimensional solutions (both analytical and fi-
nite difference), though future extension to flexure along chosen one-dimensional profiles
would be possible. r.flexure can use the finite difference or SAS solution methods, whereas10

v.flexure exclusively uses the SAS_NG solution method to take advantage of its ability to
produce solutions for an arbitrary scatter of loads points. Advantages of GRASS GIS in-
clude:

1. Full integration within a geospatially registered environment, meaning that data can
be directly used as model inputs, and that model outputs may be compared against15

data

2. A documented and standardized command-line interface

3. A pre-built and standardized graphical user interface (GUI)

The graphical user interface is incorporated into the GRASS GIS wxPython GUI (Landa,
2008; Neteler et al., 2012), and this is particularly helpful for researchers who are not as20

accustomed to command-line interaction with computers to use gFlex with their data. For
computer modelers, the GRASS GIS coupling may be used within a broader framework of
data–model integration (see, for example, Srinivasan and Arnold, 1994).
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3.4 Modeling Frameworks

CSDMS (broadly) and Landlab (in particular) both include methods for integrating modular
blocks of code as part of their respective efforts towards the community-wide goal to make
modeling of Earth systems less time-intensive and more streamlined (Voinov et al., 2010;
Syvitski et al., 2011; Overeem et al., 2013; Peckham et al., 2013; Hobley et al., 2013; Tucker5

et al., 2013). gFlex is included as a modular component of the the still-in-development Land-
lab Earth-surface modeling framework (Hobley et al., 2013; Tucker et al., 2013). Landlab in-
tegration provides wrapping with the CSDMS Basic Model Interface (BMI) and Component
Model Interface (CMI) using the CSDMS Standard Name construction conventions (Peck-
ham et al., 2013). The standard interfaces provided by both of these modeling frameworks10

will streamline model coupling that uses gFlex and help to prevent duplication of effort in
building plate bending models. Furthermore, the inclusion of gFlex in Landlab will allow
numerous Earth-surface systems to be modeled more precisely (Figure 1).

4 Application Example: Iceland

As a first example to utilize both the ability of gFlex to generate solutions with variable15

effective elastic thickness and its incorporation into GRASS GIS, gFlex is used along with
a simple and efficient GIS-enabled glacier and ice cap model modified from the work of
Colgan et al. (2015, submitted) to model a hypothetical expansion of the Iceland Ice Cap.
While the importance of flexural isostasy in ice dynamics modeling has long been well-
known (cf. Cuffey and Paterson, 2010), the author knows of no dynamic ice model that runs20

with a variable elastic thickness lithosphere, making this possibly the first such exercise.
Earth’s crust at Iceland has been built by the unique intersection of the Iceland hotspot and
the Mid-Atlantic Ridge, which together produce a weak lithosphere with spatially-variable
elastic thickness, resulting in short-wavelength variability in solid Earth response to loading.
Here I test the two-way coupling between ice dynamics and solid Earth deformation and the25
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differences in steady-state ice caps that are produced in a modest climate change and ice
cap extent scenario.

This coupled ice dynamics and flexural isostatic model of Iceland requires four input com-
ponents: the elastic thickness structure around Iceland, the modern topography of Iceland,
the modern surface temperature field of Iceland, and modern precipitation rates across Ice-5

land. The ice cap model used here (cf. Colgan et al., 2015, submitted) employs a shallow-ice
approximation with basal sliding as a linear function of driving stress, which is intentionally
much simpler than the modeling approach that Hubbard et al. (2006); Hubbard (2006) used
to model the Last Glacial Maximum (LGM) Iceland ice cap. This is because the goal here is
to show schematically the importance of including lateral variations in elastic thickness on10

the reconstructed thickness of an ice cap for a given paleoclimate, with less emphasis on
actually reproducing any particular extent of the Iceland Ice Cap.

The elastic thickness structure under Iceland, in this schematic example, is related to the
age of the oceanic crust following Calmant et al. (1990), who relates elastic thickness to
age of the lithosphere by the simple equation:15

Te = (2.70± 0.15)
√

∆t (12)

where Te is provided in km and the age of the lithosphere, ∆t, is given in millions of years.
As continental material also exists within the computational window, the elastic thickness
map of Tesauro et al. (2012b, a) is used for all subaerial landmasses. Across the continental
shelves, the oceanic-crust-based and Tesauro et al. (2012b, a) maps are blended using20

spline interpolation within GRASS GIS Neteler et al. (2012). The regional age of oceanic
crust is provided by Müller et al. (2008), but their map indicates that even crust at the
ridge in Iceland has an age of 6–7 Ma, resulting in a greater computed effective elastic
thickness than would be expected based on the presence of the ridge or from heat flow
data (e.g., Flóvenz and Saemundsson, 1993). While the structure of Iceland is certainly25

more complicated than the simpler parts of the ridge due to the effects of the hotspot and
its tectonic environs (e.g., Watts and Zhong, 2000; Foulger, 2006), the assumption here is
that the lithospheric effective elastic thickness structure due to the ridge is as if young crust
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continued along the Mid-Atlantic Ridge through all of Iceland, and the elastic thickness map
(Figure 8I) was modified to approximate this for the sake of this example.

The underlying digital elevation model, GEBCO_08 (British Oceanographic Data Cen-
tre (BaODC) and General Bathymetric Chart of the Oceans (GEBCO), 2010), includes the
modern ice caps on Iceland, but these are already flexurally compensated and are small5

compared to the of the ice cap modeled here. While their removal would improve recon-
structed ice discharge, they are ignored due to the schematic nature of this modeling effort.

Modern temperature and precipitation fields are from the Monthly NOAA-CIRES 20th
Century Reanalysis (V2) by Compo et al. (2006, 2011) (for further background on their
methods, see Whitaker and Hamill, 2002). These provide twentieth century mean condi-10

tions on a 2◦×2◦-degree latitude/longitude grid (temperature) or a 94×192 Gaussian grid
(precipitation). These were cast as point data and interpolated using splines in GRASS
GIS (Neteler et al., 2012). Prior to this spline interpolation, temperature was projected to
sea level using the mean cell elevation a lapse rate of 4.7◦C km−1, following Anderson et al.
(2014) for ice caps; after interpolation, the resultant temperatures were then interpolated up15

to their respective surface elevations using the same 4.7◦C km−1 lapse rate. Although not
all of the Icelandic surfaces are covered in ice at present, this rule was prescribed uniformly
for the sake of a schematic model.

Three experiments were run: one with no flexure, one with flexure using a constant elas-
tic thickness of 3.7 km (following Hubbard, 2006, and assuming E = 65 GPa), and one in20

which the full spatially variable flexure was used. In each of these runs, temperature was re-
duced from its present value by 5◦C and ice expanded to cover an area approximately equal
to the currently subaerially exposed continent, approximately consistent with the previous
modeling results of Hubbard et al. (2006) and with a temperature change that is much less
than the LGM drop of 10–13◦C that was predicted to cause ice to spread onto the continen-25

tal shelves as well (Hubbard et al., 2006). Mass balance was simulated by a positive degree
day melt model. June, July, and August temperatures were used to compute ablation, with
a melt factor of 6 mm d−1 K−1. Precipitation was held constant and all precipitation was
assumed to contribute to positive mass balance. Each scenario was run for 4000 years to
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reach full glacial and isostatic equilibrium, with isostatic equilibrium being assumed to occur
instantaneously to facilitate more rapid computation of the equilibrium solution.

The results in Figure 8 summarize the experiments. Panels 8C and 8F show the modeled
flexural isostatic deformation and panels 8B and 8E show the deviation from the case with
no isostasy; each of these pairs is for constant and variable elastic thickness, respectively.5

8H shows that with variable elastic thickness (8I), ice thickness variability is concentrated
where lithospheric elastic thickness is low.

The example of isostatic response to ice advance in Iceland is just one possibility of a
feedback between an Earth-surface (or other geological) process and flexural deformation.
Further such scenarios involving, for example, orogenesis and foreland basin formation (in10

settings such as that studied by Ballato and Strecker, 2014), rifting (Braun et al., 2013), and
river delta morphologic evolution (Kim et al., 2006), will improve our understanding of the
dynamic interactions between Earth’s surface and subsurface (e.g., Braun et al., 2013).

5 Model Availability

gFlex is available from the University of Minnesota Earth-surface GitHub repository at15

https://github.com/umn-earth-surface/gFlex. It runs on Linux, Windows, and Mac comput-
ers running Python 2.(X≥7).Y. It may be downloaded as an archive that is a snapshot
of the state of the code, or “cloned” into an updatable copy of the software on the com-
puter of an end-user. Version 1.0, described in this paper, is stored at https://github.com/
umn-earth-surface/gFlex/releases/tag/v1.0a (the alpha version release is for the Discus-20

sion Paper, and will be updated to a full release pending reviewer comments). gFlex is
also stored on the Python Package Index (PyPI) at https://pypi.python.org/pypi/gFlex for
easy automated download and installed with the command-line tool “pip”. gFlex documen-
tation is available in its file “README.md” that is displayed at the main GitHub repository
page, and some additional information is presented at the gFlex CSDMS Wiki page at25

https://github.com/umn-earth-surface/gFlex.
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Interfaces to GRASS GIS and Landlab are available from their respective repositories.
The GRASS GIS interface works with GRASS GIS 7.X and can be downloaded and in-
stalled automatically with the “g.extension” tool within GRASS (Neteler et al., 2012) or
be downloaded through the subversion repository at http://trac.osgeo.org/grass/browser/
grass-addons/grass7. The Landlab interface is located in the Landlab GitHub repository at5

https://github.com/landlab/landlab/tree/master/landlab/components/gFlex.

6 Conclusions

gFlex is a new, open-source, easy-to-use model to compute isostatic deflections of Earth’s
lithosphere with uniform or nonuniform flexural rigidity due to arbitrarily distributed surface
loads. It can be run as a standalone model through a configuration file, a Python module, a10

component in the Landlab and CSDMS community modeling frameworks, or via one of two
GRASS GIS add-ons for a direct link to geospatial data. Its open-source code base may
be updated and improved by the community, it may be easily installed using automated
tools, and it is poised to be coupled with other models in efforts to understand interactions
between multiple components of the Earth system. These attributes all embody my primary15

aim in creating gFlex: to provide an accessible set of flexural isostatic solutions for work
across the geosciences by field scientists and modelers alike.

Appendix A: Derivation: Flexure

Plates and beams resist bending (i.e. flexure) through fiber stresses, which develop during
loading-induced deformation. In this appendix, the background of the theory is provided20

by an abridged one-dimensional derivation, which provides the background to the assump-
tions made in both the analytical and finite difference one-dimensional and two-dimensional
solutions. Components of the theoretical background will also be relevant to the various
boundary condition options introduced in the main text.
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A derivation of flexural response to a load can be subdivided into two components. The
first is the bending moment, which describes the resistance of the plate to bending. The
second is the relationship between the bending moment and the imposed load. For simplic-
ity, these derivations will be presented for the one-dimensional case and then generalized
to the two-dimensional case. This generalization is non-trivial only for the consideration of5

material properties in the bending moment derivation.

A1 Bending Moments

The bending moment of a plate describes its resistance to being bent. This comes about
because when a plate of nonzero but finite thickness is bent, portions of the plate on the
inside of the curve are placed under compression and portions of the plate on the outside of10

the curve are placed under tension. These fiber stresses (σx′x′ in the along-plate coordinate
system x′, z′ depicted in Figure A1) cause each infinitesimal layer of the plate to act like a
spring that provides finite strength to the plate through which it resists bending.

Classical (Kirchhoff–Love) plate theory is derived using an approximation of cylindrical
bending (cf. Love, 1888). Over short distances, the bent plate is assumed to follow the arc15

of a circle (Figure A1). Arc length, s, is described as the product of the radius of curvature,
rc, and the angle over which the arc is defined, θ.

s= rcθ (A1)

In a radial transect through a cylindrically bent plate of finite but nonzero thickness, each
level in the plate will have a different radius of curvature. At the midpoint of a single-layer20

plate (i.e. no changes in material properties with elevation z), such as that considered in
this treatment of lithospheric flexure, the layer halfway between the top and the bottom of
the plate will experience no net extension or shortening. This midpoint layer is therefore
taken to be the reference radius of curvature, r0, of a plate that extends from r =−Te/2 to
r = Te/2, where Te is the effective elastic thickness of the plate. To calculate the range of25

arc lengths, s, that exist above and below the reference layer at r0, one can note that Eq.
A1 describes a linear relationship between arc length and radius of curvature. Therefore, it
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is possible to use the definition of strain and Eq. A1 to define the “fiber strain” in each layer
as a function of its distance from the midpoint. To do so, a Cartesian coordinate system
(x′,z′) can be defined to exist along the curve of the bent plate (Figure A1). The normal
strain along the x′ orientation, εx′x′ , is given by:

εx′x′ =
s+ ds

s
=

(r− r0)

r0
=
z′

r0
(A2)5

Here, ds is the difference in arc length in a radial transect across the plate, r is an arbitrary
radius, and θ has been dropped because it is constant and therefore cancels out. z′ is
defined to be zero at r0. Sign conventions are unimportant due to the symmetry of the
problem above and below the equilibrium layer (Figure A1). To further express this system
in terms of Cartesian coordinates that also allow for the cylindrical bending approximation10

to hold only locally, it becomes useful to reframe the cylindrical curvature expression in
Eq. A1 in terms of continuous Cartesian derivatives. To do so, the first step is to take the
derivatives with respect to x of both sides of Eq. A1 while allowing radius of curvature to
be an imposed constant, and then approximate s as a linear segment to apply the distance
formula. Note that here the coordinate system is (x,y), parallel and orthogonal, respectively,15

to the undeformed plate:

ds

dx
= r

dθ

dx
=

√
1 +

(
dz

dx

)2

(A3)

One then uses the derivative of the trigonometric identity that θ = arctan(dz/dx) to write:

dθ

dx
=

d2z
dx2

1 +
(
dz
dx

)2 (A4)

Noting that (dz/dx)� 1 for these long-wavelength and low-amplitude deflections of the20

lithosphere, this term vanishes from the derivation. It is then simple to combine and rear-
range Eqs. A3 and A4 to show the intuitive result that smaller radii of curvature produce
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greater curvature. Further, by noting that derivatives of vertical position, z, are identical to
curvatures of deflection, w, from an initial position z0, we can write the following equality:

1

r
=
d2z

dx2
=
d2w

dx2
(A5)

The next step is to connect these equations for bending into a framework of bending-
related stresses and strains. In order to do so, it is first necessary to to show the approxi-5

mate equality between terms depending on (x,y) and those depending on (x′,y′). This is
possible through the small angle approximation, which, combined with (dz/dx)� 1, means
that:

dw

dx
≈ dw

dx′
(A6)

and therefore, dx≈ dx′.10

Eqs. A2 and A5 can be combined for r = r0.

εxx = εx′x′ = z′
d2w

dx2
(A7)

The equality between dx and dx′ makes normal strains in both of these orientations be
approximately equivalent, with εxx being the standard way of writing this strain for the re-
mainder of this appendix. Eq. A7 becomes important in the final step to define the bending15

moment (first step next) in that it relates material strains directly to geometric positions that
can be measured and/or modeled.

The bending moment itself, M , is the resistance of the plate to bending. It is defined as
the sum through the thickness of the plate of all fiber stresses (x-oriented normal stresses)
σx′x′ times their respective lever arms z′ (cf. Turcotte and Schubert, 2002).20

M =

Te/2∫
−Te/2

σxxz
′dz′ (A8)
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This definition of the bending moment of a plate shows that forces that initiate bending gen-
erate torques that oppose the bending. It is possible to rewrite this in terms of strain instead
of stress by combining the one-dimensional elastic constitutive relationship (Hooke’s Law)
σxx = Eεxx with 1/(1− ν2). E is Young’s modulus, which is a generalized spring constant
that typically ranges between 1010 and 1011 for rock (Turcotte and Schubert, 2002, p. 106),5

and ν is Poisson’s ratio, which describes how much material tends to extend (or shorten)
in one direction when shortened (or extended) in another and is commonly taken to be
0.25 for the lithosphere (Turcotte and Schubert, 2002). The latter term involving Poisson’s
ratio is the result of the fact that for solutions on the Earth, the one-dimensional solution
is assumed to apply for a plane (and loads) that continue indefinitely in the positive and10

negative y-directions (i.e. into and out of the page in Figure A1), but strain in this orientation
is disallowed. Therefore, these compressive stresses that prevent y-oriented bulging of the
plate act to further inhibit its bending, effectively increasing the flexural rigidity.

M =
E

1− ν2

Te/2∫
−Te/2

εxxz
′dz′ (A9)

Both E and ν lie outside of the integral because they are assumed constant across z′.15

It is possible to solve for the bending moment in one dimension by using Eq. A7 to replace
εxx in Eq. A9. As the derivative (d2z/dx2) is orthogonal to the direction of integration, the
integral is simple to solve and results in a solution for the bending moment:

M =
ET 3

e

12(1− ν2)

d2w

dx2
(A10)

The terms to the left of the derivative define the scalar flexural rigidity, D:20

D =
ET 3

e

12(1− ν2)
(A11)
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As D is very important in controlling flexural response and is a function of Te, E, and ν,
gFlex contains the additional simplifying assumption that E and ν are uniform constants.
This permits variations in scalar flexural rigidity to map to variations in effective elastic
thickness via Eq. A11. It prevents overparameterization in gFlex, and implicitly states the
assumption that changes in the effective elastic thickness of the lithosphere, cubed, are5

more significant than changes in Poisson’s ratio, squared, or Young’s modulus.
To generalize the bending moment to a two-dimensional plate, one must follow Van Wees

et al. (1994) in acknowledging that Poisson’s ratio, ν, is applied differently to orientations
parallel and perpendicular to those over which the bending occurs (normal moments) and
is not important for the shear moments:10

Mκ =

Mx

My

Mxy

=D


∂2w
∂x2

+ ν ∂
2w
∂y2

ν ∂
2w
∂x2

+ ∂2w
∂y2

(1− ν) ∂
2w

∂x∂y

 (A12)

A2 Force and Torque Balance

A static lithospheric plate must balance the normal force, F , of imposed loads by generating
shear forces, V and V + dV , due to bending. In Figure A1, the imposed load q is defined
as:15

q =
x+dx∑
x

q(x) (A13)

This signifies that in the numerical solution, a continuous load field is discretized into in-
dividual point loads of length dx and (if a 2D solution is used) width dy. Further vertical
normal stresses for plate flexure are generated by the the sum of the buoyant restoring
force of displaced mantle, ρmgw, and additional driving forces by any surface loads that fill20

the flexural depression, ρfgw. Here I explicitly ignore end loads because they are not part
of the numerical solution in gFlex, which was designed with surface loads in mind, though
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they are straightforward to include (see Van Wees et al., 1994; Braun et al., 2013). Summed
together, these form the additional term ∆ρgw, where ∆ρ= (ρm−ρf ). The total shear force
balance across a cell is therefore defined as:∑

F = q+ ∆ρgw+V − (V + dV ) = 0 (A14)

dV = q+ ∆ρgw (A15)5

While the load stress, q, is directed downwards, its sign convention is flipped such that as
observed geologic loads (e.g., sediments, volcanoes) increase in thickness, q increases as
well.

These shear forces must be balanced in turn by the bending moments in a torque (τ )
balance:10 ∑

τ =−M + (M + dM) +V × 0− (V + dV )× dx= 0 (A16)

V +��*
0

dV =
dM

dx
(A17)

Eq. A17 states that the shear force (V , here dV is vanishingly small in comparison) equals
the derivative of the bending moment. The combination of Eqs. A17 and A10 shows that
shear force is directly proportional to the third derivative of deflection:15

V =
dM

dx
=D

d3w

dx3
(A18)

This observation is key to defining the 0Moment0Shear and 0Slope0Shear boundary con-
ditions (Table 1 and Figure 4).

After noting that dV � V and so can be neglected in Eq. A17, Eqs. A15 and A17 can be
combined by substituting V in Eq. A15 to relate the bending moment to the imposed loads20

q. When including the restoring force from mantle buoyancy, ∆ρgw, the resultant equation
reads:

d2M

dx2
+ ∆ρgw = q (A19)
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Eq. A19 can be combined with Eqs. A10 and A11 to show in the one-dimensional case
that:

d2

dx2

(
D
d2w

dx2

)
+ ∆ρgw = q (A20)

In the more general two-dimensional case, one can create an analogous expression by
separating the matrix flexural rigidity and curvatures used to create Eq. A12 (Van Wees5

et al., 1994), resulting in:

1

2

[
∂2

∂x2
∂2

∂y2

(
∂2

∂x∂y + ∂2

∂y∂x

)]D
1 ν 0
ν 1 0
0 0 1−ν

2




∂2w
∂x2
∂2w
∂y2

∂2w
∂x∂y + ∂2w

∂y∂x


+ ∆ρgw = q (A21)
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Table 1. Boundary conditions. Names provided here are the same as those used in the model. The
first five can be selected for numerical solutions. The final one, NoOutsideLoads, is the outcome
of superposition of analytical solutions, which allows the entire space to respond to local loads as
if the 0-deflection boundaries were infinitely far away. In this notation, the subscript b indicates the
boundary, generically. Where 0 and n are included as subscripts, i.e. for the mirror and periodic
boundary conditions, these indicate boundaries at the first and last node of the model domain along
a particular axis. Subscript x, which is a stand-in for x or y, is a variable distance to indicate the
symmetry across a mirror boundary. Each of these boundary conditions requires a corresponding
boundary condition for flexural rigidity.

Name Mathematical Description Rigidity b.c.

0Displacement0Slope wb = 0 No displacement at boundaries
d2Db
dx2 = 0

0Moment0Shear
d2wb
dx2 =

d3wb
dx3 = 0 Broken plate with a free cantilever end

d2Db
dx2 = 0

0Slope0Shear
dwb
dx

=
d3wb
dx3 = 0 Free displacement of a horizontally clamped boundary

d2Db
dx2 = 0

Mirror wb=n−x = wb=n+x Plane of mirror symmetry at boundary Db=n−x =Db=n+x
Periodic wb=n = wb=0 Wrap-around boundary: infinite tiling of model domain Db=n =Db=0

NoOutsideLoads w∞ = 0 Produced by analytical solutions with uniformD
dDb
dx

= 0
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Figure 1. Flexural isostasy can be produced in response to a range of geological loads.
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Figure 2. Flowchart for gFlex as (1) a standalone model with configuration and input files, (2) a
Python module or coupled component in a modeling framework, or (3) a GRASS GIS component.
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Figure 3. Numerical (FD) and analytical (SAS) solutions in 1D (A) and 2D (C) and their differences
(B and D) in response to a 100-km-(long/in-diameter) central line/circular load. These differences
are due primarily to the NoOutsideLoads boundary condition of the analytical solution and the 0Dis-
placement0Slope boundary condition of the numerical solution. This can be seen in panel B where
the example with a lower elastic thickness is less-offset due to the greater number of flexural wave-
lengths between the load and the boundary, and in the greater agreement between the solutions
on the longer diagonal boundaries in D. The offset in the middle, visible as a small bump in B and
a blue diamond surrounded by red petals in D, is due to the difference between approximating the
load as a sum of point impulses (analytical) and as the solution to a rectangularly gridded matrix
equation based on the same theory (numerical).
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Figure 4. Schematics of boundary condition types allowed in the finite difference solutions to gFlex.
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Figure 5. Example runs of gFlex with varying elastic thickness and boundary conditions. A depicts
a long north–south mountain belt and foreland basin under uniform elastic thickness. B provides a
contrived field of variable elastic thickness. C is similar to A except in that it uses a mirror boundary
for a symmetrical mountain belt over a continuous lithospheric plate instead of a broken plate solu-
tion, and that the plate has the variable elastic thickness structure given in B. D depicts the flexural
interaction of two mountain belts on the same variable-elastic-thickness lithosphere shown in B and
has mirror boundary conditions at all edges.
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Figure 6. Model benchmarking. A: The ungridded superposition of analytical solutions (SAS_NG)
computation time is proportional to the number of cells with loads present, as the solutions are
calculated once for each of these positions. B: The gridded superposition of analytical solutions
(SAS) scales to the total number of grid cells times the number of cells with loads, as this is the
total number of computations that must be made. C: Finite difference solutions are computed with
sparse matrices with dimensions equal proportional to the grid dimensions, squared, and therefore
scale with the number of total grid cells. All of the solution time relationships are close to linear
except for the two-dimensional finite difference solutions, due to the added complexity of their finite
difference stencil. Many fits are to a subset of the data to avoid those solutions that are so rapid that
the amount of time required for the non-solver portions of the code becomes significant. All marker
symbols are semi-transparent, meaning that darker symbols than those that appear in the legend
imply additional data points underneath.
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Number of grid cells

Figure 7. Comparison between solution methods where every cell in the domain contains a load.
The ungridded superposition of analytical solutions (SAS_NG) scales best but in these tests is the
slowest. It can, however, be faster when fewer cells contain loads. Some fits are to a subset of the
data to avoid those solutions that are so rapid that the amount of time required for the non-solver
portions of the code becomes significant. All marker symbols are semi-transparent, meaning that
darker symbols than those that appear in the legend imply additional data points underneath.
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Figure 8. This coupled model run for a hypothetical extent of the Iceland ice cap shows the influence
of a variable elastic thickness structure (I). The areal extent of the three ice caps is nearly identical
(A, D, G) in this small-scale and largely topographically controlled example. Flexural isostasy with a
constant 3.7-km elastic thickness (C) (following Hubbard, 2006) reduces ice cap extent and causes
some interior ice thickening when compared to the case without flexure (B) as the ice cap conforms
to the bowl-shaped depression that it creates. Deformation in the case with variable elastic thickness
(F) focuses along the ridge and extends farther on the southwestern side that has greater elastic
thickness, and modifies the topography of western Iceland (low elastic thickness) to produce spatially
variable ice thickness changes (E, H).
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Figure A1. Schematic of the bending of a buoyant plate under a load that is long in the y-orientation.
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